碳纳米管及其应用
碳纳米管的制备方法和应用

碳纳米管的制备方法和应用碳纳米管是由纳米级的碳原子构成的一种纳米材料,具有独特的物理和化学性质,被广泛应用于各个领域。
本文将探讨碳纳米管的制备方法以及其在材料科学、电子学和生物医学中的应用。
一、碳纳米管的制备方法目前,常见的碳纳米管制备方法主要有化学气相沉积法、电化学沉积法、电弧放电法和碳热还原法等。
化学气相沉积法是制备碳纳米管最常用的方法之一。
该方法利用金属催化剂(如铁、铜等)和含碳的气体(如一氧化碳、甲烷等)在高温下反应,生成碳纳米管。
这种方法可以控制碳纳米管的尺寸和结构,制备出高质量的碳纳米管。
电化学沉积法是一种较为简单和经济的制备方法。
通过在电极表面施加电压,使金属离子在电极上还原并沉积成碳纳米管。
这种方法可以在常温下进行,对环境友好,但产出的碳纳米管质量较低。
电弧放电法是一种高温高压条件下制备碳纳米管的方法。
通过在金属电极之间施加高电压,形成电弧放电,使电极表面的碳物质蒸发并在高温高压下形成碳纳米管。
这种方法制备出的碳纳米管尺寸较大,结构较不规则。
碳热还原法是使用碳源将金属氧化物还原成金属,并在高温下生成碳纳米管。
这种方法能够制备出高纯度的碳纳米管,但操作条件较为复杂。
二、碳纳米管在材料科学中的应用由于碳纳米管具有优异的力学性能、导电性和热导性,因此在材料科学中有广泛的应用。
碳纳米管可以添加到复合材料中,提高材料的力学性能和导电性。
此外,碳纳米管还可以用于制备超级电容器和锂离子电池,因为其具有较大比表面积和良好的电化学性能。
另外,由于碳纳米管具有较高的比表面积和孔隙结构,可以用作吸附剂来去除水和气体中的有害物质。
碳纳米管的应用还延伸到柔性电子学和传感器领域,用于制备柔性显示器件和高灵敏度的传感器,如压力传感器和化学传感器等。
三、碳纳米管在电子学中的应用碳纳米管由于其独特的电子性质,被广泛应用于电子学领域。
碳纳米管可以用作场发射源,用于制备高亮度和高分辨率的显示器件。
此外,碳纳米管也可以用于制备柔性电子器件,如柔性电池和柔性晶体管等,具有重要的应用价值。
碳纳米管的具体应用

碳纳米管的具体应用碳纳米管是由碳原子组成的纳米尺寸管状结构,具有优异的物理和化学性质,因此在众多领域中具有广泛的应用前景。
本文将从电子学、材料科学、生物医学、能源领域等多个方面介绍碳纳米管的具体应用。
1. 电子学领域碳纳米管在电子学领域有着重要的应用,主要体现在以下几个方面:(1)场效应晶体管(FET):碳纳米管可以作为FET的通道材料,具有优异的电子输运性能,可实现高速、低功耗的电子器件。
(2)纳米电子学器件:碳纳米管可以用于制备纳米电子学器件,如纳米电极、纳米线和纳米电容器等,用于构建超高密度的集成电路。
(3)柔性电子学:碳纳米管具有优异的柔性性质,可以用于制备柔性电子学器件,如柔性传感器、柔性显示器等,为可穿戴设备和可弯曲电子设备提供了新的可能性。
2. 材料科学领域碳纳米管在材料科学领域有着广泛的应用,主要体现在以下几个方面:(1)复合材料增强剂:碳纳米管可以作为一种优秀的增强剂,加入到金属、陶瓷或聚合物基体中,可以显著提高材料的力学性能和导电性能。
(2)催化剂载体:碳纳米管具有大比表面积和良好的导电性质,可作为催化剂的载体,提高催化反应的效率和选择性。
(3)锂离子电池负极材料:碳纳米管具有高比表面积和良好的电子传导性能,可作为锂离子电池负极材料,具有高容量和长循环寿命等优点。
