碳纳米管的性质与应用

合集下载

碳纳米管材料的性质分析与应用

碳纳米管材料的性质分析与应用

碳纳米管材料的性质分析与应用碳纳米管是一种由碳原子组成的纳米材料,具有高强度、高导电性和高导热性等特点,因此受到了广泛关注。

本文将讨论碳纳米管材料的性质分析与应用。

一、碳纳米管的结构和性质分析碳纳米管的结构类似于由碳原子组成的一个或多个圆柱形,其直径大约在1到100纳米之间,长度可以达到数十微米。

碳纳米管具有很强的机械强度和稳定性,原因在于其碳原子之间形成了一种非常稳定的共价键结构。

在电学方面,碳纳米管也表现出极好的导电性能,从而在电子器件和导电材料中发挥了重要作用。

此外,碳纳米管还具有热稳定性、化学稳定性以及低摩擦等优异特性,使其在仿生学、材料学和机械工程等领域具有广泛的应用前景。

二、碳纳米管在电子器件中的应用由于碳纳米管的半导体性质和导电性能,因此在纳米电子学研究领域中得到了广泛应用。

最近的研究表明,碳纳米管可以作为半导体材料制备场效应晶体管,并在微电子器件和集成电路中发挥重要作用。

碳纳米管场效应晶体管可以大大提高电路的响应速度和功率效率,此外还具有在高电压下良好的稳定性。

由于碳纳米管的微观尺寸限制了电路的噪声限制,从而提高了电路的信噪比。

三、碳纳米管在生物医学中的应用碳纳米管在生物医学中的应用可追溯到2002年,研究表明碳纳米管在生物医学中的应用主要侧重于药物释放、生物成像和作为实验室生物学中的牵引工具等方面。

其中,碳纳米管的药物释放功能是最有发展前景的应用之一。

碳纳米管可以通过修饰表面分子和光敏剂等手段,控制药物的释放速度和药效,从而有效地治疗癌症和其他疾病。

四、碳纳米管在材料加固中的应用碳纳米管的高强度和稳定性也被广泛应用于材料加固领域,例如高强度的复合材料和防弹衣等。

由于碳纳米管的高强度和低密度,因此对于机载、航空和装甲等应用,可以降低材料的重量,提高其效率。

五、碳纳米管在环境治理中的应用碳纳米管还可以作为环境治理的重要工具,如有机污染物的去除和水资源的净化等。

例如,研究表明碳纳米管可以通过吸附和光催化降解机制,去除水中的有机污染物。

碳纳米管的性质与应用

碳纳米管的性质与应用

碳纳米管的性质与应用碳纳米管是一种研究热点,同时也是一种具有广泛应用前景的纳米材料。

碳纳米管具有很多优异的性质,例如高度的机械强度、热导率、光学性质和电学性质等,这些性质使得碳纳米管在各领域中得到了广泛的关注和研究。

本文将从性质和应用两方面来探讨碳纳米管的特点。

一、碳纳米管的性质1. 机械性质碳纳米管具有非常高的机械强度,这是由于其形成时的晶格缺陷极少,且由碳原子构成的共价键是相当强的。

研究表明,碳纳米管的强度可以达到200GPa以上,因此在强度要求高的场合,例如航天航空领域、材料制造业及求医领域等等,碳纳米管都有广泛的应用。

2. 热学性质碳纳米管具有良好的热传导性质,由于它们的长度是大于直径的,因此导热主要沿着管轴方向,这种长程导热机制使得碳纳米管的热导率非常高,可以高达3000W/mK。

