2020年新疆高三三模数学(理科)

合集下载

高三数学三模试卷 理(含解析)-人教版高三全册数学试题

高三数学三模试卷 理(含解析)-人教版高三全册数学试题

2016年某某某某市平罗中学高考数学三模试卷(理科)一.选择题:(本大题共12小题,每小题5分,共60分.在每小题所给的四个答案中有且只有一个答案是正确的.把正确选项涂在答题卡的相应位置上.)1.若集合P={x||x|<3,且x∈Z},Q={x|x(x﹣3)≤0,且x∈N},则P∩Q等于()A.{0,1,2} B.{1,2,3} C.{1,2} D.{0,1,2,3}2.若复数z=sinθ﹣+(cosθ﹣)i是纯虚数,则tanθ的值为()A.B.﹣ C.D.﹣3.设命题p:若x,y∈R,x=y,则=1;命题q:若函数f(x)=e x,则对任意x1≠x2都有>0成立.在命题①p∧q;②p∨q;③p∧(¬q);④(¬p)∨q中,真命题是()A.①③ B.①④ C.②③ D.②④4.已知向量满足•(+)=2,且||=1,||=2,则与的夹角为()A.B.C.D.5.若随机变量X~N(μ,σ2)(σ>0),则下列如下结论:P(μ﹣σ<X≤μ+σ)=0.6826,P(μ﹣2σ<X≤μ+2σ)=0.9544,P(μ﹣3σ<X≤μ+3σ)=0.9974,某班有48名同学,一次数学考试的成绩服从正态分布,平均分为80,标准差为10,理论上说在80分到90分的人数均为()A.32 B.16 C.8 D.246.公元263年左右,我国数学家X徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”X徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用X徽的“割圆术”思想设计的一个程序框图,则输出n的值为()(参考数据:≈1.732,s in15°≈0.2588,sin7.5°≈0.1305)A.12 B.24 C.36 D.487.设S n是数列{a n}(n∈N+)的前n项和,n≥2时点(a n﹣1,2a n)在直线y=2x+1上,且{a n}的首项a1是二次函数y=x2﹣2x+3的最小值,则S9的值为()A.6 B.7 C.36 D.328.某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A.4cm3B.6cm3C.D.9.双曲线E:﹣=1(a,b>0)的右焦点为F(c,0),若圆C:(x﹣c)2+y2=4a2与双曲线E的渐近线相切,则E的离心率为()A.B.C.D.10.数列{a n}满足a1=1,对任意的n∈N*都有a n+1=a1+a n+n,则=()A.B.C.D.11.已知三棱锥S﹣ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC 为球O的直径,且SC=2,则此棱锥的体积为()A.B.C.D.12.定义在R上的函数f(x),f′(x)是其导数,且满足f(x)+f′(x)>2,ef(1)=2e+4,则不等式e x f(x)>4+2e x(其中e为自然对数的底数)的解集为()A.(1,+∞)B.(﹣∞,0)∪(1,+∞)C.(﹣∞,0)∪(0,+∞)D.(﹣∞,1)二、填空题:(本大题共4小题,每小题5分,共20分)13.若(2x﹣1)dx=6,则二项式(1﹣2x)3m的展开式各项系数和为.14.记集合,构成的平面区域分别为M,N,现随机地向M中抛一粒豆子(大小忽略不计),则该豆子落入N中的概率为.15.已知点A(0,2),抛物线C1:y2=ax(a>0)的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,若|FM|:|MN|=1:,则a的值等于.16.给出下列命题:①命题“若方程ax2+x+1=0有两个实数根,则a≤”的逆命题是真命题;②“函数f(x)=cos2ax﹣sin2ax的最小正周期为π”是“a=1”的必要不充分条件;③函数f(x)=2x﹣x2的零点个数为2;④幂函数y=x a(a∈R)的图象恒过定点(0,0)⑤“向量与的夹角是钝角”的充分必要条件是“•<0”;⑥方程sinx=x有三个实根.其中正确命题的序号为.三、解答题(本大题共计70分,解答应写出说明文字、证明过程或演算步骤).17.已知f(x)=2sin(Ⅰ)若,求f(x)的值域;(Ⅱ)在△ABC中,A为BC边所对的内角若f(A)=2,BC=1,求的最大值.18.自2016年1月1日起,我国全面二孩政策正式实施,这次人口与生育政策的历史性调整,使得“要不要再生一个”“生二孩能休多久产假”等成为千千万万个家庭在生育决策上避不开的话题.为了解针对产假的不同安排方案形成的生育意愿,某调查机构随机抽取了200户有生育二胎能力的适龄家庭进行问卷调查,得到如下数据:产假安排(单位:周)14 15 16 17 18有生育意愿家庭数 4 8 16 20 26(1)若用表中数据所得的频率代替概率,面对产假为14周与16周,估计某家庭有生育意愿的概率分别为多少?(2)假设从5种不同安排方案中,随机抽取2种不同安排分别作为备选方案,然后由单位根据单位情况自主选择.①求两种安排方案休假周数和不低于32周的概率;②如果用ξ表示两种方案休假周数和.求随机变量ξ的分布及期望.19.如图,空间几何体ABCDE中,平面ABC⊥平面BCD,AE⊥平面ABC.(1)证明:AE∥平面BCD;(2)若△ABC是边长为2的正三角形,DE∥平面ABC,且AD与BD,CD所成角的余弦值均为,试问在CA上是否存在一点P,使得二面角P﹣BE﹣A的余弦值为.若存在,请确定点P的位置;若不存在,请说明理由.20.已知椭圆C: +=1(a>b>0)过点A(﹣,),离心率为,点F1,F2分别为其左右焦点.(1)求椭圆C的标准方程;(2)若y2=4x上存在两个点M,N,椭圆上有两个点P,Q满足,M,N,F2三点共线,P,Q,F2三点共线,且PQ⊥MN.求四边形PMQN面积的最小值.21.设函数,(a>0)(Ⅰ)当时,求函数f(x)的单调区间;(Ⅱ)若f(x)在内有极值点,当x1∈(0,1),x2∈(1,+∞),求证:.(e=2.71828…)【选考题】请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,答题时用2B铅笔在答题卡上把所选题目的题号涂黑.请考生在第(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一题计分,作答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.[选修4-1:几何证明选讲] 22.如图,AB是⊙O的直径,弦CA、BD的延长线相交于点E,EF垂直BA的延长线于点F.求证:(1)∠DEA=∠DFA;(2)AB2=BE•BD﹣AE•AC.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,设倾斜角为α的直线(t为参数)与曲线(θ为参数)相交于不同两点A,B.(1)若,求线段AB中点M的坐标;(2)若|PA|•|PB|=|OP|2,其中,求直线l的斜率.[选修4-5:不等式选讲]24.设函数f(x)=|x﹣1|+|x﹣2|.(1)画出函数y=f(x)的图象;(2)若不等式|a+b|+|a﹣b|≥|a|f(x),(a≠0,a、b∈R)恒成立,某某数x的X围.2016年某某某某市平罗中学高考数学三模试卷(理科)参考答案与试题解析一.选择题:(本大题共12小题,每小题5分,共60分.在每小题所给的四个答案中有且只有一个答案是正确的.把正确选项涂在答题卡的相应位置上.)1.若集合P={x||x|<3,且x∈Z},Q={x|x(x﹣3)≤0,且x∈N},则P∩Q等于()A.{0,1,2} B.{1,2,3} C.{1,2} D.{0,1,2,3}【考点】交集及其运算.【分析】化简集合P、Q,求出P∩Q即可.【解答】解:P={x||x|<3,且x∈Z}={x|﹣3<x<3,x∈Z}={﹣2,﹣1,0,1,2},Q={x|x(x﹣3)≤0,且x∈N}={x|0≤x≤3,且x∈N}={0,1,2,3},∴P∩Q={0,1,2}.2.若复数z=sinθ﹣+(cosθ﹣)i是纯虚数,则tanθ的值为()A.B.﹣ C.D.﹣【考点】复数的基本概念.【分析】复数z=sinθ﹣+(cosθ﹣)i是纯虚数,可得si nθ﹣=0,cosθ﹣≠0,可得cosθ,即可得出.【解答】解:∵复数z=sinθ﹣+(cosθ﹣)i是纯虚数,∴sinθ﹣=0,cosθ﹣≠0,∴cosθ=﹣.则tanθ==﹣.故选:B.3.设命题p:若x,y∈R,x=y,则=1;命题q:若函数f(x)=e x,则对任意x1≠x2都有>0成立.在命题①p∧q;②p∨q;③p∧(¬q);④(¬p)∨q中,真命题是()A.①③ B.①④ C.②③ D.②④【考点】复合命题的真假.【分析】命题p:y=0时, =1不成立,即可判断出真假;命题q:由于函数f(x)在R 上单调递增,即可判断出真假.再利用复合命题真假的判定方法即可得出.【解答】解:命题p:若x,y∈R,x=y,则=1,y=0时不成立,因此是假命题;命题q:若函数f(x)=e x,由于函数f(x)在R上单调递增,则对任意x1≠x2都有>0成立,是真命题.因此在命题①p∧q;②p∨q;③p∧(¬q);④(¬p)∨q中,真命题是②④.故选:D.4.已知向量满足•(+)=2,且||=1,||=2,则与的夹角为()A.B.C.D.【考点】平面向量数量积的运算.【分析】根据条件求出向量•的值,结合向量数量积的应用进行求解即可.【解答】解:∵•(+)=2,∴•+2=2,即•=﹣2+2=2﹣1=1则cos<,>==,则<,>=,故选:D5.若随机变量X~N(μ,σ2)(σ>0),则下列如下结论:P(μ﹣σ<X≤μ+σ)=0.6826,P(μ﹣2σ<X≤μ+2σ)=0.9544,P(μ﹣3σ<X≤μ+3σ)=0.9974,某班有48名同学,一次数学考试的成绩服从正态分布,平均分为80,标准差为10,理论上说在80分到90分的人数均为()A.32 B.16 C.8 D.24【考点】正态分布曲线的特点及曲线所表示的意义.【分析】正态总体的取值关于x=80对称,位于70分到90分之间的概率是0.6826,位于80分到90分之间的概率是位于70分到90分之间的概率的一半,得到要求的结果.【解答】解:∵数学成绩近似地服从正态分布N(80,102),P(|x﹣u|<σ)=0.6826,∴P(|x﹣80|<10)=0.6826,根据正态曲线的对称性知:位于80分到90分之间的概率是位于70分到90分之间的概率的一半∴理论上说在80分到90分的人数是(0.6826)×48≈16.故选:B.6.公元263年左右,我国数学家X徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”X徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用X徽的“割圆术”思想设计的一个程序框图,则输出n的值为()(参考数据:≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)A.12 B.24 C.36 D.48【考点】程序框图.【分析】列出循环过程中S与n的数值,满足判断框的条件即可结束循环.【解答】解:模拟执行程序,可得:n=6,S=3sin60°=,不满足条件S≥3.10,n=12,S=6×sin30°=3,不满足条件S≥3.10,n=24,S=12×sin15°=12×0.2588=3.1056,满足条件S≥3.10,退出循环,输出n的值为24.故选:B.7.设S n是数列{a n}(n∈N+)的前n项和,n≥2时点(a n﹣1,2a n)在直线y=2x+1上,且{a n}的首项a1是二次函数y=x2﹣2x+3的最小值,则S9的值为()A.6 B.7 C.36 D.32【考点】二次函数的性质.【分析】先根据数列的函数特征以及二次函数的最值,化简整理得到{a n}是以为2首项,以为公差的等差数列,再根据前n项公式求出即可.【解答】解∵点(a n﹣1,2a n)在直线y=2x+1上,∴2a n=2a n﹣1+1,∴a n﹣a n﹣1=,∵二次函数y=x2﹣2x+3=(x﹣1)2+2,∴a1=2,∴{a n}是以为2首项,以为公差的等差数列,∴a n=2+(n﹣1)=n+当n=1时,a1=n+=2成立,∴a n=n+∴S9=9a1+=9×2+=36故选:C8.某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A.4cm3B.6cm3C.D.【考点】由三视图求面积、体积.【分析】根据几何体的三视图,得出该几何体是三棱锥与三棱柱的组合体,由此求出它的体积即可【解答】解:根据几何体的三视图,得该几何体是上部为三棱锥,下部为三棱柱的组合体,三棱柱的每条棱长为2cm,三棱锥的高为2cm,∴该组合体的体积为V=×2×2×2+××2×2×2=cm2,选:C.9.双曲线E:﹣=1(a,b>0)的右焦点为F(c,0),若圆C:(x﹣c)2+y2=4a2与双曲线E的渐近线相切,则E的离心率为()A.B.C.D.【考点】双曲线的简单性质.【分析】求得双曲线的渐近线方程,圆的圆心和半径,运用直线和圆相切的条件:d=r,计算即可得到b=2a,由a,b,c的关系和离心率公式,计算即可得到所求值.【解答】解:双曲线E:﹣=1(a,b>0)的渐近线方程为y=±x,圆C:(x﹣c)2+y2=4a2的圆心为(c,0),半径为2a,由直线和圆相切的条件可得,=b=2a,可得c==a,即有e==.故选:C.10.数列{a n}满足a1=1,对任意的n∈N*都有a n+1=a1+a n+n,则=()A.B.C.D.【考点】数列递推式.【分析】利用累加法求出数列的通项公式,得到.再由裂项相消法求得答案.【解答】解:∵a1=1,∴由a n+1=a1+a n+n,得a n+1﹣a n=n+1,则a2﹣a1=2,a3﹣a2=3,…a n﹣a n﹣1=n(n≥2).累加得:a n=a1+2+3+…+n=(n≥2).当n=1时,上式成立,∴.则.∴=2=.故选:B.11.已知三棱锥S﹣ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC 为球O的直径,且SC=2,则此棱锥的体积为()A.B.C.D.【考点】棱柱、棱锥、棱台的体积.【分析】根据题意作出图形,利用截面圆的性质即可求出OO1,进而求出底面ABC上的高SD,即可计算出三棱锥的体积.【解答】解:根据题意作出图形:设球心为O,过ABC三点的小圆的圆心为O1,则OO1⊥平面ABC,延长CO1交球于点D,则SD⊥平面ABC.∵CO1==,∴OO1=,∴高SD=2OO1=,∵△ABC是边长为1的正三角形,∴S△ABC=,∴V=××=,故选:A.12.定义在R上的函数f(x),f′(x)是其导数,且满足f(x)+f′(x)>2,ef(1)=2e+4,则不等式e x f(x)>4+2e x(其中e为自然对数的底数)的解集为()A.(1,+∞)B.(﹣∞,0)∪(1,+∞)C.(﹣∞,0)∪(0,+∞)D.(﹣∞,1)【考点】利用导数研究函数的单调性.【分析】构造函数g(x)=e x f(x)﹣2e x,(x∈R),研究g(x)的单调性,结合原函数的性质和函数值,即可求解.【解答】解:设g(x)=e x f(x)﹣2e x,(x∈R),则g′(x)=e x f(x)+e x f′(x)﹣2e x=e x[f(x)+f′(x)﹣2],∵f(x)+f′(x)>2,∴f(x)+f′(x)﹣2>0,∴g′(x)>0,∴y=g(x)在定义域上单调递增,∵e x f(x)>2e x+4,∴g(x)>4,又∵g(1)=ef(1)﹣2e=4,∴g(x)>g(1),∴x>1,故选:A.二、填空题:(本大题共4小题,每小题5分,共20分)13.若(2x﹣1)dx=6,则二项式(1﹣2x)3m的展开式各项系数和为﹣1 .【考点】二项式系数的性质;定积分.【分析】由于(2x﹣1)dx==6,化简解得m.令x=1,即可得出二项式(1﹣2x)3m展开式各项系数和.【解答】解:∵(2x﹣1)dx==6,化为:m2﹣m﹣(1﹣1)=6,m>1,解得m=3.令x=1,则二项式(1﹣2x)3m即(1﹣2x)9展开式各项系数和=(1﹣2)9=﹣1.故答案为:﹣1.14.记集合,构成的平面区域分别为M,N,现随机地向M中抛一粒豆子(大小忽略不计),则该豆子落入N中的概率为.【考点】几何概型.【分析】平面区域M、N,分别为圆与直角三角形,面积分别为π,,利用几何概型的概率公式解之即可.【解答】解:集合构成的平面区域M、N,分别为圆与直角三角形,面积分别为π,,随机地向M中抛一粒豆子(大小忽略不计),则该豆子落入N中的概率为=.答案为:.15.已知点A(0,2),抛物线C1:y2=ax(a>0)的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,若|FM|:|MN|=1:,则a的值等于 4 .【考点】抛物线的简单性质.【分析】作出M在准线上的射影,根据|KM|:|MN|确定|KN|:|KM|的值,进而列方程求得a.【解答】解:依题意F点的坐标为(,0),设M在准线上的射影为K,由抛物线的定义知|MF|=|MK|,∴|KM|:|MN|=1:,则|KN|:|KM|=2:1,k FN==﹣,k FN=﹣=﹣2∴=2,求得a=4,故答案为:4.16.给出下列命题:①命题“若方程ax2+x+1=0有两个实数根,则a≤”的逆命题是真命题;②“函数f(x)=cos2ax﹣sin2ax的最小正周期为π”是“a=1”的必要不充分条件;③函数f(x)=2x﹣x2的零点个数为2;④幂函数y=x a(a∈R)的图象恒过定点(0,0)⑤“向量与的夹角是钝角”的充分必要条件是“•<0”;⑥方程sinx=x有三个实根.其中正确命题的序号为②.【考点】命题的真假判断与应用.【分析】①根据逆命题的定义结合方程根的关系进行判断.②根据三角函数的周期公式以及充分条件和必要条件的定义进行判断.③根据函数与方程的关系进行判断.④根据幂函数的定义和性质进行判断.⑤根据向量夹角和数量积的关系进行判断.⑥构造函数,判断函数的单调性即可.【解答】解:①命题“若方程ax2+x+1=0有两个实数根,则a≤”的逆命题是若a≤,则方程ax2+x+1=0有两个实数根,当a=0时,方程等价为x+1=0,则x=﹣1,此时方程只有一个根,故①错误;②f(x)=cos2ax﹣sin2ax=cos2ax,若“函数f(x)=cos2ax﹣sin2ax的最小正周期为π”,则,则|a|=1,则a=±1,则充分性不成立,反之成立,即“函数f(x)=cos2ax﹣sin2ax的最小正周期为π”是“a=1”的必要不充分条件正确,故②正确,③由f(x)=2x﹣x2=0得2x=x2,作出两个函数y=2x和y=x2的图象如图,由图象知两个函数交点个数为3个,故③错误;④幂函数y=x a(a∈R)的图象恒过定点(0,0),错误,当a<0时,函数的图象不过点(0,0),故④错误,⑤“向量与的夹角是钝角”的充分必要条件是“•<0”且≠λ,λ<0;故⑤错误,⑥设f(x)=sinx﹣x,则函数的导数f′(x)=cosx﹣1≤0,则函数f(x)是奇函数,∵f(0)=sin0﹣0=0,∴f(x)=0的根只有一个0,解集方程sinx=x有一个实根.故⑥错误,故正确的是②,故答案为:②三、解答题(本大题共计70分,解答应写出说明文字、证明过程或演算步骤).17.已知f(x)=2sin(Ⅰ)若,求f(x)的值域;(Ⅱ)在△ABC中,A为BC边所对的内角若f(A)=2,BC=1,求的最大值.【考点】平面向量数量积的运算;三角函数中的恒等变换应用.(Ⅰ)根据二倍角的正余弦公式,和两角和的正弦公式即可化简f(x)=,【分析】而由x的X围可以求出x+的X围,从而可得出f(x)的值域;(Ⅱ)由f(A)=2即可求得A=,从而由余弦定理和不等式a2+b2≥2ab可求得|AB||AC|≤1,根据向量数量积的计算公式便可得出的最大值.【解答】解:(Ⅰ);∵;∴;∴;∴f(x)的值域为[1,2];(Ⅱ)∵f(A)=2,∴;在△ABC中,∵0<A<π,∴;∴;∴|AB||AC|=|AB|2+|AC|2﹣1≥2|AB||AC|﹣1;∴|AB||AC|≤1;∴;∴的最大值为.18.自2016年1月1日起,我国全面二孩政策正式实施,这次人口与生育政策的历史性调整,使得“要不要再生一个”“生二孩能休多久产假”等成为千千万万个家庭在生育决策上避不开的话题.为了解针对产假的不同安排方案形成的生育意愿,某调查机构随机抽取了200户有生育二胎能力的适龄家庭进行问卷调查,得到如下数据:产假安排(单位:周)14 15 16 17 18有生育意愿家庭数 4 8 16 20 26(1)若用表中数据所得的频率代替概率,面对产假为14周与16周,估计某家庭有生育意愿的概率分别为多少?(2)假设从5种不同安排方案中,随机抽取2种不同安排分别作为备选方案,然后由单位根据单位情况自主选择.①求两种安排方案休假周数和不低于32周的概率;②如果用ξ表示两种方案休假周数和.求随机变量ξ的分布及期望.【考点】离散型随机变量的期望与方差;列举法计算基本事件数及事件发生的概率;离散型随机变量及其分布列.【分析】(1)由表某某息可知,利用等可能事件概率计算公式能求出当产假为14周时某家庭有生育意愿的概率和当产假为16周时某家庭有生育意愿的概率.(2)①设“两种安排方案休假周数和不低于32周”为事件A,由已知从5种不同安排方案中,随机地抽取2种方案选法共有10种,由此利用列举法能求出其和不低于32周的概率.②由题知随机变量ξ的可能取值为29,30,31,32,33,34,35.分别求出相应的概率,由此能求出ξ的分布列和E(ξ).【解答】解:(1)由表某某息可知,当产假为14周时某家庭有生育意愿的概率为;当产假为16周时某家庭有生育意愿的概率为…(2)①设“两种安排方案休假周数和不低于32周”为事件A,由已知从5种不同安排方案中,随机地抽取2种方案选法共有(种),其和不低于32周的选法有14、18、15、17、15、18、16、17、16、18、17、18,共6种,由古典概型概率计算公式得…②由题知随机变量ξ的可能取值为29,30,31,32,33,34,35.,,,因而ξ的分布列为ξ29 30 31 32 33 34 35P 0.1 0.1 0.2 0.2 0.2 0.1 0.1所以E(ξ)=29×0.1+30×0.1+31×0.2+32×0.2+33×0.2+34×0.1+35×0.1=32,…19.如图,空间几何体ABCDE中,平面ABC⊥平面BCD,AE⊥平面ABC.(1)证明:AE∥平面BCD;(2)若△ABC是边长为2的正三角形,DE∥平面ABC,且AD与BD,CD所成角的余弦值均为,试问在CA上是否存在一点P,使得二面角P﹣BE﹣A的余弦值为.若存在,请确定点P的位置;若不存在,请说明理由.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(1)过点D作直线DO⊥BC交BC于点O,连接DO.运用面面垂直的性质定理,可得DO⊥平面ABC,又直线AE⊥平面ABC,可得AE∥DO,运用线面平行的判定定理,即可得证;(2)连接AO,运用线面平行和线面垂直的性质,求得OA,OB,OD两两垂直,以O为坐标原点,OA,OB,OD所在直线分别为x轴,y轴,z轴,建立空间直角坐标系.求得O,A,B,E的坐标,假设存在点P,连接EP,BP,设=λ,求得P的坐标,求得平面PBE,ABE 的法向量,运用向量的夹角公式,计算可得P的位置.【解答】解:(1)证明:如图,过点D作直线DO⊥BC交BC于点O,连接DO.因为平面ABC⊥平面BCD,DO⊂平面BCD,DO⊥BC,且平面ABC∩平面BCD=BC,所以DO⊥平面ABC,因为直线AE⊥平面ABC,所以AE∥DO,因为DO⊂平面BCD,AE⊄平面BCD,所以直线AE∥平面BCD;(2)连接AO,因为DE∥平面ABC,所以AODE是矩形,所以DE⊥平面BCD.因为直线AD与直线BD,CD所成角的余弦值均为,所以BD=CD,所以O为BC的中点,所以AO⊥BC,且.设DO=a,因为BC=2,所以,所以.在△ACD中,AC=2.所以AC2=AD2+CD2﹣2AD•CD•cos∠ADC,即,即.解得a2=1,a=1;以O为坐标原点,OA,OB,OD所在直线分别为x轴,y轴,z轴,建立如图所示的空间直角坐标系.则.假设存在点P,连接EP,BP,设=λ,即有=+λ(﹣),则.设平面ABE的法向量为={x,y,z},由=(0,0,1),=(,﹣1,0),则,即,取x=1,则平面ABE的一个法向量为.设平面PBE的法向量为={x,y,z},则,取x=1+λ,则平面PBE的一个法向量为=(1+λ,﹣λ,﹣2λ),设二面角P﹣BE﹣A的平面角的大小为θ,由图知θ为锐角,则cosθ===,化简得6λ2+λ﹣1=0,解得λ=或(舍去),所以在CA上存在一点P,使得二面角P﹣BE﹣A的余弦值为.其为线段AC的三等分点(靠近点A).20.已知椭圆C: +=1(a>b>0)过点A(﹣,),离心率为,点F1,F2分别为其左右焦点.(1)求椭圆C的标准方程;(2)若y2=4x上存在两个点M,N,椭圆上有两个点P,Q满足,M,N,F2三点共线,P,Q,F2三点共线,且PQ⊥MN.求四边形PMQN面积的最小值.【考点】直线与圆锥曲线的综合问题.【分析】(1)由椭圆的离心率公式和点满足椭圆方程及a,b,c的关系,解方程,即可得到椭圆方程;(2)讨论直线MN的斜率不存在,求得弦长,求得四边形的面积;当直线MN斜率存在时,设直线方程为:y=k(x﹣1)(k≠0)联立抛物线方程和椭圆方程,运用韦达定理和弦长公式,以及四边形的面积公式,计算即可得到最小值.【解答】解:(1)由题意得:,a2﹣b2=c2,得b=c,因为椭圆过点A(﹣,),则+=1,解得c=1,所以a2=2,所以椭圆C方程为.(2)当直线MN斜率不存在时,直线PQ的斜率为0,易得,.当直线MN斜率存在时,设直线方程为:y=k(x﹣1)(k≠0)与y2=4x联立得k2x2﹣(2k2+4)x+k2=0,令M(x1,y1),N(x2,y2),则,x1x2=1,|MN|=•.即有,∵PQ⊥MN,∴直线PQ的方程为:y=﹣(x﹣1),将直线与椭圆联立得,(k2+2)x2﹣4x+2﹣2k2=0,令P(x3,y3),Q(x4,y4),x3+x4=,x3x4=,由弦长公式|PQ|=•,代入计算可得,∴四边形PMQN的面积S=|MN|•|PQ|=,令1+k2=t,(t>1),上式=,所以.最小值为.21.设函数,(a>0)(Ⅰ)当时,求函数f(x)的单调区间;(Ⅱ)若f(x)在内有极值点,当x1∈(0,1),x2∈(1,+∞),求证:.(e=2.71828…)【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【分析】(Ⅰ)求出f(x)的导数,解关于导函数的不等式,从而求出函数的单调区间即可;(Ⅱ)求出f(x)的导数,令g(x)=x2﹣(a+2)x+1,根据函数的单调性得到:;,作差得到新函数F(n)=2lnn+n ﹣,(n>e),根据函数的单调性求出其最小值即可证明结论成立.【解答】解:(Ⅰ)函数f(x)的定义域为(0,1)∪(1,+∞),当时,,…令f′(x)>0,得:或,所以函数单调增区间为:,,令f′(x)<0,得:,所以函数单调减区间为:,…(Ⅱ)证明:,令:g(x)=x2﹣(a+2)x+1=(x﹣m)(x﹣n)=0,所以:m+n=a+2,mn=1,若f(x)在内有极值点,不妨设0<m<,则:n=>e,且a=m+n﹣2>e+﹣2,由f′(x)>0得:0<x<m或x>n,由f′(x)<0得:m<x<1或1<x<n,所以f(x)在(0,m)递增,(m,1)递减;(1,n)递减,(n,+∞)递增当x1∈(0,1)时,;当x2∈(1,+∞)时,,所以:=,n>e,设:,n>e,则,所以:F(n)是增函数,所以,又:,所以:.【选考题】请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,答题时用2B铅笔在答题卡上把所选题目的题号涂黑.请考生在第(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一题计分,作答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.[选修4-1:几何证明选讲] 22.如图,AB是⊙O的直径,弦CA、BD的延长线相交于点E,EF垂直BA的延长线于点F.求证:(1)∠DEA=∠DFA;(2)AB2=BE•BD﹣AE•AC.【考点】与圆有关的比例线段.【分析】(1)连接AD,利用AB为圆的直径结合EF与AB的垂直关系,通过证明A,D,E,F 四点共圆即可证得结论;(2)由(1)知,BD•BE=BA•BF,再利用△ABC∽△AEF得到比例式,最后利用线段间的关系即求得AB2=BE•BD﹣AE•AC.【解答】证明:(1)连接AD,因为AB为圆的直径,所以∠ADB=90°,又EF⊥AB,∠AFE=90°,则A,D,E,F四点共圆∴∠DEA=∠DFA(2)由(1)知,BD•BE=BA•BF,又△ABC∽△AEF∴,即AB•AF=AE•AC∴BE•BD﹣AE•AC=BA•BF﹣AB•AF=AB•(BF﹣AF)=AB2[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,设倾斜角为α的直线(t为参数)与曲线(θ为参数)相交于不同两点A,B.(1)若,求线段AB中点M的坐标;(2)若|PA|•|PB|=|OP|2,其中,求直线l的斜率.【考点】参数方程化成普通方程;直线的斜率;直线与圆的位置关系.【分析】(1)把直线和圆的参数方程化为普通方程,联立后根据根与系数的关系求出两交点中点的横坐标,待入直线方程再求中点的纵坐标;(2)把直线方程和圆的方程联立,化为关于t的一元二次方程,运用直线参数方程中参数t的几何意义,结合给出的等式求解直线的倾斜角的正切值,则斜率可求,【解答】解:(1)当时,由,得,所以直线方程为,由,得曲线C的普通方程为,设A(x1,y1),B(x2,y2)再由,得:13x2﹣24x+8=0,所以,,所以M的坐标为(2)把直线的参数方程代入,得:,所以,由|PA|•|PB|=|t1t2|=|OP|2=7,得:,所以,,所以,所以.所以直线L的斜率为±.[选修4-5:不等式选讲]24.设函数f(x)=|x﹣1|+|x﹣2|.(1)画出函数y=f(x)的图象;(2)若不等式|a+b|+|a﹣b|≥|a|f(x),(a≠0,a、b∈R)恒成立,某某数x的X围.【考点】分段函数的解析式求法及其图象的作法.【分析】本题考查的是分段函数的解析式求法以及函数图象的作法问题.在解答时对(1)要先将原函数根据自变量的取值X围转化为分段函数,然后逐段画出图象;对(2)先结和条件a≠0将问题转化,见参数统统移到一边,结合绝对值不等式的性质找出f(x)的X围,通过图形即可解得结果.【解答】解:(1)(2)由|a+b|+|a﹣b|≥|a|f(x)得又因为则有2≥f(x)解不等式2≥|x﹣1|+|x﹣2|得。

