碳纳米管及其应用研究

合集下载

碳纳米管的制备方法和应用

碳纳米管的制备方法和应用

碳纳米管的制备方法和应用碳纳米管是由纳米级的碳原子构成的一种纳米材料,具有独特的物理和化学性质,被广泛应用于各个领域。

本文将探讨碳纳米管的制备方法以及其在材料科学、电子学和生物医学中的应用。

一、碳纳米管的制备方法目前,常见的碳纳米管制备方法主要有化学气相沉积法、电化学沉积法、电弧放电法和碳热还原法等。

化学气相沉积法是制备碳纳米管最常用的方法之一。

该方法利用金属催化剂(如铁、铜等)和含碳的气体(如一氧化碳、甲烷等)在高温下反应,生成碳纳米管。

这种方法可以控制碳纳米管的尺寸和结构,制备出高质量的碳纳米管。

电化学沉积法是一种较为简单和经济的制备方法。

通过在电极表面施加电压,使金属离子在电极上还原并沉积成碳纳米管。

这种方法可以在常温下进行,对环境友好,但产出的碳纳米管质量较低。

电弧放电法是一种高温高压条件下制备碳纳米管的方法。

通过在金属电极之间施加高电压,形成电弧放电,使电极表面的碳物质蒸发并在高温高压下形成碳纳米管。

这种方法制备出的碳纳米管尺寸较大,结构较不规则。

碳热还原法是使用碳源将金属氧化物还原成金属,并在高温下生成碳纳米管。

这种方法能够制备出高纯度的碳纳米管,但操作条件较为复杂。

二、碳纳米管在材料科学中的应用由于碳纳米管具有优异的力学性能、导电性和热导性,因此在材料科学中有广泛的应用。

碳纳米管可以添加到复合材料中,提高材料的力学性能和导电性。

此外,碳纳米管还可以用于制备超级电容器和锂离子电池,因为其具有较大比表面积和良好的电化学性能。

另外,由于碳纳米管具有较高的比表面积和孔隙结构,可以用作吸附剂来去除水和气体中的有害物质。

碳纳米管的应用还延伸到柔性电子学和传感器领域,用于制备柔性显示器件和高灵敏度的传感器,如压力传感器和化学传感器等。

三、碳纳米管在电子学中的应用碳纳米管由于其独特的电子性质,被广泛应用于电子学领域。

碳纳米管可以用作场发射源,用于制备高亮度和高分辨率的显示器件。

此外,碳纳米管也可以用于制备柔性电子器件,如柔性电池和柔性晶体管等,具有重要的应用价值。

纳米碳管在催化剂中的应用研究

纳米碳管在催化剂中的应用研究

纳米碳管在催化剂中的应用研究一、碳纳米管的简介碳纳米管(Carbon nanotubes,CNTs)是一种一维的结构,由碳原子形成纳米尺度的管状物质,在物理、化学、材料科学等领域都具有广泛的应用前景。

碳纳米管单壁的直径通常为1-3 nm,在外径大致相同的情况下,壁厚可以等于单壁厚度,也可以有多壁壁层。

二、纳米碳管在催化剂中的作用催化剂是在化学反应中加快反应速率的物质,它本身并不参与反应过程,而是通过调节反应中的能量变化,实现反应条件的提高,从而促使化学反应的进行。

碳纳米管的结构、性质和表面的化学反应活性使其在催化剂中拥有独特的应用优势。

1. 催化剂支撑材料碳纳米管是一种极其优异的催化剂载体,因其优异的阻塞性能、高比表面积、良好的导电性、高的热稳定性和循环稳定性,使得其可以作为非常理想的催化剂载体来使用。

