常用分子生物学技术的原理及应用
常用分子生物学技术的原理及其应用

分子生物学技术是生物学领域中的重要工具,广泛应用于基础研究、医学诊断、药物研发等领域。
以下是常用的分子生物学技术及其原理和应用:1. PCR技术:PCR(聚合酶链式反应)是一种体外扩增DNA的方法,基本原理是通过DNA聚合酶酶在体外模拟DNA的复制过程,从而快速扩增目标DNA片段。
PCR技术在基因克隆、基因检测、DNA指纹分析等领域有着广泛的应用。
2. 基因克隆技术:基因克隆是将感兴趣的DNA片段插入到载体DNA 中,构建重组DNA分子的过程。
通过基因克隆技术可以获得大量目的基因的DNA序列,用于研究基因功能、表达调控等方面。
3. 蛋白质表达与纯化技术:蛋白质表达技术是将外源基因导入宿主细胞中,使其表达目的蛋白质的过程。
通过蛋白质表达与纯化技术,可以获得大量纯净的蛋白质样品,用于研究蛋白质结构、功能等。
4. 基因编辑技术:基因编辑技术包括CRISPR-Cas9系统、TALENs和ZFNs等,可以实现对基因组特定区域的精准编辑。
基因编辑技术在疾病治疗、植物育种等领域有着巨大的潜力。
5. RNA干扰技术:RNA干扰是一种通过RNA介导的基因沉默机制,可使目标基因的mRNA水平下降,从而抑制基因表达。
RNA干扰技术在基因功能研究、疾病治疗等方面具有重要应用价值。
6. 蛋白质亲和纯化技术:蛋白质亲和纯化技术利用蛋白质与其结合物质之间的特异性相互作用,实现对目标蛋白质的选择性富集和纯化。
该技术在药物筛选、蛋白质相互作用研究等领域有着广泛应用。
7. 基因芯片技术:基因芯片是一种高通量的生物芯片技术,可同时检测上千个基因的表达水平。
基因芯片技术广泛应用于基因表达谱分析、疾病诊断、药物研发等领域。
8. 蛋白质组学技术:蛋白质组学技术主要包括蛋白质质谱分析、蛋白质组芯片等,用于研究蛋白质在生物体内的表达水平、翻译后修饰等。
蛋白质组学技术在疾病诊断、药物靶点鉴定等方面有着重要应用。
以上是常用的分子生物学技术及其原理和应用。
常用分子生物学技术的原理及其应用

常用分子生物学技术的原理及其应用概述分子生物学技术是现代生物学研究中应用广泛的一系列技术方法。
这些技术能够帮助科学家从分子水平上理解生物学系统的结构和功能,并促进相关研究的进展。
本文将介绍几种常用的分子生物学技术,并详细探讨它们的原理和应用。
1. 聚合酶链式反应(PCR)•原理:聚合酶链式反应(PCR)是一种体外合成DNA的方法,通过循环性反应使DNA的数量迅速扩增。
该技术主要包括三个步骤:变性、退火和延伸。
在变性步骤中,DNA双链被加热使其解旋成两条单链。
在退火步骤中,引物与模板DNA序列互补碱基配对。
在延伸步骤中,热稳定DNA聚合酶将新的DNA链延伸。
•应用:PCR技术在生物学研究和临床诊断中有着广泛的应用。
它可以用于基因克隆、基因突变分析、DNA测序、DNA指纹鉴定等。
此外,PCR还常用于检测病原体、肿瘤标记物以及遗传性疾病的诊断。
2. 凝胶电泳•原理:凝胶电泳是一种分离DNA和蛋白质的常见方法。
该技术基于物质在电场中的迁移速度不同,利用电势差将分子分离开来。
DNA片段在凝胶中迁移速度与其大小有关,大片段迁移较慢,小片段迁移较快。
•应用:凝胶电泳广泛应用于DNA分析、蛋白质分析以及核酸杂交等实验中。
在分子生物学研究中,凝胶电泳可用于确认PCR扩增产物的大小,并进行DNA片段的分离和纯化。
此外,它还可以检测基因突变、遗传关系等。
3. 蛋白质电泳•原理:蛋白质电泳是一种分离和分析蛋白质的技术。
该技术基于蛋白质的大小、电荷和形状差异,利用电势差将蛋白质分离开来。
在电泳过程中,蛋白质样品被加载到聚丙烯酰胺凝胶中,并通过电场迁移。
•应用:蛋白质电泳在生物学研究和临床诊断中具有重要作用。