3. 生物医学领域碳纳米管在生物医学领域有着广泛的应用前景,主要体现在以下几个方面:(1)药物传递:碳纳米管可以作为药物的载体,通过调控其表面性质和内部结构,实现药物的控释和靶向传递,提高药物治疗的效果。
(2)生物传感器:碳纳米管具有高比表面积和优异的电化学性能,可以用于制备生物传感器,实现对生物分子的灵敏检测和诊断。
(3)组织工程:碳纳米管可以作为支架材料用于组织工程,促进细胞生长和组织修复,具有重要的临床应用前景。
4. 能源领域碳纳米管在能源领域有着重要的应用,主要体现在以下几个方面:(1)锂离子电池:碳纳米管可以作为锂离子电池的电极材料,具有高比表面积和优异的电导率,可提高电池的能量密度和循环寿命。
碳纳米管在电子领域中的应用

碳纳米管在电子领域中的应用碳纳米管(CNT)是目前注目的一种纳米材料,与石墨烯、硅等材料不同,它的结构类似于卷成了管子的石墨。
由于碳纳米管具有优异的电学、热学、机械学等性质,近年来成为迅速发展的研究领域。
尤其在电子领域,由于其独特的结构和优越的性能,碳纳米管作为新型电子器件的材料引起了人们的广泛研究和关注。
本文将围绕碳纳米管在电子器件中的应用进行探讨。
一、碳纳米管的优良性能1.高电导性能碳纳米管具有很高的电导性能,在电器件中具有广泛应用前景。
因为其电导率非常高,比铜导线的电导率高10倍以上,同时它的密度非常低,比铜的密度要轻得多。
这种轻量化的特点非常适合现代电子产品的设计和制造。
另外,碳纳米管的体积非常小,在微小的电子元器件中应用,可以占据更小的面积,从而实现电子元器件的微型化。
2. 热稳定性好碳纳米管的纵向模量非常高,同时横向热膨胀系数小。
这使得碳纳米管在高温环境下仍然能够保持其稳定性和结构完整性。
3. 机械性能优越碳纳米管具有很好的弹性和韧性,在电子器件中的应力、振动等方面具有良好稳定性和可靠性。
二、碳纳米管在电子器件中的应用1. 电子场发射器件电子场发射器件是利用物质电子的干涉现象,发射大量电子的装置。
其主要应用于微电子学和光电子学各种器件的加工和研究,如显像管、荧光屏、微型激光器等。
碳纳米管具有极佳的电子传导性能和热稳定性,是制造高性能电子场发射器件的理想材料。
同时,碳纳米管所具有的特殊性质,充分发挥了电子场发射器件的优异性能,提高了该类器件的发射性能。
2. 电子传感器电子传感器是电子器件的一种,它能够将被测量对象的物理量转换成电信号输出,如温度传感器、压力传感器、光学传感器等。
碳纳米管具有超高的敏感性,能够真实地感应其周围的微小物理变化,而且在高温等极端条件下也能够保持其稳定性,因此被广泛应用于电子传感器的制造领域。
特别是在柔性电子领域,碳纳米管作为新型传感器材料正逐渐受到关注。
3. 太阳能电池太阳能电池是利用光发生光伏效应,将太阳光能直接转化成电能的电子器件。
新材料科学中的碳纳米管材料

新材料科学中的碳纳米管材料碳纳米管是一种由碳原子构成的管状结构,在新材料科学中具有重要的应用价值。
碳纳米管的特殊结构使得它具有许多独特的性质和优异的物理化学性能,有着广泛的应用范围和前景。
一、基本介绍碳纳米管是一种类似于石墨烯的碳材料,其结构是由碳原子构成的具有管状形态的微观结构。
碳纳米管的直径在纳米级别,一般为1纳米到50纳米之间。
它的长度可以是数十微米到数百微米,甚至可以达到数厘米以上。
碳纳米管具有很多独特的性质,比如强度高、导电性好、导热性好、化学稳定性强等等。
这些性质决定了碳纳米管可以广泛应用于电子、机械、光学、化学等领域。
二、应用领域1.电子领域在电子领域中,碳纳米管作为一种新型的半导体材料,具有很多优异的性质,如高电导率、高耐电压性、超短开关时间等。
