计量经济学实验报告 stata

合集下载

《计量经济学》eviews实验报告一元线性回归模型详解

《计量经济学》eviews实验报告一元线性回归模型详解

计量经济学》实验报告一元线性回归模型-、实验内容(一)eviews基本操作(二)1、利用EViews软件进行如下操作:(1)EViews软件的启动(2)数据的输入、编辑(3)图形分析与描述统计分析(4)数据文件的存贮、调用2、查找2000-2014年涉及主要数据建立中国消费函数模型中国国民收入与居民消费水平:表1年份X(GDP)Y(社会消费品总量)200099776.339105.72001110270.443055.42002121002.048135.92003136564.652516.32004160714.459501.02005185895.868352.62006217656.679145.22007268019.493571.62008316751.7114830.12009345629.2132678.42010408903.0156998.42011484123.5183918.62012534123.0210307.02013588018.8242842.82014635910.0271896.1数据来源:二、实验目的1.掌握eviews的基本操作。

2.掌握一元线性回归模型的基本理论,一元线性回归模型的建立、估计、检验及预测的方法,以及相应的EViews软件操作方法。

三、实验步骤(简要写明实验步骤)1、数据的输入、编辑2、图形分析与描述统计分析3、数据文件的存贮、调用4、一元线性回归的过程点击view中的Graph-scatter-中的第三个获得在上方输入Isycx回车得到下图DependsntVariable:Y Method:LeastSquares□ate:03;27/16Time:20:18 Sample:20002014 Includedobservations:15VariableCoefficientStd.Errort-StatisticProb.C-3J73.7023i820.535-2.1917610.0472X0416716 0.0107S838.73S44 a.ooao R-squared0.991410 Meandependentwar119790.2 AdjustedR.-squared 0.990750 S.D.dependentrar 7692177 S.E.ofregression 7J98.292 Akaike infocriterion20.77945 Sumsquaredresid 7;12E^-08 Scliwarz 匚「爬伽20.37386 Loglikelihood -1&3.3459Hannan-Quinncriter. 20.77845 F-statistic 1I3&0-435 Durbin-Watsonstat0.477498Prob(F-statistic)a.oooooo在上图中view 处点击view-中的actual ,Fitted ,Residual 中的第一 个得到回归残差打开Resid 中的view-descriptivestatistics 得到残差直方图/icw Proc Qtjject PrintN^me FreezeEstimateForecastStatsResids凹Group:UNIIILtD Worktile:UN III LtLJ::Unti1DependentVariablesMethod;LeastSquares□ate:03?27/16Time:20:27Sample(adjusted):20002014Includedobservations:15afteradjustmentsVariable Coefficient Std.Errort-Statistic ProtJ.C-3373.7023^20.535-2.191761 0.0472X0.4167160.01075S38.735440.0000R-squared0.991410 Meandependeniwar1-19790.3 AdjustedR-squa.red0990750S.D.dependentvar 76921.77 SE.ofregre.ssion 7J98.292 Akaike infacriterion20.77945 Sumsquaredresid 7.12&-0S Schwarzcriterion 20.S73S6 Laglikelihood -153.84&9Hannan-Quinncrite匚20.77545 F-statistic1I3&0.435Durbin-Watsonstat 0.477498 ProbCF-statistic) a.ooaooo在回归方程中有Forecast,残差立为yfse,点击ok后自动得到下图roreestYFM J訓YForea空巾取且:20002015 AdjustedSErmpfe:2000231i mskJddd obaerratire:15Roof kter squa red Error理l%2Mean/^oLteError畐惯啟iJean Afe.PereersErro r5.451SSQThenhe鼻BI附GKWCE口.他腐4Prop&niwi□ooooooVactaree Propor^tori0.001^24G M『倚■底Props^lori09®475在上方空白处输入lsycs…之后点击proc中的forcase根据公式Y。