2020年江西省南昌市高考数学三模试卷(理科)(含答案解析)

2020年江西省南昌市高考数学三模试卷(理科)(含答案解析)

2020年江西省南昌市高考数学三模试卷(理科)题号一二三总分得分一、选择题(本大题共12小题,共60.0分)1.设集合A={x|x2-x>0},B={x|2x-2<1},则(∁R A)∩B=()A. [1,2)B. (0,1)C. (1,2)D. [0,1]2.已知复数的实部为,则其虚部为( )A. B. C. D.3.已知等差数列{a n}的前9项和为45,a3=-1,则a7=()A. 11B. 10C. 9D. 84.已知函数f(x)=sin x-x,则不等式f(x+2)+f(1-2x)<0的解集是( )A. B. C. D.5.若tan(α-)=2,则tan(2α)等于()A. -2B.C. 2+D.6.已知非零向量=(1,1-x),=(0,x-4),则“向量,的夹角为锐角”是“x∈(2,4)”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件7.设a=,b=,c=log32,则a,b,c的大小关系是()A. a<b<cB. a<c<bC. c<a<bD. c<b<a8.如图,长方体,,,点P在线段上,的方向为正主视方向,当AP最短时,棱锥的左侧视图为( )A.B.C.D.9.如图所示框图,若输入3个不同的实数x,输出的y值相同,则此输出结果y可能是()A. B. -1 C. 4 D. -210.如图所示,玩具计数算盘的三档上各有7个算珠,现将每档算珠分为左右两部分,左侧的每个算珠表示数2,右侧的每个算珠表示数1(允许一侧无珠),记上、中、下三档的数字和分别为a,b,c.例如,图中上档的数字和a=9.若a,b,c成等差数列,则不同的分珠计数法有()种.A. 12B. 24C. 16D. 3211.设直线x-3y+m=0(m≠0)与双曲线-=1(a>0,b>0)的两条渐近线分别交于点A,B,若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是()A. B. C. D.12.已知数列{a n}:,,,,,,,,,,,,,…(其中第一项是,接下来的22-1项是,,再接下来的23-1项是,,,,,,,依此类推.)的前n项和为S n,下列判断:①是{a n}的第2036项;②存在常数M,使得S n<M恒成立;③S2036=1018;④满足不等式S n>1019的正整数n的最小值是2100.其中正确的序号是()A. ①②③B. ①②④C. ①③④D. ②③④二、填空题(本大题共4小题,共20.0分)13.x(x2-2x)6的展开式中,x10的系数是______.14.若x,y满足约束条件,则的最小值为______.15.如图,ABCD边长为4的正方形,△PAD是一个正三角形,△PAD绕边AD转动,得到四棱锥P-ABCD.当这个四棱锥体积最大时,它的外接球的表面积为______.16.已知函数,,其中若,,使得成立,则______.三、解答题(本大题共7小题,共82.0分)17.如图所示,在直角坐标系xOy中,扇形OAB的半径为2,圆心角为,点M是弧AB上异于A,B的点.(Ⅰ)若点C(1,0),且CM=,求点M的横坐标;(Ⅱ)求△MAB面积的最大值.18.如图,四边形ABCD是梯形,AB∥CD,BA⊥AD,AB=AD=CD=1,BDEF是菱形,BD=DF,平面BDEF⊥平面ABCD.(Ⅰ)求证:BC⊥DF;(Ⅱ)求平面BCF与平面CDE所成角的余弦值.19.某企业产品正常生产时,产品尺寸服从正态分布N(80,0.25),从当前生产线上随机抽取200产品尺产/mm [76,78.5](78.5,79)(79,79.5](79.5,80.5](80.5,81](81,81.5](81.5,83]件数427278036206旦小概率事件发生视为生产线出现异常,产品尺寸在(μ-3σ,μ+3σ)以内为正品,以外为次品.P(μ-σ<X<μ+σ)=0.6826,P(μ-2σ<X<μ+2σ)=0.9544,P(μ-3σ<X<μ+3σ)=0.9974(Ⅰ)判断生产线是否工作正常,并说明理由;(Ⅱ)用频率表示概率,若再随机从生产线上取3件产品复检,正品检测费10元/件,次品检测费15元/件,记这3件产品检测费为随机变量X,求X的数学期望及方差.20.已知椭圆C:+=1(a>b>0)的左右焦点分别为F1,F2,点P是椭圆C上一点,以PF1为直径的圆E:x2+=过点F2.(Ⅰ)求椭圆C的方程;(Ⅱ)过点P且斜率大于0的直线l1与C的另一个交点为A,与直线x=4的交点为B,过点(3,)且与l1垂直的直线l2与直线x=4交于点D,求△ABD面积的最小值.21.已知函数a为常数.Ⅰ求函数,的最大值、最小值;Ⅱ若函数为自然对数的底在区间上单调递减,求实数a的取值范围.22.在直角坐标系xOy中,曲线C的参数方程为(α为参数).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,直线l:ρcosθ-inθ+1=0.(Ⅰ)求曲线C的普通方程和直线l的直角坐标方程;(Ⅱ)若点M的直角坐标为(-1,0),直线l与曲线C相交于A,B两点,求|MA|+|MB|的值.23.已知f(x)=|2x-a|+|2x+1|,g(x)=|x+1|-|3x-2|.(Ⅰ)若f(x)≥2恒成立,求实数a的取值范围;(Ⅱ)若存在实数x1,x2,使得等式f(x1)=g(x2)成立,求实数a的取值范围.-------- 答案与解析 --------1.答案:D解析:解:A={x|x2-x>0}={x|x>1或x<0},B={x|2x-2<1}={x|x-2<0}={x|x<2},则(∁R A)={x|0≤x≤1},则(∁R A)∩B={x|0≤x≤1},故选:D.根据不等式的解法求出集合的等价条件,结合集合的补集,交集的定义进行计算即可.本题主要考查集合的基本运算,求出集合的等价条件是解决本题的关键.2.答案:C解析:【分析】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.利用复数代数形式的乘除运算化简,由实部等于-1求得a值,则虚部可求.【分析】解:∵z=(a-i)(3+2i)=(3a+2)+(2a-3)i的实部为-1,即3a+2=-1,∴a=-1.则z的虚部为-5.故选:C.3.答案:A解析:解:等差数列{a n}的前9项和为45,∴=45,解得a1+a9=10.∴a7=a1+a9-a3=10-(-1)=11.故选:A.利用等差数列的通项公式求和公式及其性质即可得出.本题考查了等差数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于中档题.4.答案:D解析:解:函数f(x)=sin x-x,其定义域为R,且f(-x)=sin(-x)-(-x)=-(sin x-x),则函数f(x)是定义在R上的奇函数,导函数是f'(x)=cos x-1≤0,所以f(x)=sin x-x是减函数,不等式f(x+2)+f(1-2x)<0⇒f(x+2)<f(2x-1),即x+2>2x-1⇒x<3,故选:D.根据题意,由函数奇偶性的定义分析可得函数f(x)是定义在R上的奇函数,对f(x)求导可得f'(x)=cos x-1≤0,即可得f(x)=sin x-x是减函数,则不等式f(x+2)+f(1-2x)<0可以转化为x+2>2x-1,解可得x的范围,即可得答案.本题考查函数奇偶性与单调性的综合应用,关键是分析函数f(x)的奇偶性与单调性.5.答案:B解析:解:∵tan(α-)=2,∴tan(2α-)=tan2(α-)===-,故选:B.根据二倍角的正切公式即可求出.本题考查了二倍角的正切公式,属于基础题.6.答案:B解析:解:当向量,共线时,满足x-4=0,此时x=4,此时两个向量分别为=(1,-3),=(0,0)不满足条件.则向量,不共线,若向量,的夹角为锐角,则>0,得(1-x)(x-4)>0得(x-1)(x-4)<0,得1<x<4,即x∈(1,4),则x∈(1,4)是x∈(2,4)的必要不充分条件,故选:B.结合向量夹角与向量数量积的定义,求出x的范围,结合充分条件和必要条件的定义进行判断即可.本题主要考查充分条件和必要条件的判断,结合向量夹角与向量数量积的定义求出x的范围是解决本题的关键.7.答案:B解析:解:∵,,,∴a<c<b.故选:B.容易得出,,,从而可得出a,b,c的大小关系.考查分数指数幂的运算,对数函数的单调性,减函数和增函数的定义.8.答案:B解析:【分析】本题考查了空间几何体的三视图,注意在三视图中看不到的线画成虚线.本题属于基础题.依题意,棱锥P-AA1B1B的左(侧)视图外部轮廓为正方形,且侧棱AP,BP被底面AA1B1B遮挡,显示为虚线,当AP最短时,AP⊥B1D1,因为A1B1=2,A1D1=3,所以B1P<D1P,所以两虚线的交点离点B1更近,即离右下角更近.【解答】解:依题意,棱锥P-AA1B1B的左(侧)视图外部轮廓为正方形,且侧棱AP,BP被底面AA1B1B遮挡,显示为虚线,当AP最短时,AP⊥B1D1,因为A1B1=2,A1D1=3,所以B1P<D1P,所以两虚线的交点离点B1更近,即离右下角更近.故选:B.9.答案:A解析:解:模拟程序的运行,可得程序框图的功能是计算并输出y=的值,作出函数的图象如下:由题意,输入3个不同的实数x,输出的y值相同,可得-1<y<3,比较各个选项可得输出结果y可能是.故选:A.模拟程序的运行,可得程序框图的功能是计算并输出y=的值,画出函数的图象即可得解.本题考查了程序框图的应用问题,考查了分段函数的图象,属于基础题.10.答案:D解析:解:根据题意,a,b,c的取值范围都是从7~14共8个数字,故公差d范围是-3到3,①当公差d=0时,有=8种,②当公差d=±1时,b不取7和14,有2=12种,③当公差d=±2时,b不取7,8,13,14,有2=8种,④当公差d=±3时,b只能取10或11,有2=4种,综上共有8+12+8+4=32种,故选:D.a,b,c的取值范围都是从7~14,可以根据公差d的情况进行讨论.本题考查排列、组合的应用,要表示的有3项,做题时容易找不到切入点,本题应考虑等差中项的选取方法,属于中档题.11.答案:A解析:【分析】先求出A,B的坐标,可得AB中点坐标为(,),利用点P(m,0)满足|PA|=|PB|,可得=-3,从而可求双曲线的离心率.本题考查双曲线的离心率,考查直线与双曲线的位置关系,考查学生的计算能力,属于中档题.【解答】解:由双曲线的方程可知,渐近线为y=±x,分别与x-3y+m=0(m≠0)联立,解得A(-,-),B(-,),∴AB中点坐标为(,),∵点P(m,0)满足|PA|=|PB|,∴=-3,∴a=2b,∴c=b,∴e==.故选:A.12.答案:C解析:解:①是{a n}的第k项,则k=21-1+22-1+……+210-1=-10=2036;②由题意可得:分母为2k时,==(k∈N*),可得:S n单调递增,且n→+∞时,S n→+∞,因此不存在常数M,使得S n<M恒成立,因此不正确;③由②可得:S2036=++……+=++……+==1018,因此正确.④S2036=1018,设S2036+=1018+>1019,则k(k+1)>212,解得k>64.∴满足不等式S n>1019的正整数n的最小值=2036+64=2100,因此正确.其中正确的序号是①③④.故选:C.①是{a n}的第k项,则k=21-1+22-1+……+210-1,利用等比数列的求和公式求出即可判断出结论.②由题意可得:分母为2k时,==(k∈N*),可得:S n单调递增,且n→+∞时,S n→+∞,即可判断出结论.③由②可得:S2036=++……+,利用等差数列的求和公式求出即可判断出结论.④S2036=1018,设S2036+=1018+>1019,解得k即可判断出结论.本题考查了等差数列与等比数列的通项公式求和公式、转化方法,考查了推理能力与计算能力,属于中档题.13.答案:-160解析:解:依题意,x(x2-2x)6的展开式的第k+1项为T k+1=x=,由13-k=10,得k=3,所以x10的系数是=(-8)×20=-160,故答案为:-160.x(x2-2x)6的展开式的第k+1项为T k+1=x=,由13-k=10,得k=3,代入通项即可.本题考查了二项式定理,主要考查二项展开式的通项,属于基础题.14.答案:4解析:解:作出x,y满足约束条件如图:由z=2x+y得y=-2x+z,平移直线y=-2x+z,由图象可知当直线y=-2x+z经过点A时,直线的截距最小,此时z最小,由,解得A(1,2),此时z=2×1+2=4,故答案为:4.作出不等式组对应的平面区域,利用z的几何意义,即可得到结论.本题主要考查线性规划的应用,利用数形结合是解决本题的关键.15.答案:解析:解:如图,要使四棱锥P-ABCD体积最大,则平面PAD⊥平面ABCD,设等边三角形PAD的外心为F,过F作平面PAD的垂线,过G作底面ABCD的垂线,两垂线相交于O,则O为四棱锥P-ABCD的外接球的球心,连接OP,则OP为四棱锥P-ABCD的外接球的半径,∵PF=,OF=.∴.∴四棱锥P-ABCD的外接球的表面积为S=4π×.故答案为:.由题意,要使四棱锥P-ABCD体积最大,则平面PAD⊥平面ABCD,求出四棱锥外接球的半径,代入球的表面积公式求解.本题考查多面体外接球表面积的求法,考查空间想象能力与思维能力,考查计算能力,是中档题.16.答案:解析:【分析】由f(x1)f(x2)=g(x1)g(x2)成立,可得成立;设h(x)=,u(x)=,求解h(x)的值域是u(x)值域的子集求解a的值即可.本题主要考查了函数恒成立问题的求解,分类讨论以及转化思想的应用,二次函数闭区间是的最值以及单调性的应用.【解答】解:由题意,f(x)≠0,由f(x1)f(x2)=g(x1)g(x2)成立,得g(x1)≠0,g(x2)≠0,可得成立;设h(x)=,u(x)=,那么h(x)=,∵x1∈[1,2],当a>1或a<时,可得h(x)的值域为[,]u(x)=ax-1∵x2[1,2],∴可得u(x)的值域为[a-1,2a-1];∵∀x1∈[1,2],∃x2∈[1,2],∴h(x)的值域是u(x)值域的子集;在a>1的情况下,可得:,解得:1<a;,解得:a;∴a=.在a<的情况下,可得:,解得:a≤0(结合条件知a无解);当,h(x)的值域为,不可能是u(x)值域的子集;当a=时,代入验证即可排除.综上可得:a=故答案为:.17.答案:解:(Ⅰ)连接OM,根据题意,在△OCM中,OC=1,CM=,OM=2,所以cos∠COM==,所以点M的横坐标为2×=.(Ⅱ)设∠AOM=θ,θ,则∠BOM=-θ,S△MAB=S△OAM+S△OBM-S△OAB=[sinθ+sin(-θ)]-=2sin(θ+)-,因为θ,所以θ+∈(,),所以当θ=时,△MAB面积最大,且最大值为.解析:(Ⅰ)连接OM,根据题意在△OCM中,由余弦定理可求cos∠COM,进而可求点M的横坐标.(Ⅱ)设∠AOM=θ,θ,则∠BOM=-θ,利用三角形的面积公式可得S△MAB=sin(θ+)-,根据范围θ+∈(,),利用正弦函数的性质可求其最大值.本题主要考查余弦定理,三角形的面积公式,正弦函数的性质的综合应用,考查转化思想和数形结合思想,属于中档题.18.答案:解:(Ⅰ)证明:如图,取CD中点H,连结BH,则BH⊥CD,由已知得BH=1,CH=1,BC=,CD=2,∴BC2+BD2=CD2,∴CB⊥BD,∵平面BDEF⊥平面ABCD,且平面BDEF∩平面ABCD=BD,∴CB⊥平面BDEF,又DF⊂平面BDEF,BC⊥DF.(Ⅱ)如图,取BD的中点O,∵BD=DF=BF,∴FO⊥BD,∵平面BDEF⊥平面ABCD,且平面BDEF∩平面ABCD=BD,∴FO⊥平面ABCD,如图,以O为原点,过O作AB的平行线为x轴,过O作AD的平行线为y轴,OF为z轴,建立空间直角坐标系,则B(,0),C(,0),D(-,0),F(0,0,),=(1,1,0),=(-,),=(-2,0,0),∵DE∥BF,且DE=BF,∴=(-),设平面BCF的法向量=(x,y,z),则,取x=1,得=(1,-1,),设平面CDE的法向量为=(x,y,z),则,取y=1,得=(0,1,-),∴cos<>===-,∴平面BCF与平面CDE所成角的余弦值为.解析:(Ⅰ)取CD中点H,连结BH,则BH⊥CD,推导出CB⊥BD,从而CB⊥平面BDEF,由此能证明BC⊥DF.(Ⅱ)取BD的中点O,以O为原点,过O作AB的平行线为x轴,过O作AD的平行线为y轴,OF为z轴,建立空间直角坐标系,利用向量法能求出平面BCF与平面CDE所成角的余弦值.本题考查线线垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.19.答案:解:(Ⅰ)依题意,有μ=80,σ=0.5,所以正常产品尺寸范围为(78.5,81.5):200×(1-0.9974)≈0.52件,超出正常范围以外的零件数为10件,故生产线不正常;(Ⅱ)依题意,尺寸在[78.5,81.5]以外就是次品,故次品率为=.记着3件产品中次品数为Y,则Y服从二项分布B(3,),X=10(3-Y)+15Y=5Y+30,则E(Y)=3×=,D(Y)=3×=,所以X的数学期望是E(X)=5E(Y)+30=(元),方差是D(X)=52•D(Y)=25×=.解析:(Ⅰ)正常产品尺寸范围为(78.5,81.5),200×(1-0.9974)≈0.52件,超出正常范围以外的零件数为10件,故生产线不正常;(Ⅱ)记着3件产品中次品数为Y,则Y服从二项分布B(3,),可以计算随机变量Y的期望与方差,又X=10(3-Y)+15Y=5Y+30,根据X,Y的线性关系即可得到X的期望与方差,本题主要考查了正态分布中3σ原则,考查成线性相关的两个随机变量的期望与方差的关系,考查基本分析应用的能力,属于中档题.20.答案:解:(Ⅰ)在圆E的方程中,令y=0,得到:x2=4,所以F1(-2,0),F2(2,0),又因为,所以P点坐标为,所以,则,b=2,因此椭圆的方程为;(Ⅱ)设直线l1:y-=k(x-2)(k>0),所以点B的坐标为,设A(x A,y A),D(x D,y D),将直线l1代入椭圆方程得:(1+2k2)x2+(4k-8k2)x+8k2-8k-4=0,所以x P x A=,所以x A=,直线l2的方程为y-=-(x-3),所以点D坐标为,所以S△ABD=(4-x A)|y B-y D|=••=2k++2≥2+2,当且仅当2k=,即k=时取等号,综上,△ABD面积的最小值2+2.解析:(Ⅰ)根据题意求得椭圆的焦点坐标,利用椭圆的定义求得a和b的值,即可求得椭圆方程;(Ⅱ)设直线l1的方程,代入涂鸦方程,利用韦达定理求得A的横坐标,求得直线l2方程,求得D 点坐标,利用三角形的面积公式及基本不等式即可求得△ABD面积的最小值.本题考查椭圆的标准方程,直线与椭圆的位置关系,韦达定理及基本不等式的应用,考查转化思想,属于中档题.21.答案:解:(I)函数f(x)=(1+)ln x+a(a∈R,a为常数).所以f′(x)=-ln x+(1+)=,x∈[l,e]令φ(x)=x-ln x+1,x∈[1,e],则φ′(x)=1-≥0,φ(x)在[l,e]上单调递增,所以φ(x)≥φ(1)>0,所以f′(x)>0,则f(x)在[l,e]上单调递增,所以f(x)的最大值为f(e)=+1+a,f(x)的最小值为f(1)=a;(Ⅱ)(i)当a≥0时,f(x)≥0,g(x)=;g′(x)==;依题意:x∈[l,e]时,g′(x)≤0恒成立,令u(x)=-(1+x+x2)ln x-ax2+x+1,x∈[l,e],u′(x)=-(1+2x)ln x--(2a+1)x<0.即u(x)在[l,e]上单调递减,所以u max(x)=u(1)=-a+2≤0,∴a≥2(ii)当+1+a≤0即a≤-时,f(x)≤0,g(x)=-,由(i)可知g′(x)=,又g(x)在[1,e]上单调递减,因为a≤-1-,所以u(x)≥-(1+x+x2)ln x+(1+)x2+x+1>(x2+x+1)(1-ln x)≥0成立,所以u(x)=-(1+x+x2)ln x-ax2+x+1≥0对x∈[1,e]恒成立,所以g(x)在[l,e]上单调递减;(ⅲ)当f(1)<0,f(e)>0,即-<a<0时,则存在x0∈(1,e)使得f(x0)=0,从而x=x0时,函数g(x)==0,而g(e)=>0,所以g(x)在区间[1,e]上不单调递减,综上所述:a∈(∞,-]∪[2,+∞).解析:(Ⅰ)求函数y=f(x)的导函数利用函数的单调性可求得函数在x∈[1,e]的最大值、最小值;(Ⅱ)若函数g(x)=(e为自然对数的底)在区间[1,e]上单调递减,转换成x∈[l,e]时,g′(x)≤0恒成立,令u(x)=-(1+x+x2)ln x-ax2+x+1,x∈[l,e],分类讨论求新函数的最值可求实数a的取值范围.本题考查导数知识的运用,考查函数的单调性与最值,考查参数的范围问题,正确求导计算和分类讨论是关键.22.答案:解:(Ⅰ)曲线C的参数方程为(α为参数).转换为直角坐标方程为(x-2)2+(y-1)2=4.直线l:ρcosθ-inθ+1=0.转换为直角坐标方程为.(Ⅱ)利用(Ⅰ)的直角坐标方程转换为参数方程为(t为参数),代入圆的方程(x-2)2+(y-1)2=4,得到,所以,t1•t2=6(t1和t2为A、B对应的参数),所以|MA|+|MB|=.解析:(Ⅰ)直接利用转换关系把参数方程极坐标方程和直角坐标方程之间进行转换.(Ⅱ)利用(Ⅰ)的直线,首先求出直线的参数式,进一步利用直线和曲线的位置关系,利用一元二次方程根和系数关系式的应用求出结果.本题考查的知识要点;参数方程极坐标方程和直角坐标方程之间的转换,一元二次方程根和系数关系式的应用,主要考察学生的运算能力和转换能力,属于基础题型.23.答案:解:(Ⅰ)f(x)=|2x-a|+|2x+1|≥|(2x-a)-(2x+1)|=|a+1|,若f(x)≥2恒成立,则|a+1|≥2,解得a≥1或a≤-3,所以实数a的取值范围是a≤-3或a≥1;(Ⅱ)由(Ⅰ)知,f(x)的值域为[|a+1|,+∞),又g(x)=|x+1|-|3x-2|=,所以g(x)的值域为(-∞,];若存在实数x1,x2,使得等式f(x1)=g(x2)成立,则[|a+1|,+∞)∩(-∞,]≠∅,所以|a+1|≤,解得-≤a≤,所以实数a的取值范围是-≤a≤.解析:(Ⅰ)利用绝对值不等式求出f(x)的最小值,把f(x)≥2化为关于a的不等式,求出解集即可;(Ⅱ)分别求出f(x)、g(x)的值域,问题化为两个值域的交集非空时实数a的取值范围即可.本题考查了含有绝对值的不等式的解法与应用问题,也考查了转化思想,是中档题.。

江西省九江市2023届高三下学期三模数学(理)试卷及答案

江西省九江市2023届高三下学期三模数学(理)试卷及答案

九江市2023年第三次高考模拟统一考试数学试题(理科)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.全卷满分150分,考试时间120分钟.考生注意:1.答题前,考生务必将自己的准考证号、姓名等内容填写在答题卡上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,第II 卷用黑色签字笔在答题卡上书写作答,在试题卷上作答,答案无效.第Ⅰ卷(选择题60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合1{|}2M x x =>,{|N x y ==,则()M N = R ð()A.1{|0}2x x ≤≤ B.1{|0}2x x << C.1{|}2x x ≤ D.{|0}x x ≤2.已知复数z 满足(2i)4i z z ⋅+=-,则z =()A.1C.2D.3.抛物线212y x =的焦点坐标为()A.1(,0)8 B.1(0,)8C.1(,0)2D.1(0,24.分形的数学之美,是以简单的基本图形,凝聚扩散,重复累加,以迭代的方式而形成的美丽的图案.自然界中存在着许多令人震撼的天然分形图案,如鹦鹉螺的壳、蕨类植物的叶子、孔雀的羽毛、菠萝等.如图所示,为正方形经过多次自相似迭代形成的分形图形,且相邻的两个正方形的对应边所成的角为15︒.若从外往里最大的正方形边长为9,则第5个正方形的边长为()A.814B.8168C.4D.35.为了强化节约意识,更好地开展“光盘行动”,某校组织甲乙两个社会实践小组分别对某块稻田的稻穗进行调研,甲乙两个小组各自随机抽取了20株稻穗,并统计了每株稻穗的粒数,整理得到如下统计表(频率分布直方图中同一组中的数据用该组区间的中点值为代表),则下列结论正确的是()甲158163361711233445688818378199频率/组距每穗粒数1502001901801701600.040.030.020.01乙6.已知0.22a =,0.5log 0.2b =,0.2log 0.4c =,则()A.b a c >>B.b c a>> C.a b c>> D.a c b>>7.已知0π<<<αβ,且1cos 3α=,22cos()3αβ-=,则cos β=()A.89B.79 C.429D.0A.甲组中位数大于乙组中位数,甲组平均数大于乙组平均数B.甲组中位数大于乙组中位数,甲组平均数等于乙组平均数C.甲组中位数小于乙组中位数,甲组平均数等于乙组平均数D.甲组中位数小于乙组中位数,甲组平均数小于乙组平均数8.榫卯是一种中国传统建筑、家具的主要结构方式,它凝聚了中华文明的智慧.它利用材料本身特点自然连接,既符合力学原理,又重视实用和美观,达到了实用性和功能性的完美统一.右图是榫卯结构中的一种,当其合并在一起后,可形成一个正四棱柱.将合并后的榫卯对应拿开(如图1所示),已知榫的俯视图如图2所示,则卯的主视图为()9.已知函数()sin()(0,||)f x x ωϕωϕ=+><π的导函数()y f x '=的图像如图所示,记()()()g x f x f x '=⋅,则下列说法正确的是(A.()g x 的最小正周期为2πB.6ϕ5π=-C.(4g π= D.()g x 在(0,6π10.已知定义在R 上的函数()f x 在[0,1]上单调递增,(1)f x +是奇函数,(1)f x-的图像关于直线1x =对称,则()f x ()A.在[20202022],上单调递减B.在[20212023],上单调递增C.在[20222024],上单调递减D.在[20232025],上单调递增DA C 图2图1榫卯B 11.已知双曲线22221x y a b-=(,0a b >)的左右焦点分别为12,F F ,过2F 的直线交双曲线右支于,A B 两点,若1AB F B ⊥,13sin 5F AB ∠=,则该双曲线的离心率为(C )C.2D.212.如图,棱长为1的正方体1111ABCD A B C D -中,P 为1A BD △内一点(包括边界),且线段1PA 的长度等于点P 到平面ABCD 的距离,则线段1PA 长度的最小值是(D )C.2D.3第Ⅱ卷(非选择题90分)本卷包括必考题和选考题两部分.第13-21题为必考题,每个试题考生都必须作答.第22-23题为选考题,学生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.13.26(x 展开式中,2x 的系数为.BCDP1C 1B 1A 1D A 14.Rt ABC △中,90A =︒,2AB =,D 为BC 上一点,2BD DC =,则AD AB ⋅=.15.已知数列{}n a 的前n 项和为n S ,且满足11a =,12nn n a a ++=,则9S =.16.已知函数2()e x f x ax =-(a ∈R )有两个极值点12,x x ,且122x x >,则a 的取值范围为,).BA CD三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)如图,圆内接四边形ABCD 中,已知2AB =,BC =2CDB ADB ∠=∠.(1)求ABC ∠;(2)求四边形ABCD 面积的最大值.D ABC。