这些特点使得碳纳米管可以广泛应用于晶体管、场效应晶体管、逆变器、传感器等电子器件中。
2.机械领域在机械领域中,碳纳米管有着很高的强度和韧性,可以被用于制作高强度的机械零部件。
例如,碳纳米管可以制成强度高、重量轻、耐磨损的轮胎、杆、桥梁等。
此外,碳纳米管还可以制成高性能的自行车、汽车、飞机等机械设备。
3.光学领域在光学领域中,碳纳米管可以制成具有高透明度和高导电性的薄膜,可以被应用于太阳能电池板、智能窗等光学器件中。
4.化学领域在化学领域中,碳纳米管可以被用作催化剂、吸附剂和分离材料。
例如,碳纳米管可以被用来催化氢气的产生和净化工业废气。
此外,碳纳米管还可以被用来制备高效的分离膜,用于饮用水的净化。
三、未来发展趋势由于碳纳米管具有独特的物理化学性质,有着广泛的应用前景,因此在近年来得到了广泛的关注。
未来,碳纳米管的发展将主要集中在以下几个方面:1.化学合成方法的改进当前,碳纳米管的主要制备方法是电弧放电法、激光热解法和化学气相沉积法。
然而这些方法存在制备成本高、质量不稳定、难于大规模制备等问题。
因此,未来的发展方向是改进或发展出更简单、更可控性强、更可扩展的制备方法,以适应未来碳纳米管的大规模制备需求。
碳纳米管的功能

碳纳米管的功能碳纳米管是一种由碳原子排列而成的纳米材料,具有高强度、高导电性、高热导性等特点,应用领域广泛。
下面将从各方面介绍碳纳米管的功能。
1. 电子学领域:碳纳米管是一种理想的纳米导体,在微电子器件、半导体照明等领域得到广泛应用。
它具有良好的电子传输性能,传输速度快,抗干扰性强,特别适合在高速电子器件中应用。
碳纳米管晶体管、电路板等元件已经被广泛应用于电脑、手机等各种电子设备中。
2. 新型材料领域:碳纳米管具有极高的强度和韧性,比钢铁更为坚固,是一种理想的新型材料。
碳纳米管可以用于制造高强度、高韧性的材料,如碳纳米管增强塑料、碳纳米管复合材料、碳纤维增强复合材料等。
这些材料在飞机、汽车、船舶、建筑等领域有广泛的应用。
3. 催化剂领域:碳纳米管可以作为催化剂载体,提高反应速率和选择性,从而在催化剂领域得到广泛应用。
碳纳米管与金属或金属氧化物复合可以用于氧化还原反应、制备化学品等。
此外,碳纳米管还可与DNA等生物大分子结合,用于生物催化反应等应用。
4. 生物医学领域:碳纳米管具有良好的生物相容性,可以用于生物医学领域中的诊断和治疗。
比如,将碳纳米管表面修饰成靶向特定癌细胞的分子后,可以用作肿瘤靶向治疗。
此外,还可以将药物包裹在碳纳米管内,可以减少药物的毒性和副作用,提高药物的疗效性。
5. 传感器领域:碳纳米管可以用作传感器的探针,具有高灵敏度和高选择性。
比如,利用碳纳米管的电导率随吸附分子量的变化,可以将其应用于气体、溶液等分子的检测。
碳纳米管还可以用于传感器的导电元件,提高了传感器的灵敏度和精度。
综上所述,碳纳米管具有多种功能,并在各个领域都有广泛的应用前景。
随着科技的不断发展,碳纳米管的应用将会越来越广泛,也将会带来更多的前沿研究和技术突破。
碳纳米管的应用及原理

碳纳米管的应用及原理1. 碳纳米管的定义和结构•碳纳米管是由碳原子构成的纳米材料,具有管状结构。
•碳纳米管可以分为单壁碳纳米管和多壁碳纳米管两种结构。
•单壁碳纳米管由一个或数个层的碳原子螺旋而成,多壁碳纳米管则是由多个同心管层构成。
2. 碳纳米管的制备方法•弧放电法:通过在高温下对碳材料进行电弧放电,产生碳纳米管。
•化学气相沉积法:通过气相反应,在催化剂的作用下生成碳纳米管。