使用Stata进行经济学和统计分析

使用Stata进行经济学和统计分析

使用Stata进行经济学和统计分析在当今的经济学研究和数据分析领域,Stata 凭借其强大的功能和易用性,成为了众多学者和研究人员的得力工具。

Stata 是一款专门用于数据管理、统计分析和绘图的软件,它为我们解决各种经济和统计问题提供了高效而可靠的途径。

Stata 的一个显著优势在于其丰富的数据管理功能。

在进行经济研究时,我们常常需要处理大量的数据,这些数据可能来自不同的来源,格式也各不相同。

Stata 能够轻松地读取和导入各种常见的数据格式,如 Excel、CSV 等,并且可以对数据进行清理、转换和合并等操作。

例如,我们可以使用`drop` 命令删除不需要的变量,使用`generate`命令创建新的变量,使用`merge` 命令将多个数据集合并在一起。

通过这些操作,我们能够将原始数据整理成适合分析的形式,为后续的研究工作打下坚实的基础。

在统计分析方面,Stata 提供了广泛而全面的统计方法。

无论是描述性统计、推断统计,还是复杂的计量经济学模型,Stata 都能应对自如。

比如,我们可以使用`summarize` 命令快速获取数据的均值、标准差、最小值和最大值等描述性统计量,从而对数据的基本特征有一个直观的了解。

对于假设检验,Stata 提供了`ttest` 命令用于均值比较,`chi2test` 命令用于独立性检验等。

在计量经济学领域,Stata 支持线性回归、Logit 模型、Probit 模型、面板数据模型等多种模型的估计和检验。

以线性回归为例,我们可以使用`regress` 命令来估计回归方程,并通过查看输出结果中的系数估计值、标准误、t 值和 p 值等信息来评估模型的拟合效果和变量的显著性。

除了基本的统计分析,Stata 还在处理时间序列数据方面表现出色。

时间序列数据在经济学中非常常见,如股票价格、通货膨胀率等。

Stata 提供了一系列专门用于时间序列分析的命令和函数,如`arima` 命令用于拟合自回归移动平均模型(ARIMA),`forecast` 命令用于进行预测。

计量经济学实验报告范文

计量经济学实验报告范文

S .. . ..学生实验报告(经管类专业用)一、实验目的及要求:1、目的利用EVIEWS实验软件,使学生在实验过程中全面了解和熟悉计量经济学的基本概念,熟悉一元线性回归模型估计的基本程序和基本方法。

2、内容及要求(1).熟悉EVIEWS实验软件的基本操作程序和方法;(2)、掌握一元线性回归模型基本概念,了解其估计和检验原理(3)、提交实验报告二、仪器用具:三、实验结果与数据处理:1 经研究发现,家庭书刊消费受家庭收入几户主受教育年数的影响,表中为对某地区部分. . . 资料. .8家庭抽样调查得到样本数据:(1) 建立家庭书刊消费的计量经济模型; (2)利用样本数据估计模型的参数;(3)检验户主受教育年数对家庭书刊消费是否有显著影响; (4)分析所估计模型的经济意义和作用 答:(1)建立家庭书刊消费的计量经济模型: i i i i u T X Y +++=321βββ其中:Y 为家庭书刊年消费支出、X 为家庭月平均收入、T 为户主受教育年数 (2即 ii i T X Y 3703.5208645.00162.50ˆ++-= (49.46026)(0.02936) (5.20217)t= (-1.) (2.) (10.06702)R 2=0. 944732.02=R F=146.2974(3) 检验户主受教育年数对家庭书刊消费是否有显著影响:由估计检验结果, 户主受教育年数参数对应的t 统计量为10.06702, 明显大于t 的临界值131.2)318(025.0=-t ,同时户主受教育年数参数所对应的P 值为0.0000,明显小于05.0=α,均可判断户主受教育年数对家庭书刊消费支出确实有显著影响。

(4)本模型说明家庭月平均收入和户主受教育年数对家庭书刊消费支出有显著影响,家庭月平均收入增加1元,家庭书刊年消费支出将增加0.086元,户主受教育年数增加1年,家庭书刊年消费支出将增加52.37元。