2020年黑龙江省大庆一中高考数学三模试卷(理科) (解析版)

2020年黑龙江省大庆一中高考数学三模试卷(理科) (解析版)

2020年黑龙江省大庆一中高考数学三模试卷(理科)一、选择题(共12小题).1.设集合A={x|﹣2<x<2},B={x|x2﹣x+m<0},若A∪B={x|﹣2<x<3},则实数m=()A.﹣6B.6C.5D.22.已知(2+i)(a+i)=5+5i,则实数a=()A.0B.1C.2D.33.已知双曲线与椭圆的焦点相同,则该双曲线的离心率为()A.B.C.D.34.设f(x)是定义在R上的奇函数,且在区间(﹣∞,0]上单调递增,则()A.f(log23)<f(log32)<f(log2)B.f(log2)<f(log23)<f(log32)C.f(log2)<f(log32)<f(log23)D.f(log32)<f(log2)<f(log23)5.为庆祝中华人民共和国成立70周年,2019年10月1日晚,金水桥南,百里长街成为舞台,3290名联欢群众演员跟着音乐的旋律,用手中不时变幻色彩的光影屏,流动着拼组出五星红旗、祖国万岁、长城等各式图案和文字.光影潋滟间,以《红旗颂》《我们走在大路上》《在希望的田野上》《领航新时代》四个章节,展现出中华民族从站起来、富起来到强起来的伟大飞跃.在每名演员的手中都有一块光影屏,每块屏有1024颗灯珠,若每个灯珠的开、关各表示一个信息,则每块屏可以表示出不同图案的个数为()A.2048B.21024C.10242D.102410246.已知等差数列{a n}中,a2=2,前5项的和S5满足15<S5<25,则公差d取值范围为()A.B.(1,4)C.(1,3)D.7.“勾3股4弦5”是勾股定理的一个特例.根据记载,西周时期的数学家商高曾经和周公讨论过“勾3股4弦5”的问题,毕达哥拉斯发现勾股定理早了500多年,如图,在矩形ABCD中,△ABC满足“勾3股4弦5”,且AB=3,E为AD上一点,BE⊥AC.若=λ+μ,则λ+μ的值为()A.B.C.D.18.执行如图所示的程序框图,则输出S的值为()A.0B.C.D.9.在长方体ABCD﹣A1B1C1D1中,E,F,G分别为棱AA1,C1D1,DD1的中点,AB=AA1=2AD,则异面直线EF与BG所成角的大小为()A.30°B.60°C.90°D.120°10.将函数的图象向左平移个单位长度,然后再将所得图象上所有点的横坐标扩大为原来的2倍(纵坐标不变),所得图象对应的函数解析式为()A.B.C.D.11.已知,则a4=()A.21B.42C.﹣35D.﹣21012.已知函数f(x)=,若方程f(x)=mx+m﹣恰有四个不相等的实数根,则实数m的取值范围是()A.B.C.D.二、填空题(共4小题).13.已知实数x,y满足约束条件,则的取值范围为.14.已知函数f(x)=2sin2x+a sin2x的最大值为3,则实数a的值为.15.记数列{a n}的前n项和为S n满足S n+1=4S n+2.且a1=2,b n=log2a n,则数列{b n}的前n 项和T n=.16.已知圆C:x2+y2+2(a﹣1)x﹣12y+2a2=0.当C的面积最大时,实数a的值为;若此时圆C关于直线:l2:mx+ny﹣6=0(m>0,n>0)对称,则的最大值为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分17.在平面四边形ABCD中,∠BAD=60°,∠BCD=120°,AB=3,AD=2.(1)若CD=1,求BC;(2)求四边形ABCD面积的最大值.18.如图,在四棱锥P﹣ABCD中,△ABD与△PBD都是边长为2的等边三角形,△BCD 为等腰直角三角形,∠BCD=90°,.(1)证明:BD⊥PA;(2)若M为PA的中点,求平面BMD与平面PBC所成锐二面角的余弦值.19.已知抛物线C:x2=4y,过点D(0,2)的直线l交C于A,B两点,过点A,B分别作C的切线,两切线相交于点P.(1)记直线PA,PB的斜率分别为k1,k2,证明k1,k2为定值;(2)记△PAB的面积为S△PAB,求S△PAB的最小值.20.甲、乙、丙三人参加竞答游戏,一轮三个题目,每人回答一题为体现公平,制定如下规则:①第一轮回答顺序为甲、乙、丙;第二轮回答顺序为乙、丙、甲;第三轮回答顺序为丙,甲、乙;第四轮回答顺序为甲、乙、丙;…,后面按此规律依次向下进行;②当一人回答不正确时,竞答结束,最后一个回答正确的人胜出.已知,每次甲回答正确的概率为,乙回答正确的概率为,丙回答正确的概率为,三个人回答每个问题相互独立.(1)求一轮中三人全回答正确的概率;(2)分别求甲在第一轮、第二轮、第三轮胜出的概率;(3)记P n为甲在第n轮胜出的概率,Q n为乙在第n轮胜出的概率,求P n与Q n,并比较P n与Q n的大小.21.已知函数f(x)=ae x(a∈R).(1)当a=1时,求函数f(x)的图象在点x=0处的切线方程;(2)若g(x)=ln(x+b),当a≥1,b≤2时,证明:f(x)>g(x).(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,曲线C1的参数方程为(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρsinθtanθ=2.(1)求曲线C1的普通方程与曲线C2的直角坐标方程;(2)若C1与C2交于M,N两点,点P的极坐标为,求|PM|2+|PN|2的值.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣1|﹣2|x+1|.(1)求不等式f(x)≤2的解集;(2)若关于x的不等式f(x)>|a+2|的解集不是空集,求实数a的取值范围.参考答案一、选择题(共12小题).1.设集合A={x|﹣2<x<2},B={x|x2﹣x+m<0},若A∪B={x|﹣2<x<3},则实数m=()A.﹣6B.6C.5D.2【分析】推导出3是方程x2﹣x+m=0的一个根,从而32﹣3+m=0,由此能求出结果.解:∵集合A={x|﹣2<x<2},B={x|x2﹣x+m<8},A∪B={x|﹣2<x<3},所以32﹣3+m=0,解得m=﹣6,故选:A.2.已知(2+i)(a+i)=5+5i,则实数a=()A.0B.1C.2D.3【分析】利用复数代数形式的乘除运算化简等式左边,再由复数相等的条件列式求得a 值.解:∵(2+i)(a+i)=2a﹣1+(a+2)i=5+4i,∴,解得a=3,故选:D.3.已知双曲线与椭圆的焦点相同,则该双曲线的离心率为()A.B.C.D.3【分析】求出椭圆的焦点坐标,得到双曲线的焦点坐标,然后求解a,即可求解双曲线的离心率.解:椭圆的焦点坐标为(2,4),(﹣2,0),所以4=a+a﹣2,解得a=5,离心率,故选:A.4.设f(x)是定义在R上的奇函数,且在区间(﹣∞,0]上单调递增,则()A.f(log23)<f(log32)<f(log2)B.f(log2)<f(log23)<f(log32)C.f(log2)<f(log32)<f(log23)D.f(log32)<f(log2)<f(log23)【分析】先判断括号内的大小关系,再借助于单调性即可得到结论.解:由题意知,函数f(x)在定义域R上单调递增,由可得,故选:C.5.为庆祝中华人民共和国成立70周年,2019年10月1日晚,金水桥南,百里长街成为舞台,3290名联欢群众演员跟着音乐的旋律,用手中不时变幻色彩的光影屏,流动着拼组出五星红旗、祖国万岁、长城等各式图案和文字.光影潋滟间,以《红旗颂》《我们走在大路上》《在希望的田野上》《领航新时代》四个章节,展现出中华民族从站起来、富起来到强起来的伟大飞跃.在每名演员的手中都有一块光影屏,每块屏有1024颗灯珠,若每个灯珠的开、关各表示一个信息,则每块屏可以表示出不同图案的个数为()A.2048B.21024C.10242D.10241024【分析】根据乘法原理解题.解:每块屏有1024颗灯珠,若每个灯珠的开、关各表示一个信息,根据乘法原理可得表示出不同图案的个数为2×2×…×2=21024,故选:B.6.已知等差数列{a n}中,a2=2,前5项的和S5满足15<S5<25,则公差d取值范围为()A.B.(1,4)C.(1,3)D.【分析】利用等差数列的求和公式、不等式的解法即可得出.解:∵S5=5a2+d=5a1+10d=2(2﹣d)+10d=10+5d,∴15<5d+10<25,解得1<d<3.故选:C.7.“勾3股4弦5”是勾股定理的一个特例.根据记载,西周时期的数学家商高曾经和周公讨论过“勾3股4弦5”的问题,毕达哥拉斯发现勾股定理早了500多年,如图,在矩形ABCD中,△ABC满足“勾3股4弦5”,且AB=3,E为AD上一点,BE⊥AC.若=λ+μ,则λ+μ的值为()A.B.C.D.1【分析】建立平面直角坐标系,进而利用向量的坐标表示,设,由可得,再由,利用坐标表示建立方程组求解即可.解:由题意建立如图所示直角坐标系,,设,所以,解得.所以解得故选:B.8.执行如图所示的程序框图,则输出S的值为()A.0B.C.D.【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.解:由程序框图可知,n=1,;n=7;;n=5,,n=7,S=0;n=9,;所以周期为8,又2020=8×252+4,故选:D.9.在长方体ABCD﹣A1B1C1D1中,E,F,G分别为棱AA1,C1D1,DD1的中点,AB=AA1=2AD,则异面直线EF与BG所成角的大小为()A.30°B.60°C.90°D.120°【分析】建立平面直角坐标系,根据题意写出各点坐标,得出的坐标,代入数量积公式运算,可得两个向量互相垂直,进一步确定异面直线EF与BG所成角的大小.解:如图,以D为坐标原点,分别以,,的方向为x轴、y轴、z轴的正方向建立空间直角坐标系D﹣xyz,设AD=1,则E(1,0,1),F(0,2,2),G(0,0,1),B(1,4,0),,所以,故选:C.10.将函数的图象向左平移个单位长度,然后再将所得图象上所有点的横坐标扩大为原来的2倍(纵坐标不变),所得图象对应的函数解析式为()A.B.C.D.【分析】由题意利用函数y=A sin(ωx+φ)的图象变换规律,得出结论.解:将的图象向左平移个单位长度,得到的图象,然后横坐标扩大为原来的2倍(纵坐标不变),得到的图象,故选:D.11.已知,则a4=()A.21B.42C.﹣35D.﹣210【分析】先把原式化简,再根据二项式的特点,求解即可.解:因为,a4即为(x﹣1)7展开式中x4的系数,故选:C.12.已知函数f(x)=,若方程f(x)=mx+m﹣恰有四个不相等的实数根,则实数m的取值范围是()A.B.C.D.【分析】由题意,方程方程f(x)=mx+m﹣恰有四个不相等的实数根,等价于y=f (x)与y=mx+m﹣恰有4个交点,求出直线y=mx+m﹣与y=lnx相切时m的值及过原点时m的值,即可求出m的取值范围.解:画出函数f(x)的图象如图中实线部分所示,方程恰有四个不相等的实数根,而是斜率为m,过定点的直线,设切点坐标为(a,ln(a+1)),=,又点在切线上,代入可解得a=﹣2,当直线过原点,即图中l2,所以当时,两函数的图象有4个不同的交点.故选:B.二、填空题:本题共4小题,每小题5分,共20分.13.已知实数x,y满足约束条件,则的取值范围为.【分析】画出约束条件的可行域,利用目标函数的几何意义,转化求解即可.解:作出不等式组表示的可行域如图所示,表示可行域内的点与原点连线的斜率,,k OB=3,点B不在可行域内,故的取值范围为.故答案为:.14.已知函数f(x)=2sin2x+a sin2x的最大值为3,则实数a的值为±1.【分析】由已知利用二倍角的三角函数公式,两角和的正弦函数公式,正弦函数的性质即可求解.解:因为,其中,所以f(x)的最大值为,解得a=±1.故答案为:±1.15.记数列{a n}的前n项和为S n满足S n+1=4S n+2.且a1=2,b n=log2a n,则数列{b n}的前n 项和T n=n2.【分析】由S n+1=4S n+2,可得,当n≥2时,S n=4S n﹣1+2,两式相减可得a n+1=4a n(n ≥2).利用等比数列的通项公式可得a n,进而得出b n,利用等差数列的求和公式即可得出T n.解:由S n+1=4S n+2①可得,当n≥2时,S n=4S n﹣1+2②,①﹣②得S n+1﹣S n=4•(S n﹣S n﹣1),即a n+3=4a n(n≥2).又a1=5,所以a2=3S3+2=3a1+2=8,则a5=4a1,所以,b n=log3a n=2n﹣1,故答案为:n2.16.已知圆C:x2+y2+2(a﹣1)x﹣12y+2a2=0.当C的面积最大时,实数a的值为﹣1;若此时圆C关于直线:l2:mx+ny﹣6=0(m>0,n>0)对称,则的最大值为.【分析】化圆的方程为标准方程,求得圆的半径,利用二次函数求最值可得圆的半径的最大值,即可得到圆面积最大时的a值;再由圆心在直线上可得关于m与n的等式,然后利用基本不等式求最值.解:圆C:x2+y2+2(a﹣1)x﹣12y+8a2=0的方程可化为[x+(a﹣1)]2+(y﹣6)2=﹣a8﹣2a+37,当a=﹣1时,﹣a2﹣2a+37取得最大值38,此时圆C的半径最大,面积也最大;∵圆C关于直线l:mx+ny﹣6=0(m>0,n>8)对称,又m>0,n>0,当且仅当时,即时取等号,即的最大值为.故答案为:﹣1;.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分17.在平面四边形ABCD中,∠BAD=60°,∠BCD=120°,AB=3,AD=2.(1)若CD=1,求BC;(2)求四边形ABCD面积的最大值.【分析】(1)在△ABD中,由余弦定理可求BD的值,再根据余弦定理即可求出BC,(2)设∠CBD=θ,则∠CDB=60°﹣θ.在△BCD中,由正弦定理可求BC,利用三角形面积公式,三角函数恒等变换的应用可求S△BCD=sin(2θ+30°)﹣,结合范围0°<θ<60°,利用正弦函数的性质可求S△BCD的最大值,即可求出四边形ABCD 面积的最大值.解:(1)在△ABD中,因为AB=3,AD=2,∠BAD=60°,则:BD8=AB2+AD2﹣2AB•AD•cos∠BAD=9+7﹣2×3×2×=2在△BCD中,因为BD=,CD=1,∠BCD=120°,即7=BC8+1+BC,(2)设∠CBD=θ,则∠CDB=60°﹣θ.所以S△BCD=BD•BC•sin∠CBD=sin(60°﹣θ)sinθ=(cosθ﹣sinθ)sinθ=(sin2θ+cos2θ﹣)=sin(7θ+30°)﹣,∴S△BCD≤,∴四边形ABCD面积的最大值为+=.18.如图,在四棱锥P﹣ABCD中,△ABD与△PBD都是边长为2的等边三角形,△BCD 为等腰直角三角形,∠BCD=90°,.(1)证明:BD⊥PA;(2)若M为PA的中点,求平面BMD与平面PBC所成锐二面角的余弦值.【分析】(1)取BD中点O,证明BD⊥平面POA,从而可得BD⊥PA;(2)建立空间坐标系,求出两半平面的法向量,计算法向量的夹角得出二面角的大小.【解答】(1)证明:设BD的中点为O,连接OP,OA.因为△ABD,△PBD为等边三角形,所以BD⊥AO,且BD⊥PO.所以BD⊥平面PAO,又PA⊂平面PAO,(2)解:因为△ABD,△PBD的边长为2,所以,又因为PO⊥BD,AO⊥BD,故OA,OB,OP两两垂直,则,,B(0,1,0),D(0,﹣1,8),C(﹣1,0,0),,设平面BMD的一个法向量为=(x1,y1,z1),则,设平面BMD的一个法向量为=(x2,y2,z2),则,∴cos<>===,所以平面BMD与平面PBC所成锐二面角的余弦值为.19.已知抛物线C:x2=4y,过点D(0,2)的直线l交C于A,B两点,过点A,B分别作C的切线,两切线相交于点P.(1)记直线PA,PB的斜率分别为k1,k2,证明k1,k2为定值;(2)记△PAB的面积为S△PAB,求S△PAB的最小值.【分析】(1)设A,B的坐标分别为,.利用抛物线方程求解函数的导数,设出直线方程与抛物线联立,利用韦达定理转化证明即可.(2)设P点坐标为(x,y),求出切线PA的方程,切线PB的方程,求出|AB|,点P 到直线AB的距表示三角形的面积,求解S△PAB的最小值.(1)证明:因为A,B两点在曲线x2=4y上,故设A,B的坐标分别为,【解答】.因为,所以,则,.所以,所以k1k2为定值.由(1)知切线PA的方程为①①﹣②得;①×x2﹣﹣②×x1得.由(1)知x=2k,y=﹣2,所以P点坐标为(2k,﹣2),因为点P到直线AB的距离.因为k2+3≥2,所以当k=0时,S△PAB的最小值为.20.甲、乙、丙三人参加竞答游戏,一轮三个题目,每人回答一题为体现公平,制定如下规则:①第一轮回答顺序为甲、乙、丙;第二轮回答顺序为乙、丙、甲;第三轮回答顺序为丙,甲、乙;第四轮回答顺序为甲、乙、丙;…,后面按此规律依次向下进行;②当一人回答不正确时,竞答结束,最后一个回答正确的人胜出.已知,每次甲回答正确的概率为,乙回答正确的概率为,丙回答正确的概率为,三个人回答每个问题相互独立.(1)求一轮中三人全回答正确的概率;(2)分别求甲在第一轮、第二轮、第三轮胜出的概率;(3)记P n为甲在第n轮胜出的概率,Q n为乙在第n轮胜出的概率,求P n与Q n,并比较P n与Q n的大小.【分析】(1)由题意,利用相互独立事件的概率乘法公式,计算求得结果.(2)由题意,利用相互独立事件的概率乘法公式,计算求得结果.(3)先求出前7种情况,总结规律,得出结论.解:(1)设一轮中三人全回答正确为事件M,则.(2)甲在第一轮胜出的概率为;故甲在第二轮胜出的概率为×(××)×==;(3)由(2)知;=;P3=×=.….当n=3k+1(k∈N*)时,;同理可得,当n=3k(k∈N*)时,;当n=3k+2(k∈N*)时,.当n=3k+2(k∈N*)时,P n<Q n.21.已知函数f(x)=ae x(a∈R).(1)当a=1时,求函数f(x)的图象在点x=0处的切线方程;(2)若g(x)=ln(x+b),当a≥1,b≤2时,证明:f(x)>g(x).【分析】(1)代入a的值,求出f(0),f′(0),求出切线方程即可;(2)结合a,b的范围,问题转化为可证e x>ln(x+2)成立,设h(x)=e x﹣ln(x+2),根据函数的单调性证明即可.【解答】(1)解:当a=1时,f(x)=e x.因为f'(x)=e x,所以f'(0)=1,f(2)=1.即x﹣y+1=0.当b≤2时,ln(x+b)≤ln(x+2),设h(x)=e x﹣ln(x+2),则,又因为,,即.当x∈(x0,+∞)时,h'(x)>0.又因为,ln(x0+2)=﹣x0,所以当x∈(﹣2,+∞)时h(x)>0,即e x>ln(x+7).所以当a≥1,b≤2时,f(x)>g(x).(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,曲线C1的参数方程为(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρsinθtanθ=2.(1)求曲线C1的普通方程与曲线C2的直角坐标方程;(2)若C1与C2交于M,N两点,点P的极坐标为,求|PM|2+|PN|2的值.【分析】(1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换.(2)利用一元二次方程根和系数的关系式的应用求出结果.解:(1)由曲线C1的参数方程消去参数t可得,曲线C1的普通方程为4x﹣3y﹣8=0.由x=ρcosθ,y=ρsinθ可得,曲线C2的直角坐标方程为y2=2x(x≠0).所以点P在曲线C1上.将曲线C6的参数方程(t为参数)代入y2=2x,设点M,N对应的参数分别为t1,t2,则,.所以.一、选择题23.已知函数f(x)=|x﹣1|﹣2|x+1|.(1)求不等式f(x)≤2的解集;(2)若关于x的不等式f(x)>|a+2|的解集不是空集,求实数a的取值范围.【分析】(1)根据f(x)≤2,利用零点分段法,求出不等式的解集即可;(2)问题转化为f(x)max>|a+2|,得到关于a的不等式,解出即可.解:(1)由题意得|x﹣1|﹣2|x+2|≤2.①当x≥1时,不等式|x﹣2|﹣2|x+1|≤2可化为x﹣1﹣2x﹣4≤2,解得x≥﹣5,所以x≥1.②当﹣1≤x<1时,不等式|x﹣1|﹣5|x+1|≤2可化为1﹣x﹣2x﹣2≤7,解得x≥﹣1,所以﹣1≤x<1.③当x<﹣1时,不等式|x﹣1|﹣2|x+3|≤2可化为1﹣x+2x+2≤2,解得x≤﹣2,所以x<﹣1.(2)由(1)知,对于任意x∈R,f(x)≤2,且当x=﹣1时取等号,关于x的不等式f(x)>|a+7|的解集不是空集,所以实数a的取值范围为(﹣4,0).。

精品解析:2020年全国统一高考数学试卷(理科)(新课标Ⅱ)(原卷版+解析版)

精品解析:2020年全国统一高考数学试卷(理科)(新课标Ⅱ)(原卷版+解析版)