同时,其能够承受极高的温度,可以长期工作在1000℃以上的高温环境中,故在制造高精度、高稳定性元器件,以及制造高温传感器方面都有广泛应用。

3. 光学性质碳纳米管具有优良的光学性质,具有很高的吸收能力和强烈的荧光特性。

碳纳米管的宽带能使其吸收并辐射出不同波长的光,因此在生命科学、光电器件等领域得到广泛的应用。

4. 电学性质碳纳米管是一种非常具有潜力的电子材料,具有半导体和金属的特性。

这种双重的特性,使得碳纳米管可用于制造场效应晶体管、电化学电容器、电化学传感器等,同时,在信息技术、存储技术、生物医学等领域,碳纳米管也有着广泛的应用。

二、碳纳米管的应用1. 生物医学碳纳米管在生物医学中的应用非常广泛,主要包括药物传递、成像、生物分析及治疗等方面。

碳纳米管的生物相容性好,特异性高,可以将药物包载于碳纳米管表面,通过靶向技术将药物输送至受体细胞表面,从而达到治疗的目的。

此外,碳纳米管还能用于医学检测成像,如:磁共振成像、X射线成像、核酸检测等疾病诊断。

2. 能源材料由于碳纳米管的高热传导、高机械强度、高表面积和优质导体性质,使得碳纳米管可以用于电化学能源存储、传感及转换。

碳纳米管的性能及应用领域

碳纳米管的性能及应用领域

碳纳米管的性能及应用领域碳纳米管作为一维纳米材料,重量轻,六边形结构连接完美,具有很多异常的力学、电学和化学性能。

近些年随着碳纳米管及纳米材料讨论的深入其广阔的应用前景也不断地呈现出来。

一、碳纳米管的性能1.1力学性能不同类型的碳纳米管碳纳米管具有良好的力学性能,碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸。

碳纳米管的结构虽然与高分子材料的结构相像,但其结构却比高分子材料稳定得多。

碳纳米管是目前可制备出的具有最高比强度的材料。

若将以其他工程材料为基体与碳纳米管制成复合材料,可使复合材料表现出良好的强度、弹性、抗疲乏性及各向同性,给复合材料的性能带来极大的改善。

1.2导电性能碳纳米管制成的透亮导电薄膜碳纳米管上碳原子的P电子形成大范围的离域键,由于共轭效应显著,碳纳米管具有一些特别的电学性质。

碳纳米管具有良好的导电性能,由于碳纳米管的结构与石墨的片层结构相同,所以具有很好的电学性能。

对于一个给定的纳米管,在某个方向上表现出金属性,是良好的导体,否则表现为半导体。

对于这个的方向,碳纳米管表现出良好的导电性,电导率通常可达铜的1万倍。

1.3传热性能采纳了碳纳米管涂层的热水器内胆碳纳米管具有良好的传热性能,碳纳米管具有特别大的长径比,因而其沿着长度方向的热交换性能很高,相对的其垂直方向的热交换性能较低,通过合适的取向,碳纳米管可以合成高各向异性的热传导材料。