计量经济学实验报告

计量经济学实验报告

上海海关学院
实验报告
实验课程名称 __ 计量经济学_ _
指导教师姓名 __ 高军______
学生姓名__王圣___
学生专业班级__税收1401 __
填写日期__2017.6.10
四、模型设定
为分析建筑业企业利润总额(Y)和建筑业总产值(X)的关系,作如下散点图:
Y i=2.368138+0.034980X i (9.049371) (0.001754)
检验
F=;查表可得
绝原假设,此即表明模型存在异方差。

表.用权数w2的结果
(3) w3=1/x^0.5
经估计检验发现用权数w2的效果最好。

可以看出,运用加权最小二乘法消除了异方检验均显著,F检验也显著,即估计结果为
表示国内生产总值。

三、检验自相关
该回归方程可决系数较高,回归系数显著。

dL=1.316,dU=1.469, DW<dL,
,说明在
4.利用EViews软件作如图残差图
LM=TR²=27×0.517409=13.970043,其中p 值为0.0009,表明存在自相关。

自相关问题的处理
由最终模型可知,中国进口需求总额每增加1亿元,平均说来国内生产总值
20。

计量经济学伍德里奇第六版stata代码

计量经济学伍德里奇第六版stata代码

文章主题:探寻计量经济学伍德里奇第六版stata代码的应用与意义1. 引言计量经济学作为经济学的一个重要分支,旨在运用数学、统计学和计算机科学的方法来分析经济问题和经济现象,从而为实证经济研究提供理论和方法。

而伍德里奇的《计量经济学》第六版,作为该领域的经典教材,常常被用来进行实证研究和教学。

在本文中,我们将深入探讨这本教材中的stata代码部分,分析其应用与意义。

2. 计量经济学伍德里奇第六版stata代码的意义在《计量经济学》第六版中,作者伍德里奇通过stata代码来展示实证分析的方法和过程。

这些代码不仅仅是为了教学目的,更重要的是为了让读者能够学会如何用计量经济学的方法来研究实际经济问题。

通过学习这些stata代码,读者可以掌握实证分析的基本技能,了解如何处理实际数据、构建模型、进行估计和推断,从而在实际研究中能够灵活运用计量经济学的方法。

3. 深入理解计量经济学伍德里奇第六版stata代码在伍德里奇的《计量经济学》第六版中,stata代码涵盖了从简单的OLS回归分析到复杂的面板数据模型的估计方法,涉及了各种实证问题和分析工具。