•化学气相氧化法:通过将碳材料在气相氧化条件下进行氧化,生成碳纳米管。
3. 碳纳米管的应用领域3.1 电子器件•碳纳米管作为晶体管的替代材料,用于制造更小、更快的电子器件。
•碳纳米管晶体管具有优异的导电性能和较小的尺寸,可用于构建高密度的集成电路。
3.2 能源存储•碳纳米管可以用作电容器的电极材料,具有高比表面积和良好的电导性能,可用于高性能超级电容器和锂离子电池。
3.3 复合材料•碳纳米管可以与其他材料复合,形成高强度、高导热性能的复合材料。
•碳纳米管复合材料被广泛应用于航空航天、汽车制造和建筑材料等领域。
3.4 生物医学•碳纳米管可以用作药物传递系统,通过改变表面性质和结构,实现对药物的控制释放。
•碳纳米管还可以用于组织工程和生物传感器等生物医学应用。
4. 碳纳米管的原理•碳纳米管的特殊性质与其结构密切相关,具体原理如下: ### 4.1 共价键结构•碳纳米管由碳原子共价键构成,共价键的特性决定了碳纳米管的稳定性和强度。
### 4.2 π-电子共轭结构•碳纳米管的π-电子共轭结构使其具有导电性能,可用于电子器件和能源存储。
### 4.3 杂质掺杂•在碳纳米管中引入不同的杂质,可以改变其导电性能、光学性质和化学性质,拓展了其应用领域。
5. 总结•碳纳米管作为一种重要的纳米材料,具有广泛的应用前景。
•通过不同的制备方法和控制条件,可以得到具有不同结构和性质的碳纳米管。
•碳纳米管的应用领域包括电子器件、能源存储、复合材料和生物医学等。
碳纳米管的应用领域

碳纳米管的应用领域碳纳米管是由碳原子构成的一种纳米材料,具有很小的直径和长的长度。
它们具有许多独特的物理和化学性质,因此在许多领域具有广泛的应用。
以下是几个碳纳米管的主要应用领域:1.纳米电子学:由于碳纳米管具有优异的电子输运性能和尺寸效应,它们被广泛用于纳米电子学领域。
碳纳米管可以作为分子电子学器件中的传输通道、场效应晶体管(FET)中的通道材料,甚至可以用于构建纳米电路和纳米传感器。
2.纳米材料增强体:碳纳米管可以作为增强材料添加到金属基体或聚合物基体中,以增强材料的强度和刚度。
由于碳纳米管的高倍长比和优异的力学性能,它们被广泛应用于制备超强复合材料,如碳纳米管增强塑料、复合纤维材料和涂层。
3.能源存储与转换:碳纳米管的良好导电性和高比表面积使其成为能源存储和转换领域的理想材料。
碳纳米管电极可用于高性能的锂离子电池、超级电容器和燃料电池。
此外,碳纳米管还可以用于太阳能电池中的光电转换材料。
4.纳米医学:碳纳米管在纳米医学领域具有广阔的应用前景。
其特殊的物理和化学性质赋予其在药物运输、生物成像和癌症治疗方面的突出潜力。
碳纳米管可以作为药物载体,用于传递抗癌药物和其他生物活性物质。
此外,碳纳米管还可以用于磁共振成像、荧光成像和近红外成像等生物成像技术。
5.环境污染治理:碳纳米管在环境领域中有着重要的应用潜力。
碳纳米管可以用于吸附和去除水中的重金属离子、有机污染物和放射性物质。
此外,碳纳米管还可以用作气体传感器,用于检测和监测空气中的有害气体。
6.传感与检测:碳纳米管的高比表面积、高灵敏度和特殊的电子性质使其成为传感和检测领域的理想材料。
碳纳米管可以用来制造化学传感器、生物传感器和气体传感器。
它们可以检测和监测环境中的化学物质、生物分子和气体。
7.纳米催化剂:碳纳米管可以用作高效的催化剂载体,用于催化反应。
由于其高比表面积和优异的导电性,碳纳米管可以提高催化剂的活性和选择性。
它们可以用于催化剂的制备、催化反应的催化剂载体以及催化剂的固定化。
碳纳米管材料的用途