它可以用于鉴定蛋白质在细胞中的表达水平、研究蛋白质结构和功能以及检测特定蛋白质的存在与否。
此外,蛋白质电泳还用于分离和纯化重组蛋白质。
4. 核酸杂交•原理:核酸杂交是一种通过互补碱基配对而发生的分子相互作用。
通过标记的探针DNA或RNA与靶序列相互结合形成稳定的双链或三链结构,从而可进行检测和定位。
常用分子生物学技术的原理及其应用

酵母双杂交系统的应用 分析已知蛋白之间的相互作用 对蛋白质功能域的分析 分析未知蛋白相互作用 绘制蛋白质相互作用系统图 在药物设计中的应用
返回
返回
三 种 印 迹 技 术 的 比 较
返回
实时PCR技术原理 实时PCR技术原理 PCR
返回
返回
返回
(略 )
第六节 遗传修饰动物模型的建立及应用 The establishment and application of heredityhereditymodified animal model
一. 转基因技术
采用基因转移技术使目的基因整合入受精卵细胞或胚胎 干细胞,然后将细胞导入动物子宫,使之发育成个体。 干细胞,然后将细胞导入动物子宫,使之发育成个体。
医本<生物化学> 医本<生物化学>周爱儒 第六版
第二十二章 常用分子生物学技术的原理 及其应用
The Popular Technology in Molecular Biology: Principle and Application
第一节
分子杂交与印迹技术
Molecular Hybridization and Blotting 库
是指一个包含了 某一生物体全部DNA 某一生物体全部 序列的克相关基因的克隆与鉴定 Cloning and identification of disease relative gene
分子杂交(nucleic acid hybridization) 一. 分子杂交
不同来源的单链核酸经退火形成双链结构的过程。 不同来源的单链核酸经退火形成双链结构的过程。
DNA DNA DNA RNA
基础:核酸的变性与退火 基础:
常用分子生物学技术的原理及应用

常用分子生物学技术的原理及应用一、PCR技术1.PCR(Polymerase Chain Reaction)技术是一种常用的分子生物学技术,主要用于扩增DNA片段。
2.PCR技术的原理是通过添加DNA模板、引物和DNA聚合酶,以及一系列特定的温度循环,迅速扩增目标DNA序列。
3.PCR技术的应用广泛,如基因克隆、基因突变分析、疾病诊断等。
二、蛋白质电泳技术1.蛋白质电泳技术是用于分离和定量蛋白质的常用方法。
2.蛋白质电泳技术包括SDS-PAGE和蛋白质西方印迹等。
3.SDS-PAGE是一种蛋白质分子量分析方法,通过凝胶电泳分离蛋白质。
4.蛋白质西方印迹则用于检测特定蛋白质的表达,并通过特异性抗体与该蛋白质结合,产生特定的信号。
三、原位杂交技术1.原位杂交技术是研究基因表达和基因组结构的重要工具。
2.原位杂交技术通过结合特异性探针和标记物,用于检测目标序列在组织或细胞中的分布。
3.原位杂交技术有多种类型,如荧光原位杂交(FISH)和非放射性原位杂交等。
4.原位杂交技术在遗传学研究、疾病诊断和生物学研究中得到广泛应用。
四、基因克隆技术1.基因克隆技术是将特定DNA片段插入到载体DNA中的技术。
2.基因克隆技术的关键步骤包括:DNA片段的切割、载体DNA的选择和连接、转化等。
3.基因克隆技术在基因工程、重组蛋白质的表达以及基因功能研究等方面具有重要应用。
五、DNA测序技术1.DNA测序技术是用于确定DNA序列的方法。
2.DNA测序技术包括Sanger测序和高通量测序等。
3.Sanger测序是一种经典的测序方法,逐个位置确定DNA序列。
