高考数学基础知识训练(28)
2023高考数学复习专项训练《面面垂直的性质》(含解析)

2023高考数学复习专项训练《面面垂直的性质》一 、单选题(本大题共12小题,共60分)1.(5分)已知集合A ={ 1,2},A ∪B ={ 1,2,3,4},则满足条件的集合B 有( )个.A. 1B. 2C. 3D. 42.(5分)已知a ∈R ,复数z =3+i1+ai (i 为虚部单位)为纯虚数,则z 的共轭复数的虚部为()A. 1B. −1C. iD. −i3.(5分)已知函数f(x)={lo g 2(4−x),x <41+2x−1,x ⩾4,则f(0)+f(log 232)=( )A. 19B. 17C. 15D. 134.(5分)扇形OAB 的半径为1,圆心角为90∘,P 是AB ⏜上的动点,OP →⋅(OA →−OB →)的最小值是( )A. 0B. −1C. −√2D. 125.(5分)设α,β是两个不同的平面,m 是直线且m ⊂α,“m//β“是“α//β”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件6.(5分)已知函数f(x)=sin (ωx +ϕ)(ω>0,|ϕ|<π2的最小正周期为π,且f(x)是(π3,4π5)上的单调函数,则ϕ的取值范围是( )A. (-π2,-π6] B. (-π2,π6] C. [-π6,-π10]D. [-π6,π2)7.(5分)若实数x ,y 满足{x −y −1⩽0x +2⩾0x +2y −1⩽0,则目标函数z =2x +y 的最大值为( )A. 2B. 3C. −7D. −528.(5分)某程序框图如图所示,则程序运行后输出的S的值是()A. 1008B. 2017C. 2018D. 30259.(5分)在等比数列{a n}中,a1=1,公比|q|≠1,若a m=a1a2a3a4a5,则m=().A. 9B. 10C. 11D. 1210.(5分)已知点P是曲线y=x2−3lnx上任意的一点,则点P到直线2x+2y+3=0的距离的最小值是()A. 74B. 78C. 3√22D. 7√2411.(5分)直线x−2y+2=0关于直线x=1对称的直线方程是()A. x+2y−4=0B. 2x+y−1=0C. 2x+y−3=0D. 2x+y−4=012.(5分)已知边长为3的正方形ABCD与正方形CDEF所在的平面互相垂直,M为线段CD上的动点(不含端点),过M作MH//DE交CE于H,作MG//AD交BD于G,连结GH.设CM=x(0<x<3),则下面四个图象中大致描绘了三棱锥C−GHM的体积y与变量x变化关系的是()A. B.C. D.二、填空题(本大题共5小题,共25分)13.(5分)若f(x)=(m−1)x2+6mx+2是偶函数,则f(0),f(1),f(-2)从小到大的排列是____________________.14.(5分)某空间几何体的三视图如图所示,则该几何体的体积是 (1) ;表面积是 (2)15.(5分)已知△ABC 的三边长分别为3,5,7,则该三角形的 外接圆半径等于__________.16.(5分)设m ,n 已知函数fx )=og2(−|x|+4)的定域是[mn ]值域0,],若关x 的2|1−x|+m +1=0有一的实解,则m +n = ______ .17.(5分)已知函数f(x)=12x 2−ax +lnx ,对于任意不同的x 1,x 2∈(0,+∞),有f(x 1)−f(x 2)x 1−x 2>3,则实数a 的取值范围为 ______.三 、解答题(本大题共6小题,共72分)18.(12分)已知函数f (x)=(x −1)2,数列{a n }是公差为d 的等差数列,数列{b n }是公比为q 的等比数列(q ∈R,q ≠1,q ≠0).若a 1=f(d −1),a 3=f (d +1),b 1=f (q −1),b 3=f (q +1), (1)求数列{a n },{b n }的通项公式; (2)若数列{a n }的前n 项和为S n ,①求证:对任意的n ⩾2,(n ∈N ∗)时 1S 2+1S 3+⋯+1S n<1②设数列{c n }对任意的自然数n 均有c1b 1+c 2b 2+c 3b 3+⋯+c n b n=S n+1成立,求c 1+c 2+c 3+⋯+c n 的值.19.(12分)已知函数f(x)=√32sin(ωx +φ)+sin 2(ωx+φ2)−12(ω>0,0<φ<π)为奇函数,且f(x)图象的相邻两对称轴间的距离为π. (1)求f(x)的解析式;(2)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知f(π2+C)c+f(π2−B)b=1a,求角A 的取值范围.20.(12分)如图,在三棱锥A −BCD 中,ΔABD 为边长等于√2的正三角形,CD =CB =1.ΔADC 与ΔABC 是有公共斜边AC 的全等的直角三角形. (Ⅰ)求证:AC ⊥BD ;(Ⅱ)求D点到平面ABC的距离.21.(12分)已知点(0,1),(3+2√2,0),(3−2√2,0)在圆C上.(1)求圆C的方程;(2)若圆C与直线x−y+a=0交于A,B两点,且OA⊥OB,求a的值.22.(12分)已知极坐标中,曲线C的极坐标方程为ρ−2cosθ=3ρ,以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,若直线l的参数方程为{x=−√2+2ty=−1+2t,(t 为参数),且直线l与曲线C交于M,N两点,(Ⅰ)求直线l的极坐标方程以及曲线C的参数方程;(Ⅰ)若点P在曲线C上,求ΔPMN面积的最大值.23.(12分)设函数f(x)=|x−a|.(1)当a=2时,解不等式f(x)⩾7−|x−1|;(2)若f(x)⩽1的解集为[0,2],1m +12n=a(m>0,n>0),求证:m+4n⩾2√2+3.答案和解析1.【答案】D;【解析】解:集合A ={ 1,2},A ∪B ={ 1,2,3,4}, 所以B 至少含有,3,4两个元素,所以B 的可能情况为:{ 3,4},{ 3,4,1},{ 3,4,2},{ 3,4,1,2}. 故选D .由题意列举集合B 的所有可能情况,得到集合B 的个数.该题考查集合的基本运算,集合中元素的基本性质,考查计算能力.2.【答案】B; 【解析】解:∵z =3+i 1+ai=(3+i)(1−ai)(1−ai)(1+ai)=3+a 1+a 2−3a−11+a 2i 为纯虚数,∴{3+a1+a 2=01−3a 1+a 2≠0,解得a =−3, ∴z =i ,即z −=−i , ∴z 的共轭复数的虚部为−1. 故选:B.根据已知条件,结合复数的运算法则,以及复数的性质,即可求解. 此题主要考查复数的运算法则,以及复数的性质,属于基础题.3.【答案】A; 【解析】该题考查分段函数的应用,函数值的求法,考查计算能力,属于基础题. 利用函数的解析式,直接求解函数值即可.解:函数f(x)={lo g 2(4−x),x <41+2x−1,x ⩾4,则f(0)+f(log 232)=log 24+1+2lo g 232−1 =2+1+12×32=19. 故选:A .4.【答案】B; 【解析】此题主要考查了向量的坐标运算和三角函数的性质,属于中档题.建立平面直角坐标系,求出向量坐标,设P(cosθ,sinθ),根据向量坐标的运算得到OP →.(OA →−OB →),根据三角函数的性质即可求出最值.解:以O 为原点,以OA 为x 轴,建立平面直角坐标系,则A(1,0),B(0,1). 设P(cosθ,sinθ),0°⩽θ⩽90°.则OP →=(cosθ,sinθ),OA →=(1,0),OB →=(0,1).∴OP →.(OA →−OB →)=(cosθ,sinθ).(1,−1)=cosθ−sinθ=−√2sin (θ−45∘). ∵0°⩽θ⩽90°,∴−45°⩽θ−45°⩽45°, ∴当θ=90°时,OP →.(OA →−OB →)取得最小值为−1. 故选B.5.【答案】B;【解析】解:m ⊂α,m//β得不到α//β,因为α,β可能相交,只要m 和α,β的交线平行即可得到m//β;α//β,m ⊂α,∴m 和β没有公共点,∴m//β,即α//β能得到m//β; ∴“m//β”是“α//β”的必要不充分条件. 故选:B .m//β并得不到α//β,根据面面平行的判定定理,只有α内的两相交直线都平行于β,而α//β,并且m ⊂α,显然能得到m//β,这样即可找出正确选项.考查线面平行的定义,线面平行的判定定理,面面平行的定义,面面平行的判定定理,以及充分条件、必要条件,及必要不充分条件的概念.6.【答案】C;【解析】解:∵函数f(x)=sin (ωx +ϕ)(ω>0,|ϕ|<π2)的最小正周期为2πω=π,∴ω=2,∴f(x)=sin (2x +ϕ).∵f(x)是(π3,4π5)上的单调函数,∴2π3+ϕ⩾π2,且8π5+ϕ⩽3π2,求得−π6⩽ϕ⩽−π10,故选:C .由题意利用正弦函数的周期性求得ω,再根据单调性求得ϕ的取值范围. 此题主要考查正弦函数的周期性和单调性,属于基础题.7.【答案】A;【解析】解:作出约束条件不等式组满足{x −y −1⩽0x +2⩾0x +2y −1⩽0的可行域如图:目标函数z =2x +y 在{x −y −1=0x +2y −1=0的交点A(1,0)处取最大值为z =2×1+0=2. 故选:A .画出约束条件表示的可行域,判断目标函数z =2x +y 的位置,求出最大值. 此题主要考查简单的线性规划的应用,正确画出可行域,判断目标函数经过的位置是解答该题的关键.8.【答案】A;的值以4为周期呈周期性变化,【解析】解:由y=cos iπ2+1每四个值分为一组,每组的和为6,故a i=i cos iπ2最后满足i<2018的i值为2017,执行循环体后,i=2018,故S共进行为2018次累加,由2018÷4=504……2,故S=6×504+1−2018+1=1008,故选:A.由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,可得答案.此题主要考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.9.【答案】C;【解析】该题考查等比数列的性质、通项公式的灵活应用,属于基础题.根据等比数列的性质得a1⋅a5=a2⋅a4=a32,结合条件和等比数列的通项公式列出方程,求出m的值.解:根据等比数列的性质得,a1⋅a5=a2⋅a4=a32,又a m=a1a2a3a4a5,所以a m=a35,因为a m=a1q m−1=q m−1,a3=a1q2=q2,所以q m−1=(q2)5,所以m−1=10,即m=11,故选:C.10.【答案】D;【解析】解:设P(x,y),则y′=2x−3x(x>0),令2x−3x =−1,解得x=1或x=−32,∵x>0,∴x=1,∴y=1,即平行于直线2x+2y+3=0且与曲线y=x2−lnx相切的切点坐标为(1,1),由点到直线的距离公式可得点P到直线2x+2y+3=0的距离的最小值d=√4+4=7√24,故选:D.求出平行于直线2x+2y+3=0且与曲线y=x2−3lnx相切的切点坐标,再利用点到直线的距离公式求解.此题主要考查点到直线的距离公式的应用,函数的导数的求法及导数的意义,体现了转化思想,属于基础题.11.【答案】A;【解析】解:直线x−2y+2=0上的点(−2,0)关于直线x=1对称的点A(4,0),直线x−2y+2=0上的点(0,1)关于直线x=1对称的点B(2,1),故直线x−2y+2=0关于直线x=1对称的直线方程,即直线AB的方程,为y−10−1=x−24−2,即x+2y−4=0,故选:A.在直线x−2y+2=0上任取2个点,求出它们关于直线x=1对称的对称点,用两点式可得对称直线的方程.这道题主要考查求一条直线关于另一条直线的对称直线的方法,属于基础题.12.【答案】A;【解析】此题主要考查了面面垂直的性质定理的运用、三棱锥体积公式以及利用导数研究函数的单调性,属于中档题.由题意,画出图形,利用x表示三棱锥的体积,利用导数得到函数的单调区间,即可得到函数图象.解:如图,因为正方形ABCD与正方形CDEF所在的平面互相垂直,又过M作MH//DE交CE于H,作MG//AD交BD于G,所以GM⊥HM,设CM=x(0<x<3),则HM=CM,GM=DM=3−x,所以三棱锥的体积为V=13×12×GM×HM×CM=16(3−x)x2=−16x3+12x2,(0<x<3),V′=−12x2+x,令V′=−12x2+x=0,解得x=0或者x=2,令V′>0得0<x<2,令V′<0得2<x<3,故体积V在(0,2)单调递增,在(2,3)单调递减,所以V关于x的图象如下:故选:A.13.