碳纳米管材料的用途碳纳米管(CarbonNanotubes,CNTs)是由碳原子构成的纳米级管状结构材料,具有独特的物理和化学性质,因此在许多领域中被广泛应用。
本文将从电子学、材料科学、生物医学等方面介绍碳纳米管的用途。
一、电子学碳纳米管是一种优秀的电子材料,具有优异的电导率、热导率和机械强度。
由于其微小的尺寸和高导电性,碳纳米管被用作纳米电子学器件的组件,例如场效应晶体管、单电子晶体管、透明导电电极等。
其中,单壁碳纳米管(Single-Walled Carbon Nanotubes, SWCNTs)在电子学领域中表现出了极佳的性能,可以作为晶体管的理想替代品。
此外,由于碳纳米管的尺寸比传统的晶体管小得多,因此可以制造出更小、更高密度的电子元件,这对于集成电路的发展具有重要意义。
二、材料科学碳纳米管的高机械强度和抗拉性能使其成为理想的增强剂。
将碳纳米管与聚合物、金属和陶瓷等材料复合可以获得更高的强度和硬度。
同时,碳纳米管还可以用于制备高性能复合材料,例如碳纳米管增强的聚合物、金属基复合材料、陶瓷基复合材料等。
这些复合材料在航空航天、汽车工业、建筑业等领域中有广泛的应用。
三、生物医学碳纳米管在生物医学领域中也有重要的应用。
首先,碳纳米管可以用于生物成像,例如通过将碳纳米管表面修饰成与靶标分子特异性结合的生物分子,可以实现对细胞、组织和器官的高分辨率成像。
其次,碳纳米管还可以用于药物传递。
通过将药物包裹在碳纳米管内,可以提高药物的生物利用度和靶向性,从而实现更有效的治疗。
此外,碳纳米管还可以用于组织修复和再生。
将碳纳米管与生物材料复合可以促进细胞的黏附和增殖,从而促进组织的修复和再生。
四、其他领域除了电子学、材料科学和生物医学领域,碳纳米管还可以应用于许多其他领域。
例如,碳纳米管可以用于环境污染治理。
通过将碳纳米管与其他材料复合,可以制备出具有高效吸附和催化降解能力的复合材料,从而实现对污染物的治理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3) 热学性能 一维管Байду номын сангаас有非常大的长径比,因而大量热是沿着长度方向 传递的,通过合适的取向,这种管子可以合成高各向异性材料。 虽然在管轴平行方向的热交换性能很高,但在其垂直方向的热 交换性能较低。纳米管的横向尺寸比多数在室温至150oC电介 质的品格振动波长大一个量级,这使得弥散的纳米管在散布声 子界面的形成中是有效的,同时降低了导热性能。适当排列碳 纳米管可得到非常高的各向异性热传导材料。
LOG O
谢谢! 谢谢
导电塑料(聚脂 导电塑料 聚脂): 聚脂 将碳纳米管均匀地扩散到塑料中,可获得强度更高并具有导 电性能的塑料,可用于静电喷涂和静电消除材料,目前高档 汽车的塑料零件由于采用了这种材料,可用普通塑料取代原 用的工程塑料,简化制造工艺,降低了成 本,并获得形状 更复杂、强度更高、表面更美观的塑料零部件,是静电喷涂 塑料 (聚脂 )的发展方向。 由于碳纳米管复合材料具有良好的导电性能,不会象绝缘塑 料产生静电堆积,因此是用于静电消除、晶片加工、磁盘制 造及洁净空间等领域的理想材料。碳纳米管还有静电屏蔽功 能,由于电子设备外壳可消除外部静电对设备的干扰,保证 电子设备正常工作。