通过深入学习这些代码,读者可以逐步理解和掌握计量经济学的核心内容,包括数据的处理与清洗、模型的构建与估计、假设检验与推断等方面的知识和技能。

这样的深入理解将使读者能够更好地应用计量经济学的方法来解决实际经济问题,并且能够进行批判性思考和创新性研究。

4. 个人观点和理解作为一名计量经济学的研究者和教学者,我深切理解学习和掌握计量经济学伍德里奇第六版stata代码的重要性。

这些代码不仅仅是一种工具,更是一种思维方式和方法论,是我们用来研究经济现象和问题的利器。

通过不断地学习和实践,我相信我们能够更好地理解和应用计量经济学的方法,为经济学研究和实践带来更多的启发和进步。

5. 总结通过本文的探讨,我们深入了解了《计量经济学》第六版中stata代码的应用与意义。

这些代码的存在不仅仅是为了让我们学会如何进行实证分析,更重要的是让我们深刻理解和掌握计量经济学的思想和方法。

计量经济学stata命令汇总

计量经济学stata命令汇总

计量经济学stata命令汇总1. 数据处理与描述性统计summarize 变量1 变量2…计算变量的均值、中位数等统计量tabulate 变量1 变量2…制表histogram 变量画单变量直方图scatter 变量1 变量2…画双变量散点图graph twoway 程序名变量1 变量2…绘制双变量图形sort 变量按照变量排序by 变量: 命令按照变量拆分数据并执行命令replace 变量=表达式替换变量中的值generate 新变量=表达式生成新变量egen 新变量=函数(变量) 生成新变量2. 回归分析regress 因变量自变量1 自变量2…普通最小二乘回归reg 相关变量,robust 异方差鲁棒性回归logit 因变量自变量1 自变量2…二元Logit模型probit 因变量自变量1 自变量2…二元Probit模型tobit 因变量自变量1 自变量2… 截尾变量(下界或上界)cens(下界或上界) 截尾Tobit模型heckman 因变量自变量1 自变量2… 难以观察到自变量矩阵决策过程变量名称=接收权值做二阶段回归Heckman选择模型pheckman 因变量自变量1 自变量2… 难以观察到自变量矩阵决策过程经验Bayes做二阶段回归Pooled Heckman选择模型xtset 变量1 变量2…指定面板数据xtreg 因变量自变量1 自变量2…, fe/be/fevd/arellano间隔估计xtlogit 因变量自变量1 自变量2…, fe面板Logit模型xtprobit 因变量自变量1 自变量2…, fe面板Probit模型3. 时间序列分析dfuller 变量单位根检验tsset 变量指定时间序列数据tsline 变量绘制时间序列图arma 阶数, lags(*laglist*) ARMA过程估计arima 阶数, lags(*laglist*) 差分阶数(*diff*) 现有模型(*model*) ARIMA模型估计arch hq/aic, lags(*laglist*) ARCH模型估计garch q=p o=r t=m, arch(q) garch(p) GARCH模型估计ivregress (2SLS)因变量自变量1(内生变量)编号=gmm/cluster(varname) 内生变量外生变量IV或2SLS回归分析4. 面板数据分析&横截面数据分析xtsum 等对面板数据的描述统计量xttest0 2个变量计算相对于H0的t值,考虑了异方差和面板数据结构(前提是两个变量符合随机效应或固定效应假设)xttobit 因变量自变量1 自变量2… 下界 cens(下界或上界)面板Tobit模型xtreg 因变量自变量1 自变量2…, fe/be/fevd/arellano面板回归模型xtlogit/xtprobit 因变量自变量1 自变量2…, fe面板分类模型5. 高级统计方法cluster 变量聚类分析pca 变量1 变量2…, components(4)主成分分析mvreg 因变量向量1 向量2…, clustervar(cluster)多元回归及聚类分析multilevel 因变量自变量1 自变量2…, mle 内部命令(通常是cov)多层线性模型分析glm 因变量自变量1 自变量2…, family(binomial) 连接函数(logit/probit) 难以观察到自变量(即随机拦截模型)其他选项广义线性模型分析heckprob/reg3 因变量自变量1 自变量2… 等随机效应模型分析。

实验报告模板作业

实验报告模板作业

实验报告
一、实验目的和要求
学习stata软件的应用要求自带电脑和老师要求准备的课件
二、实验原理
stata的上机操作
三、主要仪器设备、试剂或材料
电脑、课件以及上课要用到的关于stata的文件
四、实验方法与步骤
输入list
输入list make
输入scatter wage educ
输入line wage educ
输入line wage educ
输入twoway area wage educ,sort
输入histogram wage
输入histogram lwage
输入histogram lwage if married==1
输入histogram lwage if married==0
五、实验数据记录、处理及结果分析
在stata的应用过程中数据都记录在软件中
六、讨论、心得
通过对stata软件的上机练习,对其有了初步的认识,对计量经济学的研究学习有更进一步的帮助。