【答案】f(-2)<f(1)<f(0);【解析】略14.【答案】163;16+8√2;【解析】解:几何体的直观图如图,是正四棱柱的一部分,正四棱柱的底面边长为2,棱柱的高为:4;所以几何体的体积为:12×2×2×4−13×12×2×2×4=163.几何体的表面积为:4×2√2+2×12×2×4+12×2×2+12×2√2×√42+22−(√2)2=16+8√2.故答案为:163;16+8√2.由三视图,画出几何体的直观图,利用三视图的数据求解几何体的体积,表面积.此题主要考查三视图求解几何体的体积与表面积,判断几何体的形状是解答该题的关键.15.【答案】7√33;【解析】略16.【答案】1;【解析】解:∵f()=og2(−|x|+4)的值域02],即:m+n1结合可n=3由函数f()=log(−|+4)的定义域[m,n],|x|∈[0,]…∴−|∈[−3,0]则m=2故答案1由关于的方程2|1−x|+m=0有一的实数解,我们易m的值然后根据f()=o2(−||+4)的定义域是m,n,值域是[0,2,结合函f(x)=log2(−|x|+)性质,可出的值,进而案.本题考的知识点是的存在性及的数的判断,对函数的义及对数值域,其中利用于的方程21−x|++1=0有唯一的实数解,变形得到关x的方程2|−x|+1=m有唯一实解,即−m为函y=1−x|+1最值,是解答本的关.17.【答案】(-∞,-1];【解析】解:对于任意不同的x1,x2∈(0,+∞),有f(x1)−f(x2)x1−x2>3.不妨设x1<x2,则f(x1)−f(x2)<3(x1−x2),即f(x1)−3x1<f(x2)−3x2,设F(x)=f(x)−3x,则F(x1)<F(x2),又x1<x2,所以F(x)单调递增,F′(x)⩾0恒成立.F(x)=f(x)−3x=12x2−(a+3)x+lnx.则F′(x)=x−(3+a)+1x =x2−(3+a)x+1x,令g(x)=x2−(3+a)x+1,要使F′(x)⩾0在(0,+∞)恒成立,只需g(x)=x2−(3+a)x+1⩾0恒成立,即3+a⩽x+1x 恒成立,x+1x⩾2√x·1x=2,当且仅当x=1x,即x=1时等号成立,所以3+a⩽2,即a⩽−1,则实数a的取值范围为(−∞,−1].故答案为:(−∞,−1].根据题意对于任意不同的x1,x2∈(0,+∞),有f(x1)−f(x2)x1−x2>3,不妨设x1<x2,得到f(x1)−3x1<f(x2)−3x2,设F(x)=f(x)−3x,则F(x1)<F(x2),又x1<x2,即F(x)单调递增,则导函数大于等于0恒成立,即可得到3+a⩽x+1x恒成立,再利用基本不等式求出x+1x的最小值为2,得到3+a⩽2,即可得到答案.此题主要考查了利用导数研究函数的单调性和基本不等式,考查了转化思想和函数思想,属中档题.18.【答案】解:(1)a1=f(d−1)=(d−2)2,a3=f(d+1)=d2,∴a3-a1=2d,即d2-(d-2)2=2d,解得d=2,∴a1=0,a n=2(n-1),又b1=f(q-1)=(q-2)2,b3=f (q+1)=q2,b3b1=q2,∴q 2(q−2)2=q2,∵q≠1,∴b1=1,b n=3n−1;(2)①证明:∵S n=n(n-1),∴1S n =1n(n−1)=1n−1-1n(n≥2),则1S2+1S3+…+1S n=(1-12)+(12−13)+…+(1n−1-1n)=1-1n<1;②由c1b1+c2b2+c3b3+…+c nb n=S n+1,得c1 b1+c2b2+c3b3+…+c n−1b n−1=S n(n≥2),两式相减得cn b n=S n+1-S n =a n+1=2n ,n=1也符合,∴c n =2n•b n =2n•3n-1=23n.3n ,令T n =1.31+2.32+⋯+n.3n , 利用错位相减法可得T n =2n −14.3n+1+34∴c 1+c 2+c 3+…+c n =23T n =(n −12).3n +12.; 【解析】(1)用d 表示出a 1,a 3,由a 3−a 1=2d 可得关于d 的方程,解出d 可得a n ,用q 表示出b 1,b 3,由b 3b 1=q 2可得q 的方程,解出q 可得b n ;(2)①由(1)可得S n ,利用裂项相消法可求得1S 2+1S 3+⋯+1S n,由结果可作出证明;②由c 1b1+c 2b 2+c 3b 3+⋯+c n b n=S n+1,得c 1b1+c 2b 2+c 3b 3+⋯+c n−1b n−1=S n (n ⩾2),两式相减可求得c n ,注意验证n =1也适合,利用错位相减法可求得c 1+c 2+c 3+⋯+c n 的值. 该题考查等差数列等比数列的通项公式、数列求和、数列与不等式的综合,考查学生综合运用所学知识解决问题的能力,对能力要求较高.19.【答案】解:(1)由题意,函数f(x)=√32sin(ωx +ϕ)+sin 2(ωx+ϕ2)−12=√32sin(ωx +ϕ)−12cos(ωx +ϕ)=sin(ωx +ϕ−π6),因为函数f (x )图象的相邻两对称轴间的距离为π,所以T=2π=2πω,可得ω=1, 由函数为奇函数,可得ϕ−π6=kπ,k ∈Z ,因为0<ϕ<π,所以φ=π6,所以,函数f (x )=sinx . (2)由f(π2+C)c +f(π2−B)b=cosC c+cosB b=1a ,及正弦定理得cosC sinC +cosB sinB =sinBcosC+cosBsinCsinCsinB=sin(B+C)sinCsinB=1sinA ,∵sinA=sin[π-(B+C )]=sin (B+C ),∴si n 2A=sinBsinC ,即a 2=bc , 又由余弦定理知:cosA =b 2+c 2−a 22bc ≥2bc−a 22bc=12,当且仅当b=c 时等号成立,而A ∈(0,π),∴A ∈(0,π3].; 【解析】(1)由题意,利用三角恒等变换,化简函数的解析式,正弦函数的图象和性质,求得ω和φ的值,可得函数的解析式.(2)由题意,利用正弦定理、余弦定理,基本不等式,求得cosA 的范围,可得A 的范围. 此题主要考查三角恒等变换,正弦函数的图象和性质,正弦定理、余弦定理的应用,基本不等式,属于中档题.20.【答案】(Ⅰ)证明:取BD中点M,连AM、CM∵AD=AB∴AM⊥BD,又∵DC=CB,∴CM⊥BD,又∵CM∩AM=M,CM,AM⊂平面ACM∴BD⊥面ACM,又AC⊂面ACM,∴BD⊥AC(Ⅱ)解:过A作AE∥BC,AE=BC,连接EC、ED,则AB∥EC,AB=EC∵BC⊥AB,∴BC⊥EC,又∵BC⊥DC,EC∩DC=C,EC,DC⊂平面DEC.∴BC⊥面DEC.∵BC⊂面ABCE,∴面ABCE⊥面DEC过D作DF⊥EC,交EC于F,DF即为所求,在△DEC中,DE=DC=1,EC=√2,∴DF=√2.;2【解析】此题主要考查线面垂直,面面垂直的证明,考查点到平面距离的计算,属于中档题.(Ⅰ)取BD中点M,连AM、CM,证明BD⊥面ACM,即可证明AC⊥BD;(Ⅱ)证明面ABCE ⊥面DEC ,过D 作DF ⊥EC ,交EC 于F ,DF 即为D 点到平面ABC 的距离.21.【答案】解:(1)由题意可设圆C 的圆心为(3,t ),则有32+(t-1)2=(2√2)2+t 2,解得t=1.则圆C 的圆心为(3,1),半径长为√(3−0)2+(1−1)2=3.…(4分) 所以圆C 的方程为(x-3)2+(y-1)2=9 (2)由{x −y +a =0(x −3)2+(y −1)2=9消去y ,得2x 2+(2a-8)x+a 2-2a+1=0,此时判别式△=56-16a-4a 2.设A (x 1,y 1),B (x 2,y 2), 则有x1+x2=4-a ,x1x2=a 2−2a +12①,由于OA ⊥OB ,可得x 1x 2+y 1y 2=0,又y 1=x 1+a ,y 2=x 2+a ,所以2x 1x 2+a (x 1+x 2)+a 2=0②由①②得a=-1,满足△>0,故a=-1; 【解析】(1)设出圆的标准方程,把三个点代入,联立方程组求得.(2)设出点A ,B 的坐标,联立直线与圆的方程,消去y ,确定关于x 的一元二次方程,已知的垂直关系,确定x 1x 2+y 1y 2=0,利用韦达定理求得a .这道题主要考查了直线与圆的位置关系,圆的标准方程.考查了学生分析和图象观察能力.注意把圆的代数问题与圆的平面性质相结合.22.【答案】解:(Ⅰ)曲线C 的普通方程为(x −1)2+y 2=4, 故曲线C 的参数方程为{x =1+2cosθy =2sinθ(θ为参数).直线l 的直角坐标方程为x −y +√2−1=0, 所以直线l 的方程可化为ρsin θ−ρcos θ=√2−1. (Ⅰ)圆心C 到l 的距离为d =√2 −1|√2=1,所以|MN |=2√4−1=2√3,又因为圆C 上的点到直线l 的距离的最大值为r +d =2+1=3, 所以(S ΔPMN )max =12×|MN |×3=3√3, 即ΔPMN 面积的最大值为3√3.;【解析】此题主要考查直线和曲线的三种方程的转化及直线与圆位置关系的运用,考查点到直线距离公式及圆有关的最值问题,属于中档题.(Ⅰ)利用三种方程的转化方法,将曲线C 的极坐标方程转化为参数方程和直线l 的参数方程转化为极坐标方程;(Ⅰ)利用点到直线的距离公式求出圆心(1,0)到直线x −y +√2−1=0的距离,勾股定理求出弦长|MN |,圆C 上的点到直线l 的距离的最大值为r +d =3,利用三角形面积公式即可求解.23.【答案】解:(1)当a=2时,f (x )=|x-2|, 则不等式f (x )≥7-|x-1|等价为|x-2|≥7-|x-1|, 即|x-2|+|x-1|≥7,当x≥2时,不等式等价为x-2+x-1≥7,即2x≥10,即x≥5,此时x≥5;当1<x <2时,不等式等价为2-x+x-1≥7,即1≥7,此时不等式不成立,此时无解, 当x≤1时,不等式等价为-x+2-x+1≥7,则2x≤-4,得x≤-2,此时x≤-2, 综上不等式的解为x≥5或x≤-2,即不等式的解集为(-∞,-2]∪[5,+∞). (2)若f (x )≤1的解集为[0,2], 由|x-a|≤1得-1+a≤x≤1+a . 即{1+a =2−1+a =0得a=1, 即1m +12n =a=1,(m >0,n >0),则m+4n=(m+4n )(1m +12n )=1+2+4n m +m2n ≥3+2√4n m .m2n =2√2+3. 当且仅当4n m =m2n ,即m 2=8n 2时取等号,故m+4n≥2√2+3成立.; 【解析】(1)利用绝对值的应用表示成分段函数形式,解不等式即可.(2)根据不等式的解集求出a =1,利用1的代换结合基本不等式进行证明即可. 这道题主要考查不等式的求解和应用,根据绝对值不等式的性质转化为分段函数形式,利用1的代换转化为基本不等式是解决本题的关键.综合性较强.。
高考数学基本知识百题训练(1)及答案

充分非必要条件. 充分且必要条件.
b 0 , a 0 是 函数
充分非必要条件. 充分且必要条件.
f(x) ax 2 bx c 为偶函数的
(B) 必要非充分条件. (D) 既不充分也不必要条件.
若 sin
2 , 且 cos 0 2
(0 2) 则角 的值为
9 关于 x 的方程 x 2 (1 m) x 2 0 的两个根的等差中项为 10 关于 x 的方程 x 2 2 x m 0 两根差的平方是 16. 则 m 11 已知 2 12 若 2 13
x 1
92 4 0
x
x
x= x= 成立 (B)若 a 0 则 a 2 a (D)若 a 2 a 则 a 0 必成立
第 2 页 2008-5-30
深圳市碧波中学李红权
高考数学基本知识百题训练(1)及答案.doc(一)
23
是偶函数且在区间(0 ,+∝)上是单调增函数的是
( A)y x
24
(B) y log
2
1 x
-x (C) y 1 x 2 1 (D) y 2 2
是偶函数,且在区间(-∝,0 )上是单调减函数的是
57
物线. 58 a,b 全不是零. 是 a b 0 的 充分非必要条件. 充分且必要条件. (B) 必要非充分条件. (D) 既不充分也不必要条件.
2 2
(A) (C) 59 (A) (C) 60 (A) (C) 61 62 63 64 65
是 3
sin
3 的 2
(B) 必要非充分条件. (D) 既不充分也不必要条件.