2020年普通高等学校招生全国统一考试理科数学注意事项:1.答题前,考生务必将自己的姓名、考生号、座位号填写在答题卡上.本试卷满分150分.2.作答时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()UA B ⋃=( )A. {−2,3}B. {−2,2,3}C. {−2,−1,0,3}D. {−2,−1,0,2,3}2.若α为第四象限角,则( ) A. cos2α>0B. cos2α<0C. sin2α>0D. sin2α<03.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( ) A. 10名B. 18名C. 24名D. 32名4.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A. 3699块B. 3474块C. 3402块D. 3339块5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A. 55B. 255 C.355D.4556.数列{}n a 中,12a =,m n m n a a a +=,若155121022k k k a a a ++++++=-,则k=( )A. 2B. 3C. 4D. 57.如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为( )A. EB. FC. GD.H8.设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y Ca b ab-=>>的两条渐近线分别交于,D E 两点,若O D E 的面积为8,则C 的焦距的最小值为( )A. 4B. 8C. 16D. 329.设函数()ln |21|ln |21|f x x x =+--,则f (x )( )A. 是偶函数,且在1(,)2+∞单调递增B. 是奇函数,且在11(,)22-单调递减 C. 是偶函数,且在1(,)2-∞-单调递增 D. 是奇函数,且在1(,)2-∞-单调递减10.已知△ABC 934等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( ) 3 B.32C. 1 3211.若2233x y x y ---<-,则( ) A. ln (1)0y x -+>B. ln (1)0y x -+<C. ln ||0x y ->D. ln ||0x y -<12.0-1周期序列在通信技术中有着重要应用.若序列12na a a 满足{0,1}(1,2,)i a i ∈=,且存在正整数m ,使得(1,2,)i mi a a i +==成立,则称其为0-1周期序列,并称满足(1,2,)i mi a a i +==的最小正整数m 为这个序列的周期.对于周期为m 的0-1序列12na a a ,11()(1,2,,1)mi i k i C k a a k m m+===-∑是描述其性质的重要指标,下列周期为5的0-1序列中,满足1()(1,2,3,4)5C k k ≤=的序列是( ) A.11010B.11011C.10001D.11001二、填空题:本题共4小题,每小题5分,共20分.13.已知单位向量a →,b →的夹角为45°,k a b →→-与a →垂直,则k =__________.14.4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种.15.设复数1z ,2z 满足12||=||=2z z ,12iz z +=,则12||z z -=__________.16.设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内. p 2:过空间中任意三点有且仅有一个平面. p 3:若空间两条直线不相交,则这两条直线平行. p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l . 则下述命题中所有真命题的序号是__________. ①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.A B C 中,sin 2A -sin 2B -sin 2C =sin B sin C. (1)求A ;(2)若BC =3,求A B C 周长的最大值.18.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i i x ==∑,2011200i i y ==∑,2021)80i i x x =-=∑(,2021)9000i i y y =-=∑(,201))800i i ixy x y =--=∑((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i,y i)(i=1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r =12211))))nii ii in ni ix yxx yyyx===----∑∑∑((((,≈1.414.19.已知椭圆C1:22221x ya b+=(a>b>0)右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F 且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=43|AB|.(1)求C1的离心率;(2)设M是C1与C2的公共点,若|MF|=5,求C1与C2的标准方程.20.如图,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1∥MN,且平面A1AMN⊥EB1C1F;(2)设O为△A1B1C1的中心,若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.21.已知函数f(x)=sin2x sin2x.(1)讨论f(x)在区间(0,π)的单调性;(2)证明:33()8f x≤(3)设n∈N*,证明:sin2x sin22x sin24x…sin22n x≤34n n.(二)选考题:共10分.请考生在第22、23题中任选一题作答.并用2B铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分.如果多做,则按所做的第一题计分. [选修4—4:坐标系与参数方程]22.已知曲线C1,C2的参数方程分别为C1:224c o s4s inxyθθ⎧=⎨=⎩,(θ为参数),C2:1,1x tty tt⎧=+⎪⎪⎨⎪=-⎪⎩(t为参数).(1)将C1,C2的参数方程化为普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系.设C1,C2交点为P,求圆心在极轴上,且经过极点和P的圆的极坐标方程.[选修4—5:不等式选讲]23.已知函数2()|21|f x x a x a=-+-+.(1)当2a=时,求不等式()4f x的解集;(2)若()4f x,求a的取值范围.2020年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为( )A. 2B. 3C. 4D. 6【答案】C 【解析】 【分析】采用列举法列举出A B 中元素的即可.【详解】由题意,AB 中的元素满足8y x x y ≥⎧⎨+=⎩,且*,x y N ∈,由82x y x +=≥,得4x ≤,所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4), 故AB 中元素的个数为4.故选:C.【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题. 2.复数113i-的虚部是( )A. 310-B. 110-C.110D.310【答案】D【解析】 【分析】利用复数的除法运算求出z 即可. 【详解】因为1131313(13)(13)1010i z i ii i +===+--+,所以复数113z i=-的虚部为310.故选:D.【点晴】本题主要考查复数的除法运算,涉及到复数的虚部的定义,是一道基础题.3.在一组样本数据中,1,2,3,4出现的频率分别为1234,,,p p p p ,且411i i p ==∑,则下面四种情形中,对应样本的标准差最大的一组是( ) A. 14230.1,0.4p p p p ==== B. 14230.4,0.1p p p p ==== C.14230.2,0.3p p p p ====D.14230.3,0.2p p p p ====【答案】B 【解析】 【分析】计算出四个选项中对应数据的平均数和方差,由此可得出标准差最大的一组. 【详解】对于A 选项,该组数据的平均数为()()140.1230.4 2.5A x =+⨯++⨯=,方差为()()()()222221 2.50.12 2.50.43 2.50.44 2.50.10.65A s =-⨯+-⨯+-⨯+-⨯=;对于B 选项,该组数据的平均数为()()140.4230.1 2.5B x =+⨯++⨯=,方差为()()()()222221 2.50.42 2.50.13 2.50.14 2.50.4 1.85B s =-⨯+-⨯+-⨯+-⨯=;对于C 选项,该组数据的平均数为()()140.2230.3 2.5C x =+⨯++⨯=,方差为()()()()222221 2.50.22 2.50.33 2.50.34 2.50.2 1.05C s =-⨯+-⨯+-⨯+-⨯=;对于D 选项,该组数据的平均数为()()140.3230.2 2.5D x =+⨯++⨯=,方差为()()()()222221 2.50.32 2.50.23 2.50.24 2.50.3 1.45D s =-⨯+-⨯+-⨯+-⨯=.因此,B 选项这一组标准差最大. 故选:B.【点睛】本题考查标准差的大小比较,考查方差公式的应用,考查计算能力,属于基础题.4.Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()=1et I Kt --+,其中K 为最大确诊病例数.当I (*t )=0.95K 时,标志着已初步遏制疫情,则*t 约为( )(ln19≈3) A. 60 B. 63 C. 66 D. 69【答案】C 【解析】 【分析】将t t *=代入函数()()0.23531t K I t e --=+结合()0.95I tK*=求得t *即可得解.【详解】()()0.23531t K I t e--=+,所以()()0.23530.951t KI tK e**--==+,则()0.235319te*-=,所以,()0.2353ln 193t *-=≈,解得353660.23t *≈+≈.故选:C.【点睛】本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题. 5.设O 为坐标原点,直线2x =与抛物线C :22(0)y p x p =>交于D ,E 两点,若O D O E ⊥,则C 的焦点坐标为( ) A. 1,04⎛⎫⎪⎝⎭B. 1,02⎛⎫⎪⎝⎭C. (1,0)D. (2,0)【答案】B 【解析】 【分析】根据题中所给的条件O D O E ⊥,结合抛物线的对称性,可知4D O xE O x π∠=∠=,从而可以确定出点D的坐标,代入方程求得p 的值,进而求得其焦点坐标,得到结果.【详解】因为直线2x =与抛物线22(0)y p x p =>交于,E D 两点,且O D O E ⊥, 根据抛物线的对称性可以确定4D O xE O x π∠=∠=,所以()2,2D ,代入抛物线方程44p =,求得1p =,所以其焦点坐标为1(,0)2,故选:B.【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目. 6.已知向量a ,b 满足||5a =,||6b =,6a b ⋅=-,则c o s,=+a a b ( )A.3135-B.1935-C.1735D. 1935【答案】D 【解析】 【分析】计算出()a a b ⋅+、ab+的值,利用平面向量数量积可计算出c o s ,a a b <+>的值. 【详解】5a =,6b =,6a b ⋅=-,()225619a ab aa b ∴⋅+=+⋅=-=.()2222257a b a ba ab b+=+=+⋅+=-=,因此,()1919c o s ,5735a a ba ab a a b⋅+<+>===⨯⋅+.故选:D.【点睛】本题考查平面向量夹角余弦值的计算,同时也考查了平面向量数量积的计算以及向量模的计算,考查计算能力,属于中等题. 7.在△ABC 中,cos C =23,AC =4,BC =3,则cos B =( ) A.19B.13C.12D.23【答案】A 【解析】 【分析】根据已知条件结合余弦定理求得A B ,再根据222co s 2A B B C A CB A B B C+-=⋅,即可求得答案.【详解】在A B C 中,2c o s 3C =,4A C =,3B C =根据余弦定理:2222co s A B A C B C A C B C C =+-⋅⋅2224322433A B=+-⨯⨯⨯可得29A B = ,即3A B=由22299161 c o s22339A B B C A CBA B B C+-+-===⋅⨯⨯故1 c o s9B=.故选:A.【点睛】本题主要考查了余弦定理解三角形,考查了分析能力和计算能力,属于基础题.8.下图为某几何体的三视图,则该几何体的表面积是()A. 6+42B. 4+42C. 6+23D. 4+23【答案】C【解析】【分析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积. 【详解】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222A B C A D C C D BS S S===⨯⨯=△△△根据勾股定理可得:2A B A D D B===∴A D B△是边长为2根据三角形面积公式可得:211s in60(222A D BS A B A D=⋅⋅︒=⋅=△∴该几何体的表面积是:632=⨯++.故选:C.【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.9.已知2tanθ–tan(θ+π4)=7,则tanθ=()A. –2B. –1C. 1D. 2【答案】D【解析】【分析】利用两角和的正切公式,结合换元法,解一元二次方程,即可得出答案.【详解】2ta n ta n74πθθ⎛⎫-+=⎪⎝⎭,ta n12ta n71ta nθθθ+∴-=-,令ta n,1t tθ=≠,则1271ttt+-=-,整理得2440t t-+=,解得2t=,即tan2θ=.故选:D.【点睛】本题主要考查了利用两角和的正切公式化简求值,属于中档题.10.若直线l与曲线yx2+y2=15都相切,则l的方程为()A. y=2x+1B. y=2x+12C. y=12x+1 D. y=12x+12【答案】D【解析】【分析】根据导数的几何意义设出直线l的方程,再由直线与圆相切的性质,即可得出答案.【详解】设直线l在曲线y=(0,x,则00x>,函数y=1y'=,则直线l的斜率k=,设直线l的方程为)0y x x-=-,即x x-+=,由于直线l 与圆2215x y +=x =两边平方并整理得2005410x x --=,解得01x =,015x =-(舍),则直线l 的方程为210x y -+=,即1122y x =+.故选:D.【点睛】本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题. 11.设双曲线C :22221x y ab-=(a >0,b >0)的左、右焦点分别为F 1,F 2P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =( ) A. 1 B. 2 C. 4 D. 8【答案】A 【解析】 【分析】根据双曲线的定义,三角形面积公式,勾股定理,结合离心率公式,即可得出答案. 【详解】5c a=,c ∴=,根据双曲线的定义可得122P F P F a -=,12121||42P F F P F F S P =⋅=△,即12||8P F P F ⋅=,12F P F P ⊥,()22212||2P F P F c ∴+=,()22121224P F P F P F P F c ∴-+⋅=,即22540a a -+=,解得1a =,故选:A.【点睛】本题主要考查了双曲线的性质以及定义的应用,涉及了勾股定理,三角形面积公式的应用,属于中档题.12.已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A. a <b <c B. b <a <cC. b <c <aD. c <a <b【答案】A 【解析】 【分析】由题意可得a 、b 、()0,1c ∈,利用作商法以及基本不等式可得出a 、b 的大小关系,由8lo g 5b =,得85b =,结合5458<可得出45b <,由13lo g 8c =,得138c =,结合45138<,可得出45c >,综合可得出a 、b 、c 的大小关系.【详解】由题意可知a、b、()0,1c ∈,()222528lo g 3lg 3lg 81lg 3lg 8lg 3lg 8lg 241lo g 5lg 5lg 522lg 5lg 25lg 5ab ⎛⎫⎛⎫++⎛⎫==⋅<⋅==< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,a b ∴<; 由8lo g 5b =,得85b =,由5458<,得5488b <,54b ∴<,可得45b <;由13lo g 8c =,得138c =,由45138<,得451313c <,54c ∴>,可得45c >.综上所述,a b c <<. 故选:A.【点睛】本题考查对数式的大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件0,201,x y x y x +≥⎧⎪-≥⎨⎪≤⎩, ,则z =3x +2y 的最大值为_________.【答案】7 【解析】 【分析】作出可行域,利用截距的几何意义解决. 【详解】不等式组所表示的可行域如图 因为32z x y =+,所以322x z y =-+,易知截距2z 越大,则z 越大,平移直线32x y =-,当322x z y =-+经过A 点时截距最大,此时z 最大,由21y x x =⎧⎨=⎩,得12x y =⎧⎨=⎩,(1,2)A , 所以m a x 31227z =⨯+⨯=.故答案为:7.【点晴】本题主要考查简单线性规划的应用,涉及到求线性目标函数的最大值,考查学生数形结合的思想,是一道容易题. 14.262()x x +的展开式中常数项是__________(用数字作答).【答案】240 【解析】 【分析】写出622x x ⎛⎫+ ⎪⎝⎭二项式展开通项,即可求得常数项.【详解】622x x ⎛⎫+ ⎪⎝⎭其二项式展开通项:()62612rrrr C xx T -+⎛⎫⋅⋅ ⎪⎝⎭= 1226(2)r rrrxC x--⋅=⋅1236(2)rrrC x-=⋅当1230r -=,解得4r =∴622x x ⎛⎫+ ⎪⎝⎭的展开式中常数项是:664422161516240C C ⋅=⋅=⨯=. 故答案为:240.【点睛】本题考查二项式定理,利用通项公式求二项展开式中的指定项,解题关键是掌握()na b +的展开通项公式1C r n r rr n T a b -+=,考查了分析能力和计算能力,属于基础题.15.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________. 【答案】23π【解析】 【分析】将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值. 【详解】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示, 其中2,3B C A B A C ===,且点M 为BC 边上的中点, 设内切圆的圆心为O ,由于22312A M =-=,故12222S =⨯⨯=△A B C设内切圆半径为r ,则:A B C A O B B O C A O C S S S S =++△△△△111222A B r B C r A C r =⨯⨯+⨯⨯+⨯⨯()133222r =⨯++⨯=解得:22r ,其体积:34233V r π==.23.【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.16.关于函数f (x )=1s in s in x x+有如下四个命题:①f (x )的图像关于y 轴对称. ②f (x )的图像关于原点对称.③f (x )的图像关于直线x =2π对称.④f (x )的最小值为2.其中所有真命题的序号是__________. 【答案】②③ 【解析】 【分析】利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取0x π-<<可判断命题④的正误.综合可得出结论. 【详解】对于命题①,152622f π⎛⎫=+=⎪⎝⎭,152622f π⎛⎫-=--=- ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{},x x k k Z π≠∈,定义域关于原点对称,()()()()111sin sin sin sin sin sin fx x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,所以,函数()f x 的图象关于原点对称,命题②正确;对于命题③,11s in c o s 22c o s s in 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭,11s in c o s 22c o s s in 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象关于直线2xπ=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,则()1sin 02sin f x x x=+<<,命题④错误. 故答案为:②③.【点睛】本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.设数列{a n }满足a 1=3,134n n a a n+=-.(1)计算a 2,a 3,猜想{a n }的通项公式并加以证明; (2)求数列{2n a n }的前n 项和S n . 【答案】(1)25a =,37a =,21n a n =+,证明见解析;(2)1(21)22n n S n +=-⋅+.【解析】 【分析】(1)利用递推公式得出23,a a ,猜想得出{}n a 的通项公式,利用数学归纳法证明即可; (2)由错位相减法求解即可.【详解】(1)由题意可得2134945a a =-=-=,32381587a a =-=-=,由数列{}n a 的前三项可猜想数列{}n a 是以3为首项,2为公差的等差数列,即21n a n =+, 证明如下:当1n =时,13a =成立; 假设n k =时,21k a k =+成立.那么1n k =+时,1343(21)4232(1)1k k a a k k k k k +=-=+-=+=++也成立. 则对任意的*n N ∈,都有21n a n =+成立; (2)由(1)可知,2(21)2nnn a n ⋅=+⋅231325272(21)2(21)2n nn S n n -=⨯+⨯+⨯++-⋅++⋅,①23412325272(21)2(21)2nn n S n n +=⨯+⨯+⨯++-⋅++⋅,② 由①-②得:()23162222(21)2nn n S n +-=+⨯+++-+⋅()21121262(21)212n n n -+-=+⨯-+⋅⨯-1(12)22n n +=-⋅-,即1(21)22n n S n +=-⋅+.【点睛】本题主要考查了求等差数列的通项公式以及利用错位相减法求数列的和,属于中档题.18.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:22()()()()()n a d b cKa b c d a c b d-=++++,【答案】(1)该市一天的空气质量等级分别为1、2、3、4的概率分别为0.43、0.27、0.21、0.09;(2)350;(3)有,理由见解析.【解析】【分析】(1)根据频数分布表可计算出该市一天的空气质量等级分别为1、2、3、4的概率;(2)利用每组的中点值乘以频数,相加后除以100可得结果;(3)根据表格中的数据完善22⨯列联表,计算出2K 的观测值,再结合临界值表可得结论. 【详解】(1)由频数分布表可知,该市一天的空气质量等级为1的概率为216250.43100++=,等级为2的概率为510120.27100++=,等级为3的概率为6780.21100++=,等级为4的概率为7200.09100++=;(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为100203003550045350100⨯+⨯+⨯=(3)22⨯列联表如下:人次400≤人次400>空气质量不好 33 37空气质量好 228()221003383722 5.820 3.84155457030K ⨯⨯-⨯=≈>⨯⨯⨯,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.【点睛】本题考查利用频数分布表计算频率和平均数,同时也考查了独立性检验的应用,考查数据处理能力,属于基础题.19.如图,在长方体1111A B C D A B C D -中,点,E F 分别在棱11,D D B B 上,且12D EE D =,12BF F B =.(1)证明:点1C 在平面A E F 内;(2)若2A B =,1A D =,13A A =,求二面角1A E F A --的正弦值.【答案】(1)证明见解析;(2)427.【解析】 【分析】(1)连接1C E 、1C F ,证明出四边形1A E C F 为平行四边形,进而可证得点1C 在平面A E F 内; (2)以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立空间直角坐标系1C x y z -,利用空间向量法可计算出二面角1A E F A --余弦值,进而可求得二面角1A E F A --的正弦值.【详解】(1)在棱1C C 上取点G ,使得112C G C G =,连接D G 、F G 、1C E 、1C F ,在长方体1111A B C D A B C D -中,//A D B C 且A D B C =,11//B B C C 且11B B C C =,112C G C G =,12B F F B =,112233C G C C B B B F ∴===且C G B F =,所以,四边形B C G F 为平行四边形,则//A F D G 且A F D G =, 同理可证四边形1D E C G 为平行四边形,1//C E D G ∴且1C E D G =,1//C E A F ∴且1C E A F =,则四边形1A E C F 为平行四边形,因此,点1C 在平面A E F 内;(2)以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系1C x y z -,则()2,1,3A 、()12,1,0A 、()2,0,2E 、()0,1,1F ,()0,1,1A E =--,()2,0,2A F =--,()10,1,2A E =-,()12,0,1A F =-,设平面A E F 的法向量为()111,,m x y z =,由00m A E m A F ⎧⋅=⎪⎨⋅=⎪⎩,得11110220y z x z --=⎧⎨--=⎩取11z =-,得111x y ==,则()1,1,1m =-,设平面1A E F 的法向量为()222,,n x y z =,由110n A E n A F ⎧⋅=⎪⎨⋅=⎪⎩,得22222020y z x z -+=⎧⎨-+=⎩,取22z =,得21x =,24y =,则()1,4,2n =,7c o s ,7321m n m n m n⋅<>===⨯⋅设二面角1A E F A --的平面角为θ,则7c o s 7θ=,242s in 1c o s 7θθ∴=-=.因此,二面角1A E F A --427【点睛】本题考查点在平面的证明,同时也考查了利用空间向量法求解二面角角,考查推理能力与计算能力,属于中等题. 20.已知椭圆222:1(05)25xy Cm m+=<<的离心率为154,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||B PB Q =,B P B Q ⊥,求A P Q 的面积.【答案】(1)221612525xy +=;(2)52.【解析】 【分析】 (1)因为222:1(05)25xy Cm m+=<<,可得5a =,b m =,根据离心率公式,结合已知,即可求得答案;(2)点P 在C 上,点Q 在直线6x =上,且||||B PB Q =,B P B Q⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N ,可得P M B B N Q ≅△△,可求得P 点坐标,求出直线A Q直线方程,根据点到直线距离公式和两点距离公式,即可求得A P Q 的面积. 【详解】(1)222:1(05)25xy C m m+=<<∴5a =,b m =,根据离心率4c e a ====解得54m =或54m =-(舍),∴C 的方程为:22214255xy⎛⎫ ⎪⎝⎭+=,即221612525xy +=;(2)不妨设P ,Q 在x 轴上方点P 在C 上,点Q 在直线6x =上,且||||B PB Q =,B P B Q⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N 根据题意画出图形,如图||||B P B Q =,B P B Q ⊥,90P M B Q N B ∠=∠=︒,又90P B M Q B N ∠+∠=︒,90B Q N Q B N ∠+∠=︒,∴P B M B Q N∠=∠,根据三角形全等条件“A A S ”, 可得:P M B B N Q ≅△△,221612525xy +=,∴(5,0)B ,∴651P M B N ==-=,设P 点为(,)P P x y ,可得P 点纵坐标为1Py =,将其代入221612525xy +=,可得:21612525Px +=,解得:3P x =或3P x =-,∴P点为(3,1)或(3,1)-,①当P 点为(3,1)时, 故532M B =-=,P M B B N Q ≅△△, ∴||||2M B N Q ==,可得:Q 点为(6,2), 画出图象,如图(5,0)A -,(6,2)Q ,可求得直线A Q 的直线方程为:211100x y -+=,根据点到直线距离公式可得P 到直线A Q 的距离为:222311110555125211d ⨯-⨯+===+,根据两点间距离公式可得:()()22652055A Q =++-=,∴A P Q面积为:15555252⨯⨯=;②当P 点为(3,1)-时, 故5+38M B ==,P M B B N Q ≅△△, ∴||||8M B N Q ==,可得:Q 点为(6,8), 画出图象,如图(5,0)A -,(6,8)Q ,可求得直线A Q 的直线方程为:811400x y -+=,根据点到直线距离公式可得P 到直线A Q 的距离为:d ===,根据两点间距离公式可得:A Q ==∴A P Q面积为:15522⨯=,综上所述,A P Q 面积为:52.【点睛】本题主要考查了求椭圆标准方程和求三角形面积问题,解题关键是掌握椭圆的离心率定义和数形结合求三角形面积,考查了分析能力和计算能力,属于中档题. 21.设函数3()f x xb x c=++,曲线()y f x =在点(12,f (12))处的切线与y 轴垂直.(1)求b . (2)若()f x 有一个绝对值不大于1的零点,证明:()f x 所有零点的绝对值都不大于1.【答案】(1)34b =-;(2)证明见解析【解析】 【分析】(1)利用导数的几何意义得到'1()02f =,解方程即可;(2)由(1)可得'2311()32()()422f x x x x =-=+-,易知()f x 在11(,)22-上单调递减,在1(,)2-∞-,1(,)2+∞上单调递增,且111111(1),(),(),(1)424244f c f c f c f c -=--=+=-=+,采用反证法,推出矛盾即可.【详解】(1)因为'2()3f x x b =+,由题意,'1()02f =,即21302b ⎛⎫⨯+= ⎪⎝⎭则34b =-;(2)由(1)可得33()4f x x x c =-+, '2311()33()()422f x x x x =-=+-,令'()0f x >,得12x >或21x <-;令'()0f x <,得1122x -<<,所以()f x 在11(,)22-上单调递减,在1(,)2-∞-,1(,)2+∞上单调递增,且111111(1),(),(),(1)424244f c f c f c f c -=--=+=-=+,若()f x 所有零点中存在一个绝对值大于1零点0x ,则(1)0f ->或(1)0f <, 即14c >或14c <-.当14c >时,111111(1)0,()0,()0,(1)0424244f c f c f c f c -=->-=+>=->=+>,又32(4)6434(116)0f c c c c c c -=-++=-<, 由零点存在性定理知()f x 在(4,1)c --上存在唯一一个零点0x ,即()f x 在(,1)-∞-上存在唯一一个零点,在(1,)-+∞上不存在零点, 此时()f x 不存在绝对值不大于1的零点,与题设矛盾; 当14c <-时,111111(1)0,()0,()0,(1)0424244f c f c f c f c -=-<-=+<=-<=+<,又32(4)6434(116)0f c c c c c c -=++=->, 由零点存在性定理知()f x 在(1,4)c -上存在唯一一个零点0x ',即()f x 在(1,)+∞上存在唯一一个零点,在(,1)-∞上不存在零点, 此时()f x 不存在绝对值不大于1的零点,与题设矛盾; 综上,()f x 所有零点的绝对值都不大于1.【点晴】本题主要考查利用导数研究函数的零点,涉及到导数的几何意义,反证法,考查学生逻辑推理能力,是一道有一定难度的题.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4—4:坐标系与参数方程](10分)22.在直角坐标系xOy 中,曲线C 的参数方程为22223x t ty t t⎧=--⎨=-+⎩(t 为参数且t ≠1),C 与坐标轴交于A 、B 两点.(1)求||A B ;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程.【答案】(1)(2)3co s sin 120ρθρθ-+= 【解析】 【分析】(1)由参数方程得出,A B 的坐标,最后由两点间距离公式,即可得出A B 的值; (2)由,A B 的坐标得出直线A B 的直角坐标方程,再化为极坐标方程即可. 【详解】(1)令0x =,则220t t +-=,解得2t=-或1t =(舍),则26412y =++=,即(0,12)A .令0y =,则2320t t -+=,解得2t =或1t =(舍),则2244x =--=-,即(4,0)B -.A B ∴==(2)由(1)可知12030(4)A B k -==--,则直线A B 的方程为3(4)y x =+,即3120x y -+=.由co s ,sin x y ρθρθ==可得,直线A B 的极坐标方程为3co s sin 120ρθρθ-+=.【点睛】本题主要考查了利用参数方程求点的坐标以及直角坐标方程化极坐标方程,属于中档题.[选修4—5:不等式选讲](10分)23.设a ,b ,c ∈R ,a +b +c =0,abc =1. (1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c 【答案】(1)证明见解析(2)证明见解析. 【解析】 【分析】(1)由2222()2220a b c a b c a b a c b c ++=+++++=结合不等式的性质,即可得出证明;(2)不妨设m a x {,,}a b c a =,由题意得出0,,0a b c ><,由()222322b c b c b ca a ab cb c+++=⋅==,结合基本不等式,即可得出证明. 【详解】(1)2222()2220a b c a b c a b a c b c ++=+++++=,()22212a b b c c a ab c∴++=-++1,,,a b c a b c =∴均不为0,则2220a b c ++>,()222120a b b c c a ab c∴++=-++<;(2)不妨设m a x {,,}a b c a =,由0,1a b c a b c ++==可知,0,0,0a b c ><<,1,a b c a b c=--=,()222322224b c b c b cb c b ca a ab cb cb c++++∴=⋅==≥=.当且仅当b c =时,取等号,a ∴≥,即3m a x {,,}4a b c .【点睛】本题主要考查了不等式的基本性质以及基本不等式的应用,属于中档题.。

2020届全国100所名校高三模拟金典卷(三)数学(文)试题(解析版)

2020届全国100所名校高三模拟金典卷(三)数学(文)试题(解析版)