另外,碳纳米管有着较高的热导率,只要在复合材料中掺杂微量的碳纳米管,该复合材料的热导率将会可能得到很大的改善。

二、碳纳米管的应用2.1电子领域碳纳米电子管(CNTS)是一种具有显著电子、机械和化学特性的独特材料。

其导电本领不同于一般的导体。

性能方面的区分取决于应用,或许是优点,或许是缺点,或许是机会。

在一理想纳米碳管内,电传导以低温漂轨道传播的,假如电子管能无缝交接,低温漂是计算机芯片的优点。

诸如电连接等的混乱极大地修改了这行为。

对十较慢的模拟信号的处理速度,四周环围着平向球分子的碳纳米管充当传播者已被试验证明。

新材料科学中的碳纳米管材料

新材料科学中的碳纳米管材料

新材料科学中的碳纳米管材料碳纳米管是一种由碳原子构成的管状结构,在新材料科学中具有重要的应用价值。

碳纳米管的特殊结构使得它具有许多独特的性质和优异的物理化学性能,有着广泛的应用范围和前景。

一、基本介绍碳纳米管是一种类似于石墨烯的碳材料,其结构是由碳原子构成的具有管状形态的微观结构。

碳纳米管的直径在纳米级别,一般为1纳米到50纳米之间。

它的长度可以是数十微米到数百微米,甚至可以达到数厘米以上。

碳纳米管具有很多独特的性质,比如强度高、导电性好、导热性好、化学稳定性强等等。

这些性质决定了碳纳米管可以广泛应用于电子、机械、光学、化学等领域。

二、应用领域1.电子领域在电子领域中,碳纳米管作为一种新型的半导体材料,具有很多优异的性质,如高电导率、高耐电压性、超短开关时间等。

这些特点使得碳纳米管可以广泛应用于晶体管、场效应晶体管、逆变器、传感器等电子器件中。

2.机械领域在机械领域中,碳纳米管有着很高的强度和韧性,可以被用于制作高强度的机械零部件。

例如,碳纳米管可以制成强度高、重量轻、耐磨损的轮胎、杆、桥梁等。

此外,碳纳米管还可以制成高性能的自行车、汽车、飞机等机械设备。

3.光学领域在光学领域中,碳纳米管可以制成具有高透明度和高导电性的薄膜,可以被应用于太阳能电池板、智能窗等光学器件中。

4.化学领域在化学领域中,碳纳米管可以被用作催化剂、吸附剂和分离材料。

例如,碳纳米管可以被用来催化氢气的产生和净化工业废气。

此外,碳纳米管还可以被用来制备高效的分离膜,用于饮用水的净化。

三、未来发展趋势由于碳纳米管具有独特的物理化学性质,有着广泛的应用前景,因此在近年来得到了广泛的关注。

未来,碳纳米管的发展将主要集中在以下几个方面:1.化学合成方法的改进当前,碳纳米管的主要制备方法是电弧放电法、激光热解法和化学气相沉积法。

然而这些方法存在制备成本高、质量不稳定、难于大规模制备等问题。

因此,未来的发展方向是改进或发展出更简单、更可控性强、更可扩展的制备方法,以适应未来碳纳米管的大规模制备需求。

碳纳米管简介

碳纳米管简介

加强基础研究和创新能力
深入研究结构与性能关系
进一步揭示碳纳米管的微观结构和性 能之间的关联,为新应用提供理论支 持。
探索新的合成方法
加强跨学科合作
与化学、物理、生物等学科进行交叉 合作,拓展碳纳米管的应用领域。
开展新合成方法的研究,实现碳纳米 管的绿色合成和可控合成。
建立产业联盟和创新平台
促进产学研合作
导电材料
碳纳米管具有优异的导电性能,可作为复合材料的导电填料,提高材料的导电性能。
半导体领域
晶体管
碳纳米管具有优异的半导体性能,可 用于制造高性能晶体管,提高集成电 路的性能和集成度。
传感器
碳纳米管具有较高的化学敏感性和光 电响应性,可用于制造高性能传感器 ,用于环境监测、生物医学等领域。
纳米电子领域
碳纳米管的应用领域
电池领域
电池电极材料
碳纳米管具有优异的导电性能和比表 面积,可作为高性能电池电极材料, 提高电池的能量密度和充放电效率。
电池隔膜材料
碳纳米管具有较高的机械强度和化学 稳定性,可用于制造高性能电池隔膜 ,提高电池的安全性和稳定性。
复合材料领域
增强材料
碳纳米管具有优异的力学性能和化学稳定性,可作为复合材料的增强剂,提高材料的强度和韧性。
化学反应性
碳纳米管具有较高的化学反应性,可以在高温下与多种氧化剂反应,也可以在催化剂的作 用下进行加氢反应。此外,碳纳米管还可以通过表面修饰改性来提高其化学反应性和相容 性。
表面基团
碳纳米管的表面可以含有多种基团,如羧基、羟基、羰基和环氧基等。这些基团的存在会 影响碳纳米管的化学反应性和相容性。
稳定性
碳纳米管简介
汇报人: 2023-12-15