是偶函数且在 (0, ) 内为增函数的是 (B)
【四维专题特训】三角函数的概念、同角三角函数的基本关系、诱导公式-高考数学三轮真题训练(新高考)原卷

专题07 三角函数1.三角函数的概念、同角三角函数的基本关系、诱导公式【高考真题】1.(2021·全国I 卷)若tan 2θ=-,则()sin 1sin 2sin cos θθθθ+=+( )A .65-B .25-C .25D .652.(2020·全国I 卷理数)已知 π()0,α∈,且3cos28cos 5αα-=,则sin α=( )A B .23 C .13 D3.(2020·全国II 卷理数)若α为第四象限角,则( ) A .cos2α>0 B .cos2α<0C .sin2α>0D .sin2α<04.(2019·全国I 卷文数)tan255°=( ) A .-2B .-C .2D .【基础知识】1.角的概念(1)定义:角可以看成一条射线绕着它的端点旋转所成的图形.(2)分类⎩⎪⎨⎪⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(3)相反角:我们把射线OA 绕端点O 按不同方向旋转相同的量所成的两个角叫做互为相反角.角α的相反角记为-α.(4)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z }.2.任意角的三角函数设α是一个任意角,α∈R ,它的终边OP 与单位圆相交于点P (x ,y ),则sin α=y ,cos α=x ,tan α=yx(x ≠0).由三角函数的定义知三角函数在各象限的符号由角α终边上任意一点的坐标来确定.口诀:“一全正,二正弦,三正切,四余弦”.3.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1.(2)商数关系:sin αcos α=tan α ⎝⎛⎭⎫α≠π2+k π,k ∈Z .4.三角函数的诱导公式5.常见特殊角的三角函数值★★★(1)利用sin 2α+cos 2α=1可实现正弦、余弦的互化,开方时要根据角α所在象限确定符号;利用sin αcos α=tan α可以实现角α的弦切互化.(2)应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子, 利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.(3)注意公式逆用及变形应用:1=sin 2α+cos 2α,sin 2α=1-cos 2α,cos 2α=1-sin 2α.【题型方法】一、定义法求三角函数值1.已知角α终边经过点()1,m -,且3sin 5α=-,则tan α=( )A .34±B .34C .34-D .432.在平面直角坐标系中,若角θ的终边经过点sin ,cos 63P ππ⎛⎫- ⎪⎝⎭,则cos θ=( )A .12B .12-C D .3.已知角α的终边经过点(3,4)P ,则tan α=____________二、利用三角函数符号判断角所在象限 1.tan 0α<且cos 0α>,则角α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角2.设α是第三象限角,且coscos22αα=-,则2α的终边所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.如果点(2sin ,sin cos )P θθθ⋅位于第四象限,那么角θ所在象限为( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限三、商数关系和平方关系法求三角函数值(知一求二) 1.已知1,,sin cos 445ππααα⎛⎫∈-+= ⎪⎝⎭,则tan α=_________.2.已知θ为第四象限角,sin cos θθ+=sin cos θθ-=___________. 3.已知1cos sin 2αα-=-,则sin αcos α的值为_____.四、齐次式法求值1.已知πcos 2cos 2αα⎛⎫-=- ⎪⎝⎭,则cos sin cos sin αααα+=-( ) A .32B .12C .13-D .4-2.若tan 2θ=,则2sin 3sin cos θθθ-=________. 3.已知函数sin()tan()()cos 2x x f x x πππ+-=⎛⎫+ ⎪⎝⎭. (1)化简()f x ;(2)若()2f α=,求下列表达式的值:①2sin cos sin 3cos αααα-+;①2sin sin cos ααα+.五、诱导公式1.()sin 2040-︒=( ) A .12-B .12C.D2.13πsin6=( ) A .12B .12-CD. 3.若()()()233sin cos tan 22cos sin 2f ππααπααπαπα⎛⎫⎛⎫---- ⎪⎪⎝⎭⎝⎭=⎛⎫++ ⎪⎝⎭,则4f π⎛⎫= ⎪⎝⎭______.六、整体代换法诱导公式化简求值(凑角法)1.若54cos 65πθ⎛⎫-=-⎪⎝⎭,其中()0,θπ∈,则sin 6πθ⎛⎫+= ⎪⎝⎭( ) A .45-B .45C .35D .352.已知π3sin cos 65αα⎛⎫-+= ⎪⎝⎭,则2πcos 3α⎛⎫+= ⎪⎝⎭( )A .45-B .35 C .35D .453.已知sin 2(2)33πα+=,则cos(2)6πα-=( )A B .23-C .23D .【高考必刷】1.若()1,A a 是角θ终边上的一点,且sin θ=a 的值为________.2.已知θ是第四象限角,()1,M m 为其终边上一点,且sin θ=,则2sin cos sin cos θθθθ-+=______3.若α的终边过点(1,P ,则sin α的值为______.4.已知点()tan ,sin P θθ是第三象限的点,则θ的终边位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限5.已知角α的顶点为坐标原点,始边为x 轴的非负半轴,若点(sin ,tan )P αα在第四象限,则角α的终边在( ) A .第一象限 B .第二象限C .第三象限D .第四象限6.已知角θ的终边经过点1,2P ⎛- ⎝⎭,则角θ可以为( )A .76πB .23π C .43π D .53π7.如果点tan ,in P s θθ()位于第一象限,那么角θ所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限8.角θ为第一或第四象限角的充要条件是( )A .sin tan 0θθ<B .cos tan 0θθ<C .sin 0tan θθ> D .sin cos 0>θθ9.设θcos2θ-,则2θ是( ) A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角10.若点P 的坐标为()cos2021,sin2021,则点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限11.若sin cos 0αα⋅<,则α终边可能在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限12.已知()0,θπ∈,1sin cos 5θθ+=-,则下列结论正确的是( )A .θ的终边在第二象限B .3cos 5θ=-C .3tan 4θ=-D .12sin cos 25θθ⋅=-13.如果1sin cos 5αα+=,那么角α所在的象限是______.14.点(tan 2018,cos 2018)P 位于第________象限.15.若sin cos 2θθ-=,则44sin cos +=θθ( ) A .34B .56C .78D .8916.已知sin 43πθ⎛⎫-= ⎪⎝⎭sin2θ的值为( )A .79B .79-C .29D .29-17.若2sin 2θ+3cos 2θ=3,则cos θ=( )A .1B .-1C .±1D .018.已知角,02πα⎛⎫∈- ⎪⎝⎭,且22tan 3tan sin 4sin 0αααα--=,则()sin 2021απ+=( )A B .14C .34-D .19.已知,0()απ∈-,且3cos22sin cos 30ααα--=,则sin α=( )A B C .D .20.已知1(0,),sin cos 5απαα∈+=-,则下列结论正确的是( )A .4cos 5α= B .7sin cos 5αα-=C .sin cos 4tan 15ααα+=-D .sin cos 73sin 2cos αααα-=-+21.若1sin cos 5αα+=,则tan α可以是( )A .34-B .34C .43D .43-22.若tan 2θ=-,则()1sin 2sin sin cos θθθθ-=-( )A .65-B .25-C .25D .6523.已知向量(sin ,3),(1,cos )a b θθ=-=,且a b ⊥,则2sin 2cos θθ+的值为( ) A .710B .107 C .32D .2324.若tan 2α=,则212sin 1sin 2αα-=+( )A .13-B .-3C .13D .325.已知α满足tan α=222sin cos αα-=______ 26.若sin cos 1sin cos 2αααα-=+,则tan2α=_______27.已知()4cos 5πα+=,且tan 0α> (1)求tan α的值;(2)求()()2sin sin 2cos 4cos 2ππααππαα⎛⎫-+- ⎪⎝⎭⎛⎫-++ ⎪⎝⎭的值.28.已知tan 2α=-42ππα<<,求:22cos sin 12sin()4ααπα--+的值29.已知()()()sin 3sin 232cos cos 2f παπααπαπα⎛⎫+-+ ⎪⎝⎭=⎛⎫--- ⎪⎝⎭.(1)化简()f α.(2)已知tan 3α=,求()f α的值.30.()sin 45-︒=( ) A.2B.2-C .12D .12-31.32tan 3π⎛⎫- ⎪⎝⎭的值是( )ABC.D.32.已知cos()sin()22()cos()tan()f ππαααπαπα+-=---,则20173f π⎛⎫= ⎪⎝⎭___________.33.设tan 3α=,则sin()2cos()3sin 2cos 22παπαππαα-++=⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭___________.34.已知角α的顶点与坐标原点重合,始边与x轴非负半轴重合,终边过点⎝⎭.(1)求()()()()sin 2cos cos 211cos sin 3sin 2ππαπααππαπαα⎛⎫-++++ ⎪⎝⎭⎛⎫---++ ⎪⎝⎭的值.(2)已知02πβ-<<,sin β=求()cos 2αβ+的值. 35.已知()()()()cos 2sin sin tan 32f παπααπαπα-+=⎛⎫+- ⎪⎝⎭(1)求43f π⎛⎫⎪⎝⎭的值;(2)若164f πα⎛⎫+= ⎪⎝⎭,求5cos 6πα⎛⎫-⎪⎝⎭及2cos 3πα⎛⎫- ⎪⎝⎭的值.36.若π2cos 63a ⎛⎫+= ⎪⎝⎭,则πsin 26a ⎛⎫-= ⎪⎝⎭( )A .19-B.C .19D37.若π1sin 63α⎛⎫-= ⎪⎝⎭,则2os 2πc 3α⎛⎫+= ⎪⎝⎭( ) A .29B .29-C .79D .79-38.若()1cos 2π3α-=,则3πsin 2α⎛⎫-= ⎪⎝⎭______.39.已知1sin 33x π⎛⎫-= ⎪⎝⎭,且06x π<<,则2sin cos 63x x ππ⎛⎫⎛⎫+-+ ⎪⎪⎝⎭⎝⎭的值为___________.40.已知2sin 33x π⎛⎫+= ⎪⎝⎭,则cos 23x π⎛⎫-= ⎪⎝⎭_________.41.若tan 2tan 5πα=,则4sin 5sin 5παπα⎛⎫- ⎪⎝⎭=⎛⎫- ⎪⎝⎭_________.42.(1)若α是第二象限角,且π1cos 23α⎛⎫+=- ⎪⎝⎭,求tan α的值;(2)已知()()()()()3πsin 3πcos 2πsin 2cos πsin πf αααααα⎛⎫--- ⎪⎝⎭=---,化简()f α,在(1)的条件下,求()f α的值.43.已知21sin 35πα⎛⎫-= ⎪⎝⎭ (1)求cos 6πα⎛⎫- ⎪⎝⎭;(2)若36ππα-<<,求cos 3πα⎛⎫+ ⎪⎝⎭.44.已知()()()()()sin cos sin 23sin cos 2tan 2f παπαααπαπαπα⎛⎫++- ⎪⎝⎭=⎛⎫--- ⎪⎝⎭.(1)化简()f α;(2)若133f πα⎛⎫-= ⎪⎝⎭,求22cos cos 63ππαα⎛⎫⎛⎫+++ ⎪⎪⎝⎭⎝⎭的值.。
高考数学备考基础知识训练(1)新人教版

备考高考数学基础知识训练(1)班级______ 姓名_________ 学号_______ 得分_______一、填空题(每题5分,共70分) 1.函数3-=x y 的定义域为___ .2.已知全集U R =,集合{1,0,1}M =-,{}2|0N x x x =+=,则=⋂)(N C M U __ .3.若1()21x f x a =+-是奇函数,则a =___ .4. 已知122,x x -+=且1x >,则1x x --的值为 .5.幂函数ax y =,当a 取不同的正数时,在区间[0,1]上它们的图像是一族美丽的曲线(如右图).设点 A(1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数αx y =,βx y =的图像三等分,即有NA MN BM ==.那么βα⋅=___ .6.直线b x y +=21是曲线)0(ln >=x x y 的一条切线,则实数b =___ .7.已知命题:“[1,2]x ∃∈,使022≥++a x x ”为真命题,则a 的取值范围是___ .8. 函数4(4)(),(3)(4)x x f x f x x -≥⎧=⎨+<⎩则[(1)]f f -= .9.在用二分法...求方程3210x x --=的一个近似解时,现在已经将一根锁定在区间(1,2)内,则下一步可断定该根所在的区间为___ .10.设y x ,满足约束条件⎪⎩⎪⎨⎧≥≥≥+-≤--0,002063y x y x y x ,若目标函数)0,0(,>>+=b a by ax Z 的最大值为12,则b a 231+的最小值为___ .11.集合}2log |{21>=x x A ,),(+∞=a B ,若A B A ≠⋂时a 的取值范围是(,)c +∞,则c =___ .12.已知结论:“在正三角形ABC 中,若D 是BC 的中点,G 是三角形ABC 重心,则AGGD=2 ” .若把该结论推广到空间,则有结论:“在正四面体ABCD 中,若BCD ∆ 的中心为M ,四面体内部一点O 到四面体各面的距离都相等,则AOOM=___ .13.若函数(),()f x g x 分别是R 上的奇函数、偶函数,且满足()()xf xg x e -=,则有(),()f x g x 的解析式分别为 .14.若1||x a x -+≥12对一切x >0恒成立,则a 的取值范围是___ .二、解答题(共90分,写出详细的解题步骤)15.设非空集合A={x|-3≤x ≤a},B={y|y=3x+10,x ∈A},C={z|z=5-x,x ∈A},且B ∩C=C ,求a 的取值范围.16. 已知函数1()22x x f x =-. (1)若()2f x =,求x 的值;(2)判断函数()f x 的奇偶性,并证明你的结论. NMy BAx17. 讨论函数2()(0)1axf x a x=≠-在区间(1,1)-上的单调性.18. 