4.高通量测序技术通过并行测序大量的DNA片段,实现快速高效的DNA测序,并被广泛应用于基因组学研究、药物研发等领域。
六、蛋白质质谱技术1.蛋白质质谱技术是分析蛋白质结构和功能的重要方法。
2.蛋白质质谱技术包括质谱仪的使用和蛋白质样品的制备等。
3.蛋白质质谱技术能够快速鉴定蛋白质样品中的蛋白质组分,并定量分析特定蛋白质的表达水平。
常用分子生物学实验技术--整理

常⽤分⼦⽣物学实验技术--整理常⽤的分⼦⽣物学实验技术:离⼼技术: 是分离纯化蛋⽩质、酶、核酸(DNA、RNA)、细胞的最常⽤⽅法之⼀。
电泳(electrophoresis):带电粒⼦在电场中向着与其所带电荷相反⽅向电极移动的现象。
可⽤于分离不同分⼦量的⽣物⼤分⼦。
1.蛋⽩质的电泳: ⽤途:蛋⽩质的定量。
2.核酸的电泳: ⽤途:⽤于核酸的分离、鉴定、纯化、回收。
⽐如:我只需要长度300bp左右的分⼦。
那么,电泳后,在切胶过程中,只切300bp处的分⼦即可。
蛋⽩质研究相关的技术: 1. 含量测定: 2. 结构的测定: (1)⼀级结构的测定:搞清楚蛋⽩质肽链的氨基酸排列顺序。
⽅法:Edman降解法、质谱法(MS, 将蛋⽩⽔解,多肽链分成⼩段。
检测肽段) (2)空间结构测定:蛋⽩空间结构分析⽐⼀级结构分析复杂得多。
⽅法:X射线衍射晶体分析法、核磁共振法等。
3. 功能的测定: (1)酵母双杂交(YTH): 假设:欲检测蛋⽩X与蛋⽩Y是否相互作⽤。
检测⽅法: 将蛋⽩X与报告基因转录因⼦的BD融合; 将蛋⽩Y与AD融合; 确认蛋⽩X与蛋⽩Y形成的复合体能否激活报告基因的表达。
如果能激活报告基因的表达,说明:X与Y形成了复合体,则BD和AD靠近,激活了下游报告基因的表达;反之,报告基因不表达。
原理: 真核⽣物的转录因⼦(尤其是酵母转录因⼦GAL4),包括两个彼此分离、但功能必需的结构域:⼀个是与DNA结合的结构域-BD;⼀个是转录激活域-AD。
BD识别转录因⼦效应基因的上游序列并与之结合;AD通过与转录复合体的其他成分作⽤,启动下游的基因转录。
即使BD与AD分开,但如果在空间上较为接近时也能激活转录。
——利⽤转录因⼦的BD、AD这⼀特性,通过检测转录因⼦是否启动了其效应基因的表达,可研究蛋⽩质X与Y是否相互作⽤。
(2)蛋⽩质芯⽚技术:⼀种⾼通量、微型化、⾃动化的蛋⽩质分析技术。
⼀次试验中可同时检测⼏百甚⾄⼏千种⽬标蛋⽩或多肽。
分子生物学 常用分子生物学技术的原理及应用

(三)基因突变
利用PCR技术可以随意设计引物在体外对目的 基因片段进行嵌和、缺失、点突变等改造。
T G C
(四)DNA序列测定
将PCR技术引入DNA序列测定,使测序工 作大为简化,也提高了测序的速度;
待测DNA片段既可克隆到特定的载体后进 行序列测定,也可直接测定。
(五)基因突变分析
PCR与其他技术的结合可以大大提高基 因突变检测的敏感性 。
▪ 分子杂交: 不同来源的单链核苷酸链根据碱基互补原则形成
杂种双链的过程。
▪ 分子杂交的目的: 检测DNA和RNA
▪ 探针: 分子杂交中和待测核苷酸链碱基互补的被标记的
核苷酸链。
待测DNA或RNA
探针
碱基对间氢键
增色效应: DNA变性伴随260nm吸收值增高
减色效应: DNA复性伴随260nm吸收值降低
Taq
5’
Taq
5’
R
R
R Taq
R
Taq
R
l
R
3’
Extension Step
1. Strand Displacement
3’
5’
2. Cleavage
3’
5’ 3. Polymerization
3’
Complete
4. Detection
5’ 3’
PCR衍生技术
▪ 反向PCR ▪ 逆转录PCR ▪ 原位PCR ▪ 重组PCR ▪ 不对称PCR ▪ 多重PCR
酵母双杂交系统的建立基于对真核生物转录激 活因子结构与功能的认识