催化剂 碳纳米管

催化剂 碳纳米管

催化剂碳纳米管碳纳米管是一种具有特殊结构和优异性能的催化剂。

它由碳原子构成,形成了空心的纳米管状结构。

碳纳米管具有很高的比表面积和较好的导电性、导热性,使其在催化领域有着广泛应用。

碳纳米管作为催化剂,具有许多独特的特性。

首先,它具有优异的催化活性和选择性。

由于其特殊的结构,碳纳米管能够提供丰富的活性位点,使其能够高效催化各种反应。

其次,碳纳米管具有良好的稳定性和重复使用性。

与其他催化剂相比,碳纳米管在催化反应中表现出较高的稳定性,能够长时间保持催化活性,并且可以通过简单的再生步骤实现重复使用。

此外,碳纳米管还具有较好的抗毒性和抗中毒性能,能够抵御催化反应中产生的有害物质的影响。

碳纳米管在催化领域有着广泛的应用。

首先,碳纳米管可以用作电催化剂。

由于其良好的导电性和高比表面积,碳纳米管可以作为电催化剂用于电化学反应,如燃料电池和电解水制氢等。

其次,碳纳米管还可以用作气体催化剂。

由于其空心的纳米管状结构,碳纳米管能够提供更多的活性位点,使其在气体催化反应中表现出较高的催化性能。

此外,碳纳米管还可以用于液相催化反应和固相催化反应等。

在催化剂研究领域,碳纳米管的应用前景十分广阔。

目前,研究人员正在不断探索碳纳米管的催化性能和应用。

通过调控碳纳米管的结构、形貌和表面性质,可以进一步提高其催化活性和选择性。

此外,还可以将碳纳米管与其他功能材料相结合,形成复合催化剂,以进一步拓展其应用领域。

碳纳米管作为一种特殊的催化剂,具有独特的结构和优异的性能。

它在催化领域有着广泛的应用,并且具有很大的发展潜力。

通过进一步研究和探索,相信碳纳米管催化剂将在未来发挥更大的作用,为人类社会的发展做出更大的贡献。

碳纳米管材料的性质及应用

碳纳米管材料的性质及应用

碳纳米管材料的性质及应用近年来,碳纳米管作为一种神奇的新材料,逐渐成为了科学研究及工程应用中备受瞩目的材料之一。

碳纳米管具有非常出色的力学、电学和光学性能,因此被广泛地应用于电子器件、太阳能电池以及生物医学领域等高新技术领域。

本文将探讨碳纳米管材料的性质及应用领域。

一、碳纳米管的基本结构和性质1. 碳纳米管的结构和尺寸碳纳米管是由由单层或多层石墨烯卷曲而成的纳米管。

相对于传统的纤维素和聚酯纤维,碳纳米管的直径非常小,一般在1-50纳米之间,长度通常为数百微米到几毫米,甚至达到厘米级别。

2. 碳纳米管的力学性质碳纳米管具有很强的力学性能,其刚度可媲美钢铁,但密度仅为碳钢的四分之一。

因此,碳纳米管被广泛应用于强度要求高、重量要求轻的领域,如太空探索领域和航空航天设备领域等。

3. 碳纳米管的电学性质碳纳米管在电学特性方面表现非常突出,可以用来制作复杂的纳米电子器件。

碳纳米管的电学性能非常优异,主要表现在很高的电导率、稳定性和热传导率等方面。

可以将其应用于半导体器件、触控屏幕、柔性电路板等领域。

4. 碳纳米管的光学性质碳纳米管的光学性能是其应用领域之一。

由于碳纳米管的直径非常小,因此对光的吸收和散射产生了很特殊的影响。

例如,碳纳米管可以用于太阳电池领域,能够将大量光线转化为电能。

二、碳纳米管的应用领域1. 碳纳米管的生物医学应用碳纳米管在生物医学领域中应用广泛,主要包括抗肿瘤疗法、药物载体、病菌检测,以及细胞图像学等方面。

与传统的药物相比,碳纳米管具有更好的生物相容性、渗透性和药物传递性等特性。

2. 碳纳米管在电子领域的应用碳纳米管在电子领域的应用非常广泛,包括晶体管、纳米电路板、半导体器件等。