2) 锂离子电池 碳纳米管的层间距为0.34nm,略大于石墨的层间距0.335nm,这 有利于Li+的嵌入与迁出,它特殊的圆筒状构型不仅可使Li+从外壁 和内壁两方面嵌入,又可防止因溶剂化Li+嵌入引起的石墨层剥离 而造成负极材料的损坏。碳纳米管掺杂石墨时可提高石墨负极的 导电性,消除极化。 在锂离子电池中加入碳纳米管,也可有效提高电池的储氢能力 ,从而大大提高锂离子电池的性能。根据实验,多壁碳纳米管锂电池 放电能力达到385 mA·h/g,单壁管则高达640mA·h/g,而石墨的理 论放电极限为372 mA·h/g。
碳纳米管及其应用
主要内容:
1. 碳纳米管的发现 2. 碳纳米管结构 3. 碳纳米管结构的表征 4. 碳纳米管的生产方法 5. 独特性质 6. 应用前景
1. 碳纳米管的发现
C60及富勒烯化合物
1985年英国Sussex大学的Kroto教授 和美国Slice大学的Smalley教授发现
碳纳米管(CNTs)
碳纳米管的应用前景
1) 超级电容器 碳纳米管比表面积大、结晶度高、 导电性好,微孔大小可通过合成工艺 加以控制,是一种理想的电双层电容 器电极材料。由于碳纳米管具有开放 的多孔结构,并能在与电解质的交界 面形成双电层,从而聚集大量电荷, 功率密度可达8000W/kg。碳纳米管 超级电容器是已知的最大容量的电容 器。
3) 碳纳米管复合材料 基于纳米碳管的优良力学性能可将其作为结构复合材料的 增强剂。研究表明,环氧树脂和纳米碳管之间可形成数百MPa 的界面强度。 除做结构复合材料的增强剂外,纳米碳管还可做为功能增 强剂填充到聚合物中,提高其导电性、散热能力等如:在共轭 发光聚合物中添加纳米碳管后,不但其导电率大大提高,强度 也得到了改善。同时,由于纳米碳管在纳米尺度散热,避免了 局部形成的热积累,可防止共轭聚合物中链的断裂,从而抑制 聚合物的光褪色作用。
1991年,日本科学家饭岛(Iijima)发现,在《Nature》发表 文章公布了他的发现成果,这是碳的又一同素异型体。
2.碳纳米管结构
1)按形态分
普通封口型 变径型
洋葱型
海胆型
竹节型
念珠型
纺锤型
螺旋型
其他异型
2)按手性分
通常依照n ,m 的相对关系,将单 壁碳纳米管分为 achiral 和chiral 两 个基本类型。 Achiral 型又分为zigzag (锯齿型) 和armchair(扶手椅型) 两类。当 n 和m 其中之一为0 时,为zigzag 型;当n=m 时为armchair 型;其它 所有情况都称为chiral 型( 手性管)。
碳纳米管的独特性质
1)力学性 能 碳纳米管的抗拉强度达到50~200GPa,是钢
的100倍,密度却只有钢的1/6,至少比常规石墨纤 维高一个数量级。它是最强的纤维,在强度与重 量之比方面,这种纤维是最理想的。
2) 电学性能 由于碳纳米管的结构与石墨的片层结构相同,所以具有 很好的电学性能。理论预测其导电性能取决于其管径和管壁 的螺旋角。当CNTs的管径大于6mm时,导电性能下降;当 管径小于6mm时,CNTs可以被看成具有良好导电性能的一 维量子导线。
4) 储氢性能 碳纳米管的中空结构,以及较石墨(0.335nm)略大的层 间距(0.343nm),是否具有更加优良的储氢性能,也成为科 学家们关注的焦点。 1997年,A. C. Dillon对单壁碳纳米管(SWNT)的储氢 性能做了研究,SWNT在0℃时,储氢量达到了5%。 DeLuchi指出:一辆燃料机车行驶500km,消耗约31kg的 氢气,以现有的油箱来推算,需要氢气储存的重量和体积 能量密度达到65%和62kg/m3。 这两个结果大大增加了人们对碳纳米管储氢应用前景 的希望。
Armchair (n,m)=(5,5) Zigzag (n,m)=(9,0)