真核生物转录激活因子
DNA结合结构域 转录激活结构域
BD
AD
组件式:结构可互相分开 功能互相独立 空间较近时表现活性 中间序列对活性无影响
分子生物学常用技术(简化版)

Northern blot
类似于 Southern 印迹杂交的方法,用于 RNA 检测
in situ hybridization
原位杂交:特定 mRNA 的组织细胞分布
FISH Fluorescence in situ hybridization (FISH):特定基因的染色体定位
反 Northern 杂交与 DNA 芯片
DNA解旋解链
DNA的体内复制
ATCGCGATAGCGTAGCTGCGACCTAGC
5’
3’
TAGCGCTATCGCATCGACGCTGGATCG
3’
5’
GGAUCG
5’
AUCGCG
5’
引物酶
引物酶
RNA引物
RNA引物
DNA解旋解链
引物合成
DNA的体内复制
ATCGCGATAGCGTAGCTGCGACCTAGC
核酸:测序、印迹、杂交、体外扩增技术 蛋白质:电泳与印迹、组学技术、相互作用
基本技术:
基因工程技术 转基因生物与基因敲除技术
综合技术:
基因诊断 基因治疗
应用技术:
第一节:核酸分子杂交
Molecular hybridization: 利用已知核酸序列 (探针/probe) 检测与其互补的未知核酸序列 用途: 确认核酸序列间同源性 对特定核酸序列进行定量 自核酸混合体中辨认特定核酸序列
1.什么是耐热 DNA 聚合酶
早期 PCR 曾使用 DNA 聚合酶 I
在高温时发生变性,每一循环都需要重新添加酶 延伸反应温度为 37℃,非特异性太多
目前常用 Taq DNA 聚合酶
纯化自嗜热水生菌 (Thermus aquaticus) 可耐受 95℃ 高温,最适反应温度为 72℃ 左右
分子生物学-分子生物学技术的原理及其应用

遗传变异与进化
研究基因组的突变、遗传变异和物种进化过程。
生物工程与基因治疗
应用分子生物学技术进行
2
将目标基因插入携带载体中,实现基因
的复制和传递。
3
PCR技术
通过反复复制DNA片段,快速扩增目标 DNA序列。
基因测序技术
通过测定DNA碱基序列,获得基因组的 信息。
未来发展趋势和前景
分子生物学技术的不断发展将为医学、农业、环境等领域带来更多应用,推动科学研究和社会发展。
分子生物学-分子生物学 技术的原理及其应用
分子生物学的定义
分子生物学是研究生物体的分子基础和机制的科学,涉及生命的DNA、RNA和蛋白质等分子的结构、功能和 相互作用。
分子生物学的研究领域
基因结构与表达
研究基因的结构、转录过程和蛋白质合成调控 机制。
信号转导与细胞通讯
研究细胞内信号传递、细胞通讯和细胞命运决 定。
分子生物学技术的应用
生物工程
利用基因工程技术改良农作物、制造药物等。
功能基因研究
研究基因在生物体内的功能和作用机制。
基因改良
改良农作物和家畜,提高产量和品质。
医学诊断
通过基因检测诊断疾病,提供个性化医疗方案。
基因治疗
通过修复异常基因或引入正常基因来治疗遗传 性疾病。
检验食品安全
利用基因检测技术检测食品中的有害成分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三轮筛选
目录
第
五
节
疾病相关基因的克隆与鉴定
Cloning and Identification of Disease
Relative Genes
目录
克隆疾病相关基因的策略
(一)功能性克隆(functional cloning) (二)定位克隆(positional cloning) (三)非定位候选基因克隆策略(positionindependent candidate gene approaches) (四)定位候选基因克隆策略(positional candidate gene approaches )