由于碳纳米管的电导率极高,因此可以用来制作高性能的传输线路和电子器件。

3. 碳纳米管的材料增强应用碳纳米管可以应用于增强其他材料的性能,如增强聚合物、金属基复合材料的强度和硬度等。

这不仅可以提高材料的热稳定性和抗氧化性,还可以延长材料的寿命。

碳纳米管性质及应用

碳纳米管性质及应用

碳纳米管性质及应用摘要:碳纳米管的发现是现代科学界的重大发现之一。

由于碳纳米管具有特殊的导电性能、力学性质及物理化学性质等,故其在许多领域具有其广阔的应用前景,自问世以来即引起广泛关注。

目前,国内外有许多科学家对碳纳米管进行研究,科研成果颇丰。

本文简单综述碳纳米管的基本性质及应用。

关键词:碳纳米管;结构;制备;性质;应用1 碳纳米管的发现1991年,日本NEC科学家Lijima在制取C60的阴极结疤中首次采用高分辨隧道电子显微镜(HRTEM)发现一种外径为515nm、内径213nm、仅由两层同轴类石墨圆柱面叠合而成的碳结构。

进一步的分析表明,这种管完全由碳原子构成,并看成是由单层石墨六角网面以其上某一方向为轴,卷曲360°而形成的无缝中空管。

相邻管子之间的距离约为0.34nm,与石墨中碳原子层与层之间的距离0.335nm相近,所以这种结构一般被称为碳纳米管,这是继C60之后发现的碳的又一同素异形体,是碳团簇领域的又一重大科研成果[1]。

2 碳纳米管的结构碳纳米管(CNT)又名巴基管,是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级、管子两端基本上都封口)的一维量子材料。

它是由单层或多层石墨片围绕中心轴按一定的螺旋角卷绕而成的无缝、中空的“微管”,每层由一个碳原子通过sp2杂化与周围3个碳原子完全键合后所构成的六边形组成的圆柱面。

根据形成条件的不同,碳纳米管存在多壁碳纳米管(MWNTs)和单壁碳纳米管(SWNTs) 两种形式。

MWNTs一般由几层到几十层石墨片同轴卷绕构成,层间间距为0.34nm左右,其典型的直径和长度分别为 2-30nm0.1-50μm.SWNTs由单层石墨片同轴卷绕构成,其侧面由碳原子六边形排列组成,两端由碳原子的五边形封顶。

管径一般从10-20nm,长度一般可达数十微米,甚至长达20cm[2]。

3碳纳米管的制备碳纳米管的合成技术主要有:电弧法、激光烧蚀(蒸发)法、催化裂解或催化化学气相沉积法(CCVD),以及在各种合成技术基础上产生的定向控制生长法等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

碳纳米管的性质与应用【摘要】本文主要介绍了碳纳米管的结构特点,制备方法,特殊性质,由于碳纳米管独特性质而产生的广泛应用,并对其前景进行展望。

【关键词】碳纳米管场发射复合材料优良性能【前言】自日本NEC科学家Lijima发现碳纳米管以来,碳纳米管研究一直是国际新材料领域研究的热点。

由于碳纳米管具有特殊的导电性能、力学性质及物理化学性质等,故其在许多领域具有其广阔的应用前景,自问世以来即引起广泛关注。

目前,国内外有许多科学家对碳纳米管进行研究,科研成果颇丰,尤其是碳纳米管在复合材料、储氢及催化等领域的应用。

【正文】一、碳纳米管的结构碳纳米管中碳原子以sp2杂化为主,同时六角型网格结构存在一定程度的弯曲,形成空间拓扑结构,其中可形成一定的sp3杂化键,即形成的化学键同时具有sp2和sp3混合杂化状态,而这些p 轨道彼此交叠在碳纳米管石墨烯片层外形成高度离域化的大π 键,碳纳米管外表面的大π 键是碳纳米管与一些具有共轭性能的大分子以非共价键复合的化学基础[1]。