即将开工的上海与周边城市的城际列车铁路线将大大缓解交通的压力,加速城市之间的流通;根据测算,如果一列火车每次拖4节车厢,每天能来回16次;如果每次拖7节车厢,则每天能来回10次;每天来回次数是每次拖挂车厢个数的一次函数,每节车厢一次能载客110人,试问每次应拖挂多少节车厢才能使每天营运人数最多?并求出每天最多的营运人数.(注:营运人数指火车运送的人数) .19.已知二次函数()2f x ax bx c =++.(1)若()10f -=,试判断函数()f x 零点个数;(2)若对任意12,,x x R ∈且12x x <,()()12f x f x ≠,试证明存在()012,x x x ∈,使()()()01212f x f x f x =+⎡⎤⎣⎦成立.20. 已知f (x )是定义域为(0,+∞)的函数,当x ∈(0,1)时f (x )<0.现针对任意..正实数x 、y ,给出下列四个等式:① f (x y)=f (x ) f (y) ;② f (x y)=f (x )+f (y) ;③ f (x +y)=f (x )+f (y) ; ④ f (x +y )=f (x ) f (y) . 请选择其中的一个..等式作为条件,使得f (x )在(0,+∞)上为增函数;并证明你的结论. 解:你所选择的等式代号是 .证明:参考答案:1.}3|{≥x x 2.}1{ 3.124. 解:由122x x -+=平方得2228x x -++=,则221224,()4x x x x ---+=∴-=,又11, 2.x x x ->∴-=答案:2.5.1 6.12ln - 7.8-≥a8. 解:[(1)][(2)][(5)](1)(4)0.f f f f f f f f -===== 答案:0 .9.)2,23(10.122511.0 12.313.解:由已知()()xf xg x e -=,用x -代换x 得:()(),xf xg x e ----=即()()xf xg x e -+=-,解得:2)(,2)(xx x x e e x g e e x f +-=-=-. 答案:2)(,2)(xx x x e e x g e e x f +-=-=-. 14.a ≤215.解:B={y|1≤y ≤3a+10},C={y|5-a ≤y ≤8};由已知B ∩C=C ,得C ⊆B , ∴518310a a -≥⎧⎨≤+⎩ ,解得243a -≤≤;又非空集合A={x|-3≤x ≤a},故a ≥-3;∴243a -≤≤,即a 的取值范围为243a -≤≤.16. 解:(1)∵1()22x x f x =-,由条件知1222xx -=,即222210x x -⨯-=, 解得212x=±;∵20x>,2log (12)x =+∴.(2)()f x 为奇函数,证明如下:函数()f x 的定义域为实数集R ,对于定义域内的任一x ,都有 111()22(2)()222x x xx x x f x f x ---=-=-=--=-, ∴函数()f x 为奇函数.17.解:设121212221211,()()11ax ax x x f x f x x x -<<<-=---则=12122212()(1)(1)(1)a x x x x x x -+--, 1212,(1,1),,x x x x ∈-<且221212120,10,(1)(1)0,x x x x x x ∴-<+>-->于是当120,()();a f x f x ><时当120,()();a f x f x <>时 故当0a >时,函数在(-1,1)上是增函数; 当0a <时,函数在(-1,1)上为减函数.18.解:设这列火车每天来回次数为t 次,每次拖挂车厢n 节;则由已知可设b kn t +=. 由已知得⎩⎨⎧+=+=b k b k 710416,解得⎩⎨⎧=-=242b k ;242+-=∴n t .设每次拖挂n 节车厢每天营运人数为y 人;则)2640220(221102n n tn y +-=⨯⨯=; ∴当64402640==n 时,总人数最多,为15840人. 答:每次应拖挂6节车厢,才能使每天的营运人数最多,为15840人.19.解:(1)()10,0,f a b c -=∴-+= b a c =+;2224()4()b ac a c ac a c ∆=-=+-=-,∴当a c =时,0∆=,函数()f x 有一个零点; 当a c ≠时,0∆>,函数()f x 有两个零点.(2)令()()()()1212g x f x f x f x =-+⎡⎤⎣⎦,则 ()()()()()()121112122f x f x g x f x f x f x -=-+=⎡⎤⎣⎦, ()()()()()()212212122f x f xg x f x f x f x -=-+=⎡⎤⎣⎦, ()()()()()()()212121210,4g x g x f x f x f x f x ∴⋅=--<≠⎡⎤⎣⎦;()0g x ∴=在()12,x x 内必有一个实根,即存在()012,x x x ∈,使0()0g x =即()()()01212f x f x f x =+⎡⎤⎣⎦成立.20.解:选择的等式代号是 ② .证明:在f (x y)=f (x )+f (y )中,令x =y =1,得f (1)= f (1)+ f (1),故f (1)=0. 又f (1)=f(x · 1x )=f (x )+f ( 1x )=0,∴f ( 1x)=-f (x ).………(※)设0<x 1<x 2,则0<x 1x 2<1,∵x ∈(0,1)时f (x )<0,∴f ( x 1x 2)<0;又∵f ( x 1x 2)=f (x 1)+f ( 1x 2),由(※)知f ( 1x 2)=-f (x 2),∴f ( x 1x 2)=f (x 1)-f (x 2)<0;∴f (x 1)<f(x 2) ,∴f (x )在(0,+∞)上为增函数.。
高考数学基础题训练:随机变量的期望与方差含详解

高考数学基础题训练:随机变量的期望与方差一、单选题 1.已知()1,4N η,若()()21P a P a ηη>=<-,则=a ( )A .1-B .0C .1D .22.天气预报,在假期甲地的降雨概率是0.2,乙地的降雨概率是0.3,假设在这段时间内两地是否降雨相互之间没有影响,则这两地中恰有一个地方降雨的概率为 A .0.2B .0.3C .0.38D .0.563.随机变量X 的分布列如下表,其中2b a c =+,且1c ab =,则(2)P X ==( )A .47B .45C .14D .2214.从某地区的儿童中挑选体操学员,已知儿童体型合格的概率为15,身体关节构造合格的概率为14.从中任挑一儿童,这两项至少有一项合格的概率是(假定体型与身体关节构造合格与否相互之间没有影响)( ) A .1320B .25C .14D .155.某市为弘扬我国优秀的传统文化,组织全市10万中小学生参加网络古诗词知识答题比赛,总分100分,经过分析比赛成绩,发现成绩X 服从正态分布()82,16N ,请估计比赛成绩不小于90分的学生人数约为( )〖参考数据〗:()0.683P X μσμσ-<≤+=,()220.954P X μσμσ-<≤+=,()330.997P X μσμσ-<≤+=A .2300B .3170C .3415D .4606.小明参加某项测试,该测试一共3道试题,每道试题做对得5分,做错得0分,没有中间分,小明答对第1,2题的概率都是12,答对第3题的概率是13,则小明答完这3道题的得分期望为( ) A .2512B .6512C .203D .2537.A 同学和B 同学参加某市青少年围棋比赛并进入决赛,决赛采取“3局2胜”制,若A 同学每局获胜的概率均为23,且每局比赛相互独立,则在A 先胜一局的条件下,A 最终能获胜的概率是( )A .34B .89C .79D .568.从区间()0,3和()1,5内分别选取一个实数x ,y ,得到一个实数对(),x y ,称为完成一次试验.若独立重复做3次试验,则x y <的次数T 的数学期望为( ) A .12B .13C .53D .52二、多选题9.设离散型随机变量X 的分布列如下表:若离散型随机变量23Y X =-+,且() 3.2E X =,则正确的是( ).A .0.2m =B .0.2n =C .() 3.4E Y =-D .()()33P X P X ≤=>10.“杂交水稻之父”袁隆平一生致力于杂交水稻技术的研究、应用与推广,创建了超级杂交稻技术体系,为我国粮食安全、农业科学发展和世界粮食供给作出了杰出贡献.某杂交水稻种植研究所调查某地水稻的株高,得出株高ξ(单位:cm )近似服从正态分布()2100,10N .已知()2~,X N μσ时,有(||)0.6827P X μσ-≤≈,(||2)0.9545P X μσ-≤≈,(||3)0.9973P X μσ-≤≈.下列说法正确的是( ) A .该地水稻的平均株高约为100cmB .该地水稻株高的方差约为100C .该地株高超过110cm 的水稻约占68.27%D .该地株高低于130cm 的水稻约占99.87%11.如图是一块高尔顿板示意图:在一块木板上钉着若干排互相平行但相互错开的圆柱形小木钉,小木钉之间留有适当的空隙作为通道,前面挡有一块玻璃,将小球从顶端放入,小球在下落过程中,每次碰到小木钉后都等可能地向左或向右落下,最后落入底部的格子中,格子从左到右分别编号为1,2,3,…,6,用X 表示小球落入格子的号码,则( )A .1(1)(0)64P X P X ==== B .5(2)(5)32P X P X ==== C .5(3)(4)16P X P X ==== D .3()2D X =12.一口袋中有大小和质地相同的5个红球和2个白球,则下列结论正确的是( )A .从中任取3球,恰有一个红球的概率是17B .从中有放回的取球3次,每次任取一球,恰好有两个白球的概率为20343C .从中不放回的取球2次,每次任取1球,若第一次已取到了红球,则第二次再次取1到红球的概率为13D .从中有放回的取球3次,每次任取一球,则至少有一次取到白球的概率为218343第II 卷(非选择题)请点击修改第II 卷的文字说明 三、填空题13.已知随机变量2~(0,)X N σ,且(),0P X a m a >=>,则()P a X a -<<=___________.14.已知某种疾病的患病率为0.5%,在患该种疾病的条件下血检呈阳性的概率为99%,则患该种疾病且血检呈阳性的概率为______.15.一项过关游戏规则规定:在第n 关要抛掷一颗质地均匀的骰子n 次,如果这n 次抛掷所出现的点数之和大于2n ,则算过关.甲同学参加了该游戏,他连过前二关的概率是_____.四、双空题16.在是否接种疫苗的调查中调查了7人,7人中有4人未接种疫苗,3人接种了疫苗,从这7人中随机抽取3人进行身体检查,用X 表示抽取的3人中未接种疫苗的人数,则随机变量X 的数学期望为______;设A 为事件“抽取的3人中,既有接种疫苗的人,也有未接种疫苗的人”,则事件A 发生的概率为______. 17.某地区气象台统计,该地区下雨的概率是415,刮风的概率是215,既刮风又下雨的概率是110.设事件A 为“该地区刮风”,事件B 为“该地区下雨”,则()P B A =______,()P A B =______.18.随机变量X 的分布列为()()1,2,3,,15kP X k k k N *===∈,则正整数k的最大值为__________,1522P X ⎛⎫<< ⎪⎝⎭的值为__________.19.立德中学开展学生数学素养测评活动,高一年级测评分值(满分100分)X 近似服从正态分布,正态曲线如图①所示.为了调查参加测评的学生数学学习的方法与习惯差异,决定在分数段[),m n 内抽取学生,并确定m =67,且()0.8186P m X n <<=.在某班随机抽样得到20名学生的分值分布茎叶图如图①所示.若该班抽取学生分数在分数段[),m n 内的人数为k ,则k 等于______;这k 名学生的人均分为______.(附:()0.6827P X μσμσ-<<+=,()220.9545P X μσμσ-<<+=,()330.9973P X μσμσ-<<+=)五、解答题20.在某校开展的知识竞赛活动中,共有A B C 、、三道题,答对A B C 、、分别得2分、2分、4分,答错不得分.已知甲同学答对问题A B C 、、的概率分别为422,,535,乙同学答对问题A B C 、、的概率均为35,甲、乙两位同学都需回答这三道题,且各题回答正确与否相互独立.(1)求甲同学至少有一道题不能答对的概率;(2)运用你学过的统计学知识判断,谁的得分能力更强.21.第24届冬季奥运会将于2022年2月在北京和张家口举办,为了普及冬奥知识,京西某校组织全体学生进行了冬奥知识答题比赛,从全校众多学生中随机选取了20名学生作为样本,得到他们的分数统计如下:我们规定60分以下为不及格;60分及以上至70分以下为及格;70分及以上至80分以下为良好;80分及以上为优秀.(I)从这20名学生中随机抽取2名学生,恰好2名学生都是优秀的概率是多少?(II)将上述样本统计中的频率视为概率,从全校学生中随机抽取2人,以X表示这2人中优秀人数,求X的分布列与期望.22.某校高一年级组织“知识竞答”活动.每位参赛者第一关需回答三个问题,第一个问题回答正确得10分,回答错误得0分;第二个问题回答正确得20分,回答错误得10-分;第三个问题回答正确得30分,回答错误得20-分.规定,每位参赛者回答这三个问题的总得分不低于30分就算闯关成功.若某位参赛者回答前两个问题正确的概率都是23,回答第三个问题正确的概率是12,且各题回答正确与否相互之间没有影响.(1)求这位参赛者仅回答正确两个问题的概率;(2)求这位参赛者回答这三个问题的总得分ξ的分布列和期望;(3)求这位参赛者闯关成功的概率.参考答案:1.C 【解析】 【分析】首先可通过题意求出正态分布曲线的对称轴,然后根据()()21P a P a ηη>=<-得出2112a a +-=,最后通过计算即可得出结果. 【详解】 因为()1,4N η,所以对称轴方程为1x η==,因为()()21P a P a ηη>=<-, 所以2112a a +-=,解得1a =, 故选:C. 【点睛】本题考查正态分布曲线的特点及曲线所表示的意义,主要考查正态分布曲线的对称性,考查计算能力,是简单题. 2.C 【解析】两地中恰有一个地方降雨分为两种情况:甲地降雨乙地不降雨,乙地降雨甲地不降雨,分别求解然后求和可得结果. 【详解】因为甲地的降雨概率是0.2,乙地的降雨概率是0.3,所以这两地中恰有一个地方降雨的概率为0.2(10.3)(10.2)0.30.38⨯-+-⨯=. 故选:C. 【点睛】本题主要考查事件的独立性,把事件分解为独立事件的积、互斥事件的和,是求解的关键,侧重考查数学建模的核心素养. 3.A 【解析】由概率的性质可得1a b c ++=,结合已知条件求出a 的值,即可求解.【详解】由概率的性质可得1a b c ++=, 由2,1,21b a c c ab a b c =+⎧⎪⎪=⎨⎪++=⎪⎩得4,71,32,21a b c ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩则4(2)7P X ==,故选:A 4.B 【解析】先写出事件“从中任挑一儿童,这两项至少有一项合格”的对立事件,然后再根据相互独立事件同时发生的概率公式求出其概率,最后根据对立事件的概率公式即可算出. 【详解】设事件A :“从中任挑一儿童,这两项至少有一项合格”,则其对立事件B :“从中任挑一儿童,这两项都不合格”,由题可知,儿童体型不合格的概率为45,身体关节构造不合格的概率为34,所以()433545P B =⨯=,故()()321155P A P B =-=-=.故选:B . 【点睛】本题主要考查对立事件的概率公式和相互独立事件同时发生的概率公式的应用,属于基础题. 5.A 【解析】根据正态分布定义,求得比赛成绩不小于90分的学生人数所占比例,即可得结果. 