它可以将催化活性剂稳定地固定在表面上,增加反应过程中的反应基团表面密度,增加反应速率和催化效果。

2. 活性催化剂组分碳纳米管本身也具有催化活性,能够在催化反应中提供表面上的活性位点和催化反应,例如常见的氧化还原反应、还原反应、酯化反应、电荷转移反应等。

在某些反应中,碳纳米管具有比常规催化剂更强的反应选择性,更低的反应温度,更高的催化效率和更快的反应速率。

3. 电催化剂碳纳米管在电化学反应中也具有广泛的应用前景,其能够吸附活性氧和氢气等,从而作为阴、阳极催化剂。

此外,碳纳米管还可以作为超级电容器的核心材料,并且也可以应用在直接甲醇燃料电池中等电化学领域。

三、纳米碳管催化剂研究进展1. 金属催化剂的纳米碳管载体碳纳米管作为金属催化剂的载体具有协同催化作用,为氢化反应、酯化反应、氧化反应等一系列反应提供多种选择。

研究表明,使用纳米碳管作为催化剂载体可以实现对反应活性组分的定向修饰,提高反应性能和催化剂稳定性。

2. 有机功能化纳米碳管催化剂在不同的功能性化物质表面,可以通过非常简单的化学处理方法将这些材料修饰在纳米碳管表面上。

碳纳米管研究报告

碳纳米管研究报告

碳纳米管研究报告碳纳米管是一种新兴的材料,它既具有高强度又有超强的耐腐蚀性,在未来将会发挥重要作用。

本文将结合碳纳米管的化学特性、力学性能、电学性能和生物医学应用,对它进行深入研究,旨在发掘它的潜力,未来能够更好地应用它。

一、碳纳米管的化学特性碳纳米管具有较高的碳氧化物结构,具有超强的耐腐蚀性。

其表面具有一定的电荷,这可以改变它的生物活性,增加其作为纳米材料的有效性。

此外,还有一些碳氧化物,如碳酸钙等,具有很好的附着力,对于不同的应用有着不同的功能。

二、碳纳米管的力学性能碳纳米管有着优异的力学性能,其弹性模量的大小可以根据其结构而定,它们有着非常高的抗弯强度,抗拉强度比钢材还要高,耐磨性也比钢材高。

同时,它们还具有很强的抗冲击能力,甚至在超高温下也能保持一定的强度。

三、碳纳米管的电学性能碳纳米管也具有优异的电学性能,其电阻率极低,可以大大提高电子材料的效率;其容量也极高,约为石墨烯4倍,能够有效地储存电能。

此外,它们还具有良好的导电性,可以抑制电路的失效,这在电子制造领域有重要作用。

四、碳纳米管的生物医学应用碳纳米管也可用于生物医学领域。

由于它们具有超强的耐腐蚀性及其高强度,可以用来制造医疗设备、改善人体组织修复治疗效果等。

另外,它们还可以用于基因治疗,具有增强免疫力的功效;用于抗癌药物的药物载体,以最大程度地抑制癌细胞的生长;在细胞快速传输信号的实验中,用于提高和优化实验效果等。

以上就是碳纳米管的一些特性和应用。

综上所述,碳纳米管有着较高的力学性能、超强的耐腐蚀性和良好的电学性能,以及众多生物医学应用,拥有着前所未有的潜力及应用前景。

未来需要加强对它的研究,进一步开发其功能,以及制定更好的应用方式,以期达到最佳效果。

碳纳米管的合成和应用

碳纳米管的合成和应用

碳纳米管的合成和应用碳纳米管(Carbon Nanotubes, CNTs)是由纯碳构成的一种纳米材料,以其独特的物理和化学性质,在材料科学、生物医学等众多领域都有重要的应用和研究价值。

本文将从碳纳米管的合成方法、结构特征以及应用等方面进行讨论。

一、碳纳米管的合成方法碳纳米管最早是由日本科学家Sumio Iijima于1991年发现,并提出了一种制备碳纳米管的方法——电弧放电法。

该方法是通过电弧放电在高温下制备,得到的碳纳米管平均直径为10-20nm。

随后,人们发现在碳纳米管形成的高温条件下,化学气相沉积法(Chemical Vapor Deposition, CVD)也可以用来合成碳纳米管。

通过CVD法合成的碳纳米管平均直径可以达到数纳米级别。

此外,离子束辅助CVD、体积扩散法、等离子炮击法等方法也被用来合成碳纳米管。

这些方法各有优缺点,可以根据具体应用需求选择合适的方法。

二、碳纳米管的结构特征碳纳米管分为单壁碳纳米管(Single-Walled Carbon Nanotubes, SWNTs)和多壁碳纳米管(Multi-Walled Carbon Nanotubes, MWNTs)两种。