对多壁碳纳米管的光电子能谱研究结果表明,不论单壁碳纳米管还是多壁碳纳米管,其表面都结合有一定的官能基团,而且不同制备方法获得的碳纳米管由于制备方法各异,后处理过程不同而具有不同的表面结构。

一般来讲,单壁碳纳米管具有较高的化学惰性,其表面要纯净一些,而多壁碳纳米管表面要活泼得多,结合有大量的表面基团,如羧基等。

以变角X 光电子能谱对碳纳米管的表面检测结果表明,单壁碳纳米管表面具有化学惰性,化学结构比较简单,而且随着碳纳米管管壁层数的增加,缺陷和化学反应性增强,表面化学结构趋向复杂化。

内层碳原子的化学结构比较单一,外层碳原子的化学组成比较复杂,而且外层碳原子上往往沉积有大量的无定形碳。

由于具有物理结构和化学结构的不均匀性,碳纳米管中大量的表面碳原子具有不同的表面微环境,因此也具有能量的不均一性[2]。

碳纳米管不总是笔直的,而是局部区域出现凸凹现象,这是由于在六边形编制过程中出现了五边形和七边形。

如果五边形正好出现在碳纳米管的顶端,即形成碳纳米管的封口。

当出现七边形时纳米管则凹进。

这些拓扑缺陷可改变碳纳米管的螺旋结构,在出现缺陷附近的电子能带结构也会发生改变。

另外,两根毗邻的碳纳米管也不是直接粘在一起的,而是保持一定的距离。

二、碳纳米管的制备方法常用的碳纳米管制备方法主要有:电弧放电法、激光烧蚀法、化学气相沉积法(碳氢气体热解法)、固相热解法、辉光放电法、气体燃烧法以及聚合反应合成法等。

2.1 电弧法石墨电弧法是最早的、最典型的碳纳米管合成方法。

其原理为电弧室充惰性气体保护,两石墨棒电极靠近,拉起电弧,再拉开,以保持电弧稳定。

放电过程中阳极温度相对阴极较高,所以阳极石墨棒不断被消耗,同时在石墨阴极上沉积出含有碳纳米管的产物[3]。

这种方法具有简单快速的特点,碳纳米管能够最大程度地石墨化,管缺陷少。

但存在的缺点是:电弧放电剧烈,难以控制进程和产物,合成物中有碳纳米颗粒、无定形炭或石墨碎片等杂质,杂质很难分离。

2.2 催化裂解法催化裂解法亦称为化学气相沉积法,通过烃类或含碳氧化物在催化剂的催化下裂解而成。

其基本原理为将有机气体(如乙炔、乙烯等)混以一定比例的氮气作为压制气体,通入事先除去氧的石英管中,在一定的温度下,在催化剂表面裂解形成碳源,碳源通过催化剂扩散,在催化剂后表面长出碳纳米管,同时推着小的催化剂颗粒前移[4]。