【详解】依题意知,82,4μδ==所以()74900.954P x <≤= 则()()19010.9540.0232P x ≥=-⨯=,所以比赛成绩不小于90分的学生人数约为 1000000.0232300⨯=故选:A6.C 【解析】 【分析】设小明的得分为ξ,则ξ的可能取值为0、5、10、15,求出所对应的概率,即可得到得分ξ的分布列,从而求出数学期望;【详解】解:设小明的得分为ξ,则ξ的可能取值为0、5、10、15, 所以()111101112236P ξ⎛⎫⎛⎫⎛⎫==-⨯-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()21211111551112232312P C ξ⎛⎫⎛⎫⎛⎫==⨯⨯-⨯-+-⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()2121111111011232233P C ξ⎛⎫⎛⎫⎛⎫==⨯-+⨯⨯-⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()2111152312P ξ⎛⎫==⨯= ⎪⎝⎭;所以小明得分ξ的分布列为:所以小明答完这3道题的得分期望为1511200510156123123⨯+⨯+⨯+⨯=,故选:C. 7.B 【解析】 【分析】先分析A 最终能获胜有两种情况,分别计算概率,再相加即得结果. 【详解】在A 先胜一局的条件下,A 最终能获胜有两种情况: (1)第二局甲再次取胜,概率为23;(2)第二局甲败,第三局甲胜,概率为122339⨯=,故A 最终能获胜的概率为228399+=.故选:B. 【点睛】 方法点睛:计算条件概率通常有两种方法; (1)利用条件概率公式()()()P AB P A B P B =;(2)在事件B 已经发生的前提下,相当于缩小了总事件的空间容量,再计算()()()n AB P A B n B =,或利用独立关系直接计算事件B 发生后的概率情况. 8.D 【解析】 【分析】先根据几何概型求出一次试验中x y <发生的概率,再由二项分布的期望公式即可求数学期望. 【详解】从区间()0,3和()1,5内分别选取一个实数x ,y ,则03,15x y <<⎧⎨<<⎩表示的可行域为矩形ABCD 区域(不含边界),如图所示,0315x y x y <<⎧⎪<<⎨⎪<⎩表示的可行域为图中的阴影部分(不含边界).因为BEF 的面积为12222⨯⨯=,矩形ABCD 的面积为12,所以由几何概型可知,每次试验x y <发生的概率251126P =-=, 由题意知,53,6TB ⎛⎫ ⎪⎝⎭, 所以x y <的次数T 的数学期望为55362⨯=. 故选:D . 9.AC 【解析】 【分析】先由() 3.2E X =可得40.6m n +=,再由概率和为1得0.3m n +=,从而可求出,m n 的值,再利用期望公式求()E Y 即可,从而可得答案. 【详解】()120.130.3450.3 3.2E X m n =⨯+⨯+⨯+⨯+⨯=,所以40.6m n +=,又因为0.10.30.31m n ++++=,所以0.3m n +=,从而得0.2m =,0.1n =,故A 选项正确,B 选项错误;()()23 3.4E Y E X =-+=-,故C 选项正确;()()()()3=3=2=++=0.3+0.1+0.2=01.6P X P X P X P X ≤=, ()()()=+3=4=0.4=5P X P X P X >,故D 选项不正确. 故选:AC. 10.ABD 【解析】 【分析】根据已知条件,结合正态分布的对称性,即可求解. 【详解】由题意可知,100μ=,2100σ=,故A ,B 正确; 由题意得110μσ+=,3130μσ+=所以()()()()1110.317315.87%22P X P X μσμσμσ>+=--<<+≈⨯=⎡⎤⎣⎦,故C 错误; 所以()()()()13113310.0013599.87%2P X P X μσμσμσ<+=---<<+≈-=⎡⎤⎣⎦,故D 正确; 故选:ABD. 11.BC 【解析】 【分析】结合独立重复试验概率计算公式,计算出概率并求得方差,从而确定正确选项. 【详解】已知X 表示小球落入格子的号码,则X 的所有取值范围为1,2,3,4,5,6, 则()5111()232P X ===,由对称性可知()()16132P X P X ====,而()()14511525()2232P X P X C ====⋅⋅=,()()232511534()()2216P X P X C ====⋅⋅=,所以()()()()15571625343232162E X =+⨯++⨯++⨯=, ()22222271717575757551625342322322322322162164D X ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯+-⨯+-⨯+-⨯+-⨯+-⨯=⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,综上得选项BC 正确. 故选:BC 12.AD 【解析】 【分析】利用超几何分布的概率公式可判断A 选项;利用独立重复试验的概率公式可判断B 选项;利用条件概率公式可判断C 选项;利用对立事件的概率公式可判断D 选项. 【详解】对于A 选项,从中任取3球,恰有一个红球的概率是125237C C 1C 7=,A 对;对于B 选项,从中有放回的取球3次,每次任取一球,每次抽到白球的概率为27,则3次取球中恰好有两个白球的概率为2232560C 77343⎛⎫⋅⋅= ⎪⎝⎭,B错;对于C 选项,从中不放回的取球2次,每次任取1球, 记事件:A 第一次取到红球,记事件:B 第二次取到红球,则()()()2527C C 2537P AB P B A P A ===,C 错;对于D 选项,从中有放回的取球3次,每次任取一球,则至少有一次取到白球的概率3521817343⎛⎫-=⎪⎝⎭,D 对. 故选:AD. 13.12m - 【解析】 【分析】根据正态分布区间的对称性直接计算即可. 【详解】由2~(0,)X N σ,且(),0P X a m a >=> 则()P X a m <-=,所以()12P a X a m -<<=- 故答案为:12m - 14.0.495% 【解析】 【分析】根据条件概率公式计算. 【详解】设事件A 表示“血检呈阳性”,事件B 表示“患该种疾病”.依题意知()0.005P B =,()0.99P A B =,由条件概率公式()()()P AB P A B P B =,得()()()0.0050.990.004950.495%P AB P B P A B ==⨯==.故答案为:0.495%. 15.59【解析】 【分析】由题可求过第一、二关的概率,再利用独立事件的概率公式即求. 【详解】由于骰子是均匀正方体,所以,抛掷后各点数出现的可能性是相等的.设事件An ,为“第n 次过关失败”,则对立事件n B 为“第n 次过关成功”,第n 次游戏中,基本事件总数为6n .第1关:事件1A 所含基本事件数为2(即出现点数1和2两种情况). 所以,过此关的概率为 11221163B A P P =-=-=. 第2关:事件2A 所含基本事件数为方程x y a +=当a 分别取2、3、4时的正整数解组数之和,即6个.所以,过此关的概率为 222651166B A P P =-=-=. 故连过两关的概率为1259B B P P ⨯=.故答案为:59.16.12767【解析】 【分析】分别求出,0,1,2,3X =的概率,进一步求出所以()E X 和()P A . 【详解】由题意可知,随机变量X 的取值范围为{0,1,2,3},()33371035C P X C ===,()12433712135C C P X C ===, ()21433718235C C P X C ===,()34374335C P X C ===,所以()112184120123353535357E X =⨯+⨯+⨯+⨯=. 由已知条件可得()()()121861235357P A P X P X ==+==+=. 故答案为:127;67. 17.3438【解析】 【分析】根据条件概率公式即求. 【详解】()215P A =,()415P B =,()110P AB =,()()()34P BA P B A P A ∴==,()()()38P AB P A B P B ==. 故答案为:34;38.18. 5 15【解析】 【分析】由概率和为1,可求出k 的值,由()()1,2,3,,15kP X k k k N *===∈可得15(1)(2)22P X P X P X ⎛⎫<<==+= ⎪⎝⎭【详解】 解:由题意得121151515k++⋅⋅⋅+=,得12315k +++⋅⋅⋅+=,解得5k =, 因为()()1,2,3,,15kP X k k k N *===∈,所以15121(1)(2)2215155P X P X P X ⎛⎫<<==+==+= ⎪⎝⎭,故答案为:5,1519. 10 74分 【解析】 【分析】由已知,测评分值X 服从正态分布2(,)N μσ,根据图像,分别求解出μ,σ,根据给的参考数据,结合给定的范围,即可确定n 的值,然后根据区间[),m n 的范围,在图①输出满足条件的数据,即可确定k 的值,并根据k 的取值再去计算平均数即可. 【详解】有图像可知,X 服从正态分布2(,)N μσ,其中72μ=,5σ=,所以随机变量X ~(7225)N ,,()67770.6827P X <<=,()62820.9545P X <<=,由0.95450.6827(67)0.81860.95452P X n -<<==-,可得82n =.由图①可知,该班在[)67,82内抽取了10人; 所以,人均分为687073757271767876817410+++++++++=分.故答案为:10,74分. 20.(1)5975(2)乙 【解析】 【分析】(1)先求其对立事件的概率即可.(2)分别求甲乙两同学得分的概率分布及均值,比较甲乙两同学得分的均值的大小即可. (1)设甲同学三道题都答对的事件为A ,则()4221653575P A =⨯⨯=, 所以甲同学至少有一道题不能答对的概率为()1659117575P P A =-=-=. (2)设甲同学本次竞赛中得分为X ,则X 的可能取值为0,2,4,6,8分,则()1133053575P X ==⨯⨯=, ()41312318253553575P X ==⨯⨯+⨯⨯=,()42311226453553575P X ==⨯⨯+⨯⨯=,()41212212653553575P X ==⨯⨯+⨯⨯=,()42216853575P X ==⨯⨯=,所以X 的概率分布列为:所以()318261216340680246875757575757515E X =⨯+⨯+⨯+⨯+⨯== 设乙同学本次竞赛中得分为Y ,由Y 的可能取值为0,2,4,6,8分 ()32805125P Y ⎛⎫===⎪⎝⎭, ()2123224255125P Y C ⎛⎫==⨯=⎪⎝⎭, ()2232323045555125P Y ⎛⎫⎛⎫⎛⎫==⨯+⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ()2122336655125P Y C ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭, ()332785125P Y ⎛⎫===⎪⎝⎭, 所以Y 的概率分布列为:所以()82430362724024681251251251251255E Y =⨯+⨯+⨯+⨯+⨯=, 所以6824155<,所以乙的得分能力更强. 21.(1)395;(2)分布列见详解;()25E X =.【解析】 【分析】(1)利用组合数以及古典概型的概率计算公式即可求解.(2)由题意可得0,1,2x =,再利用二项分布的概率计算公式列出分布列,从而求出数学期望. 【详解】(1)记恰好2名学生都是优秀的事件为A ,则()242206319095C P A C ===. (2)抽到一名优秀学生的概率为41205p ==, X 的取值为0,1,2,()20024********P X C ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭, ()111241815525P X C ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭, ()022241125525P X C ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭, 故X 的分布列为:()168120122525255E X =⨯+⨯+⨯=22.(1)49;(2)分布列见解析,195()9E ξ=;(3)49.【解析】(1)设事件i A 这位参赛者回答对第i 个问题()1,2,3i =,则这位参赛者仅回答正确两个问题的情况有123A A A ,123A A A ,123A A A ,然后利用互斥事件的概率和公式求解即可; (2)由题意可得30,20,0,10,20,30,50,60ξ=--,然后依次求出各个的概率,列出分布列即可,从而可求出数学期望;(3)由(2)可得这位参赛者闯关成功的概率为(30)(50)(60)P P P P ξξξ==+=+= 【详解】(1)设事件i A 这位参赛者回答对第i 个问题()1,2,3i =, ①()()()123123123P P A A A P A A A P A A A =++ 22121112143323323329=⋅⋅+⋅⋅+⋅⋅= (2)30,20,0,10,20,30,50,60ξ=-- ()1231(30)18P P A A A ξ=-==,()1231(20)9P P A A A ξ=-==,()1231(0)9P P A A A ξ===,()1232(10)9P P A A A ξ===,()1231(20)18P P A A A ξ===,()1231(30)9P P A A A ξ===, ()1231(50)9P P A A A ξ===,()1232(60)9P P A A A ξ===, ①ξ的分布列为:11121112195()30200102030506018999189999E ξ=-⨯-⨯+⨯+⨯+⨯+⨯+⨯+⨯=. (3)由(2)得这位参赛者闯关成功的概率为4(30)(50)(60)9P P P P ξξξ==+=+==. 【点睛】关键点点睛:此题考查互斥事件和独立事件的概率的求法,考查离散型随机变量的分布列,考查运算求解能力,解题的关键是正确理解题意,正确利用互斥事件和独立事件的概率公式,属于中档题。
高考数学基础知识专题提升训练66---基本不等式与最大(小)值