2020届全国100所名校高三模拟金典卷(三)数学(文)试题一、单选题1.集合{(,)|1}P x y y x ==+,{}2(,)|Q x y y x ==,则集合P Q I 中元素的个数是( ) A .0个 B .1个C .2个D .3个【答案】C【解析】根据集合,P Q 元素特征,联立方程,判断其解的个数即可. 【详解】P Q I 表示直线1y x =+与抛物线2y x =的图象交点,联立21y x y x=+⎧⎨=⎩,整理得210,1450x x --=∆=+=>, ∴方程有两个不同的实数解,即方程组有两个解,可知两个函数有两个公共点,故集合P Q I 中元素的个数为2. 故选:C. 【点睛】本题考查交集中元素的个数,注意集合元素的特征,属于基础题. 2.若复z 满足(2)23i z i ⋅+=-+(i 是虚数单位),则z 的虚部为( ) A .i B .2iC .1D .2【答案】D【解析】根据复数除法的运算法则,求出z ,即可得出结论. 【详解】∵223i z i i ⋅+=-+,∴212iz i i-+==+, ∴z 的虚部为2. 故选:D. 【点睛】本题考查复数的代数运算及复数的基本概念,属于基础题.3.已知向量()()2332a b ==r r ,,,,则|–|a b =r rA .B .2C .D .50【答案】A【解析】本题先计算a b -r r,再根据模的概念求出||a b -r r .【详解】由已知,(2,3)(3,2)(1,1)a b -=-=-r r,所以||a b -==r r故选A 【点睛】本题主要考查平面向量模长的计算,容易题,注重了基础知识、基本计算能力的考查.由于对平面向量的坐标运算存在理解错误,从而导致计算有误;也有可能在计算模的过程中出错.4.设等差数列{}n a 的前n 项和为n S ,若75a =,927S =,则公差d 等于( ) A .0 B .1C .12D .32【答案】B【解析】由927S =可求出5a ,结合已知即可求解. 【详解】()199599272a a S a +===,解得53a =, 所以75531752a a d --===-. 故选:B. 【点睛】本题考查等差数列的前n 和、等差数列基本量的运算,掌握公式及性质是解题的关键,属于基础题.5.若双曲线22:19y x C m -=的渐近线方程为23y x =±,则C 的两个焦点坐标为( )A .(0,B .(0)C .(0,D .(【答案】C【解析】根据双曲线渐近线方程,建立m 的等量关系,求出双曲线方程,即可得出结论. 【详解】∵双曲线22:19y x C m -=的渐近线方程为23y x =±,23=,解得4m =, ∴双曲线方程为22149y x -=,∴双曲线C 的两个焦点坐标为(0,. 故选:C. 【点睛】本题考查双曲线的简单几何性质与标准方程的应用,要注意双曲线焦点位置,属于基础题.6.下表是某电器销售公司2018年度各类电器营业收入占比和净利润占比统计表:则下列判断中不正确的是( ) A .该公司2018年度冰箱类电器销售亏损B .该公司2018年度小家电类电器营业收入和净利润相同C .该公司2018年度净利润主要由空调类电器销售提供D .剔除冰箱类销售数据后,该公司2018年度空调类电器销售净利润占比将会降低 【答案】B【解析】根据表格提供的数据,逐项分析,即可得出结论. 【详解】选项A ,该公司2018年度冰箱类电器利润率占比为负值, 因此冰箱类销售亏损,所以A 项正确;选项B ,该公司2018年度小家电类电器营业收入和净利润是不同的量,不知道相应的总量,无法比较,所以B 项错误;选项C ,该公司2018年度空调类净利润占比比其它类占比大的多, 因此2018年度净利润主要由空调类电器销售提供,所以C 项正确; 选项D ,剔除冰箱类销售数据后,该公司2018年度总净利润变大, 而空调类电器销售净利润不变,因此利润占比降低,所以选项D 正确. 故选:B. 【点睛】本题考查统计图表与实际问题,考查数据分析能力,属于基础题.7.函数()()11x x e f x x e+=-(其中e 为自然对数的底数)的图象大致为( )A .B .C .D .【答案】A【解析】求得f (x )的奇偶性及f (1)的值即可得出答案. 【详解】∵f (﹣x )()()()111111x x x x x xe e e x e x e x e--+++====-----f (x ), ∴f (x )是偶函数,故f (x )图形关于y 轴对称,排除C ,D ; 又x=1时,()e 111ef +=-<0, ∴排除B , 故选A . 【点睛】本题考查了函数图像的识别,经常利用函数的奇偶性,单调性及特殊函数值对选项进行排除,属于基础题.8.将函数()cos(2)(0)f x A x ϕϕπ=+<<的图象向左平移6π个单位长度后,得到函数()g x 的图象关于y 轴对称,则ϕ=( )A .4π B .34π C .3π D .23π 【答案】D【解析】根据函数平移关系求出()g x ,再由()g x 的对称性,得到ϕ的值,结合其范围,即可求解. 【详解】因为()cos 2cos 263g x A x A x ππϕϕ⎡⎤⎛⎫⎛⎫=++=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦图象关于y 轴对称, 所以()3k k πϕπ+=∈Z ,因为0ϕπ<<,所以23ϕπ=. 故选:D. 【点睛】本题考查三角函数图象变换关系以及余弦函数的对称性,属于基础题. 9.已知1b a <<,则下列大小关系不正确的是( ) A .b a a a < B .a b b b > C .b b a b > D .b a a b >【答案】D【解析】根据指数函数和幂函数的单调性,逐项验证,即可得出结论. 【详解】∵1b a <<,∴x y a =和x y b =均为增函数, ∴b a a a <,a b b b >,A ,B 项正确,又∵by x =在(0,)+∞为增函数,∴b b a b >, C 项正确; b a 和a b 的大小关系不能确定,如3,2,b aa b a b ==>;4,2,b a a b a b ===;5,2,b a a b a b ==< ,故D 项不正确.故选:D. 【点睛】本题考查比较指数幂的大小关系,应用指数函数与幂函数的性质是解题的关键,属于基础题.10.我国南北朝时期数学家祖暅,提出了著名的祖暅原理:“缘幂势既同,则积不容异也”.“幂”是截面积,“势”是几何体的高,意思是两等高几何体,若在每一等高处的截面积都相等,则两几何体体积相等.已知某不规则几何体与右侧三视图所对应的几何体满足“幂势既同”,其中俯视图中的圆弧为14圆周,则该不规则几何体的体积为( )A .12π+B .136π+ C .12π+D .1233π+ 【答案】B【解析】根据三视图知该几何体是三棱锥与14圆锥体的所得组合体,结合图中数据计算该组合体的体积即可. 【详解】解:根据三视图知,该几何体是三棱锥与14圆锥体的组合体, 如图所示;则该组合体的体积为21111111212323436V ππ=⨯⨯⨯⨯+⨯⨯⨯=+; 所以对应不规则几何体的体积为136π+.故选B .【点睛】本题考查了简单组合体的体积计算问题,也考查了三视图转化为几何体直观图的应用问题,是基础题.11.如图,圆柱的轴截面ABCD 为正方形,E 为弧»BC的中点,则异面直线AE 与BC 所成角的余弦值为( )A .33B .5 C .306D .66【答案】D【解析】取BC 的中点H ,连接,,?EH AH ED ,则异面直线AE 与BC 所成角即为EAD ∠,再利用余弦定理求cos EAD ∠得解.【详解】取BC 的中点H ,连接,,90,EH AH EHA ∠=o设2,AB =则1,5,BH HE AH ===所以6,AE =连接,6,ED ED =因为//,BC AD所以异面直线AE 与BC 所成角即为,EAD ∠在EAD V 中6cos ,226EAD ∠==⨯⨯ 故选:D【点睛】本题主要考查异面直线所成角的计算,考查余弦定理,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.12.已知函数()(ln )xe f x k x x x=+-,若1x =是函数()f x 的唯一极值点,则实数k 的取值范围是( )A .(,]e -∞B .(,)e -∞C .(,)e -+∞D .[,)e -+?【答案】A 【解析】【详解】由函数()()ln xe f x k x x x =+-,可得()211'1x x x e x e x e f x k x x x x ⎛⎫--⎛⎫=+-=- ⎪ ⎪⎝⎭⎝⎭,()f x Q 有唯一极值点()1,'0x f x =∴=有唯一根1x =,0xe k x ∴-=无根,即y k=与()xe g x x =无交点,可得()()21'x e x g x x-=,由()'0g x >得,()g x 在[)1+∞上递增,由()'0g x <得,()g x 在()0,1上递减,()()min 1,g x g e k e ∴==∴≤,即实数k 的取值范围是(],e -∞,故选A. 【方法点睛】已知函数零点(方程根)的个数,求参数取值范围的三种常用的方法:(1)直接法,直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法,先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法,先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.一是转化为两个函数()(),y g x y h x ==的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为(),y a y g x ==的交点个数的图象的交点个数问题 .二、填空题13.设x ,y 满足约束条件001030x y x y x y >⎧⎪>⎪⎨-+>⎪⎪+-<⎩,则3z x y =-的取值范围为_________.【答案】(1,9)-【解析】做出满足条件的可行域,根据图形求出目标函数的最大值和最小值即可. 【详解】做出满足不等式组001030x y x y x y >⎧⎪>⎪⎨-+>⎪⎪+-<⎩表示的平面区域,如下图(阴影部分)所示,根据图形,当目标函数3z x y =-过点(0,1)A 时, 取得最小值为1-,当目标函数3z x y =-过点(3,0)B 时, 取得最大值为9,所以3z x y =-的取值范围为(1,9)-. 故答案为:(1,9)-. 【点睛】本题考查二元一次不等式组表示平面区域,利用数形结合求线性目标函数的最值,属于基础题.14.设n S 为等比数列{}n a 的前n 项和,4727a a =,则63S S =_________. 【答案】2827【解析】根据已知求出等比数列的公比,再由等比数列的前n 项和公式,即可求解. 【详解】设等比数列{}n a 的公比为q , 根据题意,有3127q =,解得13q =, 则()()6136331128112711a q S q q S a q q--==+=--. 故答案为:2827. 【点睛】本题考查等比数列的前n项和,考查计算求解能力,属于基础题.A B C D四位同学周五下午参加学校的课外活动,在课外15.高三某班一学习小组的,,,活动中,有一人在打篮球,有一人在画画,有一人在跳舞,另外一人在散步,①A不在散步,也不在打篮球;②B不在跳舞,也不在散步;③“C在散步”是“A在跳舞”的充分条件;④D不在打篮球,也不在散步;⑤C不在跳舞,也不在打篮球.以上命题都是真命题,那么D在_________.【答案】画画【解析】以上命题都是真命题,∴对应的情况是:则由表格知A在跳舞,B在打篮球,∵③“C在散步”是“A在跳舞”的充分条件,∴C在散步,则D在画画,故答案为画画16.设12F F ,为椭圆22:+13620x y C =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.【答案】(【解析】根据椭圆的定义分别求出12MF MF 、,设出M 的坐标,结合三角形面积可求出M 的坐标. 【详解】由已知可得2222236,20,16,4a b c a b c ==∴=-=∴=,11228MF F F c ∴===.∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△,又1201442MF F S y =⨯=∴=△0y , 22013620x ∴+=,解得03x =(03x =-舍去),M \的坐标为(.【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养.三、解答题17.在ABC V 中,a 、b 、c 分别为角A 、B 、C 所对的边,122cos b a c C=-.(1)求角B 的大小;(2)若2a =,b =,求ABC V 的面积.【答案】(1)3B π=; (2 【解析】(1)由正弦定理将已知等式边化角,再由两角和的正弦公式,即可求解; (2)利用余弦定理,建立c 边方程关系,再由三角形面积公式,即可求出结论. 【详解】 (1)由122cos b a c C=-,得sin 12sin sin 2cos B A C C =-,2sin cos 2sin()sin 2sin cos 2cos sin sin B C B C C B C B C C =+-=+-,∴2cos sin sin B C C =,又∵在ABC V 中,sin 0C ≠, ∴1cos 2B =,∵0B π<<,∴3B π=.(2)在ABC V 中,由余弦定理得2222cos b a c ac B =+-, 即2742c c =+-,∴2230c c --=,解得3c =或1c =-(舍), ∴ABC V 的面积133sin 2S ac B ==. 【点睛】本题考查正、余弦定理以及两角和差公式解三角形,考查计算求解能力,属于基础题. 18.某快递网点收取快递费用的标准是重量不超过1kg 的包裹收费10元,重量超过1kg 的包裹,除收费10元之外,超过1kg 的部分,每超出1kg (不足1kg ,按1kg 计算)需要再收费5元.该公司近60天每天揽件数量的频率分布直方图如下图所示(同一组数据用该区间的中点值作代表).(1)求这60天每天包裹数量的平均数和中位数;(2)该快递网点负责人从收取的每件快递的费用中抽取5元作为工作人员的工资和网点的利润,剩余的作为其他费用.已知该网点有工作人员3人,每人每天工资100元,以样本估计总体,试估计该网点每天的利润有多少元? 【答案】(1)平均数和中位数都为260件; (2)1000元.【解析】(1)根据频率分布直方图,求出每组的频率,即可求出平均数,确定中位数所在的组,然后根据中位数左右两边图形面积各占0.5,即可求出中位数;(2)由(1)每天包裹数量的平均数求出网点平均总收入,扣除工作人员工资即为所求. 【详解】(1)每天包裹数量的平均数为0.1500.11500.52500.23500.1450260⨯+⨯+⨯+⨯+⨯=;(0,200)Q 的频率为0.2,[200,300)的频率为0.5中位数为0.32001002600.5+⨯=, 所以该网点每天包裹的平均数和中位数都为260件. (2)由(1)可知平均每天的揽件数为260, 利润为260531001000⨯-⨯=元, 所以该网点平均每天的利润有1000元. 【点睛】本题考查频率分布直方图求中位数、平均数以及简单应用,属于基础题.19.在如图所示的几何体中,已知BAC 90∠=o ,PA ⊥平面ABC ,AB 3=,AC 4=,PA 2.=若M 是BC 的中点,且PQ //AC ,QM //平面PAB .()1求线段PQ 的长度;()2求三棱锥Q AMC -的体积V .【答案】(1)2;(2)2.【解析】()1取AB 的中点N ,连接MN ,PN ,推导出四边形PQMN 为平行四边形,由此能求出线段PQ 的长度.()2取AC 的中点H ,连接QH ,推导出四边形PQHA 为平行四边形,由此能求出三棱锥Q AMC -的体积. 【详解】解:()1取AB 的中点N ,连接MN ,PN ,MN //AC ∴,且1MN AC 22==,PQ //AC Q ,P ∴、Q 、M 、N 确定平面α, QM //Q 平面PAB ,且平面α⋂平面PAB PN =,又QM ⊂平面α,QM //PN ∴,∴四边形PQMN 为平行四边形,PQ MN 2∴==.解:()2取AC 的中点H ,连接QH ,PQ //AH Q ,且PQ=AH=2,∴四边形PQHA 为平行四边形, QH //PA ∴,PA ⊥Q 平面ABC ,QH ∴⊥平面ABC ,AMC 11S AC AB 322=⨯⨯=V Q (),QH PA 2==,∴三棱锥Q AMC -的体积:AMC 11V S QH 32233V =⋅=⨯⨯=.【点睛】本题考查线段长的求法,考查三棱锥的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题. 20.平面直角坐标系中,O 为坐标原点,已知抛物线C 的方程为22(0)y px p =>. (1)过抛物线C 的焦点F 且与x 轴垂直的直线交曲线C 于A 、B 两点,经过曲线C 上任意一点Q 作x 轴的垂线,垂足为H .求证: 2||||||QH AB OH =⋅;(2)过点(2,2)D 的直线与抛物线C 交于M 、N 两点且OM ON ⊥,OD MN ⊥.求抛物线C 的方程.【答案】(1)见解析;(2)24y x =【解析】(1)设()()00000,,,0,,,Q x y H x QH y OH x ==再根据点Q 在抛物线上可得到结果;(2)联立直线和抛物线得到2280y py p +-=,设()()1122,,,M x y N x y ,OM ON ⊥有12120x x y y +=,根据韦达定理得到结果.【详解】(1)设()()00000,,,0,,,Q x y H x QH y OH x ==2AB p =,从而2200||2QH y px AB OH ===.(2)由条件可知,:4MN y x =-+,联立直线MN 和抛物线C ,有242y x y px=-+⎧⎨=⎩,有2280y py p +-=,设()()1122,,,M x y N x y ,由OM ON ⊥有12120x x y y +=,有()()1212440y y y y --+=,由韦达定理可求得2p =,所以抛物线2:4C y x =. 【点睛】本题主要考查直线与圆锥曲线位置关系,所使用方法为韦达定理法:因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用.21.已知2()2()x f x mx e m R =-∈.(Ⅰ)若()'()g x f x =,讨论()g x 的单调性;(Ⅱ)当()f x 在(1,(1))f 处的切线与(22)3y e x =-+平行时,关于x 的不等式()0f x ax +<在(0,1)上恒成立,求a 的取值范围.【答案】(Ⅰ)()g x 在(ln ,)m +∞上单调递减,在(,ln )m -∞上单调递增. (Ⅱ)(,21]a e ∈-∞-.【解析】试题分析:(Ⅰ)求得函数的导数'()2()xg x m e =-,分0m ≤和0m >两种情况讨论,即可得到函数()g x 的单调性;(Ⅱ)由(Ⅰ)求得1m =,把不等式()0f x ax +<即220xx e ax -+<,得2x e a xx<-在(0,1)上恒成立,设2()xe F x x x=-,利用导数求得函数()F x 的单调性与最值,即可得到实数a 的取值范围. 试题解析:(Ⅰ)因为()()'22xg x f x mx e ==-,所以()()'2xg x m e=-,当0m ≤时,()'0g x <,所以()g x 在R 上单调递减,当0m >时,令()'0g x <,得ln x m >,令()'0g x >,得ln x m <, 所以()g x 在()ln ,m +∞上单调递减,在(),ln m -∞上单调递增. (Ⅱ)由(Ⅰ)得()'122f m e =-,由2222m e e -=-,得1m =,不等式()0f x ax +<即220xx e ax -+<,得2xe a x x<-在()0,1上恒成立.设()2x e F x x x =-,则()2222'x x xe e x F x x --=. 设()222xxh x xe e x =--,则()()'222221xxxxh x xe e e x x e =+--=-,在区间()0,1上,()'0h x >,则函数()h x 递增,所以()()11h x h <=-, 所以在区间()0,1上,()'0F x <,函数()F x 递减.当0x →时,()F x →+∞,而()121F e =-,所以()()21,F x e ∈-+∞, 因为()a F x <在()0,1上恒成立,所以(],21a e ∈-∞-.点睛:本题主要考查导数求解函数的单调区间,利用导数求解不等式的恒成立问题求得,考查了转化与化归思想、逻辑推理能力与计算能力.导数是研究函数的单调性、极值(最值)最有效的工具,对导数的应用的考查主要从以下几个角度进行: (1)利用导数求函数的单调区间,判断单调性;已知单调性,求参数; (2)利用导数求函数的最值(极值),解决函数的恒成立与有解问题; (3)利用导数研究函数的图象与性质,注意数形结合思想的应用.22.在平面直角坐标系xOy 中,已知曲线11C x y +=:与曲线222cos :2sin x C y ϕϕ=+⎧⎨=⎩,(ϕ为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)写出曲线1C ,2C 的极坐标方程;(2)在极坐标系中,已知():0l θαρ=>与1C ,2C 的公共点分别为A ,B ,0,2πα⎛⎫∈ ⎪⎝⎭,当4OB OA =时,求α的值. 【答案】(1)1C的极坐标方程为:14ρπθ=⎛⎫+ ⎪⎝⎭;2C 的极坐标方程为:4cos ρθ= (2)4πα=【解析】(1)根据直角坐标与极坐标的互化关系,参数方程与一般方程的互化关系,即得解;(2)将():0l θαρ=>代入1C ,2C 的极坐标方程,求得||,||OA OB 的表达式,代入4OB OA=,即得解.【详解】(1)解:将直角坐标与极坐标互化关系cos sin x y ρθρθ=⎧⎨=⎩代入曲线11C x y +=:得cos sin 1ρθρθ+=,即:14ρπθ=⎛⎫+ ⎪⎝⎭; 所以曲线1C的极坐标方程为:14ρπθ=⎛⎫+ ⎪⎝⎭; 又曲线222cos :2sin x C y ϕϕ=+⎧⎨=⎩(ϕ为参数).利用22sin cos 1ϕϕ+=消去参数ϕ得2240x y x +-=,将直角坐标与极坐标互化关系:cos sin x y ρθρθ=⎧⎨=⎩代入上式化简得4cos ρθ=,所以曲线2C 的极坐标方程为:4cos ρθ=.(2)∵():0l θαρ=>与曲线1C ,2C 的公共点分别为A ,B ,所以将()0θαρ=>代入14ρπθ=⎛⎫+ ⎪⎝⎭及4cos ρθ=得14OA πα=⎛⎫+ ⎪⎝⎭,4cos OB α=, 又4OBOA =,sin 14παα⎛⎫+= ⎪⎝⎭,∴0,2πα⎛⎫∈ ⎪⎝⎭,∴sin cos αα=,4πα=. 【点睛】本题考查了参数方程,极坐标方程的综合应用,考查了学生综合分析,转化与划归,数学运算的能力,属于中档题.23.已知函数()11f x x x =+--, ()22g x x a x b =++-,其中a , b 均为正实数,且2a b +=.(Ⅰ)求不等式()1f x ≥的解集; (Ⅱ)当x ∈R 时,求证()()f x g x ≤.【答案】(1)1,2⎡⎫+∞⎪⎢⎣⎭(2)见解析【解析】(Ⅰ)把()f x 用分段函数来表示,分类讨论,求得()1f x ≥的解集. (Ⅱ)当x ∈R 时,先求得()f x 的最大值为2,再求得()g x )的最小值,根据()g x 的最小值减去()f x 的最大值大于或等于零,可得()()f x g x ≤成立. 【详解】(Ⅰ)由题意, ()2,12,112,1x f x x x x -≤-⎧⎪=-⎨⎪≥⎩<<,(1)当1x ≤-时, ()21f x =-<,不等式()1f x ≥无解;(2)当11x -<<时,()21f x x =≥,解得12x ≥,所以112x ≤<.(3)当1x ≥时, ()21f x =≥恒成立,所以()1f x ≥的解集为1,2⎡⎫+∞⎪⎢⎣⎭. (Ⅱ)当x R ∈时, ()()11112f x x x x x =+--≤++-=;()()222222g x x a x b x a x b a b =++-≥+--=+.而()()()22222222222a b a b a b a b ab a b ++⎛⎫+=+-≥+-⨯== ⎪⎝⎭, 当且仅当1a b ==时,等号成立,即222a b +≥,因此,当x R ∈时,()()222f x a b g x ≤≤+≤,所以,当x R ∈时, ()()f x g x ≤.【点睛】本题主要考查带有绝对值的函数,绝对值三角不等式的应用,比较2个数大小的方法,属于中档题.。

2020年湖南省湘潭市高考数学三模试卷(理科)(附答案详解)

2020年湖南省湘潭市高考数学三模试卷(理科)一、单选题(本大题共12小题,共60.0分)1. 设集合A ={x|1−x ≥0},B ={x|x 2−x −2<0},则A ∩B =( )A. [1,2)B. (−1,1]C. (−1,1)D. (−2,1]2. 计算4−3i1−2i =( )A. 2+iB. −2−iC. −1−2iD. −1+2i3. 已知直线a//平面α,则“平面α⊥平面β”是“直线a ⊥平面β”的( )A. 充分但不必要条件B. 必要但不充分条件C. 充要条件D. 既不充分也不必要条件4. 已知数列{a n }的前n 项和S n 满足2S n =3a n −6,则a 6=( )A. 2×36B. 2×37C. 6×26D. 6×275. 如表是鞋子的长度与对应码数的关系.长度(cm) 25 25.5 26 26.5 27 27.5 码数 40 41 42 43 44 45如果人的身高y(cm)与脚板长x(cm)呈线性相关且回归直线方程为y ̂=7x −7.6.若某人的身高为180cm ,据此模型,估计其穿的鞋子的码数为( )A. 42B. 43C. 44D. 456. 已知实数x ,y 满足不等式{x −y +2≥02x +y −5≤0y ≥1,则z =yx+3的最大值为( )A. 35B. 45C. 34D. 327. 更相减损术出自《九章算术》,它原本是为约分而设计的,原文如下:可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也,以等数约之.如图所示的程序框图的算法思路就源于“更相减损术”.若执行该程序框图,则输出的a 的值为( )A. 14B. 12C. 7D. 68. 已知向量a ⃗ ,b ⃗ 是两个夹角为π3的单位向量,且OA ⃗⃗⃗⃗⃗ =3a ⃗ +5b ⃗ ,OB ⃗⃗⃗⃗⃗⃗ =4a ⃗ +7b ⃗ ,OC ⃗⃗⃗⃗⃗ =a ⃗ +m b ⃗ ,若A ,B ,C 三点共线,则OA ⃗⃗⃗⃗⃗⋅OC ⃗⃗⃗⃗⃗ =( ) A. 12 B. 14 C. 16 D. 189. 函数y =(|x|−1)ln|x|的图象大致为( )A.B.C.D.10. 已知函数f(x)=2sin(ωx)(ω>0)在x ∈[a,2](a <0)上最大值为1且递增,则2−a的最大值为( )A. 6B. 7C. 9D. 811. 在直角坐标系xOy 中,F 1,F 2分别是双曲线C :x 2a 2−y 2b2=1(a >0,b >0)的左、右焦点,位于第一象限上的点P(x 0,y 0)是双曲线C 上的一点,满足PF 1⃗⃗⃗⃗⃗⃗⃗ ⋅PF 2⃗⃗⃗⃗⃗⃗⃗ =0,若点P 的纵坐标的取值范围是y 0∈(23c,45c),则双曲线C 的离心率的取值范围为( )A. (√2,2)B. (2,4)C. (3,5)D. (√3,√5)12. 已知对任意实数x 都有f′(x)=3e x +f(x),f(0)=−1,若不等式f(x)<a(x −2)(其中a <1)的解集中恰有两个整数,则a 的取值范围是( )A. [43e ,12)B. [43e ,1)C. [74e 2,43e )D. [74e 2,12)二、单空题(本大题共4小题,共20.0分)13. 若直线2x +4y +m =0经过抛物线y =2x 2的焦点,则m =______. 14. (√x −1x )5的二项展开式中,含x 的一次项的系数为______(用数字作答). 15. 已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.令b n =1an a n+1,则数列{b n }的前50项和T 50=______.16.在三棱锥P−ABC中,PC=5,底面△ABC是以C为直角顶点的直角三角形,且BC=5,AC=12,点P到△ABC三边的距离相等,且点P在平面ABC上的射影落在△ABC 内,则CP与平面ABC所成角的正切值为______.三、解答题(本大题共7小题,共82.0分)17.如图,已知四棱锥P−ABCD,PA⊥平面ABCD,底面ABCD为矩形,AB=3,AP=4,E为PD的中点,AE⊥PC.(1)求线段AD的长.(2)若M为线段BC上一点,且BM=1,求二面角M−PD−A的余弦值.18.△ABC的内角A,B,C所对的边分别为a,b,c,已知cos2A+cos2B+2sinAsinB=1+cos2C.(1)求角C.(2)设D为边AB的中点,△ABC的面积为2,求CD2的最小值.19.高三年级某班50名学生期中考试数学成绩的频率分布直方图如图所示,成绩分组区间为:[80,90),[90,100),[100,110),[110,120),[120,130),[130,140),[140,150.其中a,b,c成等差数列且c=2a.物理成绩统计如表.(说明:数学满分150分,物理满分100分)分组[50,60)[60,70)[70,80)[80,90)[90,100]频数6920105(1)根据频率分布直方图,请估计数学成绩的平均分;(2)根据物理成绩统计表,请估计物理成绩的中位数;(3)若数学成绩不低于140分的为“优”,物理成绩不低于90分的为“优”,已知本班中至少有一个“优”同学总数为6人,从此6人中随机抽取3人,记X为抽到两个“优”的学生人数,求X的分布列和期望值.20.椭圆E:x2a2+y2b2=1(a>b>1)的左、右焦点分别为F1,F2,椭圆E上两动点P,Q使得四边形PF1QF2为平行四边形,且平行四边形PF1QF2的周长和最大面积分别为8和2√3.(1)求椭圆E的标准方程;(2)设直线PF2与椭圆E的另一交点为M,当点F1在以线段PM为直径的圆上时,求直线PF2的方程.21. 已知函数f(x)=2lnx +x 2−2ax(a >0).(1)讨论函数f(x)的单调区间;(2)若f(x)存在两个极值点x 1,x 2,证明:f(x 1)−f(x 2)x 1−x 2>−a .22. 已知在平面直角坐标系xOy 中,直线l 的参数方程为{x =2−ty =1+t(t 为参数),曲线C 1的方程为x 2+y 2−x =0,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求直线l 和曲线C 1的极坐标系方程;(2)曲线C 2:θ=α(ρ>0,0<α<π2)分别交直线l 和曲线C 1于M ,N ,求3|OM|+|ON|的最大值.23. 已知函数f(x)=|x +1|.(1)求不等式f(x)+x >|x −2|的解集;(2)设函数y =f(x)+f(x −3)的最小值为m ,已知a 2+b 2+c 2=m ,求ab +bc 的最大值.答案和解析1.【答案】B【解析】解:由题意A={x|1−x≥0}={x|x≤1},B={x|−1<x<2},则A∩B= (−1,1].故选:B.先化简集合,根据集合的包含关系求交集.本题考查集合的交集,以及不等式的化简,属于基础题.2.【答案】A【解析】解:原式=(4−3i)(1+2i)(1−2i)(1+2i)=10+5i5=2+i,故选:A.利用复数的运算性质即可得出.本题考查了复数的运算性质,考查了推理能力与计算能力,属于基础题.3.【答案】B【解析】【分析】本题考查了线面平行、面面垂直的性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.根据线面平行、面面垂直的性质逐项判断,即可得出结论.【解答】解:若直线a//平面α,平面α⊥平面β,此时直线a与平面β可能平行,所以充分性不成立;若直线a//平面α,直线a⊥平面β,则平面α⊥平面β,所以必要性成立,故选:B.4.【答案】A【解析】解:由已知2S n=3a n−6,可得2S n+1=3a n+1−6.两式相减得2a n+1=3a n+1−3a n,即a n+1=3a n.∵2S1=3a1−6∴a1=6,∴{a n}是首项为6,公比为3的等比数列,从而a6=6×35=2×36.故选:A.利用已知条件推出{a n}是首项为6,公比为3的等比数列,然后求解a6.本题考查数列的递推关系式的应用,数列项的求法,是基本知识的考查.5.【答案】C【解析】解:人的身高y与脚板长x的回归直线方程为ŷ=7x−7.6,×(180+7.6)=26.8;当y=180时,x=17且26.8接近于27,据此模型估计其穿的鞋子的码数为44.故选:C.根据回归直线方程求出y=180时x的值,再根据此模型估计其穿的鞋子码数.本题考查了线性回归模型的应用问题,也考查了阅读理解能力,是基础题.6.【答案】C【解析】解:如图,阴影部分为可行域,,表示可行域中点(x,y)与(−3,0)连线的斜率,目标函数z=yx+3由图可知点P(1,3)与(−3,0)连线的斜率最大,,故z的最大值为34故选:C.作出不等式组对应的平面区域,把所求问题转化为斜率即可得到结论.本题主要考查几何槪型的概率计算,利用线性规划的知识求出对应的区域以及转化为斜率是解决本题的关键.7.【答案】A【解析】解:i =1,a =196,b =126,a ,b 均为偶数; a =98,b =63,i =2,b 不为偶数; a ≠b ,a ≥b ,a =35,b =63,i =2; a ≠b ,a <b ,b =28,a =35,i =2; a ≠b ,a ≥b ,a =7,b =28,i =2; a ≠b ,a <b ,b =14,a =7,i =2; a ≠b ,a <b ,b =7,a =7,i =2; a =b ,a =14, 输出a =14, 故选:A .根据题意一步一步运算,直到跳出运算.本题考查程序框图,注意每一次循环时,写出所有值,属于基础题.8.【答案】A【解析】 【分析】本题考查平面向量基本定理和平面向量的混合运算,考查学生的运算能力,属于基础题. 由于A ,B ,C 三点共线,不妨设OC⃗⃗⃗⃗⃗ =x OA ⃗⃗⃗⃗⃗ +(1−x)OB ⃗⃗⃗⃗⃗⃗ ,再根据题意,建立关于x 和m 的方程组,解之得到m 的值,然后利用平面向量数量积的运算法则求解即可. 【解答】解:由A ,B ,C 三点共线,得OC ⃗⃗⃗⃗⃗ =x OA ⃗⃗⃗⃗⃗ +(1−x)OB ⃗⃗⃗⃗⃗⃗ =(4−x)a ⃗ +(7−2x)b ⃗ , 故{4−x =17−2x =m,解得m =1, ∴OA ⃗⃗⃗⃗⃗ ⋅OC ⃗⃗⃗⃗⃗ =(3a ⃗ +5b ⃗ )⋅(a ⃗ +b ⃗ )=3a ⃗ 2+8a ⃗ ⋅b ⃗ +5b ⃗ 2=12.故选:A .9.【答案】C【解析】解:根据题意,f(x)=(|x|−1)ln|x|,有f(−x)=(|x|−1)ln|x|=f(x),即函数y=(|x|−1)ln|x|为偶函数,排除A选项;当0<x<1时,ln|x|<0,|x|−1<0,所以y=(|x|−1)ln|x|>0,排除B选项;当x>1时,y=(x−1)lnx,y′=lnx+x−1x>0,所以函数y=(|x|−1)ln|x|在(1,+∞)上单调递增,排除D选项.故选:C.根据题意,先分析函数的奇偶性,进而分析(0,1)和(1,+∞)的函数符号,据此排除法分析可得答案.本题考查函数的图象变换,注意分析函数的奇偶性、特殊值,属于基础题.10.【答案】D【解析】【分析】本题考查三角函数的图象与性质的应用问题,也考查了运算求解能力,是基础题.利用正弦函数的单调性求得a的最小值,从而求得2−a的最大值.【解答】解:函数f(x)=2sin(ωx)(ω>0)在x∈[a,2](a<0)上最大值为1且递增,所以,即[a,2]⊆[−π2ω,π2ω],且f(2)=2sin(2ω)=1,即2ω=π6,解得ω=π12;令π12a≥−π2,解得a≥−6,所以a的最小值是a min=−6;所以2−a的最大值是2−(−6)=8.故选:D.11.【答案】D【解析】【分析】本题考查双曲线的简单性质的应用,考查转化思想以及计算能力,是中档题.利用已知条件推出23<b 2c 2<45,转化求解双曲线的离心率的范围即可.【解答】解:由PF 1⃗⃗⃗⃗⃗⃗⃗ ⋅PF 2⃗⃗⃗⃗⃗⃗⃗ =0,可得x 02−c 2+y 02=0,又x 02a 2−y 02b 2=1,解得y 02=b 4c 2, 由于y 0∈(23c,45c),所以23<b 2c 2<45,23<1−1e 2<45,15<1e 2<13, √3<e <√5. 故选:D .12.【答案】C【解析】解:∵对任意实数x 都有f′(x)=3e x +f(x),f(0)=−1,∴f′(x)−f(x)=3e x ,即f′(x)−f(x)e x=3,令g(x)=f(x)e x,则g′(x)=3,设g(x)=3x +b , ∴g(0)=f(0)=b , ∴b =−1,g(x)=3x −1, ∴f(x)=e x (3x −1), ∴f′(x)=(3x +2)e x ,∴当x >−23时,f′(x)>0,f(x)单调递增,当x <−23时,f′(x)<0,f(x)单调递减, ∵f(−23)=−3e −23<0,f(−1)=−4e −1,f(0)=−1,f(1)=2e , 令ℎ(x)=a(x −2),(a <1),ℎ(−1)=−3a ,ℎ(0)=−2a ,ℎ(−2)=−3a ,∴不等式f(x)<a(x −1),(其中a <1)的解集中恰有两个整数,是0,−1, 所以,{ℎ(0)>f(0)ℎ(−1)>f(−1)ℎ(1)≤f(1)ℎ(−2)≤f(−2),解可得,74e2≤a<43e.故选:C.令g(x)=f(x)e x,设再g(x)=3x+b,由g(0)可求b,进而可求g(x),f(x),分析f(x)图象特点,得不等式f(x)<a(x−2)的解集中恰有两个整数,进而得出结论.本题考查了利用导数研究函数的单调性极值与最值、不等式的解法、数形结合方法、等价转化方法,考查了推理能力与计算能力,属于难题.13.【答案】−12【解析】【分析】本题考查抛物线的简单性质的应用,直线与抛物线相结合,属于基础题.求出抛物线的焦点坐标,代入直线方程,求解即可.【解答】解:y=2x2可化为x2=12y,焦点坐标为(0,18),代入直线方程可得m=−12.故答案为:−12.14.【答案】−5【解析】解:(√x−1x)5的二项展开式中,通项公式为:T r+1=C5r⋅(√x)5−r⋅(−1x)r=(−1)r⋅C5r⋅x5−3r2,令5−3r2=1,得r=1;∴二项式(√x−1x)5的展开式中含x的一次项系数为:−1⋅C51=−5.故答案为:−5.写出二项展开式的通项,由x的指数等于1求得r值,则答案可求.本题考查了二项式系数的性质与应用问题,关键是对二项展开式通项的记忆与应用,是基础题.15.【答案】50101【解析】解:因为S1=a1,S2=2a1+2×12×2=2a1+2,S4=4a1+4×32×2=4a1+12,由题意得(2a1+2)2=a1(4a1+12),解得a1=1,所以a n=2n−1,则b n=1(2n−1)(2n+1)=12(12n−1−12n+1),则T50=12(1−13+13−15+15−17+⋯+199−1101)=50101.故答案为:50101.由S1,S2,S4成等比数列.可得:由题意得(2a1+2)2=a1(4a1+12),解得a1,可得a n,利用裂项求和方法即可得出.本题考查了等差数列与等比数列通项公式与求和公式、裂项求和方法,考查了推理能力与计算能力,属于中档题.16.【答案】√344【解析】解:如图,设点P在平面ABC上的射影为点O,因为点P到△ABC三边的距离相等,则点O到△ABC三边的距离相等,又点P在平面ABC上的射影落在△ABC内,所以点O为△ABC的内心.设△ABC的内切圆与直角边BC,AC分别相切于E,D,易知四边形OECD是正方形.因为AC⊥BC,且BC=5,AC=12,所以AB=13,则△ABC的内切圆半径OE=OD=5+12−132=2,所以OC=2√2.因为PO⊥平面ABC,所以∠PCO为CP与平面ABC所成的角.因为PC=5,所以PO=√52−(2√2)2=√17,所以CP与平面ABC所成角的正切值为POOC =√172√2=√344.故答案为:√344.设点P在平面ABC上的射影为点O,点P在平面ABC上的射影落在△ABC内,点O为△ABC 的内心.设△ABC的内切圆与直角边BC,AC分别相切于E,D,易知四边形OECD是正方形.说明∠PCO为CP与平面ABC所成的角.通过求解三角形求解即可.本题考查直线与平面所成角的求法,考查空间想象能力以及转化思想计算能力,是中档题.17.【答案】解:(1)分别以AB ,AP ,AD 所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系A −xyz . 设AD =t ,则A(0,0,0),E(0,2,t2),C(3,0,t),P(0,4,0), 所以AE ⃗⃗⃗⃗⃗ =(0,2,t 2),PC ⃗⃗⃗⃗⃗ =(3,−4,t). 因为AE ⊥PC ,所以AE ⃗⃗⃗⃗⃗ ⋅PC ⃗⃗⃗⃗⃗ =0, 即16−t 2=0,解得t =4, 所以AD 的长为4.(2)因为BM =1,所以M(3,0,1),又P(0,4,0),D(0,0,4), 故DP ⃗⃗⃗⃗⃗ =(0,4,−4),DM ⃗⃗⃗⃗⃗⃗⃗ =(3,0,−3). 设n⃗ =(x,y,z)为平面DMP 的法向量,则{n ⃗ ⋅DP⃗⃗⃗⃗⃗ =4y −4z =0n⃗ ⋅DM ⃗⃗⃗⃗⃗⃗⃗ =3x −3y =0,取z =1,解得y =1,x =1,所以n⃗ =(1,1,1)为平面DMP 的一个法向量, 显然,AB ⃗⃗⃗⃗⃗ =(3,0,0)为平面PDA 的一个法向量, 则cos〈n ⃗ ,AB ⃗⃗⃗⃗⃗ 〉=n⃗⃗ ⋅AB ⃗⃗⃗⃗⃗⃗ |n ⃗⃗ ||AB⃗⃗⃗⃗⃗⃗ |=33√1+1+1=√33, 据图可知,二面角M −PD −A 的余弦值为√33.【解析】(1)建立空间直角坐标系,设AD =t ,求出AE ⃗⃗⃗⃗⃗ ,PC ⃗⃗⃗⃗⃗ ,由AE ⃗⃗⃗⃗⃗ ⋅PC ⃗⃗⃗⃗⃗ =0,解出t 即可; (2)求出平面MPD 及平面PAD 的法向量,利用向量的夹角公式计算得出.本题考查利用空间向量研究立体几何中的距离,空间角问题,考查数形结合思想及计算能力,属于基础题.18.【答案】解:(1)△ABC 中,由cos2A +cos2B +2sinAsinB =1+cos2C ,得1−2sin 2A +1−2sin 2B +2sinAsinB =1+1−2sin 2C , 化简得ab =a 2+b 2−c 2, 所以cosC =a 2+b 2−c 22ab=12,又C ∈(0,π),所以C =π3;(2)由S △ABC =12absinC ,即2=12ab ⋅√32,所以ab =8√33;由CD ⃗⃗⃗⃗⃗ =12(CA ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ ),所以CD ⃗⃗⃗⃗⃗ 2=14(CA ⃗⃗⃗⃗⃗ 2+CB ⃗⃗⃗⃗⃗ 2+2CA ⃗⃗⃗⃗⃗ ⋅CB⃗⃗⃗⃗⃗ ),则CD ⃗⃗⃗⃗⃗ 2=14(b 2+a 2+2abcosC)=14(b 2+a 2+ab)≥14(2ab +ab)=2√3,当且仅当a =b 时取等号; 所以CD 2的最小值为2√3.【解析】(1)利用三角恒等变换和正弦、余弦定理,即可求出C 的值;(2)根据三角形的面积公式和平面向量的数量积,利用基本不等式,即可求得CD 2的最小值.本题考查了平面向量的数量积和解三角形的应用问题,是中档题.19.【答案】解:(1)由于a +b +2c =0.052,a +c =2b ,c =2a ,解得a =0.008,b =0.012,c =0.016, 故数学成绩的平均分:x −=85×0.04+95×0.12+105×0.16+115×0.2+125×0.24+135×0.16+145×0.08=117.8,(2)由表知,物理成绩的中位数为7(5分).(6分)(3)数学成绩为“优”的同学有4人,物理成绩为“优”有5人, 因为至少有一个“优”的同学总数为6名同学, 故两科均为“优”的人数为3人, 故X 的取值为0、1、2、3.(8分) P(X =0)=C 33C 63=120,P(x =1)=C 31C 32C 63=920,P(X =2)=C 32C 31C 63=920,P(X =3)=C 33C 63=120.E(X)=0×120+1×920+2×920+3×120=32.【解析】(1)根据题意,列方程,即可求得a ,b 和c 值,根据频率分布值直方图,即可求得平均值;(2)根据频率分布直方图即可求得中位数;(3)由题意,求得X 的取值,分别求得其分布列,求得其数学期望.本题考查频率分布直方图的应用,考查分布列及数学期望的方法,考查转化思想,属于中档题.20.【答案】解:(1)由平行四边形PF 1QF 2的周长为8,可知4a =8,即a =2.由平行四边形的最大面积为2√3,可知bc =√3, 又a >b >1,解得b =√3,c =1. 所以椭圆方程为x 24+y 23=1.(2)注意到直线PF 2的斜率不为0,且过定点F 2(1,0). 设l PF 2:x =my +1,P(x 1,y 1),M(x 2,y 2),由{x =my +1x 24+y 23=1消x 得(3m 2+4)y 2+6my −9=0,所以y 1+y 2=−6m 3m 2+4,y 1y 2=−93m 2+4, 因为F 1P ⃗⃗⃗⃗⃗⃗⃗ =(my 1+2,y 1),F 1M ⃗⃗⃗⃗⃗⃗⃗⃗ =(my 2+2,y 2),所以F 1P ⃗⃗⃗⃗⃗⃗⃗ ⋅F 1M ⃗⃗⃗⃗⃗⃗⃗⃗ =(my 1+2)(my 2+2)+y 1y 2=(m 2+1)y 1y 2+2m(y 1+y 2)+4=−9(m 2+1)3m 2+4−12m 23m 2+4+4=7−9m 23m 2+4.因为点F 1在以线段PM 为直径的圆上,所以F 1P ⃗⃗⃗⃗⃗⃗⃗ ⋅F 1M ⃗⃗⃗⃗⃗⃗⃗⃗ =0,即m =±√73,所以直线PF 2的方程3x +√7y −3=0或3x −√7y −3=0.【解析】(1)由平行四边形PF 1QF 2的周长为8,求出a =2.由平行四边形的最大面积为2√3,可知bc =√3,然后求解椭圆的方程即可.(2)注意到直线PF 2的斜率不为0,且过定点F 2(1,0),设l PF 2:x =my +1,P(x 1,y 1),M(x 2,y 2),联立直线与椭圆方程,结合韦达定理以及向量的数量积推出F 1P⃗⃗⃗⃗⃗⃗⃗ ⋅F 1M ⃗⃗⃗⃗⃗⃗⃗⃗ =0,即m =±√73,即可得到直线方程.本题考查直线与椭圆的位置关系的综合应用,椭圆方程的求法,考查转化思想以及计算能力,是中档题.21.【答案】(1)解:∵f(x)=2lnx +x 2−2ax(a >0),∴f′(x)=2x +2x −2a =2(x 2−ax+1)x,令x 2−ax +1=0,△=a 2−4,①若a 2−4>0,1°当a >2时,x 2−ax +1=0的两个根x 1<x 2,且x 1+x 2=a ,x 1x 2=1,故均为正, 所以,f(x)在(0,x 1),(x 2,+∞)单调递增,在(x 1,x 2)单调递减;2°当a <−2时,x 1+x 2=a <0,x 1x 2=1,故x 2−ax +1=0的两个根均为负,即当x >0时,x 2−ax +1>0恒成立, 所以,f(x)在(0,+∞)单调递增;②若a 2−4≤0,即−2≤a ≤2时,f′(x)≥0恒成立,故f(x)在(0,+∞)单调递增; 综上所述,a ≤2时,f(x)在(0,+∞)单调递增;当a >2时,f(x)在(0,x 1),(x 2,+∞)单调递增,在(x 1,x 2)单调递减; (2)证明:由(1)知a >2,0<x 1<1<x 2,x 1+x 2=a ,x 1x 2=1,则f(x 1)−f(x 2)=2lnx 1+x 12−2ax 1−2lnx 2−x 22+2ax 2=2(lnx 1−lnx 2)+(x 1+x 2)(x 1−x 2)−2a(x 1−x 2), 则f(x 1)−f(x 2)x 1−x 2=2(lnx 1−lnx 2)x 1−x 2+(x 1+x 2)−2a =2(lnx 1−lnx 2)x 1−x 2+a −2a =2(lnx 1−lnx 2)x 1−x 2−a ,则问题转为证明lnx 1−lnx 2x 1−x 2>0即可,由0<x 1<1<x 2,知,上式成立, 故原结论成立.【解析】(1)由于f′(x)=2x+2x −2a =2(x 2−ax+1)x,令x 2−ax +1=0,△=a 2−4,分若a 2−4>0与a 2−4≤0两类讨论,即可求得f(x)在(0,+∞)单调区间; (2)依题意,可求得f(x 1)−f(x 2)x 1−x 2=2(lnx 1−lnx 2)x 1−x 2−a ,则问题转为证明lnx 1−lnx 2x 1−x 2>0即可,由0<x 1<1<x 2,易证结论成立.本题考查利用导数研究函数的单调性与求函数的极值,考查等价转化思想与函数与方程思想,考查逻辑思维与综合运算能力,是难题.22.【答案】解:(1)由题可知直线l 的普通方程为x +y −3=0,直线l 的极坐标方程为ρcosθ+ρsinθ−3=0. 曲线C 1的普通方程为x 2+y 2=x , 因为x =ρcosθ,y =ρsinθ, 所以C 1的极坐标方程为ρ=cosθ.(2)直线l 的极坐标方程为ρcosθ+ρsinθ−3=0,令θ=α,则ρ=3cosα+sinα=|OM|,所以3|OM|=cosα+sinα. 又|ON|=cosα,所以3|OM|+|ON|=sinα+2cosα=√5sin(α+φ)(tanφ=2), 因为0<α<π2,则3|OM|+|ON|的最大值为√5.【解析】(1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换. (2)利用一元二次方程根和系数的关系式的应用和三角函数关系式的恒等变换及正弦型函数的性质的应用求出结果.本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,一元二次方程根和系数关系式的应用,三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题型.23.【答案】解:(1)由已知不等式f(x)+x >|x −2|,得|x −2|<x +|x +1|,当x ≥2时,不等式为x −2<x +x +1,解得x >−3,所以x ≥2; 当−1<x <2时,不等式为2−x <x +x +1,解得x >13,所以13<x <2; 当x ≤−1时,不等式为2−x <x −x −1,解得x >3,此时无解. 综上,原不等式的解集为(13,+∞).(2)因为f(x)+f(x −3)=|x +1|+|x −2|≥|x +1−x +2|=3, 所以a 2+b 2+c 2=3, 又a 2+b 2+c 2=a 2+b 22+b 22+c 2≥√2ab +√2bc ,当且仅当a =c =√2时取等号,则ab +bc ≤3√22,所以ab +bc 的最大值为3√22.【解析】本题考查绝对值不等式的解法以及基本不等式的运用,考查分类讨论思想及配凑思想,考查推理能力及计算能力,属于基础题.(1)不等式即为|x −2|<x +|x +1|,再分类讨论解不等式,最后求并集即可; (2)a 2+b 2+c 2=3,再利用a 2+b 2+c 2=a 2+b 22+b 22+c 2≥√2ab +√2bc 即可得解.。