直到催化剂颗粒全部被石墨层包覆,碳纳米管生长结束。

该方法的优点是:反应过程易于控制,设备简单,原料成本低,可大规模生产,产率高等。

缺点是:反应温度低,碳纳米管层数多,石墨化程度较差,存在较多的结晶缺陷,对碳纳米管的力学性能及物理化学性能会有不良的影响。

2.3 激光蒸发法1996年,诺贝尔化学奖获得者之一的Smalley研究小组首次利用激光蒸发法合成了纳米碳管。

此后,激光蒸发法成为制备单壁碳纳米管的有效方法之一[5]。

此法在氩气气流中,用双脉冲激光蒸发含有Fe/Ni(或Co/Ni)的碳靶方法制备出直径分布范围在0.81—1.51nm的单壁碳纳米管。

该法制备的碳纳米管纯度达70%~90%,基本不需要纯化,但其设备复杂、能耗大、投资成本高。

2.4 其他合成方法近几年来,科研工作者在改进传统制备技术的同时,探索和研究出了一系列新型碳纳米管的制备技术,其中有水热法、火焰法、超临界流体技术、水中电弧法、固相热解法、太阳能法等。

较典型的如:1996年Yamamoto等人在高真空(5.33×10-3Pa)下通过氩离子束对非晶碳进行辐射的方法获得了较纯的纳米碳管。

Chemozatonskii等人通过电子束蒸发涂覆在Si基体上的石墨的方法制备了规则排列的纳米碳管。

Feldman等人利用电解碱金属卤化物的方法制备了直径为30~50 nm的多壁纳米碳管目前,中国的碳纳米管生产技术在国际具有一定的优势,如深圳纳米港公司拥有了具有完全自主知识产权的沸腾床催化热解法生产工艺和装置,清华大学和中科院等科研院所已具备一定规模化生产的条件。

三、碳纳米管的性质3.1 力学由于碳纳米管中碳原子采取sp2杂化,相比sp3杂化,sp2杂化中s轨道成分比较大,使碳纳米管具有高模量和高强度。

碳纳米管具有良好的力学性能,CNTs抗拉强度达到50~200GPa,是钢的100倍,密度却只有钢的1/6,至少比常规石墨纤维高一个数量级;它的弹性模量可达1TPa,与金刚石的弹性模量相当,约为钢的5倍。