SWNTs是由一个或几个碳原子层叠而成的单层碳纳米管,直径在1-2nm左右;MWNTs则是由多层碳原子管叠加在一起构成的,直径在10-30nm左右。

SWNTs的结构主要包括芳香环、周边的螺旋结构以及端部的官能团等。

SWNTs具有高比表面积和高机械性能,同时还有超疏水性、高导电性和热导率等重要的物理和化学性质。

MWNTs的壁层数越多,直径越大,内壁和外壁之间的距离也越大。

MWNTs的直径越大,其比表面积也越小,但其机械性能就越强。

MWNTs和SWNTs相比,其电导率、热导率和力学性能都要略低。

同时,MWNTs相较于SWNTs更便于分散处理,应用更为广泛。

除了单壁和多壁两种结构外,根据碳纳米管的管径、手性和烯结构等进一步可将碳纳米管细分为不同类型,如外径为几百纳米的纳米线状碳纳米管和手性控制的带有特定电学性质的碳纳米管等。

碳纳米管技术在医疗领域的应用研究

碳纳米管技术在医疗领域的应用研究

碳纳米管技术在医疗领域的应用研究随着科技的不断发展,人类对于医疗领域的需求也越来越高。

碳纳米管技术作为一种新兴的技术,已经开始被广泛应用于医疗领域中。

一、碳纳米管基础知识碳纳米管是由碳原子按照一定的方式组成的空心管状结构。

它的壁厚度可以达到纳米级别,而其径线可以达到数百纳米。

碳纳米管的材料具有优异的力学、热力学和电学性能,同时还具有较强的生物相容性和生物分子识别特性。

二、碳纳米管在医疗领域的应用1. 用于药物输送碳纳米管可以用于药物的输送。

由于碳纳米管在生物内部的分子交互作用特殊,因此可以选择性地输送药物到患处,并控制药物的释放时间和速度。

这一技术可以减少药物对人体的副作用,提高药物治疗效果。

2. 用于肿瘤治疗碳纳米管可以被用于肿瘤治疗。

由于碳纳米管可以在肿瘤细胞表面寻找到靶标并识别它们,因此可以将药物直接输送到肿瘤细胞表面,从而发挥更高的治疗效果。

同时,碳纳米管的导热特性也可以被用来高效地杀死肿瘤细胞。

3. 用于成像技术碳纳米管具有较强的光学性能,可以被用于成像技术中。

由于碳纳米管在肿瘤细胞、组织和器官等部分具有较强的光吸收特性,因此可以被用于医学成像,从而实现对病变位置和范围的精准定位。

4. 其他医疗应用此外,碳纳米管还可以用于其他医疗领域的应用。

例如,可以用于人体组织修复、疾病诊断和治疗、生物传感器等。

三、碳纳米管技术的优势与一些传统的医学技术相比,碳纳米管技术具有一些独有的优势。

例如,碳纳米管可以单独或与其他药物、生物分子等复合使用,从而实现更加精准的治疗;碳纳米管还可以通过改变其表面化学结构,从而改变其在生物体内的代谢途径、药物释放速度等;碳纳米管在生物体内的分布和代谢途径也相对较为安全,因此具有较高的生物相容性。