2019-2020学年江西省九江市高考数学三模试卷(理科)(有答案)

江西省九江市高考数学三模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={x|x<1},N={x|2x>1},则M∩N=()A.∅B.{x|x<0} C.{x|x<1} D.{x|0<x<1}2.复数﹣在复平面内所对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.在Rt△ABC中,∠A=90°,AB=2,AC=4,E,F分别为AB,BC的中点,则=()A.9 B.﹣9 C.7 D.﹣74.已知直线l经过圆C:x2+y2﹣2x﹣4y=0的圆心,且坐标原点到直线l的距离为,则直线l的方程为()A.x+2y+5=0 B.2x+y﹣5=0 C.x+2y﹣5=0 D.x﹣2y+3=05.设Sn 是等差数列{an}的前n项和,若S672=2,S1344=12,则S2016=()A.22 B.26 C.30 D.346.设x1=18,x2=19,x3=20,x4=21,x5=22,将这五个数据依次输入如图所示的程序框进行计算,则输出的S值及其统计意义分别是()A.S=2,即5个数据的方差为2B.S=2,即5个数据的标准差为2C.S=10,即5个数据的方差为10D.S=10,即5个数据的标准差为107.如图所示,有一条长度为1的线段MN,其端点M,N在边长为3的正方形ABCD的四边上滑动,当点N绕着正方形的四边滑动一周时,MN的中点P所形成轨迹的长度为()A.B.8+π C.D.12+π)满足f(n)=,则f(1)=()8.已知函数f(n)(n∈N+A.97 B.98 C.99 D.1009.高中数学联赛期间,某宾馆随机安排A、B、C、D、E五名男生入住3个标间(每个标间至多住2人),则A、B入住同一标间的概率为()A.B.C.D.10.如图所示,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则此多面体的体积等于()A.B.16 C.D.3211.若函数f(x)=cosx+axsinx,x∈(﹣,)存在零点,则实数a的取值范围是()A.(0,+∞)B.(1,+∞)C.(﹣∞,﹣1) D.(﹣∞,0)12.如图所示,已知椭圆C: =1(a>b>0),⊙O:x2+y2=b2,点A、F分别是椭圆C的左顶点和左焦点,点P是⊙O上的动点,且为定值,则椭圆C的离心率为()A.B.C.D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若二项展开式的第三项系数为80,则实数a=_______.14.若函数f(x)的定义域为[﹣2,2],则函数y=f(2x)•ln(2x+1)的定义域为_______.15.已知数列{a n }各项均不为0,其前n 项和为S n ,且a 1=1,2S n =a n a n+1,则S n =_______.16.如图所示,半径为1的球内切于正三棱锥P ﹣ABC 中,则此正三棱锥体积的最小值为_______.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.在△ABC 中,三边a ,b ,c 所对应的角分别是A ,B ,C ,已知a ,b ,c 成等比数列. (1)若+=,求角B 的值;(2)若△ABC 外接圆的面积为4π,求△ABC 面积的取值范围.18.某工厂为了对新研发的产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组检测数据(x 1,y 1)(i=1,2,…6)如表所示: 试销价格x (元) 4 5 6 7 a 9 产品销量y (件) b8483 807568已知变量x ,y 具有线性负相关关系,且x i =39,y i =480,现有甲、乙、丙三位同学通过计算求得其归直线方程分别为:甲y=4x+54;乙y=﹣4x+106;丙y=﹣4.2x+105,其中有且仅有一位同学的计算结果是正确的.(1)试判断谁的计算结果正确?并求出a ,b 的值;(2)若由线性回归方程得到的估计数据与检测数据的误差不超过1,则该检测数据是“理想数据“,现从检测数据中随机抽取3个,求“理想数据“的个数ξ的分布列和数学期望.19.如图所示,四棱锥P ﹣ABCD 中,底面ABCD 为菱形,∠ABC=60°,PA=PC ,PB=PD=AB . (1)求证:平面PAC ⊥平面ABCD ;(2)求直线PB 与平面PCD 所成角的正弦值.20.如图所示,已知抛物线C :y 2=2px (p >0)的焦点为F ,过点F 垂直于x 轴的直线与抛物线C 相交于A ,B 两点,抛物线C 在A ,B 两点处的切线及直线AB 所围成的三角形面积为4. (1)求抛物线C 的方程;(2)设M ,N 是抛物线C 上异于原点O 的两个动点,且满足k OM •k ON =k OA •k OB ,求△OMN 面积的取值范围.21.已知函数f (x )=x 2+ax ﹣lnx ,g (x )=e x (a ∈R ).(1)是否存在a 及过原点的直线l ,使得直线l 与曲线y=f (x ),y=g (x )均相切?若存在,求a 的值及直线l 的方程;若不存在,请说明理由; (2)若函数F (x )=在区间(0,1]上是单调函数,求a 的取值范围.四.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1:几何证明选讲]22.如图所示,直线AB 为圆O 的切线,切点为B ,点C 在圆O 上,∠ABC 的平分线BE 交圆O 于点E ,DB 垂直BE 交圆O 于点D . (1)证明:DB=DC ; (2)设圆O 的半径为1,BC=,延长CE 交AB 于点F ,求线段BF 的长.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy 中,直线l 的参数方程为(t 为参数,α∈(0,)),以原点O为极点,x 轴非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=4cosθ. (1)若直线l 与曲线C 有且仅有一个公共点M ,求点M 的直角坐标;(2)若直线l与曲线C相交于A,B两点,线段AB的中点横坐标为,求直线l的普通方程.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣1|﹣|x+1|.(1)求不等式|f(x)|<1的解集;(2)若不等式|a|f(x)≥|f(a)|对任意a∈R恒成立,求实数x的取值范围.江西省九江市高考数学三模试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={x|x<1},N={x|2x>1},则M∩N=()A.∅B.{x|x<0} C.{x|x<1} D.{x|0<x<1}【考点】交集及其运算.【分析】利用指数函数的单调性求出集合N中的解集;利用交集的定义求出M∩N.【解答】解:N={x|2x>1}={x|x>0}∵M={x|x<1},∴M∩N={X|0<X<1}故选D2.复数﹣在复平面内所对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】复数代数形式的乘除运算.【分析】化简复数为:a+bi的形式,求出对应点的坐标即可.【解答】解:.对应点的坐标()在第三象限.故选:C.3.在Rt△ABC中,∠A=90°,AB=2,AC=4,E,F分别为AB,BC的中点,则=()A.9 B.﹣9 C.7 D.﹣7【考点】平面向量数量积的运算.【分析】结合向量的加法与减法法则把表示出来,并根据向量的数量积运算法则计算即可.【解答】解:,故选:D.4.已知直线l经过圆C:x2+y2﹣2x﹣4y=0的圆心,且坐标原点到直线l的距离为,则直线l的方程为()A.x+2y+5=0 B.2x+y﹣5=0 C.x+2y﹣5=0 D.x﹣2y+3=0【考点】直线与圆的位置关系.【分析】求出圆C 的圆心C (1,2),设直线l 的方程为y=k (x ﹣1)+2,由坐标原点到直线l 的距离为,求出直线的斜率,由此能求出直线l 的方程.【解答】解:圆C :x 2+y 2﹣2x ﹣4y=0的圆心C (1,2),∵直线l 经过圆C :x 2+y 2﹣2x ﹣4y=0的圆心,且坐标原点到直线l 的距离为,∴当直线l 的斜率不存在时,直线l 的方程为x=1,此时坐标原点到直线l 的距离为1,不成立; 当直线l 的斜率存在时,直线l 的方程为y=k (x ﹣1)+2, 且=,解得k=﹣,∴直线l 的方程为y=﹣(x ﹣1)+2,即x+2y ﹣5=0. 故选:C .5.设S n 是等差数列{a n }的前n 项和,若S 672=2,S 1344=12,则S 2016=( ) A .22 B .26 C .30 D .34 【考点】等差数列的前n 项和.【分析】由等差数列的性质得S 672,S 1344﹣S 672,S 2016﹣S 1344成等差数列,由此能求出S 2016. 【解答】解:∵S n 是等差数列{a n }的前n 项和,S 672=2,S 1344=12, 由等差数列的性质得S 672,S 1344﹣S 672,S 2016﹣S 1344成等差数列, 得到:2×10=2+S 2016﹣12, 解得S 2016=30. 故选:C .6.设x 1=18,x 2=19,x 3=20,x 4=21,x 5=22,将这五个数据依次输入如图所示的程序框进行计算,则输出的S 值及其统计意义分别是( )A .S=2,即5个数据的方差为2B .S=2,即5个数据的标准差为2C .S=10,即5个数据的方差为10D .S=10,即5个数据的标准差为10【考点】程序框图.【分析】算法的功能是求S=++…+的值,根据条件确定跳出循环的i 值,计算输出S的值.【解答】解:由程序框图知:算法的功能是求S=++…+的值,∵跳出循环的i值为5,∴输出S=×[(18﹣20)2+(19﹣20)2+(20﹣20)2+(21﹣20)2+(22﹣20)2]=×(4+1+0+1+4)=2.故选:A.7.如图所示,有一条长度为1的线段MN,其端点M,N在边长为3的正方形ABCD的四边上滑动,当点N绕着正方形的四边滑动一周时,MN的中点P所形成轨迹的长度为()A.B.8+π C.D.12+π【考点】轨迹方程.【分析】根据题意判断出轨迹是四个角处的四个直角扇形与正方形的四条边上的四条线段组成,然后根据圆的周长公式进行计算即可求解.【解答】解:由题意,轨迹为四条线段加四个四分之一的圆.如图,四个角上的图形合起来刚好是一个半径为0.5的圆,周长为:2π×0.5=π,再加上四个边上滑动为四个等长的线段,长度均为2,合起来就是:2×4+π=8+π.故选:B.8.已知函数f(n)(n∈N)满足f(n)=,则f(1)=()+A.97 B.98 C.99 D.100【考点】函数的值.【分析】由已知条件,利用分段函数的性质推导出f(96)=f[f=97,由此能求出f(1)的值.【解答】解:∵函数f(n)(n∈N)满足f(n)=,+∴f=f[f=98,f(98)=f[f=97,f(97)=f[f=98,f(96)=f[f=97,依此类推,得f(99)=f(97)=…=f(1)=98.故选:B.9.高中数学联赛期间,某宾馆随机安排A、B、C、D、E五名男生入住3个标间(每个标间至多住2人),则A、B入住同一标间的概率为()A.B.C.D.【考点】古典概型及其概率计算公式.【分析】先求出基本事件总数,再求出A、B入住同一标间包含的基本事件个数,由此能求出A、B入住同一标间的概率.【解答】解:某宾馆随机安排A、B、C、D、E五名男生入住3个标间,共有种情形,A、B入住同一标间有种情形,∴A、B入住同一标间的概率为.故选:B.10.如图所示,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则此多面体的体积等于()A.B.16 C.D.32【考点】由三视图求面积、体积.【分析】如图所示,该多面体的直观图为直三棱柱ABC ﹣A 1B 1C 1截去一个三棱锥A ﹣A 1B 1C 1,即四棱锥A ﹣BB 1C 1C ,即可得出.【解答】解:如图所示,该多面体的直观图为直三棱柱ABC ﹣A 1B 1C 1截去一个三棱锥A ﹣A 1B 1C 1, 即四棱锥A ﹣BB 1C 1C , ∴.故选:C .11.若函数f (x )=cosx+axsinx ,x ∈(﹣,)存在零点,则实数a 的取值范围是( )A .(0,+∞)B .(1,+∞)C .(﹣∞,﹣1)D .(﹣∞,0)【考点】函数零点的判定定理. 【分析】确定函数是偶函数,a <0,f (x )在上只有一个零点,即可得出结论.【解答】解:∵f (﹣x )=cos (﹣x )﹣axsin (﹣x )=cosx+axsinx=f (x ), ∴函数是偶函数,当a ≥0时,恒成立,函数无零点,当a <0时,,∴函数f (x )在上单调递减,∵,∴f (x )在上只有一个零点,由f (x )是偶函数可知,函数恰有两个零点.故选:D .12.如图所示,已知椭圆C :=1(a >b >0),⊙O :x 2+y 2=b 2,点A 、F 分别是椭圆C 的左顶点和左焦点,点P 是⊙O 上的动点,且为定值,则椭圆C 的离心率为( )A .B .C .D .【考点】椭圆的简单性质. 【分析】设P (x 1,y 1),由是常数,得,然后利用,转化为关于x 1 的方程,由系数相等可得a ,c 的关系式,从而求得椭圆C 的离心率. 【解答】解:设F (﹣c ,0),c 2=a 2﹣b 2, 设P (x 1,y 1),要使得是常数,则有,λ是常数,∵,∴,比较两边系数得b 2a 2=λ(b 2+c 2),a=λc, 故c (b 2+a 2)=a (b 2+c 2),即2ca 2﹣c 3=a 3, 即e 3﹣2e+1=0,即(e ﹣1)(e 2+e ﹣1)=0, 又0<e <1, ∴.故选:D .二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.若二项展开式的第三项系数为80,则实数a=2.【考点】二项式定理的应用.【分析】由条件利用二项展开式的通项公式,求得实数a 的值. 【解答】解:由题意可得二项展开式的第三项系数为,∴10a 3=80,解得a=2, 故答案为:2.14.若函数f (x )的定义域为[﹣2,2],则函数y=f (2x )•ln(2x+1)的定义域为.【考点】函数的定义域及其求法.【分析】由函数f (x )的定义域为[﹣2,2],可得f (2x )的定义域为满足﹣2≤2x ≤2的x 的取值集合,再与2x+1>0的解集取交集即可得到函数y=f (2x )•ln(2x+1)的定义域. 【解答】解:要使原函数有意义,则,解得.∴函数y=f (2x )•ln(2x+1)的定义域为.故答案为:.15.已知数列{a n }各项均不为0,其前n 项和为S n ,且a 1=1,2S n =a n a n+1,则S n =.【考点】数列递推式.【分析】利用递推关系、等差数列的通项公式及其前n 项和公式即可得出. 【解答】解:当n=1时,2S 1=a 1a 2,即2a 1=a 1a 2,∴a 2=2.当n ≥2时,2S n =a n a n+1,2S n ﹣1=a n ﹣1a n ,两式相减得2a n =a n (a n+1﹣a n ﹣1), ∵a n ≠0,∴a n+1﹣a n ﹣1=2,∴{a 2k ﹣1},{a 2k }都是公差为2的等差数列,又a 1=1,a 2=2, ∴{a n }是公差为1的等差数列, ∴a n =1+(n ﹣1)×1=n , ∴S n =.故答案为:.16.如图所示,半径为1的球内切于正三棱锥P ﹣ABC 中,则此正三棱锥体积的最小值为8.【考点】棱柱、棱锥、棱台的体积.【分析】设棱锥底面边长为a,高为h,作过棱锥的高和斜高的截面,根据三角形相似得出a,h的关系,代入棱锥的体积公式,利用导数求出体积的最小值.【解答】解:设正三棱锥P﹣ABC的底面边长AB=a,高为PO=h.设内切球球心为M,与平面PAC的切点为N,D为AC的中点,则MN⊥PD.DO==.MN=1,PM=h﹣1,∴PN===.∵Rt△PMN∽Rt△PDO,∴,即,∴a=.∴,,令V'=0得h=4,故当h=4时,.故答案为8.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在△ABC中,三边a,b,c所对应的角分别是A,B,C,已知a,b,c成等比数列.(1)若+=,求角B的值;(2)若△ABC外接圆的面积为4π,求△ABC面积的取值范围.【考点】正弦定理;余弦定理.【分析】(1)由切化弦、两角和的正弦公式化简式子,由等比中项的性质、正弦定理列出方程,即可求出sinB,由内角的范围和特殊角的三角函数值求出B;(2)由余弦定理和不等式求出cosB的范围,由余弦函数的性质求出B的范围,由正弦定理和三角形的面积公式表示出△ABC面积,利用B的范围和正弦函数的性质求出△ABC面积的范围.【解答】解:(1)由题意得,,∵a,b,c成等比数列,∴b2=ac,○由正弦定理有sin2B=sinAsinC,∵A+C=π﹣B,∴sin(A+C)=sinB,得,即,由b2=ac知,b不是最大边,∴.(2)∵△ABC外接圆的面积为4π,∴△ABC的外接圆的半径R=2,由余弦定理b2=a2+c2﹣2accosB,得,又b2=ac,∴,当且仅当a=c时取等号,∵B为△ABC的内角,∴,由正弦定理,得b=4sinB,∴△ABC的面积,∵,∴,∴.18.某工厂为了对新研发的产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组检测数据(x1,y1)(i=1,2,…6)如表所示:试销价格x(元) 4 5 6 7 a 9 产品销量y(件) b 84 83 80 75 68已知变量x,y具有线性负相关关系,且xi =39, yi=480,现有甲、乙、丙三位同学通过计算求得其归直线方程分别为:甲y=4x+54;乙y=﹣4x+106;丙y=﹣4.2x+105,其中有且仅有一位同学的计算结果是正确的.(1)试判断谁的计算结果正确?并求出a,b的值;(2)若由线性回归方程得到的估计数据与检测数据的误差不超过1,则该检测数据是“理想数据“,现从检测数据中随机抽取3个,求“理想数据“的个数ξ的分布列和数学期望.【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(1)xi =39, yi=480,x的和为39,y的和为480,解得a和b的值,并求得,,由x,y具有线性负相关关系,甲同学的不对,将,,代入验证,乙同学的正确;(2)分别求出有回归方程求得y值,与实际的y相比较,判断是否为“理想数据“,并求得ξ的取值,分别求得其概率,写出分布列和数学期望.【解答】解:(1)已知变量x,y具有线性负相关关系,故甲不对,且xi=39,4+5+6+7+a+9=39,a=8,y=480,b+84+83+80+75+68=480,b=90,i∵=6.5,=80,将,,代入两个回归方程,验证乙同学正确,故回归方程为:y=﹣4x+106;(2)X 4 5 6 7 8 9y 90 84 83 80 75 68y 92 88 84 80 76 72“理想数据“的个数ξ取值为:0,1,2,3;P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==.“理想数据“的个数ξ的分布列:X 0 1 2 3P =数学期望E(X)=0×+1×+2×+3×=1.5.19.如图所示,四棱锥P﹣ABCD中,底面ABCD为菱形,∠ABC=60°,PA=PC,PB=PD=AB.(1)求证:平面PAC⊥平面ABCD;(2)求直线PB与平面PCD所成角的正弦值.【考点】直线与平面所成的角;平面与平面垂直的判定.【分析】(1)设AC与BD相交于点O,连接PO,根据三线合一得出PO⊥AC,PO⊥BD,故而PO⊥平面ABCD,得出平面PAC⊥平面ABCD;(2)以O为原点,以OB,OD,OP为坐标轴建立空间直角坐标系,设AB=2,求出和平面PCD的法向量,则|cos<>|即为所求.【解答】(1)证明:设AC与BD相交于点O,连接PO,∵ABCD为菱形,∴O为AC,BD的中点.∵PA=PC,PB=PD,∴PO⊥AC,PO⊥BD.又AC∩BD=O,AC,BD⊂平面ABCD,∴PO⊥平面ABCD,又PO⊂平面PAC,∴平面PAC⊥平面ABCD.(2)解:∵ABCD为菱形,∠ABC=60°,∴△ABC为正三角形,AC⊥BD,不妨设PB=PD=AB=2,则BO=,∴PO=1.以O为原点,以OB,OD,OP为坐标轴建立如图所示的空间直角坐标系O﹣xyz,∴P(0,0,1),B(,0,0),C(0,1,0),D(﹣,0,0).∴=(,0,﹣1),=(0,1,﹣1),=(﹣,0,﹣1).设平面PCD的法向量为=(x,y,z),则,即.令x=1得=(1,﹣,﹣).∴cos<>===.∴直线PB与平面PCD所成角的正弦值为.20.如图所示,已知抛物线C :y 2=2px (p >0)的焦点为F ,过点F 垂直于x 轴的直线与抛物线C 相交于A ,B 两点,抛物线C 在A ,B 两点处的切线及直线AB 所围成的三角形面积为4. (1)求抛物线C 的方程;(2)设M ,N 是抛物线C 上异于原点O 的两个动点,且满足k OM •k ON =k OA •k OB ,求△OMN 面积的取值范围.【考点】抛物线的简单性质.【分析】(1)求出A ,B 坐标,利用导数解出切线方程,求出切线与x 轴的交点,利用三角形的面积列方程解出p ;(2)计算k OA •k OB =﹣4,设出MN 方程,求出MN 与x 轴的交点,联立方程组,根据根与系数的关系计算|y M ﹣y N |,得出△OMN 面积S 关于t 的函数,解出函数的最值. 【解答】解:(1)抛物线的焦点坐标为F (,0),∴,由,得,∴抛物线C 在A 处的切线斜率为1,由抛物线C 的对称性,知抛物线C 在B 处的切线卸斜率为﹣1, ∴抛物线过A 点的切线方程为y ﹣p=x ﹣,令y=0得x=﹣. ∴,解得p=2.∴抛物线C 的方程为y 2=4x .(2)k OA =2,k OB =﹣2,∴k OA •k OB =﹣4,设,则,∴y 1y 2=﹣4.令直线MN 的方程为x=ty+n , 联立方程组消去x 得:y 2﹣4ty ﹣4n=0,则y 1y 2=﹣4n ,y 1+y 2=4t ,∵y 1y 2=﹣4,∴n=1.即直线MN 过点(1,0). ∴.∵t 2≥0,∴S △OMN ≥2.综上所示,△OMN 面积的取值范围是[2,+∞).21.已知函数f (x )=x 2+ax ﹣lnx ,g (x )=e x (a ∈R ).(1)是否存在a 及过原点的直线l ,使得直线l 与曲线y=f (x ),y=g (x )均相切?若存在,求a 的值及直线l 的方程;若不存在,请说明理由; (2)若函数F (x )=在区间(0,1]上是单调函数,求a 的取值范围.【考点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【分析】(1)求出f (x ),g (x )的导数,设出切点,求得切线的斜率,运用点斜式方程可得切线的方程,即可判断存在a=e ﹣1及l :y=ex ; (2)求出F (x )的解析式和导数,令,求出导数,判断单调性,再对a 讨论,分a ≤2,a >2,判断h (x )的单调性,进而得到F (x )的单调性,即可得到所求范围. 【解答】解:(1)g (x )的导数为g'(x )=e x , 设曲线y=g (x )在点处切线过原点,则切线方程为,由点在切线上,可得,解得x 1=1,即有切线方程为y=ex ,设直线y=ex 与曲线y=f (x )切于点(x 2,y 2), 由f (x )的导数为,可得,即有,又,则,可得,解得x 2=1,a=e ﹣1.故存在a=e ﹣1及l :y=ex ,使得直线l 与曲线y=f (x ),y=g (x )均相切. (2),,令,则,易知h'(x )在(0,1]上单调递减,从而h'(x )≥h'(1)=2﹣a .①当2﹣a ≥0时,即a ≤2时,h'(x )≥0,h (x )在区间(0,1]上单调递增, 由h (1)=0,可得h (x )≤0在(0,1]上恒成立, 即F'(x )≤0在(0,1]上恒成立.即F (x )在区间(0,1]上单调递减,则a ≤2满足题意;②当2﹣a <0时,即a >2时,由h'(1)=2﹣a <0,当x >0且x→0时,h'(x )→+∞, 故函数h'(x )存在唯一零点x 0∈(0,1],且h (x )在(0,x 0)上单调递增, 在(x 0,1)上单调递减,又h (1)=0,可得F (x )在(x 0,1)上单调递增.注意到h (e ﹣a )<0,e ﹣a ∈(0,x 0),即有F (x )在(0,e ﹣a )上单调递减, 这与F (x )在区间(0,1]上是单调函数矛盾,则a >2不合题意. 综合①②得,a 的取值范围是(﹣∞,2].四.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1:几何证明选讲]22.如图所示,直线AB 为圆O 的切线,切点为B ,点C 在圆O 上,∠ABC 的平分线BE 交圆O 于点E ,DB 垂直BE 交圆O 于点D . (1)证明:DB=DC ; (2)设圆O 的半径为1,BC=,延长CE 交AB 于点F ,求线段BF 的长.【考点】与圆有关的比例线段.【分析】(1)连接DE交BC于点G,由弦切角定理可得∠ABE=∠BCE,由已知角平分线可得∠ABE=∠CBE,于是得到∠CBE=∠BCE,BE=CE.由已知DB⊥BE,可知DE为⊙O的直径,Rt△DBE≌Rt△DCE,利用三角形全等的性质即可得到DC=DB.(2)由(1)可知:DG是BC的垂直平分线,即可得到BG=.设DE的中点为O,连接BO,可得∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.得到CF⊥BF.进而得到线段BF的长【解答】(1)证明:连接DE交BC于点G,由弦切角定理得,∠ABE=∠BCE.∵∠ABE=∠CBE,∴∠CBE=∠BCE,BE=CE.又∵DE⊥BE,∴DE是直径,∠DCE=90°.∴△DBE≌△DCE,∴DC=DB.(2)解:设DE与BC相交于点G,由(1)知,∠CDE=∠BDE,DB=DC,故DG是BC的中垂线.∵,∴.连接BO,∵圆O的半径为1,∴∠BOG=60°,∠ABE=∠BCE=∠CBE=30°,∴CF⊥BF.,∴.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,直线l的参数方程为(t为参数,α∈(0,)),以原点O 为极点,x轴非负半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=4cosθ.(1)若直线l与曲线C有且仅有一个公共点M,求点M的直角坐标;(2)若直线l与曲线C相交于A,B两点,线段AB的中点横坐标为,求直线l的普通方程.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(1)曲线C的极坐标方程为ρ=4cosθ,即ρ2=4ρcosθ,把ρ2=x2+y2,x=ρcosθ,代入可得C 的直角坐标方程.把直线l的参数方程代入上式并整理得t2﹣6tcosα+5=0.令△=0,解出即可得出点M的直角坐标.(2)设A,B两点对应的参数分别为t1,t2,则t1+t2=6cosα.利用中点坐标公式即可得出.【解答】解:(1)曲线C的极坐标方程为ρ=4cosθ,即ρ2=4ρcosθ,把ρ2=x2+y2,x=ρcosθ,代入可得C的直角坐标方程为:x2﹣4x+y2=0,即(x﹣2)2+y2=4.把直线l的参数方程代入上式并整理得t2﹣6tcosα+5=0.令△=(6cosα)2﹣20=0,解得.∴点M的直角坐标为.(2)设A,B两点对应的参数分别为t1,t2,则t1+t2=6cosα.线段AB的中点对应的参数为.则,解得.∴直线l的普通方程为x﹣y+1=0.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣1|﹣|x+1|.(1)求不等式|f(x)|<1的解集;(2)若不等式|a|f(x)≥|f(a)|对任意a∈R恒成立,求实数x的取值范围.【考点】绝对值三角不等式;绝对值不等式的解法.【分析】(1)利用绝对值的几何意义,求不等式|f(x)|<1的解集;(2)若不等式|a|f(x)≥|f(a)|对任意a∈R恒成立,分类讨论,转化为|f(x)|≥2,求实数x的取值范围.【解答】解:(1)x<﹣1时,f(x)=﹣x+1+x+1=2<1,不成立;﹣1≤x≤1时,f(x)=﹣x+1﹣x﹣1=﹣2x,|﹣2x|<1,∴﹣<x<;x>1时,f(x)=x﹣1﹣x﹣1=﹣2,|f(x)|>1,不成立,综上所述不等式|f(x)|<1的解集为{x|﹣<x<};(2)a=0时,不等式成立,a≠0时,|f(x)|≥||1﹣|﹣|1+||∵||1﹣|﹣|1+||<2,∴|f(x)|≥2,x<﹣1时,f(x)=﹣x+1+x+1=2,成立;﹣1≤x≤1时,f(x)=﹣x+1﹣x﹣1=﹣2x,|﹣2x|≥2,∴x=±1;x>1时,f(x)=x﹣1﹣x﹣1=﹣2,|f(x)|=2,成立,综上所述实数x的取值范围为{x|x≤﹣1或x≥1}.。