对于具有理想结构的单层壁的碳纳米管,其抗拉强度约800GPa。

碳纳米管的结构虽然与高分子材料的结构相似,但其结构却比高分子材料稳定得多。

碳纳米管是目前可制备出的具有最高比强度的材料。

若将以其他工程材料为基体与碳纳米管制成复合材料, 可使复合材料表现出良好的强度、弹性、抗疲劳性及各向同性,给复合材料的性能带来极大的改善[6]。

碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸。

在工业上常用的增强型纤维中,决定强度的一个关键因素是长径比,即长度和直径之比。

材料工程师希望得到的长径比至少是20:1,而碳纳米管的长径比一般在1000:1以上,是理想的高强度纤维材料。

2000年10月,美国宾州州立大学的研究人员称,碳纳米管的强度比同体积钢的强度高100倍,重量却只有后者的1/6到1/7。

碳纳米管因而被称“超级纤维”。

莫斯科大学的研究人员曾将碳纳米管置于1011 MPa的水压下(相当于水下10000米深的压强),由于巨大的压力,碳纳米管被压扁。

撤去压力后,碳纳米管像弹簧一样立即恢复了形状,表现出良好的韧性。

这启示人们可以利用碳纳米管制造轻薄的弹簧,用在汽车、火车上作为减震装置,能够大大减轻重量。

3.2 导电碳纳米管上碳原子的P电子形成大范围的离域π键,由于共轭效应显著,碳纳米管具有一些特殊的电学性质。

碳纳米管具有良好的导电性能,由于碳纳米管的结构与石墨的片层结构相同,所以具有很好的电学性能。

理论预测其导电性能取决于其管径和管壁的螺旋角。

当CNTs的管径大于6nm时,导电性能下降;当管径小于6nm时,CNTs可以被看成具有良好导电性能的一维量子导线。

有报道说Huang通过计算认为直径为0.7nm的碳纳米管具有超导性,尽管其超导转变温度只有1.5×10-4K,但是预示着碳纳米管在超导领域的应用前景[7]。

常用矢量Ch表示碳纳米管上原子排列的方向,其中Ch=na1+ma2,记为(n,m)。

a1和a2分别表示两个基矢。

(n,m)与碳纳米管的导电性能密切相关。

对于一个给定(n,m)的纳米管,如果有2n+m=3q(q为整数),则这个方向上表现出金属性,是良好的导体,否则表现为半导体。

对于n=m的方向,碳纳米管表现出良好的导电性,电导率通常可达铜的1万倍。

3.3传热碳纳米管具有良好的传热性能,CNTs具有非常大的长径比,因而其沿着长度方向的热交换性能很高,相对的其垂直方向的热交换性能较低,通过合适的取向,碳纳米管可以合成高各向异性的热传导材料。

另外,碳纳米管有着较高的热导率,只要在复合材料中掺杂微量的碳纳米管 ,该复合材料的热导率将会可能得到很大的改善。

3.4其他碳纳米管还具有光学和储氢[8]等其他良好的性能,正是这些优良的性质使得碳纳米管被认为是理想的聚合物复合材料的增强材料。

四、碳纳米管的应用1 在复合材料领域内的应用碳纳米管的性能优于当前的任何纤维,它既具有碳纤维的固有性质,又具有金属材料的导电导热性,陶瓷材料的耐热耐蚀性,纺织纤维的柔软可编性,以及高分子材料的轻度易加工性,是一种一材多能和一材多用的功能材料和结构材料,与高分子材料复合时,会形成完整的结合界面,得到性能优异的复合材料,表现出极好的强度、弹性、抗疲劳性、抗静电性、吸收微波性等优异性能。

碳纳米管复合材料的优异性能可使其广泛应用于塑料、电磁屏蔽材料、合成纤维等诸多行业。

基于碳纳米管的优良力学性能可以将其作为结构复合材料的增强剂。

初步研究表明,环氧树脂和碳纳米管之间可以形成数百兆帕的界面强度。

也可作为金属的增强材料来提高金属的强度、硬度、耐摩擦、磨损性能以及热稳定性等。

在适当的淬火工艺下,碳纳米管复合材料的硬度可达到HRC65,比相同工艺下的普通铁碳合金的硬度高出5~10HRC[9]。

在高分子材料中只要加入少量的碳纳米管,其电阻将会降低3个数量级以上,使其具有抗静电功能。

因而,碳纳米管可用于静电消除材料。

碳纳米管用于电子设备外壳可消除外部静电对设备的干扰,保证电子设备正常工作。

将碳纳米管均匀地扩散到塑料中,可获得强度更高并具有导电性能的塑料,可用于静电喷涂材料。

且碳纳米管有较大的长径比,在塑料熔体中有相互缠结成三维网络结构的趋势,用量在质量分数约2%时,塑料具有良好的导电性,因而不会影响塑料的模塑性、强度和表面光洁度及其它性能。

目前高档汽车的塑料零件由于采用了这种材料取代原用的工程塑料,简化了制造工艺,降低了成本,并获得形状更复杂、强度更高、表面更美观的塑料零部件。

碳纳米管具有较强的宽带微波吸收性能、重量轻、导电性可调变、高温抗氧化性能强和稳定性好等优点,因而它是一种有前途的理想微波吸收剂,可用于隐形材料、电磁屏蔽材料或暗室吸波材料。

由于碳纳米管的纳米微粒尺寸远小于红外及雷达波波长,所以纳米微粒材料对这种波的透过率比常规材料要强得多,大大减少了波的反射率,使得红外探测器和雷达接收到的反射信号变得很微弱,从而达到隐身的作用。

另外,纳米微粒材料的比表面积比常规粗粉大3-4个数量级,对红外光和电磁波的吸收率也比常规材料大得多,这就使得红外探测器及雷达得到的反射信号强度大大降低,因此很难发现被探测目标,起到了隐身作用,可用于隐形飞机等电子武器装备。

接收到的反射信号变得很微弱,从而达到隐身的作用。

相关文档
最新文档