四、碳纳米管技术的风险和挑战碳纳米管技术的应用,虽然具有较多的优点,但是也存在一些风险和挑战。

例如,碳纳米管可能会对生物体造成损伤,并且在代谢过程中会产生一些副产物,因此长期使用可能会对人体产生不良影响。

碳纳米管材料在储能领域中的应用研究

碳纳米管材料在储能领域中的应用研究

碳纳米管材料在储能领域中的应用研究随着全球工业化进程的不断加速,能源的消耗速度呈现出逐年上升的态势。

因此,发展可持续、高效、环保的新能源以及寻找高能量密度、易携带、长寿命的储能材料已成为人们关注的焦点。

碳纳米管材料由于其高比表面积、优异的导电性和良好的力学性能,已被广泛应用于储能领域。

一、碳纳米管的基本特性和应用碳纳米管(Carbon Nanotube,CNT)是由官能化的碳原子构成的中空纳米管,其结构类似于卷曲过的石墨烯。

碳纳米管拥有极高的比表面积,导电性能好,且具有良好的力学性能、高的化学稳定性和优异的热稳定性,因此被广泛应用于能源储存、传输等领域。

目前,碳纳米管主要的应用领域包括电池和超级电容器、储氢材料、储能器件和催化剂等领域。

二、碳纳米管在锂离子电池中的应用目前,锂离子电池是目前最为普遍的储能装置,碳纳米管也被广泛应用于锂离子电池的正负极材料中。

由于碳纳米管具有高比表面积和巨大的孔隙度,能够提供更多的活性空间,因此它在电极材料中的应用大大提高了电极材料的比表面积、电化学性能、导电性能和机械稳定性,改善了电极材料的储能性能。

三、碳纳米管在柔性超级电容器领域中的应用由于碳纳米管具有较大的比表面积和良好的导电性能,因此在柔性超级电容器领域中也有着广泛的应用。

它不仅可以提高电容器的电容量和功率密度,而且还可以有效提高电容器的循环寿命,满足柔性电子类设备对高性能、高安全、 ultra low power consumption的需求。

四、碳纳米管在储氢材料领域中的应用碳纳米管的具有极高的比表面积和良好的导电性,因此在储氢材料领域中也有着应用。

其中一种方法是用氢气吸附到碳纳米管表面,形成一层厚度很薄的氢原子分子层,可以通过氢气在氢分子间扩散和碳纳米管表面的相互作用,将氢分子物理吸附在碳纳米管表面上,起到储存氢气的作用。