高考数学基础知识专题提升训练基本不等式与最大(小)值1.若x>0,y>0,且2x +8y =1,则xy 有() A.最大值64 B.最小值164 C.最小值12D.最小值64xy=(2x +8y )xy=2y+8x ≥2√2y ·8x =8√xy ,∴√xy ≥8,即xy 有最小值64,等号成立的条件是x=4,y=16.2.已知x ,y ,z 为正实数,则xy+yzx 2+y 2+z 2的最大值为() A.2√35B.√22C.45D.23x 2+12y 2≥√2xy ,z 2+12y 2≥√2yz ,∴x 2+y 2+z 2≥√2(xy+yz ), ∴xy+yzx +y +z ≤√22,当且仅当x=z=√22y 时等号成立,故选B .3.函数y=√xx+1的最大值为() A.25B.12C.√22D.1t=√x (t ≥0),则x=t 2,∴y=√x x+1=tt 2+1.当t=0时,y=0;当t>0时,y=1t 2+1t=1t+1t.∵t+1t ≥2,∴0<1t+1t≤12,当且仅当t=1时取等号,∴y 的最大值为12,此时x=t 2=1.4.若xy 是正数,则(x +12y )2+(y +12x )2的最小值是() A.3B.72C.4D.6+12y )2+(y +12x )2=x 2+y 2+14(1x 2+1y 2)+xy +yx =(x 2+14x 2)+(y 2+14y 2)+(xy +yx ) ≥1+1+2=4.当且仅当x=y=√22,或x=y=-√22时取等号.5.若函数y=x+1x -2(x>2)在x=a 处取最小值,则a= ()A.1+√2B.1+√3C.3D.4y=x+1x -2=x-2+1x -2+2.∵x>2,∴x-2>0,∴y=x-2+1x -2+2≥2√(x -2)·1x -2+2=4, 当且仅当x-2=1x -2,即x=3时等号成立.又由题知,y在x=a处取最小值,∴a=3.6.某校要建造一个容积为8 m3,深为2 m的长方体无盖水池,池底和池壁的造价分别为240元/m2和160元/m2,那么水池的最低总造价为元.x m,宽为y m,水池总造价为z元,根据题意,有2xy=8,则xy=4,于是z=240×4+160(2×2x+2×2y)=960+640(x+y)≥960+1280√xy=960+1280×2=3520.7.若正数x,y满足x+3y=5xy,求3x+4y的最小值.x+3y=5xy,所以1y +3x=5,所以3x+4y=15(1y+3x)(3x+4y)=15(3xy+12yx)+135≥15×2×√36+135=5,当且仅当3xy =12yx,即x=2y时取等号.由{x+3y=5xy,x=2y,得{x=1,y=12,所以当x=1,y=12时,3x+4y取得最小值5.A.[6,+∞)B.[9,+∞)C.(0,9]D.(0,6]a ,b 是正数,∴ab=a+b+3≥2√ab +3(当a=b 时取“=”),即ab-2√ab -3≥0,∴√ab ≥3,或√ab ≤-1(舍去),∴ab ≥9.2.已知点A (m ,n )在一次函数y=12−12x 的图象上,其中mn>0,则2m +1n 的最小值为() A.4√2B.8C.9D.12A (m ,n )在函数y=12−12x 的图象上,所以m+2n=1, 所以2m +1n =(m+2n )(2m +1n )=2+mn +4nm+2≥4+2√m n ·4n m =8,当且仅当m=2n=12时取等号.3.设正实数x ,y ,z 满足x 2-3xy+4y 2-z=0,则当zxy 取得最小值时,x+2y-z 的最大值为() A.0 B.98 C.2 D.94=x 2-3xy+4y 2xy=xy +4yx-3≥2√xy ·4yx -3=1,当且仅当x=2y 时等号成立,此时z=4y 2-6y 2+4y 2=2y 2,所以x+2y-z=4y-2y 2=-2(y-1)2+2≤2.4.设a>0,b>0,a+b=5,则√a +1+√b +3的最大值为.a>0,b>0,a+b=5,所以(a+1)+(b+3)=9. 由不等式x+y 2≤√x 2+y 22可知,√a+1+√b+32≤√a+1+b+32=3√22,所以√a +1+√b +3的最大值为3√2,当且仅当a=72,b=32时取等号.√25.已知两个正数x ,y 满足x+y=4,则使不等式1x +4y ≥m 恒成立的实数m 的取值范围是.x+y=4,∴x 4+y4=1,∴1x +4y =(1x +4y )(x 4+y 4)=14+y 4x +x y +1=54+y 4x +x y ≥54+2√4x ·y =54+2×12=94,当且仅当{y4x =xy ,x +y =4,即{x =43,y =83时,取“=”,因此要使1x +4y ≥m 恒成立,只需m ≤94即可,故m 的取值范围是(-∞,94].-∞,94]6.已知a>0,b>0,且2a +1b ≥m2a+b 恒成立,求m 的最大值.因为2a +1b ≥m2a+b ,所以m ≤(2a +1b )(2a+b )恒成立,所以m ≤[(2a +1b )(2a+b )]min . 而(2a +1b )(2a+b )=5+2ba +2a b≥5+2√4=9,当且仅当a=b 时等号成立,所以m ≤9,即m 的最大值为9. 7.已知正数x ,y 满足1x +1y =1,则4x x -1+9yy -1的最小值为.+9yy -1=41-1x+91-1y=41y+91x=9x+4y=(9x+4y )(1x +1y )=13+4y x +9x y≥25,当且仅当x=53,y=52时取等号.8.某厂家拟在2020年举行某产品的促销活动,经调查,该产品的年销售量(即该产品的年产量)x (单位:万件)与年促销费用m (m ≥0)(单位:万元)满足x=3-km+1(k 为常数),如果不举行促销活动,该产品的年销售量是1万件.已知2020年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金,不包括促销费用). (1)将2020年厂家销售该产品获得的利润y (单位:万元)表示为年促销费用m 的函数;(2)该厂家2020年的促销费用为多少万元时,获得的利润最大?由题意,可知当m=0时,x=1,∴1=3-k ,解得k=2,∴x=3-2m+1, 又每件产品的销售价格为1.5×8+16x x元,∴y=x (1.5×8+16x x)-(8+16x+m )=4+8x-m=4+8(3-2m+1)-m=-[16m+1+(m +1)]+29(m ≥0).(2)∵m ≥0,16m +1+(m+1)≥2√16=8,当且仅当16m +1=m+1,即m=3时等号成立,∴y ≤-8+29=21,∴y max =21.故该厂家2020年的促销费用为3万元时,获得的利润最大,最大利润为21万元.。
2023高考数学复习专项训练《等比数列》(含答案)
2023高考数学复习专项训练《等比数列》一、单选题(本大题共12小题,共60分)1.(5分)等比数列{a n}满足a1+a2+a3=13,a2+a3+a4=133,则a5=()A. 1B. 13C. 427D. 192.(5分)给出以下命题:①存在两个不等实数α,β,使得等式sin(α+β)=sinα+sinβ成立;②若数列{a n}是等差数列,且a m+a n=a s+a t(m、n、s、t∈N∗),则m+n=s+t;③若S n是等比数列{a n}的前n项和,则S6,S12−S6,S18−S12成等比数列;④若S n是等比数列{a n}的前n项和,且S n=Aq n+B;(其中A、B是非零常数,n∈N∗),则A+B为零;⑤已知ΔABC的三个内角A,B,C所对的边分别为a,b,c,若a2+b2>c2,则ΔABC一定是锐角三角形.其中正确的命题的个数是()A. 1个B. 2个C. 3个D. 4个3.(5分)设T n为等比数列{a n}的前n项之积,且a1=−6,a4=−34,则当T n最大时,n的值为()A. 4B. 6C. 8D. 104.(5分)等比数列{a n},满足a1+a2+a3+a4+a5=3,a12+a22+a32+a42+a52= 15,则a1−a2+a3−a4+a5的值是()A. 3B. √5C. −√5D. 55.(5分)已知在等比数列{a n}中,公比q是整数,a1+a4=18,a2+a3=12,则此数列的前8项和为()A. 514B. 513C. 512D. 5106.(5分)已知正项数列{a n},{b n}分别为等差、等比数列,公差、公比分别为d,q(d,q∈N∗),且d=q,a1+b1=1,a3+b3=3.若a n+b n=2013(n>3),则n= ()A. 2013B. 2012C. 100D. 997.(5分)若a,b,c成等比数列,则关于x的方程a x2+bx+c=0( )A. 必有两个不等实根B. 必有两个相等实根C. 必无实根D. 以上三种情况均有可能8.(5分)公比为2的等比数列{a n}的各项都是正数,且a3a11=16,则log2a10=()9.(5分)记Sn为等比数列{a n}的前n项和,已知S2=2,S3=−6.则{a n}的通项公式为()A. a n=(−2)nB. a n=−2nC. a n=(−3)nD. a n=−3n10.(5分)正项等比数列{a n}中,a3=2,a4.a6=64,则a5+a6a1+a2的值是()A. 4B. 8C. 16D. 6411.(5分)在等比数列{a n}中,a7,a11是方程x2+5x+2=0的二根,则a3.a9.a15a5.a13的值为()A. −2+√22B. −√2C. √2D. −√2或√212.(5分)已知等比数列{a n}的前n项和为S n,9S3=S6=63,则S10=A. 255B. 511C.1023 D. 2047二、填空题(本大题共5小题,共25分)13.(5分)已知等差数列{a n}的公差d≠0,且a3+a9=a10−a8.若a n=0,则n=__________14.(5分)若等比数列{an}的前n项和Sn满足:an+1=a1Sn+1(n∈N*),则a1=____.15.(5分)在等比数列{an}中,已知前n项和Sn=5n+1+a,则a的值为____________.16.(5分)若等比数列{a n}的首项为23,且a4=∫41(1+2x)dx,则公比q等于______.17.(5分)如图所示,将正整数排成三角形数阵,每排的数称为一个群,从上到下顺次为第1群,第2群,……,第n群,……,第n群恰好有n个数,则第n群中n个数的和是____________.123465812107162420149324840281811…三、解答题(本大题共6小题,共72分)18.(12分)已知{x n}是各项均为正数的等比数列,且x1+x2=3,x3−x2=2.(1)求数列{x n}的通项公式;(2)如图,在平面直角坐标系xOy中,依次连接点P1(x1,1),P2(x2,2),…,P n+1(x n+1,n+1)得到折线P1P2…P n+1,求由该折线与直线y=0,x=x1,x=x n+1所围成的区域的面积T n.19.(12分)如果等比数列{a n}中公比q>1,那么{a n}一定是递增数列吗?为什么?20.(12分)数列{a n}满足a1=1,a n=2a n−1-3n+6(n≥2,n∈N+).(1)设b n=a n-3n,求证:数列{b n}是等比数列;(2)求数列{a n}的通项公式.21.(12分)设各项均为正数的数列{a n}的前n项和为S n,满足4S n=a n+12−4n−1,n∈N∗,且a2,a5,a14构成等比数列.(1)证明:a2=√4a1+5;(2)求数列{a n}的通项公式;(3)证明:对一切正整数n,有1a1a2+1a2a3+…+1a n a n+1<12.22.(12分)已知数列{a n}是等差数列,其首项为2,且公差为2,若b n=2a n(n∈N∗).(Ⅰ)求证:数列{b n}是等比数列;(Ⅱ)设c n=a n+b n,求数列{c n right}的前n项和A n.23.(12分)已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+⋯+b2n−1.四、多选题(本大题共5小题,共25分)24.(5分)已知等差数列{a n}的公差和首项都不等于0,且a2,a4,a8成等比数列,则下列说法正确的是()A. a1+a5+a9a2+a3的值为3 B. a1+a5+a9a2+a3的值为2C. 数列{a n}的公差和首项相等D. 数列{a n}的公差和首项不相等25.(5分)设数列{a n},{b n}的前n项和分别为S n,T n,则下列命题正确的是()A. 若a n+1-a n=2(n∈N∗),则数列{a n}为等差数列B. 若b n+1=2b n(n∈N∗),则数列{b n}为等比数列C. 若数列{a n}是等差数列,则S n,S2n-S n,S3n-S2n⋯⋯(n∈N∗)成等差数列D. 若数列{b n}是等比数列,则T n,T2n-T n,T3n-T2n⋯⋯(n∈N∗)成等比数列26.(5分)在公比q为整数的等比数列{a n}中,S n是数列{a n}的前n项,若a1+a4= 18,a2+a3=12,则下列说法正确的是()A. q=2B. 数列{S n+2}是等比数列C. S8=510D. 数列\left{ lg a n}是公差为2的等差数列27.(5分)已知等差数列{a n}的首项为1,公差d=4,前n项和为S n,则下列结论成立的有()A. 数列{S nn}的前10项和为100B. 若a1,a3,a m成等比数列,则m=21C. 若∑n i=11a i a i+1>625,则n的最小值为6D. 若a m+a n=a2+a10,则1m +16n的最小值为251228.(5分)已知数列{a n}为等差数列,{b n}为等比数列,{a n}的前n项和为S n,若a1+ a6+a11=3π,b1b5b9=8,则()A. S11=11πB. sin a2+a10b4b6=12C. a3+a7+a8=3πD. b3+b7⩾4答案和解析1.【答案】D;【解析】解:设等比数列{a n }的公比为q ,由a 2+a 3+a 4=(a 1+a 2+a 3)q ,得133=13q ,解得q =13, 又a 1+a 2+a 3=a 1+13a 1+19a 1=139a 1=13,解得a 1=9,所以a 5=a 1q 4=9×(13)4=19, 故选:D.设等比数列{a n }的公比为q ,通过a 2+a 3+a 4=(a 1+a 2+a 3)q 可求出q 值,进一步根据a 1+a 2+a 3=a 1+a 1q +a 1q 2=13可求出a 1,最后利用a 5=a 1q 4进行求解即可. 此题主要考查等比数列的通项公式,考查学生逻辑推理和运算求解的能力,属于基础题.2.【答案】B; 【解析】该题考查命题真假的判断,考查学生灵活运用等差、等比数列的性质,三角函数以及三角形的判断,是一道综合题,属于中档题.利用特殊值判断①的正误;利用特殊数列即可推出命题②的正误;根据等比数列的性质,判断③的正误;根据等比数列的前n 项的和推出A ,B 判断④的正误.利用特殊三角形判断⑤的正误;解:对于①,实数α=0,β≠0,则sin (α+β)=sinβ,sinα+sinβ=sinβ,所以等式成立;故①正确;对于②,当公差d =0时,命题显然不正确,例如a 1+a 2=a 3+a 4,1+2≠3+4,故②不正确;对于③,设a n =(−1)n ,则S 6=0,S 12−S 6=0,S 18−S 12=0,∴此数列不是等比数列,故③不正确;对于④,S n 是等比数列{a n }的前n 项和,且S n =Aq n +B ;(其中A 、B 是非零常数,n ∈N ∗),所以此数列为首项是a 1,公比为q ≠1的等比数列, 则S n =a 1(1−q n )1−q ,所以A =−a11−q ,B =a11−q ,∴A +B =0,故④正确;对于⑤,如果三角形是直角三角形,a =5,b =3,c =4,满足a 2+b 2>c 2,故⑤不正确;故选:B .3.【答案】A;【解析】解:因为等比数列{a n }中,a 1=−6,a 4=−34,则由a 4=a 1q 3可得q =12. ∵T n 为等比数列{a n }的前n 项之积,∴T n =(−6)n .(12)n(n−1)2,因为求最大值,故只需考虑n 为偶数的情况, ∵T 2n +2T 2n =36×(12)4n +1,由T 2n +2T 2n⩾1可得n =1,∴T 2<T 4>T 6>T 8>⋯.则公比q =12,当T n 最大时,n 的值为4.故选:A .由已知可得q =12.只需考虑n 为偶数的情况,由T 2n +2T 2n⩾1可得n =1,即可求解.该题考查了等比数列的通项公式及其前n 项和公式,考查了推理能力与计算能力,属于中档题.4.【答案】D;【解析】解:设数列{a n }的公比为q ,且q ≠1,则 a 1+a 2+a 3+a 4+a 5=a 1(1−q 5)1−q =3①, a 12+a 22+a 32+a 42+a 52=a 12(1−q 10)1−q 2=15②∴②÷①得a 12(1−q 10)1−q 2÷a 1(1−q 5)1−q=a 1(1+q 5)1+q=5,∴a 1−a 2+a 3−a 4+a 5=a 1(1+q 5)1+q=5.故选:D.先设等比数列{a n }公比为q ,分别用a 1和q 表示出a 12+a 22+a 32+a 42+a 52,a 1+a 2+a 3+a 4+a 5和a 1−a 2+a 3−a 4+a 5,发现a 12+a 22+a 32+a 42+a 52除以a 1+a 2+a 3+a 4+a 5正好与a 1−a 2+a 3−a 4+a 5相等,进而得到答案.此题主要考查了等比数列的性质.属基础题.解题时要认真审题,注意等比数列的性质的灵活运用.5.【答案】D;【解析】由已知得{a 1+a 1q 3=18a 1q +a 1q 2=12,解得:q =2或q =12.∵q 为整数,∴q =2.∴a 1=2.∴S 8=2(1−28)1−2=29−2=510.6.【答案】A;【解析】此题主要考查等差数列和等比数列的通项公式和性质的应用.计算时要认真仔细.解:∵{_1+b1=1a3+b3=3,∴{_1+b1=1a1+2d+b1q2=3,∵d=q,所以{_1+b1=1a1+2q+b1q2=3,解得d=q=1,∴a n+b n=a1+(n−1)d+b1q n−1=a1+n−1+b1=2013,∴n=2013.故选A.7.【答案】C;【解析】若a,b,c成等比数列,则b²=ac由题意得△=b²-4ac=b²-4b²=-3b²等比数列中没有为0的项,∴-3b²<0∴△小于0,即方程a x2+bx+c=0必无实根故选C。