目录
其他
斑点印迹 (dot blotting) 原位杂交 (in situ hybridization)
DNA点阵 (DNA array)
DNA芯片技术 (DNA chip)
目录
三 种 印 迹 技 术 的 比 较
目录
②
①
③
分子杂交实验
目录
放 射 自 显 影 照 片
目录
DNA 点阵
目录 目录
四、PCR的主要用途
(一)目的基因的克隆 (二)基因的体外突变 (三)DNA和RNA的微量分析 (四)DNA序列测定
(五)基因突变分析
目录
三、几种重要的PCR衍生技术
(一)反转录PCR技术
(二)原位PCR技术
(三)实时PCR技术
目录
实时PCR技术原理
目录
第
三
节
核 酸 序 列 分 析
Nucleic Acid Sequence Analysis
目录
一、转基因技术
转基因技术 采用基因转移技术使目的基因整合入 受精卵细胞或胚胎干细胞,然后将细胞导 入动物子宫,使之发育成个体。 转基因——被导入的目的基因 转基因动物(transgenic animal)
——目的基因的受体动物
目录
二、核转移技术 核转移技术 即动物整体克隆技术,将动物 体细胞核全部导入另一个体的去 胞核的受精卵内,使之发育成个 体,即克隆(clone)。
目录
(二)定位克隆
定义
从一种致病基因的染色体定位出发逐步 缩小范围,最后克隆该基因。
系统的定位克隆工作
① 遗传学分析(确定致病基因染色体定位)
交换分析、连锁不平衡分析
② 分子生物学分析
染色)非定位候选基因克隆策略
由于基因组作图的完成和分子病理学的
目录
第 七 节 生 物 芯 片 技 术
Biological Chip Technology
目录
一、基因芯片(gene chip) •DNA芯片(DNA chip)
•cDNA芯片(cDNA chip) 是指将许多特定的DNA片段或cDNA片
段作为探针,有规律地紧密排列固定于单位
面积的支持物上 。
目录
目录
蛋白质之间相互作用研究的重要性
蛋白质之间相互作用以及通过相互作用而 形成的蛋白复合物是细胞各种基本功能的主
要完成者。几乎所有的重要生命活动,包括
DNA的复制与转录、蛋白质的合成与分泌、
信号转导和代谢等等,都离不开蛋白质之间
的相互作用。
目录
常用蛋白质相互作用的研究技术
酵母双杂交
各种亲和分析(亲和色谱、免疫共沉淀等) 荧光共振能量转换效应分析 噬菌体显示系统筛选等等
目录
一、酵母双杂交技术的基本原理
目录
二、酵母双杂交系统的应用
(一)分析已知蛋白之间的相互作用 (二)对蛋白质功能域的分析 (三)分析未知蛋白相互作用 (四)绘制蛋白质相互作用系统图谱
(五)在药物设计中的应用
目录
目录
DNA自动测序结果举例
目录 目录
第
四
节
基
因
文
库
Gene包含了某一生物体全部技术 的原理及应用
The Popular Technology in Molecular Biology: Principle and Application
目录
第
一
节
分子杂交与印迹技术
Molecular
5 5
5 5
5 5
5 5
5 5
5 5
25~30 次循环后,模板DNA的 含量可以扩大100万倍以上。
目录
二、PCR体系基本组成成分
模板DNA 特异性引物
耐热DNA聚合酶
dNTPs
Mg2+
目录
三、PCR的基本反应步骤
变性
95˚C
延伸 72˚C
退火
Tm-5˚C
目录
目录
一、分子杂交与印迹技术的原理
核酸分子杂交 (nucleic acid hybridization ) 在DNA复性过程中,如果把不同DNA单链分 子放在同一溶液中,或把DNA与RNA放在一起, 只要在DNA或RNA的单链分子之间有一定的碱基 配对关系,就可以在不同的分子之间形成杂化双 链(heteroduplex) 。