五、碳纳米管在燃料电池领域中的应用碳纳米管的表面活性位点、高比表面积以及可控的孔道结构,使其在燃料电池领域中也有着广泛的应用。

碳纳米管催化剂在燃料电池中的应用研究

碳纳米管催化剂在燃料电池中的应用研究

碳纳米管催化剂在燃料电池中的应用研究燃料电池是一种能源转换装置,将化学能直接转化为电能,而不产生有害气体和颗粒物。

随着对能源和环境的日益关注,燃料电池作为一种清洁、高效的能源技术备受研究和关注。

然而,燃料电池的高成本和低耐久性限制了其在实际应用中的广泛推广。

因此,研究人员一直在寻找新的材料和方法来改善燃料电池的性能。

碳纳米管作为一种新型的纳米材料,具有优异的电化学性能和催化活性,因此在燃料电池中的应用前景广泛。

下面将从碳纳米管催化剂的制备、电化学性能和催化机理等方面探讨其在燃料电池中的应用研究。

首先,碳纳米管催化剂的制备方法非常多样化。

传统方法包括化学气相沉积、电化学沉积和热解法等,但这些方法制备的碳纳米管催化剂存在着粒径不均匀、分散性差以及封装问题等缺点。

因此,近年来研究人员提出了许多新颖的制备方法,如溶胶凝胶法、微波辐射法和激光烧结法等。

这些新方法可以制备出具有较高比表面积、较好分散性和较高催化活性的碳纳米管催化剂,从而极大地提高了燃料电池的性能。

其次,碳纳米管作为催化剂在燃料电池中具有优异的电化学性能。

研究表明,碳纳米管催化剂具有较高的电催化活性和良好的电子传导性能,能够有效降低电极的极化和电子传输电阻。

此外,碳纳米管的低吸附能力和较高的导电性能也有助于提高催化剂对燃料反应的催化效果。

因此,将碳纳米管催化剂应用于燃料电池中,可以显著提高燃料的电催化活性和燃料电池的能量转换效率。

另外,碳纳米管催化剂还具有独特的催化机理。

研究发现,碳纳米管的表面活性位点可以吸附和激活燃料分子,从而促进氧化还原反应的进行。

碳纳米管的高比表面积和多孔结构可以提供更多的活性位点,提高催化剂的利用率和稳定性。

此外,碳纳米管还可以通过控制其形貌和结构来调节催化剂的催化活性和选择性。

因此,通过研究碳纳米管的催化机理,可以优化催化剂的设计和制备,提高燃料电池的性能。

然而,碳纳米管催化剂在燃料电池中的应用仍然面临一些挑战。

首先,大规模制备碳纳米管催化剂的成本较高,影响了其商业化应用。

碳纳米管技术的研究和应用前景

碳纳米管技术的研究和应用前景

碳纳米管技术的研究和应用前景随着科技的发展,碳纳米管技术成为新兴领域。

碳纳米管作为一种新型纳米材料,具有优良的导电、导热性能、高强度、轻质、高表面活性等特点,被广泛地应用于能源、材料、电子、生物医学等领域,并且具有非常广阔的应用前景。

一. 碳纳米管的发现1985年,日本科学家Sumio Iijima在透过透射电子显微镜观察相变微结构时,在石墨棒中发现一种空心管状物质,它的直径只有几个纳米,但却非常长,长达数百微米,这就是碳纳米管。

碳纳米管主要由碳原子构成,呈同心圆管状结构,在管壁上以蛇形排列呈单一或多层的结构。

二. 碳纳米管的结构特点碳纳米管是由一层薄而坚韧的碳原子形成的,具有优良的力学稳定性,可以承受高达100Gpa的拉力。

此外,碳纳米管的直径一般在1-100纳米之间,长度可以达到好几个微米,具有高欠垂直度,呈现出一些独特的光学和电学特性。

三. 碳纳米管的制备技术碳纳米管的制备技术目前主要有热解法、甲烷化法、等离子体增强化学气相沉积等。

其中,等离子体增强化学气相沉积技术具有高效率、高质量、可控性强等优点,在制备高质量碳纳米管方面具有较高的研究价值和应用前景。

四. 碳纳米管的应用前景碳纳米管在能源、材料、电子、生物医学等领域均有广泛应用。

其中,在能源领域,碳纳米管可以用于储氢、储能等方面;在材料方面,碳纳米管可以制备出复合材料、纳米复合材料,提高材料的强度、导电、导热性能,被广泛应用于汽车、飞机等领域;在电子方面,碳纳米管可以制备纳米计算机、纳米传感器等应用,也能用于电子显示器件领域;在生物医学方面,碳纳米管可以作为靶向治疗药物所用的载体,以及早期癌症的诊断与治疗。

由此可见,碳纳米管在各个领域都有广泛应用前景。

五. 碳纳米管技术的研究方向碳纳米管技术的研究方向主要有以下几个:1. 碳纳米管的合成和表征;2. 碳纳米管的应用技术和产业化;3. 碳纳米管的毒理学和安全性评价;4. 碳纳米管的功能化和修饰;5. 碳纳米管与其他材料的复合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

碳纳米管及其应用研究
作者:成尔军
来源:《中小企业管理与科技·下旬》2010年第02期
摘要:碳纳米管的发现是碳团簇领域的又一重大科研成果,本文探讨了碳纳米管的结构、特性、活化方法,评述了这种纳米尺寸的新型碳材料在电化学器件、氢气存储、场发射装置、碳纳米管场效应晶体管、催化剂载体、碳纳米管修饰电极领域的应用价值,展望了碳纳米管的介入对全球性物理、化学及材料等学科界所带来的美好前景。

关键词:碳纳米管结构性质应用
1 碳纳米管的发现
1991年,日本NEC科学家Iijima在制取C60的阴极结疤中首次采用高分辨隧道电子显微镜(HRTEM)发现一种外径为515nm、内径213nm、仅由两层同轴类石墨圆柱面叠合而成的碳结构。

进一步的分析表明,这种管完全由碳原子构成,并看成是由单层石墨六角网面以其上某一方向为轴,卷曲360°而形成的无缝中空管。

相邻管子之间的距离约为0.34nm,与石墨中碳原子层与层之间的距离0.335nm相近,所以这种结构一般被称为碳纳米管,这是继C60之后发现的碳的又一同素异形体,是碳团簇领域的又一重大科研成果[1]。