高考数学基础知识专题提升训练102---不同函数增长的差异
高考数学基础知识专题提升训练不同函数增长的差异课程标准核心素养结合现实情境中的具体问题,利用计算工具,比较对数函数、一元一次函数、指数函数增长速度的差异,理解“对数增长”“直线上升”“指数爆炸”等术语的现实含义.通过对三种不同函数增长差异的学习,提升“数学抽象”、“逻辑推理”、“数学运算”的核心素养.[对应学生用书P69]知识点三种不同函数增长的差异y=a x(a>1)y=kx(k>0)y=logax(a>1) 在(0,+∞)上的增减性增函数增函数增函数图象的变化随x增大逐渐与y轴平行增长速度固定随x增大逐渐与x轴平行增长速度①y=a x(a>1):随着x的增大,y增长速度越来越快,会远远大于y=kx(k>0)的增长速度,y=log a x(a>1)的增长速度越来越慢;②存在一个x0,当x>x0时,有a x>x n>log a x[微体验]1.春天来了,某池塘中的荷花枝繁叶茂,已知每一天新长出荷叶覆盖水面面积是前一天的2倍,若荷叶20天可以完全长满池塘水面,当荷叶刚好覆盖水面面积一半时,荷叶已生长了( )A.10天B.15天C.19天D.2天C[荷叶覆盖水面面积y与生长时间x的函数关系为y=2x,当x=20时,长满水面,所以生长19天时,布满水面面积的一半.]2.下表显示了函数值y随自变量x变化的一组数据,由此可判断它最可能符合的函数模型为( )x -2-101 2y116141416A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型C[表中数据体现爆炸式增长,符合的函数模型为指数函数模型.]3.某人投资x元,获利y元,有以下三种方案.甲:y=0.2x,乙:y=log2x+100,丙:y=1.005x,则投资500元,1 000元,1 500元时,应分别选择________方案.解析将投资数分别代入甲、乙、丙的函数关系式中比较y值的大小即可求出.答案乙、甲、丙[对应学生用书P69]探究一几类函数模型的增长差异(1)下列函数中,随x值的增大,增长速度最快的是( ) A.y=50x(x∈Z) B.y=1 000xC.y=0.4×2x-1D.y=110 000·e x(2)如图是四个不同形状,但高度均为H的玻璃瓶. 已知向其中一个水瓶注水时,注水量与水深的函数关系如图所示,试确定水瓶的形状是图中的( )(1)D[指数“爆炸式”增长,y=0.4×2x-1和y=110 000·e x虽然都是指数型函数,但y=110 000·e x的底数e较大些,增长速度更快.](2)B[看图显然图象从左向右,图象上升先快后慢,也就是说,向瓶中注入相同的水量(如单位体积)时,水的高度改变得越来越大. 所以,如果向瓶中匀速注水,则水的高度上升速度先慢后快,注入相同的水,高度上升得快,说明瓶的这部分较细,同样如果水的高度上升得慢,说明瓶的这部分较粗,从图象上看,水的高度上升得越来越快,所以瓶子是下面较粗,越向上越细,所以水瓶的形状应是图B.][方法总结]常见的函数模型及增长特点(1)线性函数模型线性函数模型y=kx(k>0)的增长特点是直线上升,其增长速度不变.(2)指数函数模型指数函数模型y=a x(a>1)的增长特点是随着自变量的增大,函数值增大的速度越来越快,即增长速度急剧,被形象地称为“指数爆炸”.(3)对数函数模型对数函数模型y=log a x(a>1)的增长特点是随着自变量的增大,函数值增大的速度越来越慢,即增长速度平缓.[跟踪训练1]四个变量y1,y2,y3,y4随变量x变化的数据如表:x 151015202530y1226101226401626901y 2232 1 02437 7681.05×1063.36×1071.07×109y32102030405060y42 4.322 5.322 5.907 6.322 6.644 6.907关于x呈指数函数变化的变量是________.解析以爆炸式增长的变量呈指数函数变化.从表格中可以看出,四个变量y1,y2,y3,y4均是从2开始变化,且都是越来越大,但是增长速度不同,其中变量y2的增长速度最快,画出它们的图象(图略),可知变量y2关于x呈指数型函数变化.故填y2.答案y2探究二函数模型的增长差异在函数图象上的体现高为H,满缸水量为V的鱼缸的轴截面如图所示,其底部破了一个小洞,满缸水从洞中流出,若鱼缸水深为h时水的体积为v,则函数v=f(h)的大致图象是( )B[由图得水深h越大,水的体积v就越大,故v=f(h)是增函数,且曲线的斜率应该是先变大后变小.][方法总结]由图象判断指数函数、对数函数和幂函数的方法根据图象判断增长型的指数函数、对数函数和幂函数时,通常是观察函数图象上升得快慢,即随着自变量的增长,图象最“陡”的函数是指数函数,图象趋于平缓的函数是对数函数.[跟踪训练2]函数f(x)=lg x,g(x)=0.3x-1的图象如图所示.(1)试根据函数的增长差异指出曲线C1,C2分别对应的函数;(2)比较两函数的增长差异(以两图象交点为分界点,对f(x),g(x)的大小进行比较).解(1)C1对应的函数为g(x)=0.3x-1,C2对应的函数为f(x)=lg x.(2)当x<x1时,g(x)>f(x);当x1<x<x2时,f(x)>g(x);当x>x2时,g(x)>f(x);当x =x1或x=x2时,f(x)=g(x).][对应学生用书P701.三类不同增长的函数模型(1)增长速度不变的函数模型是一次函数模型.(2)增长速度最快即呈现爆炸式增长的函数模型是指数型函数模型.(3)增长速度较慢的函数模型是对数型函数模型.2.函数模型的应用(1)可推演原则:建立模型,一定要有意义,既能作理论分析,又能计算、推理,且能得出正确结论.(2)反映性原则:建立模型,应与原型具有“相似性”,所得模型的解应具有说明问题的功能,能回到具体问题中解决问题.课时作业(二十八) 不同函数增长的差异][见课时作业(二十八)P1701.如表是函数值y随自变量x变化的一组数据,由此判断它最可能的函数模型( )x 45678910y 15171921232527AC.指数函数模型D.对数函数模型A[自变量每增加1函数值增加2,函数值的增量是均匀的,故为一次函数模型.] 2.某林区的森林蓄积量每年比上一年平均增长10.4%,要增长到原来的x倍,需经过y年,则函数y=f(x)的图象大致是( )D[设该林区的森林原有蓄积量为a,由题意,ax=a(1+0.104)y,故y=x(x≥1),∴y=f(x)的图象大致为D中图象.]log1.1043.甲、乙两人在一次赛跑中,从同一地点出发,路程S与时间t的函数关系如图所示,则下列说法正确的是( )A.甲比乙先出发B.乙比甲跑的路程多C.甲、乙两人的速度相同D.甲比乙先到达终点.D[由图知,甲、乙两人S与t的关系均为直线上升,路程S的增长速度不变,即甲、乙均为匀速运动,但甲的速度快.又甲、乙的路程S取值范围相同,即跑了相同的路程,故甲用时少,先到终点.]4.下面给出了红豆生长时间t(月)与枝数y(枝)的散点图,那么最能拟合诗句“红豆生南国,春来发几枝”所提到的红豆生长时间与枝数的关系的函数模型是( )A.指数函数:y=2t B.对数函数:y=log2tC.一次函数:y=10t D.二次函数:y=2t2A[由题干中的图象可知,该函数模型应为指数函数.]5.甲用1 000元买入一种股票,后将其转卖给乙,获利10%,而后乙又将这些股票卖给甲,乙损失了10%,最后甲按乙卖给甲的价格九折将股票售出给丙,甲在上述交易中盈利________元.解析由题意,甲卖给乙获利:1 000×10%=100(元),乙卖给甲:1 000×(1+10%)(1-10%)=990(元),甲卖给丙:1 000×(1+10%)(1-10%)×90%=1 000×1.1×0.9×0.9=891(元),甲赔了:990-891=99(元),甲的盈亏情况为盈利:100-99=1(元).答案 16.某种储蓄按复利计算利息,若本金为a元,每期利率为r,存期是x,本利和(本金加利息)为y元,求本利和y随存期x变化的函数关系式.解已知本金为a元,利率为r,则1期后本利和为y=a+ar=a(1+r),2期后本利和为y=a(1+r)+a(1+r)r=a(1+r)2,3期后本利和为y=a(1+r)3,…,x期后本利和为y=a(1+r)x,x∈N*.1.某工厂产生的废气经过过滤后排放,排放时污染物的含量不得超过1%.已知在过滤过程中废气中的污染物数量P(单位:mg/L)与过滤时间t(单位:h)之间的函数关系式为:P=P0e-kt(k,P0均为正的常数).若在前5个小时的过滤过程中污染物被排除了90%,那么,至少还需要过滤的时间为( )A .12 hB .59 hC .5 hD .10 hC [由题意知前5个小时消除了90%的污染物. ∵P =P 0e -kt ,∴(1-90%)P 0=P 0e -5k ,∴0.1=e -5k , 即-5k =ln 0.1,∴k =-15ln 0.1.由1%P 0=P 0e-kt,即0.01=e-kt,∴-kt =ln 0.01,∴⎝ ⎛⎭⎪⎫15ln 0.1t =ln 0.01,∴t =10,∴至少还需要过滤5 h 才可以排放.]2.(多选题)如图表示一位骑自行车和一位骑摩托车的旅行者在相距80 km 的甲、乙两城间从甲城到乙城所行驶的路程与时间之间的函数关系,有人根据函数图象,提出了关于这两个旅行者的如下信息,其中正确的信息是( )A .骑自行车者比骑摩托车者早出发3 h ,晚到1 hB .骑自行车者是变速运动,骑摩托车者是匀速运动C .骑摩托车者在出发1.5 h 后追上了骑自行车者D .骑摩托车者在出发1.5 h 后与骑自行车者的速度一样ABC [看时间轴易知A 正确;骑摩托车者行驶的路程与时间的函数图象是直线,所以是匀速运动,而骑自行车者行驶的路程与时间的函数图象是折线,所以是变速运动,因此B 正确;两条曲线的交点的横坐标对应着4.5,故C 正确,D 错误.]3.某工厂一年中12月份的产量是1月份的a 倍,那么该工厂这一年中的月平均增长率是________.解析 设这一年中月平均增长率为x,1月份的产量为M ,则M (1+x )11=a ·M ,∴x =11a -1.答案 11a -14.某地发生地震后,地震专家对该地区发生的余震进行了监测,记录的部分数据如下表:强度(J)1.6×10193.2×10194.5×10196.4×1019震级(里氏) 5.0 5.2 5.3 5.4注:地震强度是指地震时释放的能量.地震强度(x )和震级(y )的模拟函数关系可以选用y =a lg x +b (其中a ,b 为常数).利用散点图可知a 的值等于________.(取lg 2≈0.3进行计算)解析 由模拟函数及散点图得⎩⎨⎧a lg 1.6+b =5,a lg 3.2+b =5.2,两式相减得a (lg 3.2-lg 1.6)=0.2,a lg 2=0.2,a ≈23.答案235.(拓广探索)已知桶1与桶2通过水管相连如图所示,开始时桶1中有a L 水,t min后剩余的水符合指数衰减函数y1=a·e-nt,那么桶2中的水就是y2=a-a·e-nt,假定5min后,桶1中的水与桶2中的水相等,那么再过多长时间桶1中的水只有a4L?解由题意,得a·e-5n=a-a·e-5n,即e-5n=12. ①设再过t min桶1中的水只有a4L,则a·e-n(t+5)=14a,即e-n(t+5)=14. ②将①式两边平方得e-10n=14,③比较②,③得-n(t+5)=-10n,所以t=5.即再过5 min桶1中的水只有a4L.11 / 11。
数学新课标高考一轮复习训练手册(理科) 第28讲《等比数列》人教A版必修5A
课时作业(二十八)A [第28讲 等比数列][时间:35分钟 分值:80分]基础热身 1.[2011·深圳一模] 设数列{(-1)n }的前n 项和为S n ,则对任意正整数n ,S n =( )A.n [(-1)n -1]2B.(-1)n -1+12 C.(-1)n +12 D.(-1)n -12 2.[2011·泉州质检] 等比数列{a n }中,a 2=3,a 7·a 10=36,则a 15=( ) A .12 B .-12 C .6 D .-63.[2011·沈阳二模] 设等比数列{a n }的公比q =2,前n 项和为S n ,则S 4a 3的值为( )A.154B.152C.74D.72 4.[2011·广东卷] 已知{a n }是递增等比数列,a 2=2,a 4-a 3=4,则此数列的公比q =________.能力提升 5.[2011·厦门质检] 已知等比数列{a n }中,a 3=2,其前n 项的积T n =a 1a 2…a n ,则T 5等于( )A .8B .10C .16D .32 6.[2011·开封二模] 设数列{a n }是公差不为0的等差数列,a 1=2,且a 1,a 5,a 13成等比数列,则数列{a n }的前n 项和S n =( )A.n 24+7n 4B.n 23+5n 3C.n 22+3n4 D .n 2+n7.甲、乙两间工厂的月产值在2012年元月份时相同,甲以后每个月比前一个月增加相同的产值,乙以后每个月比前一个月增加产值的百分比相同.到2012年11月份发现两间工厂的月产值又相同.比较甲、乙两间工厂2012年6月份的月产值大小,则有( )A .甲的产值小于乙的产值B .甲的产值等于乙的产值C .甲的产值大于乙的产值D .不能确定 8.[2011·合肥三模] 已知各项均为实数的数列{a n }为等比数列,且满足a 1+a 2=12,a 2a 4=1,则a 1=( )A .9或116 B.19或16 C.19或116D .9或16 9.[2011·皖北协作区联考] 设S n 为等比数列{a n }的前n 项和,8a 2-a 5=0,则S 4S 2=________.10.[2011·北京卷] 在等比数列{a n }中,若a 1=12,a 4=-4,则公比q =________;|a 1|+|a 2|+…+|a n |=________.11.[2011·莱芜模拟] 在等比数列{a n }中,若a 1+a 2+…+a 5=3116,a 3=14,则1a 1+1a2+…+1a 5=________.12.(13分)[2011·济南二模] 设数列{a n }是一等差数列,数列{b n }的前n 项和为S n =23(b n -1),若a 2=b 1,a 5=b 2.(1)求数列{a n }的通项公式; (2)求数列{b n }的前n 项和S n .难点突破13.(12分)[2011·安徽卷] 在数1和100之间插入n 个实数,使得这n +2个数构成递增的等比数列,将这n +2个数的乘积记作T n ,再令a n =lg T n ,n ≥1.