2020年浦东新区高三高考-三模数学试卷

数学() 浦东新区高三三模数学试卷 2020.06 一. 填空题 1. 已知集合{1,0,}Aa,{|122}xBx,若AB,则实数a的取值范围是

2. 若一组数据:21,19,x,20,18的平均数为20,则该组数据的方差为 3. 椭圆222125xyb(0b)与双曲线2218xy有公共的焦点,则b 4. 函数22yxx(12x)的反函数是 5. 函数2||1()(2)1xxfxxx,如果方程()fxb有四个不同的实数解1x、2x、3x、4x, 则1234xxxx

6. 已知23230123(3)(3)(3)(3)nnnxxxxaaxaxaxax (*nN),且012nnAaaaa,则lim

4n

nn

A

7. 若△ABC的内角满足sin2sin2sinABC,则cosC的最小值是 8. 对任意实数x、y,定义运算xy为xyaxbycxy,其中a、b、c为常数,等 式右端中的运算是通常的实数加法、乘法运算,现已知123,234,并且有一个非 零实数d,使得对于任意实数都有xdx,则d 9. 在平面直角坐标系xOy中,点集{(,)|(|||2|4)(|2|||4)0}Kxyxyxy所对应的平面区域的面积为 10. 设复数z满足||1z,使得关于x的方程2220zxzx有实根,则这样的复数z的 和为 11. 已知函数231()sinsin222xfxx



(0),xR,若()fx在区间(,2)内

没有零点,则的取值范围是 12. 在平面直角坐标系xOy中,点集{(,)|,{1,0,1}}Qxyxy,在Q中随机取出三个点,则这三个点两两之间距离不超过2的概率为

二. 选择题 13. 已知,xyR,则“xy”是“1xy”的( )条件

2020年河南省洛阳市高考(理科)数学三模试卷 (解析版)