计量经济学数据分析实验报告

计量经济学数据分析实验报告

《计量经济学》实验报告【试验名称】利用OLS方法对证券市场高频数据进行分析【试验目的】掌握二元线性回归模型的建模和分析方法【试验内容】建立股票荣盛石化(002493)委托差价与换手率和收盘价的二元线性回归模型,并进行短期预测分析【试验步骤】1・建立股票委托差价与换手率和收盘价的二元线性回归模型:Spread =陽 + Pi^n + P2x2i + Pi(其中,令y: = Spread, x n = P收,x2i = turnover)2.数据采样表1荣盛石化(002493)每15分钟交易情况一、点点法计算回归方程由表1中的数据计算得出工y= 0.083 y = O.OO83« 0.008工X]二11697,云二11.697工x?二0.613%,云二0.061%(1) 编制工作表■ yx 2(%)• *> y_• • x :yX1X 2 0.001 -0.077 0.017 O.lxlO"55.9xl0~32 9x10"® 一7 7x10* 1.7x10“ -1.3xl0-5 0.001 -0.057 0.009 lxlO -6 3.2 xlO -38.1X10-9 -5.7xl0T9.0 xlO -8 -5.1x10^ 0003 -0.057 0.029 9x10^3.2x10^ 84x1 (T 81.7X1CT 4-8.7x10“ -1.7xlO -5 -0.001 -0.077 0.001 1x10"5.9x10-3lxlO -107.7 xlO -5 -l.OxlO -8 -7.7xl0? 0.001 0.033-0.026 lxlO -61.1x10-36 8x10"®3.3 xlO -5 -2.6x1 O'7 -8.6x1 OY ・0.004 -0.007 -0.024 1.6 xlO" 4.9 xlO -3 5.8X10-82.8x29.6x10-7 1.7x10“ -0.005 -0.007 -0.014 2.5 xlO -5 4.9 xlO -32.0 xW 83.5x10-5 7.0x10-7 9.8x10-7 | 0.006 0.073 •0.003 3 6x10*5.3x10—3 9xlO -10 4.4x107-1.8x10—7 -2.2x10“ 0.001 0.0330.006 lxlO^51.1 X 1 0"3 3.6 xlO -93 3x10*6X10-8 2.0 xlO -6 0.006 0.1430.0083.6 xlO"50.026 4x10"86x10*4.8 xlO"7l.lxlO"5(2) Ik 算统计量(3) 计算久、Dj 、D 2(4) 得出参数估计值A = —= 3.5xl0'3 Doa-y-\ • 0i — x? • 0? = -0.405综上所得,回归方程为:X =0.035x h +4.3x 21-0.405二、模型分析 (1)经济意义检验模型估计的结果说明,在假定其他变量不变的情况下,当收盘 价每增长1s ^=Ey2= 127x10-4S R =工£ =3.68x10“Sy?=工禺 y = 114x10"% =工衬=4.58xl0"2=x^y =L54x10'3 $2 =工若禺=-1.26xl0-5D.=S H %= 1.66x10“= 7.16xl0"s= 5.8xlO"10S“■ ■% S"元,委托差价(Spread)就会增长0.035元;在假定其他变量不变的情况下,当换手率(turnover)增长1个百分点时,委托差价(Spread)就会增长4.3元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计量经济学实验报告 stata
《计量经济学实验报告:利用 Stata 进行数据分析与解释》
引言
计量经济学是经济学中的一个重要分支,它通过运用数学和统计工具来分析经济现象。

在实际研究中,经济学家们经常需要进行数据分析和解释,以验证经济理论和政策的有效性。

而 Stata 是一款广泛应用于计量经济学领域的统计软件,它提供了丰富的数据分析工具和功能,可以帮助经济学家们进行高效的数据处理和解释。

实验设计
为了展示 Stata 在计量经济学研究中的应用,我们设计了一个实验来分析劳动力市场的收入差距。

我们收集了一份包含个体收入、教育水平、工作经验等变量的数据集,并使用 Stata 进行数据清洗和整理。

接着,我们运用多元线性回归模型来分析收入与教育水平、工作经验之间的关系,并使用 Stata 的回归诊断工具来检验模型的假设和稳健性。

数据分析与解释
通过 Stata 的数据分析功能,我们得出了以下结论:教育水平和工作经验对个体收入有显著的正向影响,即受教育程度越高、工作经验越丰富的个体,其收入水平也越高。

而且,我们还发现了一些其他影响收入的因素,比如性别、种族等。

通过 Stata 的回归结果输出和图表工具,我们可以清晰地展示这些影响因素对个体收入的影响程度和方向,为我们进一步的研究和政策制定提供了重要的参考依据。

结论
本实验充分展示了 Stata 在计量经济学研究中的重要作用。

通过 Stata 的数据处理、回归分析和可视化工具,我们可以高效地进行数据分析和解释,为经济现象提供科学的解释和政策建议。

因此,我们鼓励经济学家们在其研究中充分利用 Stata 这一强大的工具,以提高研究的科学性和可信度。

相关文档
最新文档