2 碳纳米管的结构
碳纳米管(CNT)又名巴基管,是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级、管子两端基本上都封口)的一维量子材料。

它是由单层或多层石墨片围绕中心轴按一定的螺旋角卷绕而成的无缝、中空的“微管”,每层由一个碳原子通过sp2杂化与周围3个碳原子完全键合后所构成的六边形组成的圆柱面。

根据形成条件的不同,碳纳米管存在多壁碳纳米管(MWNTs)和单壁碳纳米管(SWNTs) 两种形式。

MWNTs一般由几层到几十层石墨片同轴卷绕构成,层间间距为0.34nm左右,其典型的直径和长度分别为 2-30nm0.1-50μm.SWNTs由单层石墨片同轴卷绕构成,其侧面由碳原子六边形排列组成,两端由碳原子的五边形封顶。

管径一般从10-20nm,长度一般可达数十微米,甚至长达20cm[2]。

3 碳纳米管的活化
一般认为,在碳纳米管表面引入一些电活性基团,经过活化才能有较好的电化学响应。

活化的方法一般分为两类:①在制成电极前对碳纳米管进行活化,包括在气相中用空气或等离子体氧化或用酸(主要是浓HNO3)氧化。

以浓HNO3处理碳纳米管的方法是:将碳纳米管在浓硝酸中浸
泡10小时后,100℃浓硝酸回流5-6小时。

再将得到的悬浊液离心分离、烘干,得到粉末状开管
硝基化的碳纳米管。

取1mg分散至3ml的N-N-二甲基甲酰胺(DMF)中,超声分散15分钟,备用。

②制成电极后,用电化学方法进行活化,即将碳纳米管电极在一定溶液中(如磷酸盐缓冲溶液)于一定电位范围内循环扫描。

经过活化以后,根据所用介质的不同,可以在碳管表面引入含氧、甚至含硫的基团,一般包括羟基、羰基、羧基、酚类和醌类化合物等,这些电活性基团可以催化或促进其他物质的电子传递反应。

4 碳纳米管的性质
4.1 奇异的导电性碳纳米管的性质与其结构密切相关。

由于碳纳米管的结构与石墨的片层结构相同,所以具有很好的电学性能。

理论预测其导电性能取决于其管径和管壁的螺旋角。

当CNTs的管径大于6mm时,导电性能下降;当管径小于6mm时,CNTs可以被看成具有良好导电性能的一维量子导线。

4.2优异的力学性质除了奇特的导电性质之外,碳纳米管还有非凡的力学性质。

理论计算表明,碳纳米管应具有极高的强度和极大的韧性。

由于碳纳米管中碳原子间距短、单层碳纳米管
的管径小,使得结构中的缺陷不易存在,因此单层碳纳米管的杨氏模量据估计可高达5太帕,其强度约为钢的100倍,而密度却只有钢的1/6。