2020年河南省洛阳市高考数学三模试卷(理科)一、选择题(共12小题). 1.设集合A ={x |x−1x+2>0},集合B ={x |﹣5≤2x +1≤3},则集合A ∩B =( )A .[﹣3,﹣2)B .(﹣2,1)C .RD .∅2.已知直线l 1:x sin α+2y ﹣1=0,直线l 2:x ﹣y cos α+3=0,若l 1⊥l 2,则tan2α=( ) A .−23B .−43C .25D .453.已知复数z 满足|z |=1,则|z ﹣1+√3i |的最小值为( ) A .2B .1C .√3D .√24.已知m ,n 为两条不同直线,α,β为两个不同平面,则下列结论正确的为( ) A .α∥β,m ∥α,则m ∥βB .m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥βC .m ⊥n ,m ⊥α,n ∥β,则 α⊥βD .m ⊥α,m ∥n ,α∥β,则n ⊥β5.已知f (x )是偶函数,且在(0,+∞)上单调递增,则函数f (x )可以是( ) A .f (x )=x 4﹣2x 2 B .f (x )=e x +e −x2 C .f (x )=x sin xD .f (x )=13x 2+cos x6.已知圆C :(x ﹣a )2+y 2=4(a ≥2)与直线x ﹣y +2√2−2=0相切,则圆C 与直线x ﹣y ﹣4=0相交所得弦长为( ) A .1B .√2C .2D .2√27.已知函数f (x )=sin x +cos x 的导函数为g (x ),则下列结论中错误的是( ) A .函数f (x )与g (x )有相同的值域和周期 B .函数g (x )的零点都是函数f (x )的极值点C .把函数f (x )的图象向左平移π2个单位,就可以得到函数g (x )的图象D .函数f (x )和g (x )在区间(−π4,π4 )上都是增函数8.若某单位员工每月网购消费金额(单位:元)近似地服从正态分布N (1000,5002),现从该单位任选10名员工,记其中每月网购消费金额恰在500元至2000元之间的人数为ξ,则ξ的数学期望为( )参考数据:若随机变量X 服从正态分布N (μ,σ2),则P (μ﹣σ<X ≤μ+σ)=0.6827,P (μ﹣2σ<X <μ+2σ)=0.9545,P (μ﹣3σ<X ≤μ+3σ)=0.9973. A .2.718 B .6.827C .8.186D .9.5459.(2x +1)(x 3√x)5的展开式中x 3系数为( ) A .180B .90C .20D .1010.已知锐角三角形△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .且b =2a sin B ,则cos B +sin C 的取值范围为( ) A .(0,√3] B .(1,√3] C .(√32,32)D .(12,√32)11.设双曲线E :x 2a 2−y 2b 2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,离心率为e ,P在双曲线E 的右支上,且PF 1⊥PF 2,Q 为线段PF 1,与双曲线E 左支的交点,若∠PQF 2=30°,则e 2=( ) A .7﹣2√3B .1+√3C .2√3−1D .72√312.已知函数f (x )={3x −x 3,x ≤0xe x +lnx+1x,x >0,若关于x 的方程f 2(x )﹣mf (x )﹣1=0恰好有6个不相等的实根,则实数m 的取值范围是( ) A .(﹣2,1e +1 )B .(﹣2,0 )∪( 0,1e+1 ) C .(−32,2e+1e 2+e) D .( −32,0 )∪( 0,2e+1e 2+e)二、填空题:本大题共4小题,每小题5分,共20分.13.已知向量a →,b →满足:a →=(1,√3),|b →|=√2,(a →−b →)⊥b →,则向量a →,b →的夹角为 .14.已知非负实数x ,y 满足{x −y −1≥02x +y −4≤0,则z =y+1x+1的最大值是 .15.已知直线l 经过抛物线C :y 2=4x 的焦点F ,l 与C 交于A ,B 两点,其中点A 在第四象限,若AF →=2FB →,则直线l 的斜率为 .16.如图,在三棱锥A ﹣BCD 中,AB =CD =2,AC =BD =√3,BC =AD =√5,E ,F 分别是AB ,CD 的中点.若用一个与直线EF 垂直的平面去截该三棱锥.与棱AC ,AD ,BD,BC分别交于M,N,P,Q四点,则四边形MNPQ面积的最大值为.三、解答题:本大题共6个小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤.17.已知数列{a n}的首项a1=1,其前n项和为S n,且满足S n+1=2S n+n+1.(1)求证:数列{a n+1}是等比数列;(2)令b n=n(a n+1),求数列{b n}的前n项和T n.18.如图.长方体ABCD﹣A1B1C1D1的底面ABCD为正方形,AB=√2,AA1=3,E为棱AA1上一点,AE=1,F为棱B1C1上任意一点C.(1)求证:BE⊥EF;(2)求二面角C﹣B1E﹣C1的余弦值.19.已知平面内动点P与点A(﹣2,0),B(2,0)连线的斜率之积为−3 4.(1)求动点P的轨迹E的方程;(2)过点F(1,0)的直线与曲线E交于P,Q两点,直线AP,AQ与直线x=4分别交于M,N两点.求证:以MN为直径的圆恒过定点.20.某地为鼓励群众参与“全民读书活动”,增加参与读书的趣味性.主办方设计这样一个小游戏:参与者抛掷一枚质地均匀的骰子(正方体,六个面上分别标注1,2,3,4,5,6六个数字).若朝上的点数为偶数.则继续抛掷一次.若朝上的点数为奇数,则停止游戏,照这样的规则进行,最多允许抛掷3次.每位参与者只能参加一次游戏.(1)求游戏结束时朝上点数之和为5的概率;(2)参与者可以选择两种方案:方案一:游戏结束时,若朝上的点数之和为偶数,奖励3本不同的畅销书;若朝上的点数之和为奇数,奖励1本畅销书.方案二:游戏结束时,最后一次朝上的点数为偶数,奖励5本不同的畅销书,否则,无奖励.试分析哪一种方案能使游戏参与者获得更多畅销书奖励?并说明判断的理由.21.设函数f(x)=lnx,g(x)=a(x﹣1).(1)若对任意x∈(0,+∞),f(x)≤g(x)恒成立,求a的取值集合;(2)设x n=n2(n∈N*),点A n(x n,f(x n)),点A n+1(x n+1,f(x n+1)),直线A n A n+1的斜率为k n,求证:k1+k2+…+k n<2(n∈N*).请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分,作答时,用2B 铅笔在答题卡上把所选题目对应的题号后的方框涂黑.[选修4-4:坐标系与参数方程]22.在平面直角坐标系中,曲线C的参数方程为{x=√3cosαy=sinα(α为参数),以坐标原点O为极点,以x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsin(θ+π6)=12.(1)求曲线C的普通方程和直线l的直角坐标方程;(2)已知点A(2,1),点B为曲线C上的动点,求线段AB的中点M到直线l的距离的最大值.并求此时点B的坐标.[选修4-5:不等式选讲]23.已知a,b,c是正实数,且a+b+2c=1.(1)求1a +1b+1c的最小值;(2)求证:a2+b2+c2≥16.参考答案一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合A ={x |x−1x+2>0},集合B ={x |﹣5≤2x +1≤3},则集合A ∩B =( )A .[﹣3,﹣2)B .(﹣2,1)C .RD .∅【分析】可以求出集合A ,B ,然后进行交集的运算即可. 解:∵A ={x |x <﹣2,或x >1},B ={x |﹣3≤x ≤1}, ∴A ∩B =[﹣3,﹣2). 故选:A .2.已知直线l 1:x sin α+2y ﹣1=0,直线l 2:x ﹣y cos α+3=0,若l 1⊥l 2,则tan2α=( ) A .−23B .−43C .25D .45【分析】根据两直线垂直求出sin α与cos α的关系,计算tan α的值,再求tan2α的值. 解:直线l 1:x sin α+2y ﹣1=0,直线l 2:x ﹣y cos α+3=0, 若l 1⊥l 2,则sin α﹣2cos α=0, 即sin α=2cos α, 所以tan α=2, 所以tan2α=2tanα1−tan 2α=2×21−22=−43. 故选:B .3.已知复数z 满足|z |=1,则|z ﹣1+√3i |的最小值为( ) A .2B .1C .√3D .√2【分析】满足|z |=1的复数z ,在以原点为圆心,以1为半径的圆上,|z ﹣1+√3i |表示复数z 在复平面内对应的点Z 到点A (1,−√3)的距离,再利用数形结合法即可求出结果. 解:满足|z |=1的复数z ,在以原点为圆心,以1为半径的圆上,|z ﹣1+√3i |表示复数z 在复平面内对应的点Z 到点A (1,−√3)的距离,如图所示:由OA =2,利用点圆的位置关系,|z ﹣1+√3i |的最小值为2﹣1=1, 故选:B .4.已知m ,n 为两条不同直线,α,β为两个不同平面,则下列结论正确的为( ) A .α∥β,m ∥α,则m ∥βB .m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥βC .m ⊥n ,m ⊥α,n ∥β,则 α⊥βD .m ⊥α,m ∥n ,α∥β,则n ⊥β【分析】由空间中直线与直线、直线与平面的位置关系,逐一核对四个选项得答案. 解:对于A ,若α∥β,m ∥α,则m ∥β或m ⊂β,故A 错误;对于B ,若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β或α与β相交,只有加上条件m 与n 相交时,才有结论α∥β,故B 错误;对于C ,若m ⊥n ,m ⊥α,n ∥β,则 α∥β或α与β相交,故C 错误; 对于D ,若m ⊥α,m ∥n ,则n ⊥α,又α∥β,则n ⊥β,故D 正确. 故选:D .5.已知f (x )是偶函数,且在(0,+∞)上单调递增,则函数f (x )可以是( ) A .f (x )=x 4﹣2x 2 B .f (x )=e x +e −x2 C .f (x )=x sin xD .f (x )=13x 2+cos x【分析】根据题意,依次分析选项中函数的奇偶性与在区间(0,+∞)上的单调性,综合即可得答案.解:根据题意,依次分析选项:对于A ,f (x )=x 4﹣2x 2,其定义域为R ,有f (﹣x )=x 4﹣2x 2=f (x ),是偶函数,其导数f ′(x )=4x 3﹣4x =4x (x 2﹣1),在区间(0,1)上,f ′(x )<0,f (x )为减函数,不符合题意;对于B ,f (x )=e x +e −x 2,其定义域为R ,有f (﹣x )=e x +e −x2=f (x ),是偶函数,其导数f ′(x )=e x −e −x2,在区间(0,+∞)上,f ′(x )>0,f (x )为增函数,符合题意;对于C ,f (x )=x sin x ,其定义域为R ,有f (﹣x )=(﹣x )sin (﹣x )=x sin x =f (x ),是偶函数,有f (π2)=π2>0,但f (3π2)=−3π2<0,在(0,+∞)上不是增函数,不符合题意;对于D ,(x )=13x 2+cos x ,其定义域为R ,有f (﹣x )=13(﹣x )2+cos (﹣x )=13x 2+cos x=f (x ),是偶函数,有f (0)=1,f (π3)=π227+12<1,在(0,+∞)上不是增函数,不符合题意; 故选:B .6.已知圆C :(x ﹣a )2+y 2=4(a ≥2)与直线x ﹣y +2√2−2=0相切,则圆C 与直线x ﹣y ﹣4=0相交所得弦长为( ) A .1B .√2C .2D .2√2【分析】根据题意,分析圆C 的半径,由直线与圆的位置关系可得圆心C 到直线x ﹣y +2√2−2=0的距离,由平行线间的公式计算直线x ﹣y +2√2−2=0与x ﹣y ﹣4=0之间的距离,分析可得圆心C 到直线x ﹣y ﹣4=0的距离,由直线与圆的位置关系分析可得答案.解:根据题意,圆C :(x ﹣a )2+y 2=4的半径r =2,圆C :(x ﹣a )2+y 2=4(a ≥2)与直线x ﹣y +2√2−2=0相切,则圆心C 到直线x ﹣y +2√2−2=0的距离为2,直线x ﹣y +2√2−2=0与x ﹣y ﹣4=0平行,两条平行直线的距离d =√2−2−(−4)|1+1=2+√2,又由圆C 与直线x ﹣y ﹣4=0相交,则圆心C 到直线x ﹣y ﹣4=0的距离d ′=√2,则圆C 与直线x ﹣y ﹣4=0相交所得弦长为2×√4−2=2√2; 故选:D .7.已知函数f (x )=sin x +cos x 的导函数为g (x ),则下列结论中错误的是( ) A .函数f (x )与g (x )有相同的值域和周期 B .函数g (x )的零点都是函数f (x )的极值点C .把函数f (x )的图象向左平移π2个单位,就可以得到函数g (x )的图象D .函数f (x )和g (x )在区间(−π4,π4 )上都是增函数【分析】求出函数f (x )的导函数g (x ),再分别判断f (x )、g (x )的值域、极值点和零点,图象平移和单调性问题.解:函数f (x )=sin x +cos x ,∴g (x )=f '(x )=cos x ﹣sin x ,对于A ,f (x )=√2sin (x +π4),g (x )=−√2sin (x −π4),两函数的值域相同,都是[−√2,√2],周期也相同;A 正确;对于B ,若x 0是函数g (x )的零点,则x 0−π4=k π,k ∈Z ; 解得x 0=k π+π4,k ∈Z ;,f (x 0)=√2sin (k π+π4+π4)=±√2, ∴x 0也是函数f (x )的极值点,B 正确; 对于C ,把函数f (x )的图象向左平移π2个单位,得f (x +π2)=sin (x +π2)+cos (x +π2)=cos x ﹣sin x =g (x ),∴C 正确; 对于D ,x ∈(−π4,π4)时,x +π4∈(0,π2),f (x )是单调增函数,x −π4∈(−π2,0),g (x )是单调递减函数,D 错误. 故选:D .8.若某单位员工每月网购消费金额(单位:元)近似地服从正态分布N (1000,5002),现从该单位任选10名员工,记其中每月网购消费金额恰在500元至2000元之间的人数为ξ,则ξ的数学期望为( )参考数据:若随机变量X 服从正态分布N (μ,σ2),则P (μ﹣σ<X ≤μ+σ)=0.6827,P (μ﹣2σ<X <μ+2σ)=0.9545,P (μ﹣3σ<X ≤μ+3σ)=0.9973.A .2.718B .6.827C .8.186D .9.545【分析】先根据已知数据,求出P (500<X ≤1500)和P (0<X <2000),然后利用正态分布曲线的特点得P (500<X <2000)=P (500<X ≤1500)+P (1500<X <2000)=0.8186,而随机变量ξ~B (10,0.8186),最后由二项分布的数学期望求解即可. 解:∵X ~N (1000,5002),∴P (500<X ≤1500)=0.6827,P (0<X <2000)=0.9545,∴P (500<X <2000)=P (500<X ≤1500)+P (1500<X <2000)=0.6827+0.9545−0.68272=0.8186, 而随机变量ξ~B (10,0.8186), ∴E (ξ)=10×0.8186=8.186. 故选:C . 9.(2x +1)(x √x )5的展开式中x 3系数为( ) A .180B .90C .20D .10【分析】求出(x x )5展开式的含x 2与x 3项的系数,再计算(2x +1)(x x)5的展开式中x 3的系数. 解:(x x)5展开式的通项公式为 T r +1=∁5r •x r•(√x)5﹣r =35﹣r •∁5r •x3r−52;令3r−52=2,解得r =3; 令3r−52=3,解得r 不存在;故(2x +1)(x √x)5的展开式中x 3系数为:2×∁53•35﹣3=180. 故选:A .10.已知锐角三角形△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .且b =2a sin B ,则cos B +sin C 的取值范围为( ) A .(0,√3]B .(1,√3]C .(√32,32)D .(12,√32)【分析】由已知结合正弦定理进行化简可求sin A ,进而可求A ,结合锐角三角的条件可求B 的范围,然后结合和差角公式及辅助角公式进行化简后结合正弦函数的性质即可求解.解:因为b =2a sin B ,由正弦定理可得,sin B =2sin A sin B , 因为sin B ≠0, 故sin A =12,因为A 为锐角,故A =π6, 由题意可得,{0<B <12π0<5π6−B <12π, 解可得,13π<B <12π,则cos B +sin C =cos B +sin (5π6−B )=√32sinB +32cosB=√3sin (B +13π)∈(√32,32).故选:C . 11.设双曲线E :x 2a 2−y 2b 2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,离心率为e ,P在双曲线E 的右支上,且PF 1⊥PF 2,Q 为线段PF 1,与双曲线E 左支的交点,若∠PQF 2=30°,则e 2=( ) A .7﹣2√3B .1+√3C .2√3−1D .72√3【分析】设PF 2=m ,根据条件得PQ =√3m ,QF 2=2m ,结合双曲线性质PF 1﹣PF 2=2a ,QF 2﹣QF 1=2a ,进行整理可得m =2(√3−1)a ,再由勾股定理PF 12+PF 22=F 1F 22,得到(7﹣2√3)a 2=c 2即可.解:因为PF 1⊥PF 2,∠PQF 2=30°,所以PQ =√3PF 2,QF 2=2PF 2, 不妨设PF 2=m ,则PQ =√3m ,QF 2=2m , 根据双曲线定义:PF 1﹣PF 2=2a ,QF 2﹣QF 1=2a , 由PF 1﹣PF 2=2a 得PF 1=2a +m ,由QF 2﹣QF 1=2a ,得QF 1=2m ﹣2a ,又因为QF 1=PF 1﹣PQ , 即有2m ﹣2a =2a +m −√3m , 所以m =2(√3−1)a ,在Rt △PF 1F 2中,PF 12+PF 22=F 1F 22,即(2a +m )2+m 2=4c 2,代入得[2a +2(√3−1)a ]2+4(√3−1)2a 2=4c 2, 整理得(7﹣2√3)a 2=c 2,则e 2=c 2a2=7﹣2√3,故选:A .12.已知函数f (x )={3x −x 3,x ≤0xe x+lnx+1x ,x >0,若关于x 的方程f 2(x )﹣mf (x )﹣1=0恰好有6个不相等的实根,则实数m 的取值范围是( ) A .(﹣2,1e +1 )B .(﹣2,0 )∪( 0,1e+1 ) C .(−32,2e+1e 2+e) D .( −32,0 )∪( 0,2e+1e 2+e)【分析】利用导数得到函数f (x )的单调性和极值,画出函数f (x )的大致图象,令t =f (x ),则t 2﹣mt ﹣1=0,由△>0可知方程t 2﹣mt ﹣1=0有两个不相等的实根,设为t 1,t 2,由函数f (x )的图象可知:0<t 1<1+1e,﹣2<t 2<0,设g (t )=t 2﹣mt ﹣1,再利用二次函数的图象和性质列出不等式组即可求出实数m 的取值范围. 解:当x ≤0时,f (x )=3x ﹣x 3,则f '(x )=3﹣3x 2=3(1﹣x )(1+x ), 令f '(x )=0得:x =﹣1,∴当x ∈(﹣∞,﹣1)时,f '(x )<0,f (x )单调递减;当x ∈(﹣1,0)时,f '(x )>0,f (x )单调递增,且f (﹣1)=﹣2,f (0)=0, 当x >0时,f (x )=x e x +lnx+1x ,则f '(x )=1−x e x +−lnx x2,显然f '(1)=0, ∴当x ∈(0,1)时,f '(x )>0,f (x )单调递增;当x ∈(1,+∞)时,f '(x )<0,f(x )单调递减,且f (1)=1e+1, 故函数f (x )的大致图象如图所示:,令t =f (x ),则关于x 的方程f 2(x )﹣mf (x )﹣1=0化为关于t 的方程t 2﹣mt ﹣1=0, ∵△=m 2+4>0,∴方程t 2﹣mt ﹣1=0有两个不相等的实根,设为t 1,t 2, 由韦达定理得:t 1+t 2=m ,t 1t 2=﹣1<0,不妨设t 1>0,t 2<0, ∵关于x 的方程f 2(x )﹣mf (x )﹣1=0恰好有6个不相等的实根, ∴由函数f (x )的图象可知:0<t 1<1+1e,﹣2<t 2<0, 设g (t )=t 2﹣mt ﹣1,则{ g(−2)>0g(0)<0g(1+1e )>0,解得:−32<m <2e+1e 2+e, 故选:C .二、填空题:本大题共4小题,每小题5分,共20分.13.已知向量a →,b →满足:a →=(1,√3),|b →|=√2,(a →−b →)⊥b →,则向量a →,b →的夹角为π4.【分析】根据平面向量的数量积,求出向量a →、b →夹角的余弦值,再求夹角大小. 解:a →=(1,√3),所以|a →|=√12+(√3)2=2,又|b →|=√2,(a →−b →)⊥b →⊥b →,所以a →•b →−b →2=0, 所以a →•b →=b →2=2, 设向量a →,b →的夹角为θ,则cos θ=a →⋅b→|a →|×|b →|=2×2=√22, 又θ∈[0,π], 所以θ=π4. 故答案为:π4.14.已知非负实数x ,y 满足{x −y −1≥02x +y −4≤0,则z =y+1x+1的最大值是 58.【分析】作出不等式组对应的平面区域,利用z =y+1x+1的几何意义进行求解即可. 解:z =y+1x+1的几何意义是可行域内的点与(﹣1,﹣1)连线的斜率, 作出不等式组对应的平面区域如图:则由图象知PA 的斜率最大,由{x −y −1=02x +y −4=0,解得A (53,23)则PA 的斜率k =23+153+1=58,k 的最大值为58, 故答案为:58.15.已知直线l 经过抛物线C :y 2=4x 的焦点F ,l 与C 交于A ,B 两点,其中点A 在第四象限,若AF→=2FB→,则直线l的斜率为﹣2√2.【分析】求得抛物线的焦点和准线方程,设直线l的方程为x=my+1,联立直线方程和抛物线的方程,运用韦达定理,再由向量共线的坐标表示,可得y1,y2的关系,消去y1,y2,可得m的值,进而得到所求直线的斜率.解:y2=4x的焦点F(1,0),设直线l的方程为x=my+1,联立y2=4x,可得y2﹣4my﹣4=0,设A,B的纵坐标分别为y1,y2(y1<0,y2>0),则y1+y2=4m,y1y2=﹣4,①又AF→=2FB→,可得﹣y1=2y2,即y1=﹣2y2,②由①②可得m<0,y1=8m,y2=﹣4m,﹣32m2=﹣4,解得m=−√24,则直线l的斜率为﹣2√2,故答案为:﹣2√2.16.如图,在三棱锥A﹣BCD中,AB=CD=2,AC=BD=√3,BC=AD=√5,E,F分别是AB,CD的中点.若用一个与直线EF垂直的平面去截该三棱锥.与棱AC,AD,BD,BC分别交于M,N,P,Q四点,则四边形MNPQ面积的最大值为√32.【分析】把三棱锥A﹣BCD放置在长方体中,由已知可得四边形MNPQ为平行四边形,再由平行线截线段成比例,可得|PN|+|PQ|=|AB|=2.求出PN与PQ所成角,代入三角形面积公式,再由基本不等式求最值.解:把三棱锥A﹣BCD放置在长方体中,如图,∵E ,F 分别是AB ,CD 的中点,且平面MNPQ ⊥EF , 可知MN ∥PQ ,PN ∥QM ,则四边形MNPQ 为平行四边形, 再由平行线截线段成比例,可得|PN |+|PQ |=|AB |=2.由已知可求得作侧面两条对角线所成锐角为60°,则∠NPQ =60°.∴S 四边形MNPQ =|PN |•|PQ |•sin60°≤√32⋅(|PN|+|PQ|2)2=√32.当且仅当PN |=|PQ |=1时上式等号成立. ∴四边形MNPQ 面积的最大值为√32. 故答案为:√32. 三、解答题:本大题共6个小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤.17.已知数列{a n }的首项a 1=1,其前n 项和为S n ,且满足S n +1=2S n +n +1. (1)求证:数列{a n +1}是等比数列;(2)令b n =n (a n +1),求数列{b n }的前n 项和T n .【分析】(1)先由S n +1=2S n +n +1⇒S n =2S n ﹣1+n ,两式相减得a n +1=2a n +1,进而证明结论;(2)由(1)可得a n +1=2n ,∴b n =n •2n ,再利用错位相减法求出T n 即可. 解:(1)证明:∵S n +1=2S n +n +1①, ∴当 n ≥2 时,S n =2S n ﹣1+n ②, 由①一②得,a n +1=2a n +1,n ≥2,∴a n +1+1=2a n +1+1,n ≥2,即a n +1+1=2(a n +1),n ≥2. 又a 1+a 2=2a 1+2,a 1=1,∴a 2=3,则a 2+1=2(a 1+1)也适合,∴数列{a n+1}是以a1+1=2为首项,公比为2的等比数列;(2)解:由(1)知a n+1=2n,∴b n=n•2n.∴T n=1×21+2×22+3×23+4×24+…+(n﹣1)•2n﹣1+n•2n③,∴2T n=1×22+2×23+3×24+4×25+(n﹣1)•2n+n•2n+1④,由③﹣④得:﹣Tn=1×21+1×22+1×23+…+1×2n﹣n•2n+1=(1﹣n)•2n+1﹣2,∴T n=(n﹣1)•2n+1+2.18.如图.长方体ABCD﹣A1B1C1D1的底面ABCD为正方形,AB=√2,AA1=3,E为棱AA1上一点,AE=1,F为棱B1C1上任意一点C.(1)求证:BE⊥EF;(2)求二面角C﹣B1E﹣C1的余弦值.【分析】(1)先根据勾股定理可得BE⊥B1E,结合长方体的性质可得BE⊥B1C1,进而可证BE⊥平面B1C1E,再由线面垂直的性质得证;(2)建立空间直角坐标系,求出平面CB1E及平面B1C1E的一个法向量,再利用向量的夹角公式即可得解.解:(1)证明:∵AE=1,A1E=2,在长方体ABCD﹣A1B1C1D1中,B1E=√A1E2+A1B12=√6,BE=√AE2+AB2=√3,∴B1B2=B1E2+BE2,即BE⊥B1E,在长方体ABCD﹣A1B1C1D1中,B1C1⊥平面A1ABB1,BE⊂平面A1ABB1,∴BE⊥B1C1,又B1E∩B1C1=B1,∴BE⊥平面B1C1E,又无论点F位置如何,EF⊂平面B1C1E,∴BE ⊥EF ;(2)如图所示,分别以DA ,DC ,DD 1为x ,y ,z 轴建立空间直角坐标系,则B 1(√2,√2,3),E (√2,0,1),C (0,√2,0),B (√2,√2,0),CB 1→=(√2,0,3),EB 1→=(0,√2,2),设平面CB 1E 的法向量为n →=(x ,y ,z ),∴{n →⋅CB 1→=0n →⋅EB 1→=0,即{√2x +3z =0√2y +2z =0,令z =√2,则x =﹣3,y =﹣2,可得平面CB 1E 的一个法向量为n →=(−3,−2,√2), 由(1)可知,BE ⊥平面B 1C 1E ,所以平面B 1C 1E 的一个法向量BE →=(0,−√2,1), ∴cos <BE →,n →>=BE →,⋅n→|BE →|⋅|n →|=3√23×√15=√105,即二面角C ﹣B 1E ﹣C 1的余弦值√105.19.已知平面内动点P 与点A (﹣2,0),B (2,0)连线的斜率之积为−34. (1)求动点P 的轨迹E 的方程;(2)过点F (1,0)的直线与曲线E 交于P ,Q 两点,直线AP ,AQ 与直线x =4分别交于M ,N 两点.求证:以MN 为直径的圆恒过定点.【分析】(1)设点P 的坐标为(x ,y ),则由k PA ⋅k PB =−34可得关于x ,y 的关系式,得到动点P 的轨迹E 的方程;(2)当PQ 的斜率存在时,设PQ 的方程为y =k (x ﹣1),与曲线E 的方程联立,得到关于x 的一元二次方程,写出根与系数的关系,再写出直线APD 方程,求得M ,N 的坐标,结合根与系数的关系得到|MN |,求出线段MN 中点的坐标,可得以MN 为直径的圆的方程,求出以MN 为直径的圆过点D (1,0)和E (7,0).验证当PQ ⊥x 轴时成立,可得以MN 为直径的圆恒过点D (1,0)和E (7,0). 解:(1)设点P 的坐标为(x ,y ),则由k PA ⋅k PB =−34,得y x+2⋅yx−2=−34,整理得x 24+y 23=1( x ≠±2), 即动点P 的轨迹E 的方程为x 24+y 23=1( x ≠±2);证明:(2)当PQ 的斜率存在时,设PQ 的方程为y =k (x ﹣1), 与曲线E 的方程联立,消去y 得(3+4k 2)x 2﹣8k 2x ﹣4k 2﹣12=0. 设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=8k23+4k2,x 1x 2=4k 2−123+4k2.直线AP 的方程为y y 1=x+2x 1+2,令x =4,得y =6y 1x 1+2,即M(4,6y 1x 1+2),同理N(4,6y 2x 2+2). ∴|MN|=6y2x 2+2−6y1x 1+2 =6|k[(x 2−1)(x 1+2)−(x 1−1)(x 2+2)]x 1x 2+2(x 1+x 2)+4|=18|k(x 2−x 1)x 1x 2+2(x 1+x 2)+4|,|x 2﹣x 1|=√(x 1+x 2)2−4x 1x 2=√64k2(3+4k 2)2−4×4k 2−123+4k2=12√1+k 23+4k 2|x 1x 2+2(x 1+x 2)+4|=|4k 2−123+4k 2+2×8k 23+4k 2+4|=36k 23+4k 2. ∴|MN |=6√1+k 2|k|.线段MN 中点的纵坐标为12(6y 1x 1+2+6y 2x 2+2)=3k ⋅(x 1−1x 1+2+x 2−1x 2+2)=−3k.故以MN 为直径的圆的方程为:(x ﹣4)2+(y +3k )2=9(1+k 2)k2. 令y =0得:(x ﹣4)2=9,解得x =1或x =7. 此时以MN 为直径的圆过点D (1,0)和E (7,0).当PQ ⊥x 轴时,P(1,32),Q(1,−32),M(4,3),N(4,−3). 则以MN 为直径的圆的方程为(x ﹣4)2+y 2=9,也过点D ,E . ∴以MN 为直径的圆恒过点D (1,0)和E (7,0).20.某地为鼓励群众参与“全民读书活动”,增加参与读书的趣味性.主办方设计这样一个小游戏:参与者抛掷一枚质地均匀的骰子(正方体,六个面上分别标注1,2,3,4,5,6六个数字).若朝上的点数为偶数.则继续抛掷一次.若朝上的点数为奇数,则停止游戏,照这样的规则进行,最多允许抛掷3次.每位参与者只能参加一次游戏.(1)求游戏结束时朝上点数之和为5的概率;(2)参与者可以选择两种方案:方案一:游戏结束时,若朝上的点数之和为偶数,奖励3本不同的畅销书;若朝上的点数之和为奇数,奖励1本畅销书.方案二:游戏结束时,最后一次朝上的点数为偶数,奖励5本不同的畅销书,否则,无奖励.试分析哪一种方案能使游戏参与者获得更多畅销书奖励?并说明判断的理由.【分析】(1)设事件A:只抛掷1次就结束游戏且朝上点数之和为5,事件B:抛掷2次就结束游戏且朝上点数之和为5,事件C:掷3次结束游戏且朝上点数之和为5,事件A,B,C彼此互斥.然后求解概率即可.(2)方案一:设获得奖励畅销书的本数为X,求出概率得到分布列,然后求解期望.通过比较E(X),E(Y),推出选择方案一能使游戏参与者获得更多畅销书奖励.解:(1)设事件A:只抛掷1次就结束游戏且朝上点数之和为5,事件B:抛掷2次就结束游戏且朝上点数之和为5,事件C:掷3次结束游戏且朝上点数之和为5,事件A,B,C彼此互斥.则P(A)=16,P(B)=16×16+16×16=118,P(C)=16×16×16=1216,游戏结束时朝上点数之和为5,即事件A+B+C,其概率为P(A+B+C)=16+118+1216=49216.(2)方案一:设获得奖励畅销书的本数为X,P(x=3)=18,P(x=1)=78,则X的分布列为:X31P187 8E(X)=3×18+1×78=54.方案二:设获得奖励畅销书的本数为YP(X=5)=18,P(x=0)=78,则Y的分布列为:Y 5P1878E (Y )=5×18+0×78=58,∵E (X )>E (Y ),∴选择方案一能使游戏参与者获得更多畅销书奖励. 21.设函数f (x )=lnx ,g (x )=a (x ﹣1).(1)若对任意x ∈(0,+∞),f (x )≤g (x )恒成立,求a 的取值集合;(2)设x n =n 2(n ∈一、选择题*),点A n (x n ,f (x n )),点A n +1(x n +1,f (x n +1)),直线A n A n +1的斜率为k n ,求证:k 1+k 2+…+k n <2(n ∈N *).【分析】(1)令F (x )=f (x )﹣g (x ),求出函数的导数,通过讨论a 的范围,求出函数的单调区间,求出函数的最大值,得到a 的取值即可; (2)求出k n ,结合ln (1+2n+1n 2)<2n+1n 2,得到k 1+k 2+⋯+k n <112+122+⋯12n ,不等式放缩证明即可.解:(1)令F (x )=f (x )﹣g (x ), F (x )=lnx ﹣a (x ﹣1),F ′(x )=1x −a =1−axx,……(1分) 若a ≤0时,当x >1 时,lnx ﹣a (x ﹣1)>0,不符合题意…… 若a >0,F ′(x )>0得0<x <1a,F ′(x )<0得x >1a, ∴F (x )在(0,1a)上递增,在(1a,+∞)上递减……∴F (x )max =F (1a)=ln 1a−a(1a−1)=−lna +a −1≤0⋯⋯令ϕ(x )=﹣ln x +x −1,ϕ′(x)=−1x +1=x−1x, ∴ϕ(x )在(0,1)上递减,在(1,+∞)上递增 ∴ϕ(x )≥ϕ(1)=0,∴ϕ(a )≥0…… ∴ϕ(a )=0,a =1, 故a 的取值集合为{1}……(2)由题意知,点A n (n 2,lnn 2),点A n +1(((n +1)2,ln (n +1)2), k n =ln(n+1)2−lnn 2(n+1)2−n 2=ln(1+2n+1n2)2n+1⋯⋯由(1)知,当a =1时,lnx ≤x ﹣1(x >0),∴ln (1+2n+1n 2)<2n+1n 2⋯⋯ ∴k n <2n+1n 22n+1=1n 2,∴k 1+k 2+⋯+k n <112+122+⋯12n ⋯⋯ 而112+122+132+⋯+1n 2≤11+11×2+12×3+⋯+1(n−1)n=1+(1−12)+(12−13)+…+(1n−1−1n)=2−1n <2,……∴k 1+k 2+…+k n <2(n ∈N *).请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分,作答时,用2B 铅笔在答题卡上把所选题目对应的题号后的方框涂黑.[选修4-4:坐标系与参数方程] 22.在平面直角坐标系中,曲线C 的参数方程为{x =√3cosαy =sinα(α为参数),以坐标原点O为极点,以x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρsin(θ+π6)=12. (1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)已知点A (2,1),点B 为曲线C 上的动点,求线段AB 的中点M 到直线l 的距离的最大值.并求此时点B 的坐标.【分析】(1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换. (2)利用点到直线的距离公式的应用和三角函数关系式的恒等变换及正弦型函数的性质的应用求出结果.解:(1)曲线C 的参数方程为{x =√3cosαx =sinα(α为参数),可得x3=cosαy =sinα两边平方相加得:(3)2+y 2=1,即曲线C 的普通方程为:x 23+y 2=1.由ρsin(θ+π6)=12可得√32ρsinθ+12ρcosθ=12即直线l 的直角坐标方程为x +√3y −1=0.(2)A (2,1),设点B (√3cosα,sinα),则点M (2+√3cosα2,1+sinα2),点M 到直线l 的距离d =|2+√3cosα2+√3(1+sinα)2−1|2=|√32cosα+√32sinα+√322=|√62sin(α+π4)+√32|2. 当sin(α+π4)=1时,的最大值为√6+√34. 即点M 到直线l 的距离的最大值为√6+√34,此时点的坐标为(√62,√22).[选修4-5:不等式选讲]23.已知a ,b ,c 是正实数,且a +b +2c =1. (1)求1a +1b+1c的最小值;(2)求证:a 2+b 2+c 2≥16.【分析】(1)根据a ,b ,c 是正实数,且a +b +2c =1,可得1a +1b+1c=(1a+1b+1c)(a +b +2c ),然后利用基本不等式求出1a+1b+1c的最小值即可;(2)由柯西不等式可得(12+12+22)(a 2+b 2+c 2)≥(a +b +2c )2,再结合a +b +2c =1,即可证明a 2+b 2+c 2≥16成立.解:(1)∵a ,b ,c 是正实数,且a +b +2c =1. 所以1a +1b+1c=(1a+1b+1c)(a +b +2c )=b a +a b +2c a +a c +2c b +bc+4≥6+4√2, 当且仅当a =b =√2c ,即a =b =2−√22,c =√2−12时等号成立,∴1a+1b+1c的最小值为6+4√2.(2)由柯西不等式可得(12+12+22)(a 2+b 2+c 2)≥(a +b +2c )2=1, 即a 2+b 2+c 2≥16,当且仅当1a=1b=2c,即a =b =16,c =13时等号成立,∴a 2+b 2+c 2≥16成立.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学参考答案评分标准及解析(理科)一、选择题:DDACABCBBBCB1.命题意图:本题主要考查集合的运算,考查学生的运算求解能力,考查的核心素养是数学运算.答案:选D

解析:(0,)A,{2,1,0,1,2}B,从而{1,2}AB.

2.命题意图:本题主要考查复数的概念及运算,考查学生的运算求解能力,考查的核心素养是数学运算.答案:选D

解析:2z1i1i,z1i,

3.命题意图:本题主要考查向量的运算,考查学生的运算求解能力,考查的核心素养是数学运算.答案:选A

解析:(1,1)abm,1+1=0abbm(),从而=2m,4.命题意图:本题主要考查数学文化,斐波拉契数列的应用,考查的核心素养是数学建模.答案:C

解析:小华上1级台阶的走法种数为1种,上2级台阶的走法种数为2种,上(3)nn级台阶

的走法种数na即满足如下递推关系式:12nnnaaa,经计算,8

34a,故共有34种不

同的走法.故选C5.命题意图:本题主要考查函数的图像与性质,考查学生的推理论证能力,运算求解能力,考查的核心素养是逻辑推理,数学运算.答案:选A

解析:依题意2,1ab,从而,|1|()2xgx,故选A.

6.命题意图:本题主要考查统计图表等知识,考查学生的数据处理能力,运算求解能力,考查的核心素养是数据分析,数学运算.答案:选B解析2018年“双十一”期间揽收件数为242.4+948+9.6=1200万件,故2019年“双十一”期间揽收件数为1200×1.25=1500万件,故①正确.由此2019年“双十一”期间同城揽收件数为1500×20%=300万件>242.4万件,所以比2018年“双十一”期间有所提升,故②错误.2019年“双十一”期间国际及港澳台揽收件数为1500×1.4%=21万件,21÷9.6=2.1875,故快递公司国际及港澳台揽收件数同比增长超过75%,故③正确.综上所述,正确的结论为①③,故选B.

7.命题意图:本题主要考查空间位置关系,考查学生的空间想象能力,推理论证能力,考查的核心素养是直观想象,逻辑推理.答案:选C解析:由线面垂直判定定理知A不对,由线面平行判定定理知B不对,过m上任意一点,

作n的平行线n,设,mn确定的平面为,则l,//n.

若,mn,则//mn,与,mn是异面直线矛盾,故D不对,故选C.

8.命题意图:本题主要考查椭圆的标准方程以及充要条件,考查学生的推理论证能力,运算求解能力,考查的核心素养是数学运算,逻辑推理.答案:B解析:22151yxmm表示焦点在y轴上的椭圆510mm,解得13m,故选B.

9.命题意图:本题主要考查三角函数的定义,考查学生的推理论证能力,运算求解能力,考查的核心素养是数学运算,逻辑推理.答案:选B,

解析:cos210cos30tan3sin210sin30,从而3tan(30)3,故选B.

10.命题意图:本题主要考查三角恒等变换,考查学生的推理论证能力,运算求解能力,考查的核心素养是数学运算,逻辑推理.答案:选B

解析:为第一象限角,则1sin2,3cos2,π3sin()62.11.命题意图:本题主要考查双曲线和抛物线的性质,考查学生的推理论证能力,运算求解能力,考查的核心素养是数学运算,逻辑推理.答案:选C解析:由题意得双曲线C的渐近线方程为byxa,又双曲线C的一条渐近线方程为-30xy,即3ab,又抛物线28yx的焦点坐标为2,0,双曲线的右焦点与抛物线的焦点相同,则3,1ab,从而双曲线的方程为22

31

xy.故选C.

12.命题意图:本题主要考查导数的几何意义,考查学生的运算求解能力,考查的核心素养是数学运算.答案:选B解析:函数21ln12fxxx,∴11fxxx,(其中1x),函数singxaxx,∴cos1gxax,要使过曲线fx上任意一点的切线为1

l,在函数singxaxx的图象上总存在一条切线

2l,使得12ll,则有



121

1cos11

1xax

x







,2111cos111axxx,

又因为11111111111xxxx,即1111011xx,,从而有

-1,01,1aa



,解得1a,

即a的取值范围为1a或1a,故选B.

二、填空题:13.答案:8014.答案:515.答案:216.答案:36π,13.命题意图:本题主要考查随机变量的分布列和期望,考查学生的数据处理能力,运算求解能力,考查的核心素养是数据分析,数学运算.答案:80

解析:10名同学参加足球射门比赛,其实也就是独立重复试验进行20次,进球数Y服从二

项分布20,0.8YB,从而16EY,580EXEY.14.命题意图:本题主要考查函数的性质与图像,考查学生的推理论证能力,运算求解能力,考查的核心素养是逻辑推理,数学运算.答案:5

解析因为11fxfx,则2fxfx,所以fx是以2为最小正周期

的周期函数,又因为fx是定义域在R上的偶函数,综合可得fx的图象关于直线=1x

对称.令()cosπgxx,则()gx是以1为最小正周期的周期函数,如图所示,由图象可得,fx与()cosπgxx的图象在0,2上共有5个交点,从而方程cosπfxx在0,2上所有解之和为5.

15.命题意图:本题主要考查双曲线的定义及性质,考查学生的抽象概括能力,运算求解能力,考查的核心素养是抽象概括,数学运算.

答案:2解析:依题意:2A,52sin,2sin,1212ABcACc依双曲线定义有:即221252

2(sinsin)sin()sin()

12124646

cce

ac



,故双曲线离心率为2.

16.命题意图:本题主要考查学生的空间想象能力,运算求解能力,考查的核心素养是,直观想象,数学运算.答案:36π

解析:如图,在ABC△中,3AB,4AC,5BC,

由勾股定理可得90BAC,可得ABC△外接圆半径52r,

设此圆圆心为O,球心为O,在RtOBO△中,可得球半径22511232R,∴此球的表面积为24π36πR.故答案为36π.

三、解答题(一)必考题:60分.

17.命题意图:本题主要考查空间直线与平面的位置关系,利用空间向量法求二面角,考查学生的空间想象能力,推理论证能力,运算求解能力,考查的核心素养是直观想象,逻辑推理,数学运算.解析(1)证明:取11BC中点1D,连11AD,则有1AA1

DD从

而有AD∥11

AD,...................2分

又因为11DCBD,从而有1DC∥1

BD...................4分

则有平面11BAD∥平面1

ADC

则有1AB∥平面1

ADC....................6分

(2)以1

,,ABACAA所在直线分别为x轴,y轴,z轴,建立如图所示的直角坐标系,

则有:0,0,0A,2,0,0B,0,2,0C,10,0,4,1,1,0AD,10,2,4C

又,平面1ABA的法向量即为1

(0,1,0)n

...................8分

设平面1ADC的法向量为2

(,,1)nxy

由22

12

0(2,2,1)

0

ADnn

ACn









...................10分

1212

12

2cos,

3||||

nnnn

nn







从而面1ADC与面1

ABA所成二面角余弦值即为

2

3..........12分

18.命题意图:本题主要考查等差数列与等比数列的定义及通项公式,数列求和.考查学生的推理论证能力,运算求解能力,考查的核心素养是逻辑推理,数学运算.

解析:(1)121,3aa,112()nnnnaaaa,又:21

2aa,

从而数列+1

{}

nnaa

是以2为首项,2为公比的等比数列,即+12nnnaa;...........2分

+1122nnnnaaaa,2121aa,

从而数列+1{2}nnaa是以1为首项,0为公差的等差数列,即+1

2=1

nnaa

.................4分

从而有:21nna

....................6

相关文档
最新文档