(1)求数列{a n }的通项公式; (2)设b n =tan a n ·tan a n +1,求数列{b n }的前n 项和S n .课时作业(二十八)A【基础热身】1.D [解析] 由已知,数列{(-1)n }是首项与公比均为-1的等比数列,其前n 项和为S n =(-1)[1-(-1)n ]1-(-1)=(-1)n -12,故选D . 2.A [解析] 由等比数列的性质,有a 2·a 15=a 7·a 10=36,则a 15=36a 2=12,故选A .3.A [解析] 在等比数列{a n }中,S 4=a 1(1-24)1-2=15a 1,a 3=a 1·22=4a 1,则S 4a 3=154,故选A .4.2 [解析] 因为{a n }为等比数列,所以a 4-a 3=a 2q 2-a 2q =4,即2q 2-2q =4, 所以q 2-q -2=0,解得q =-1或q =2, 又{a n }是递增等比数列,所以q =2. 【能力提升】5.D [解析] 由a 3=2,得T 5=a 1a 2a 3a 4a 5=a 53=25=32,故选D . 6.A [解析] 设等差数列{a n }的公差为d , 则a 5=a 1+4d ,a 13=a 1+12d , 由a 1,a 5,a 13成等比数列,得a 25=a 1a 13, 即(a 1+4d)2=a 1(a 1+12d), 化简,得4d 2-a 1d =0, ∵a 1=2,d ≠0,∴d =12,S n =2n +n (n -1)2×12=n 24+7n 4,故选A . 7.C [解析] 设甲各个月份的产值为数列{a n },乙各个月份的产值为数列{b n },则数列{a n }为等差数列、数列{b n }为等比数列,且a 1=b 1,a 11=b 11,故a 6=a 1+a 112≥a 1a 11=b 1b 11=b 26=b 6.由于等差数列{a n }的公差不等于0,故a 1≠a 11,上面的等号不能成立,故a 6>b 6.8.D [解析] 由已知得a 23=1,所以a 3=1或a 3=-1,设公比为q ,则有a 3q 2+a 3q =12,当a 3=1时,解得q =13或q =-14,此时a 1=9或16; 当a 3=-1时,-1q 2+-1q =12无解,故选D .9.5 [解析] 由已知条件8a 2-a 5=0,得8a 1q =a 1q 4,即q 3=8,即q =2.又S 2=a 1(1-q 2)1-q ,S 4=a 1(1-q 4)1-q,则S 4S 2=1+q 2=5.10.-2 2n -1-12 [解析] 由a 4=a 1q 3=12q 3=-4,可得q =-2;因此,数列{|a n |}是首项为12,公比为2的等比数列,所以|a 1|+|a 2|+…+|a n |=12(1-2n )1-2=2n -1-12.11.31 [解析] 设等比数列{a n }的公比为q ,由a 1+a 2+…+a 5=3116,得 a 1(1+q +…+q 4)=3116,由a 3=14,得a 1q 2=14,则a 21q 4=116, ∴1a 1+1a 2+…+1a 5=1a 1⎝⎛⎭⎫1+1q +…+1q 4=a 1(1+q +…+q 4)a 21q 4=31. 12.[解答] (1)∵S 1=23(b 1-1)=b 1,∴b 1=-2. 又S 2=23(b 2-1)=b 1+b 2=-2+b 2, ∴b 2=4,∴a 2=-2,a 5=4.∵{a n }为一等差数列,∴公差d =a 5-a 23=63=2, 即a n =-2+(n -2)·2=2n -6.(2)∵S n +1=23(b n +1-1)①,S n =23(b n -1)②,①-②得S n +1-S n =23(b n +1-b n )=b n +1,∴b n +1=-2b n ,∴数列{b n }是一等比数列,公比q =-2,b 1=-2, 即b n =(-2)n .∴S n =23[(-2)n -1].【难点突破】13.[思路] 本题考查等比和等差数列,对数和指数的运算,两角差的正切公式等基本知识,考查灵活运用基本知识解决问题的能力,综合运算求解能力和创新思维能力.[解答] (1)设t 1,t 2,…,t n +2构成等比数列,其中t 1=1,t n +2=100,则 T n =t 1·t 2·…·t n +1·t n +2,① T n =t n +2·t n +1·…·t 2·t 1,②①×②并利用t i t n +3-i =t 1t n +2=102(1≤i ≤n +2),得T 2n =(t 1t n +2)·(t 2t n +1)·…·(t n +1t 2)·(t n +2t 1)=102(n +2).∴a n =lg T n =n +2,n ∈N *.(2)由题意和(1)中计算结果,知 b n =tan(n +2)·tan(n +3),n ≥1, 另一方面,利用tan1=tan[(k +1)-k ]=tan (k +1)-tan k1+tan (k +1)·tan k ,得tan(k +1)·tan k =tan (k +1)-tan ktan1-1. 所以S n =∑k =1nb k =∑k =3n +2tan(k +1)·tan k=∑k =3n +2⎣⎢⎡⎦⎥⎤tan (k +1)-tan k tan1-1=tan (n +3)-tan3tan1-n .。
高考真题数学基础题及答案
高考真题数学基础题及答案
数学是高考过程中必不可少的学科,基础题是高考数学中的重要一环。
下面将为大家解析几道高考数学基础题并给出解答。
1. 某班男女生比例为2:3,男生15人。
这个班有多少学生?
解答:由题意可知,男生人数是女生人数的2/3,所以女生人数为
15*3/2=22.5人,但学生人数必为整数,所以男生人数为15人,女生人数为22人,总学生人数为15+22=37人。
2. 已知直角三角形斜边长为10cm,一个锐角的角度为30度,求另
一个锐角的角度。
解答:设另一个锐角的角度为x度,根据三角形内角和定理可知,30°+x°+90°=180°,解方程得x=60°。
3. 一辆汽车开出30km,回头发现忘带东西了,于是立即调头回去,速度比去时快了10km/h,这样就提前1小时到目的地。
求这辆车的速度。
解答:设汽车去时的速度为x km/h,则返回时速度为x+10 km/h。
根据题意,设去时用时t小时,则返回时用时t-1小时,可得方程
30/x=30/(x+10)+1,解方程可得汽车的速度为50 km/h。
通过以上几道数学基础题的解答,希望能帮助大家更好地理解和掌
握高考数学基础知识点。
望考生们认真练习,提高解题能力,取得理
想的成绩。
祝各位考生考试顺利!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
备考高考数学基础知识训练(28)班级______ 姓名_________ 学号_______ 得分_______一、填空题:本大题共14小题,每小题5分,共70分.1 .tan 3902 .设全集2{2,3,23}U a a =+-,{|21|,2}A a =-,{5}UA =,则a = .3 .若实数x,y 满足条件,则2x-y 的最大值为_____.4 .1,的第5项是 .5 .已知O 是正六边形ABCDEF 的中心,设a=,b =,则=__________;=__________;=_________.6 .设A={}),(,3|),(N y x y x y x ∈=+,则A 的所有子集有________个、真子集有________个、非空子集有________个、非空真子集有________个.7 .不等式(0x -≥的解集是________________8 .我们知道,平面几何中有些正确的结论在空间中不一定成立.下面给出的平面几何中的四个真命题:①平行于同一条直线的两条直线必平行;②垂直于同一条直线的两条直线必平行; ③一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补; ④一个角的两边分别垂直于另一个角的两边,那么这两个角相等或互补. 在空间中仍然成立的有 ____________________(把所有正确的序号都填上).9 .直线l 过点(1,4)-,(1)若直线l 与直线2350x y ++=平行,则直线l 的方程是_______; (2)若直线l 与直线2350x y ++=垂直,则直线l 的方程是10.过点(2,-2)且与x y 222-=1有公共渐近线方程的双曲线方程为______________。
11.我国西部一个地区的年降水量在下列区间内的概率如下表所示:10,10,10x y y x y -+≥+≥++≤概率 0.21 0.16 0.13 0.12则年降水量在 [ 200,300 ] (m,m )范围内的概率是___________12.一个社会调查机构就某地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人作进一步调查,则在[2500,3000)(元)月收入段应抽出 人.13.有下列命题:①在函数cos()cos()44y x x ππ=-+的图象中,相邻两个对称中心的距离为π;②函数31x y x +=-的图象关于点(1,1)-对称;③关于x 的方程2210ax ax --=有且仅有一个实数根,则实数1a =-;④已知命题p :对任意的R x ∈,都有1sin ≤x ,则p ⌝是:存在x R ∈,使得sin 1x >.其中所有真命题的序号是_______.14.设函数x x x f +=3)(,若02πθ<≤时,(cos )(1)0f m f m θ+->恒成立,则实数的取值范围是____________________________.二、解答题(共90分,写出详细的解题步骤)15.如图所示,已知在矩形ABCD 中,34=AD ,设c b a ===BD BC AB ,,.试求c b a ++.0.00010.0002 0.0003 0.0004 0.0005 1000 1500 2000 2500 3000 3500 4000月收入(元)频率/组距16.如图,在边长为a 的菱形ABCD 中,ABCD PC ABC面⊥=∠,60,E ,F 是PA 和AB 的中点;(1)求证:EF ∥平面PBC ; (2)求E 到平面PBC 的距离。
17.某热水贮存器的容量是200升,每分钟放水34升,供应热水的锅炉每t 分钟注入贮存器2t 2升热水.问贮存器的最小贮存量是多少?如果每人洗浴时用水65升,而贮存器水量达到最小值时放水自动停止,那么这个贮存器一次最多可供几人洗浴?18.已知圆221:10240O x y x +++=,圆222:10240O x y x +--=都内切于动圆,试求动圆圆心的轨迹方程。
19.已知数列}{n a 中,n S 是它的前n 项和,并且241+=+n n a S ,11=a 。
(1)设n n n a a b 21-=+,求证}{n b 是等比数列 (2)设n nn a C 2=,求证}{n C 是等差数列 (3)求数列}{n a 的通项公式及前n 项和公式A B C D P E F20.已知函数36)2(23)(23-++-=x x a ax x f . (1)当2>a 时,求函数)(x f 的极小值; (2)试讨论曲线)(x f y =与x 轴的公共点的个数。
参考答案填空题 1 .3- 2 .2 3 .14 5 .b a-,b -,a b -6 .16,15,15,147 .{|3x x ≥或1}x =-8 .①③9 .(1)23100x y ++=,(2)32110x y --=10.y x 22241-= 11.0.25 12.25 13.③④ 14.(-∞,1)解答题15.+=++=++c b a .延长BC 至E ,使BC CE =,连DE .由于==, ∴四边形ACED 是平行四边形,∴DE AC =,∴BE BD DE BD AC =+=+,∴3822====++c b a .16.(1)证明:,,BF AF PE AE == ∴EF ∥PB又 ,,PBC PB PBC EF 平面平面⊂⊄ 故 PBC EF 平面||(2)解:在面ABCD 内作过F 作H BC FH 于⊥PBC PC ABCD PC 面面⊂⊥,ABCD PBC 面面⊥∴又 BC ABCD PBC =面面 ,BC FH ⊥,ABCD FH 面⊂ABCD FH 面⊥∴又PBC EF 平面||,故点E 到平面PBC 的距离等于点F 到平面PBC 的距离FH 。
在直角三角形FBH 中,2,60a FB FBC ==∠, a a a FBC FB FH 4323260sin 2sin 0=⨯=⨯=∠= 故点E 到平面PBC 的距离等于点F 到平面PBC 的距离, 等于a 43。
17.解:设贮存器内水量为y 升,则由题设有y =2t 2-34t +200=2(t -217)2+2111. 所以当t =8.5时,贮存器内水量y 达到最小值,此时放水停止.总共实际放水为8.5×34=289(升). 又289÷65=46529,所以一次最多可供4人洗浴.18.解:圆221:10240O x y y +++= 即为22(5)1x y ++=所以圆O 1的圆心为O 1(-5,0),半径r 1=1圆222:10240O x y x +--= 即为22(5)49x y -+=所以圆O 2的圆心为O 2(5,0),半径r 2=7,设所求动圆圆心M 的坐标为(x,y),半径为r则1||1r O M =+且2||7r O M =+ 所以12||||6O M O M -=6= 化简得221(3).916x y x -=≥19.解:(1)111124+-++++=+=n n n n n a a a S S ∴ 112424+-++=+n n n a a a∴ )2(2211-+-=-n n n n a a a a即:)2(222111≥=--=-+-n a a a a b b n n nn n n 且32121=-=a a b ∴ }{n b 是等比数列(2)}{n b 的通项11123--⋅=⋅=n n n qb b ∴ )(4322222*111111N n b a a a a C C n n n n n n n n n n n ∈==-=-=-++++++ 又21211==a C ∴ }{n C 为等差数列 (3)∵ d n C C n ⋅-+=)1(1 ∴ 43)1(212⋅-+=n a nn ∴ )(2)13(*2N n n a n n ∈⋅-=-22)13(22)13(42421+⋅-=+⋅-⋅=+⋅=-+n n n n n n a S∴ )(22)43(*1N n n S n n ∈+-=-20.解:(I ))1)(2(36)2(33)(2--=++-='x ax a x a ax x f ,2>a 12<∴a ∴当a x 2<或1>x 时,0)(>'x f ;当12<<x a 时,0)(<'x f )(x f ∴在)2,(a -∞,(1,)∞+内单调递增,在)1,2(a内单调递减 故)(x f 的极小值为2)1(af -=(II )①若,0=a 则2)1(3)(--=x x f )(x f ∴的图象与x 轴只有一个交点。
②若,0<a 则12<a,∴当12><x a x 或时,0)(<'x f ,当12<<x a 时,0)(>'x f)(x f ∴的极大值为02)1(>-=af)(x f 的极小值为0)2(<a f )(x f ∴的图象与x 轴有三个公共点。
③若20<<a ,则12>a .∴当a x x 21><或时,0)(>'x f ,当12<<x a时,0)(<'x f)(x f ∴的图象与x 轴只有一个交点④若2=a ,则0)1(6)(2≥-='x x f )(x f ∴的图象与x 轴只有一个交点 ⑤当2>a ,由(I )知)(x f 的极大值为043)431(4)2(2<---=a a f 综上所述,若,0≥a )(x f 的图象与x 轴只有一个公共点; 若0<a ,)(x f ∴的图象与x 轴有三个公共点。