因此,碳纳米管被认为是强化相的终极形式,人们估
计碳纳米管在复合材料中的应用前景将十分广阔。

4.3良好的热学性能一维管具有非常大的长径比,因而大量热是沿着长度方向传递的,通过
合适的取向,这种管子可以合成高各向异性材料。

虽然在管轴平行方向的热交换性能很高,但在其垂直方向的热交换性能较低。

纳米管的横向尺寸比多数在室温至150℃电介质的品格振动波长大一个量级,这使得弥散的纳米管在散布声子界面的形成中是有效的,同时降低了导热性能。

适当排列碳纳米管可得到非常高的各向异性热传导材料。

4.4优良的储氢性能碳纳米管的中空结构,以及较石墨(0.335nm)略大的层间距(0.343nm),是具有更加优良的储氢性能,也成为科学家们关注的焦点。

1997年,A. C. Dillon对单壁碳纳米管(SWNT)的储氢性能做了研究,SWNT在0℃时,储氢量达到了5%。

DeLuchi指出:一辆燃料机车行驶500km,消耗约31kg的氢气,以现有的油箱来推算,需要氢气储存的重量和体积能量密度达
到65%和62kg/m3。

这两个结果大大增加了人们对碳纳米管储氢应用前景的希望。

5碳纳米管的应用
由于碳纳米管具有优良的电学和力学性能,被认为是复合材料的理想添加相。

碳纳米管作
为加强相和导电相,在纳米复合材料领域有着巨大的应用潜力。

5.1 电化学器件碳纳米管具有非常高的比表面积、导电性能和良好的机械性能,是电化学领域所需的理想材料。

碳纳米管电容器具有非常好的放电性能,能在几毫秒的时间内将所存储的
能量全部放出,这一优越性能已在混合电力汽车中开始实验使用。

由于可在瞬间释放巨大电流,为汽车瞬间加速提供能量,同时也可用于风力发电系统稳定电压和小型太阳能发电系统的能量存储。

锂离子电池是碳纳米管应用研究领域之一。

碳纳米管锂离子电池容量大,放电速度快,充放电容量达到1000mA.h/g,大大高于石墨(372mA.h/g)和球磨石墨粉(708mA.h/g)。

5.2氢气存储碳纳米管储氢是具有很大发展潜力的应用领域之一,室温常压下,约2/3的氢能从碳纳米管中释放出来,而且可被反复使用。

碳纳米管储氢材料在燃料电池系统中用于氢气存储,对电动汽车的发展具有非常重要的意义,可取代现用高压氢气罐,提高电动汽车安全性。

5.3 场发射装置学术和工业界对碳纳米管电子器件的研究主要集中在场发射管(电子枪),其主要可应用在场发射平板显示器(FED)、荧光灯、气体放电管和微波发生器。

碳纳米管平板显示器是最具诱人应用潜力和商业价值的领域之一。

5.4 碳纳米管场效应晶体管碳纳米管场效应晶体管的研制成功有力地证实了碳纳米管作为硅芯片继承者的可行性。

尤其是目前,在科学家再也无法通过缩小硅芯片的尺寸来提高芯片速度的情况下,纳米管的作用将更为突出。

5.5 催化剂载体[3]碳纳米管由于尺寸小,比表面积大,表面的键态和颗粒内部不同,表面原子配位不全等导致表面的活性位置增加,是理想的催化剂载体材料。

5.6 碳纳米管修饰电极碳纳米管对生物分子活性中心的电子传递具有促进作用,能够提高酶分子的相对活性。

与其它碳电极相比,碳纳米管电极由于其独特的电子特性和表面微结构,可以大大提高电子的传递速度,表现出优良的电化学性能。

蔡称心等[4]报道了HRP在碳纳米管(CNT)修饰GC电极表面的固定及直接电化学。

尹峰等[5]将多壁碳纳米管和聚丙烯胺层层自组装制得葡萄糖生物传感器,其灵敏度高,抗干扰能力强。

正因为碳纳米管与生物材料有着特殊的相互作用,人们已经将碳纳米管应用到化学及生物分析中,目前国内外已有很多学者对碳纳米管在生物传感器领域的应用进行了大量的理论和实践研究,并取得了突破性的进展,充分显示了碳纳米管作为新型电极材料的应用前景。

参考文献:
[1]王丽江,陈松月,刘清君等.纳米技术在生物传感器及检测中的应用[J].传感技术学
报.2006.19(3).581-587.
[2]高盐生,董江庆,徐晓燕.纳米技术在生物传感器中的研究应用[J].江苏化工.2008.36(3).4-6.
[3]王敏炜,李凤仪,彭年才.碳纳米管—新型的催化剂载体[J].新型碳材料.2002.17.75-79.
[4]蔡称心,陈静.碳纳米管电极上辣根过氧化物酶的直接电化学[J].化学学报.2004.62(3).335-340.
[5]尹峰,赵紫霞,吴宝艳.基于多壁碳纳米管和聚丙烯胺层层自组装的葡萄糖生物传感器[J].分析化学.2007.35(7).1021-1024.。

相关文档
最新文档