目录
二、蛋白质芯片 蛋白质芯片(protein chip) 是将高度密集排列的蛋白分子作为探针 点阵固定在固相支持物上,当与待测蛋白样 品反应时,可捕获样品中的靶蛋白,再经检
测系统对靶蛋白进行定性和定量分析的一种
技术。
目录
第 八 节
蛋白质相互作用研究技术
Research Technology of Interaction of Protein
分子在不同位点断裂,从而获得一系列大小不同
的DNA片段,将这些片段经电泳分离。
分析前,用同位素标记DNA的5´末端,经放
射自显影即可在X胶片上读出DNA链的序列。
目录
二、DNA链末端合成终止法
目录
目录
三、DNA自动测序
采用荧光替代放射性核素标记是实现DNA序列 分析自动化的基础。用不同荧光分子标记四种双脱 氧核苷酸,然后进行Sanger测序反应,反应产物经 电泳(平板电泳或毛细管电泳)分离后,通过四种 激光激发不同大小DNA片段上的荧光分子使之发 射出四种不同波长荧光,检测器采集荧光信号,并 依此确定DNA碱基的排列顺序。
目录
复性
RNA
DNA
目录
(一)印迹技术 (二)探针技术 探针 (probe) 一小段用同位素、生物素或荧光染料标标记 其末端或全链的已知序列的多聚核苷酸,与固定 在NC膜上的核苷酸结合,判断是否有同源的核 酸分子存在。
目录
二、印迹技术的类别及应用
(一)DNA印迹技术 (Southern blotting) 用于基因组DNA、重组质粒和噬菌体的分析。 (二)RNA印迹技术 (Northern blotting) 用于RNA的定性定量分析。 (三)蛋白质的印迹分析 (Western blotting) 用于蛋白质定性定量及相互作用研究。
发展,人们可以不依靠染色体定位,直接根 预测出候选致病基因。
据病理学变化和对各种基因产物功能的了解,
目录
(四)定位候选基因克隆策略
当致病基因的染色体定位确认后, 人们可以利用因特网上的基因网站 所提供基因序列数据,鉴定出候选
致病基因。
目录
第六节
遗传修饰动物模型的建立 及应用
The Establishment and Application of Heredity-Modified Animal Model
第 二 节
聚 合 酶 链 反 应
Polymerase Chain Reaction
目录
一、基本工作原理
Template DNA
5 5
5
Primer 1 5 Primer 2
Cycle 1
5 5 5
5
Cycle 2
5 5 5 5
目录
5
5
5 5
Cycle 3
5 5 5 5
目录
(一)功能性克隆 定义 从对一种致病基因的功能的了解出发, 克隆该致病基因。
应用 生化机制已明确、基因表达产物较易得 到部分纯化的遗传性疾病。
目录
克隆方 complementation assay) 利用酵母系统从功能学角度鉴定致病基因。
目录
核酸序列分析的基本原理
化学裂解法 (Maxam-Gillbert法)
DNA链的末端合成终止法 (sanger法)
目录
一、化学裂解法(Maxam-Gillbert法)
基本原理
基于某些化学试剂可以使DNA链在1个或2个
碱基处发生专一性断裂的特性,精确地控制反应
强度,使一个断裂点仅存在于少数分子中,不同
目录
目录
三、基因剔除技术 基因剔除技术 也称基因靶向(gene targeting)灭
活,有目的去除动物体内某种基因 的技术。
目录
四、基因转移和基因剔除技术在 医学中的应用 建立动物模型
① 单基因决定疾病模型 基因剔除 获得性突变(gain-of-function mutation) ② 多基因决定疾病模型