按照石墨烯片的层数,可分为: 3) 按照石墨烯片的层数,可分为: 1) 单壁碳纳米管(Single-walled nanotubes, SWNTs): 由一层石墨烯片组成。单壁管典型的直径和长度分别为 0.75~3nm和1~50μm。又称富勒管(Fullerenes tubes)。 2) 多壁碳纳米管(Multi-walled nanotubes, MWNTs): 含 有多层石墨烯片。形状象个同轴电缆。其层数从2~50 不等,层间距为0.34±0.01nm,与石墨层间距 (0.34nm) 相当。多壁管的典型直径和长度分别为2~30nm和0.1~ 50μm。
燃烧火焰法
利用液体(乙醇、甲醇等)、气体(乙炔、乙烯、甲烷等) 和固体(煤炭、木炭)等产生火焰分解其碳-氢化合物获得游历 碳原子,为合成碳纳米管提供碳源;然后将基板材料做适当处 理,最后将基板的一面向下,面向火焰放入火焰中,燃烧一段 时间后取出。基板上的棕褐(黑)色既是碳纳米管或碳纳米纤 维。 产生碳纳米管或碳纳米纤维的过程主要决定于基板的性质。 基板的选择和处理、燃料的选择等是本方法的关键技术。 优点有:合成过程无需真空、保护气氛;无需催化剂;可以在 大的表面上合成,特别适合于在一个平面上形成一层均匀的碳 纳米管或碳纳米纤维薄膜; 成本较低,对环境的污染也非常小。 可以实现大批量合成。
4) 电磁干扰屏蔽材料及隐形材料 碳纳米管是一种有前途的理想微波吸收剂,可用于隐形材 料、电磁屏蔽材料或暗室吸波材料。 碳纳米管对红外和电磁波有隐身作用的主要原因有两点: 一方面由于纳米微粒尺寸远小于红外及雷达波波长,因此 纳米微粒材料对这种波的透过率比常规材料要强得多,这就大大 减少波的反射率,使得红外探测器和雷达接收到的反射信号变得 很微弱,从而达到隐身的作用; 另一方面,纳米微粒材料的比表面积比常规粗粉大3~4个数 量级,对红外光和电磁波的吸收率也比常规材料大得多,这就使 得红外探测器及雷达得到的反射信号强度大大降低,因此很难发 现被探测目标,起到了隐身作用。由于发射到该材料表面的电磁 波被吸收,不产生反射,因此而达到隐形效果。
5) 催化剂载体 纳米材料比表面积大,表面原子比率大(约占总原子数的 50%),使体系的电子结构和晶体结构明显改变,表现出特殊的电 子效应和表面效应。如气体通过碳纳米管的扩散速度为通过常 规催化剂颗粒 的上千倍,担载催化剂后极大提高催化剂的活性 和选择性。 碳纳米管作为纳米材料家族的新成员,其特殊的结构和表面 特性、优异的储氢能力和金属及半导体导电性,使其在加氢、 脱氢和择型催化等反应中具有很大的应用潜力。碳纳米管一旦 在催化上获得应用,可望极大提高反应的活性和选择性,产生巨 大的经济效益。
3.纳米管结构的表征: 纳米管结构的表征: 纳米管结构的表征
扫描隧道显微镜 X射线衍射 孔结构及比表面积 电子衍射 拉曼光谱
4.碳纳米管的生产方法简介
石墨电弧法 浮动催化法 (即碳氢化合物催化分解法,又称CVD法) 即碳氢化合物催化分解法,又称 法 激光蒸汽法 燃烧火焰法
石墨电弧法
基本原理: 基本原理: 电弧室充惰性气体保护,两石 墨棒电极靠近,拉起电弧,再 拉开,以保持电弧稳定。放电 过程中阳极温度相对阴极较高, 所以阳极石墨棒不断被消耗, 同时在石墨阴极上沉积出含有 碳纳米管的产物。 理想的工艺条件:氦气为载气,气压 60—50Pa,电流60A~100A, 电压19V~25 V,电极间距1 mm~4mm,产率50%。Iijima等生产 出了半径约1 nm的单层碳管。