数学史和数学文化
什么是数学文化

数学作为一种文化现象,早已是人们的常识。
从历史上看,古希腊和文艺复兴时期的文化名人,往往本身就是数学家。
著名的代表人物如柏拉图、泰勒斯和达·芬奇。
晚近以来,爱因斯坦、希尔伯特、罗素、冯·诺依曼等文化名人也都是20世纪数学文明的缔造者。
[1]1定义狭义:数学的思想、精神、方法、观点、语言,以及它们的形成和发展。
广义:除上述内涵以外,还包含数学家,数学史,数学美,数学教育。
数学发展中的人文成分、数学与社会的联系、数学与各种文化的关系,等等。
2价值在即将公布的高中数学课程标准中,数学文化是一个单独的板块,给予了特别的重视。
许多老师会问为什么要这样做?一个重要的原因是,20世纪初年的数学曾经存在着脱离社会文化的孤立主义倾向,并一直影响到今天的中国。
数学的过度形式化,使人错误地感到数学只是少数天才脑子里想象出来的“自由创造物”,数学的发展无须社会的推动,其真理性无须实践的检验,当然,数学的进步也无须人类文化的哺育。
于是,西方的数学界有“经验主义的复兴”。
怀特(White)的数学文化论力图把数学回归到文化层面。
克莱因(Kline)的《古今数学思想》、《西方文化中的数学》、《数学:确定性的丧失》相继问世,力图营造数学文化的人文色彩。
国内最早注意数学文化的学者是北京大学的教授孙小礼,她和邓东皋等合编的《数学与文化》,汇集了一些数学名家的有关论述,也记录了从自然辩证法研究的角度对数学文化的思考。
稍后出版的有齐民友的《数学与文化》,主要从非欧几何产生的历史阐述数学的文化价值,特别指出了数学思维的文化意义。
郑毓信等出版的专著《数学文化学》,特点是用社会建构主义的哲学观,强调“数学共同体”产生的文化效应。
以上的著作以及许多的论文,都力图把数学从单纯的逻辑演绎推理的圈子中解放出来,重点是分析数学文明史,充分揭示数学的文化内涵,肯定数学作为文化存在的价值。
进入21世纪之后,数学文化的研究更加深入。
一个重要的标志是数学文化走进中小学课堂,渗入实际数学教学,努力使学生在学习数学过程中真正受到文化感染,产生文化共鸣,体会数学的文化品位,体察社会文化和数学文化之间的互动。
数学的历史介绍数学的历史发展和重要数学家

数学的历史介绍数学的历史发展和重要数学家数学作为一门古老而又深刻的学科,在人类文明的历史长河中扮演着重要的角色。
从古代至今,数学不断发展演变,培育出许多伟大的数学家,他们为数学的进步做出了巨大的贡献。
本文将为大家介绍数学的历史发展并重点介绍一些重要的数学家。
一、古希腊时期数学的发展古希腊是数学史上一个重要的里程碑,许多重要的数学思想和概念都在这个时期诞生。
最为人熟知的是毕达哥拉斯学派提出的一系列数学原理,包括著名的毕达哥拉斯定理。
另外,欧几里得的《几何原本》对后世数学发展起到了巨大的影响,成为许多数学家研究的基础。
二、中世纪数学的低谷与复兴中世纪数学的发展相对较慢,部分原因是欧洲的文化环境受到了战争和政治动荡的影响。
然而,阿拉伯数学家在这个时期对数学的发展做出了重要贡献。
他们将印度和希腊的数学知识引入阿拉伯世界,并进行了整理和发展,为欧洲数学的复兴打下了基础。
著名的《阿拉伯数学传统》成为了数学史上的重要文献之一。
三、文艺复兴时期的数学突破文艺复兴时期是欧洲数学复兴的重要时期,众多数学家在这个时期涌现出来。
其中,意大利数学家斯忒芬诺为代数学的发展做出了杰出贡献,他提出了方程三次及以上的根的求解方法。
另外,日耳曼数学家勒让德也是这个时期的重要人物,他以发展微积分理论而闻名。
四、近代数学的革命近代数学的革命主要发生在17至19世纪,这一时期见证了许多基础性数学理论的诞生。
哥德巴赫猜想、费马大定理等一系列重要的数学难题在这一时期得到了提出。
著名的数学家牛顿和莱布尼茨几乎同时独立发现了微积分学,为后来的物理学和工程学等学科提供了基础。
五、现代数学的拓展与应用20世纪以来,数学已经发展成为一门庞大而复杂的学科体系。
代数学、几何学、概率论、数论等各个分支都有了独立而深入的发展。
许多著名的数学家如高斯、黎曼、庞加莱等在这个时期做出了具有重要影响的贡献。
数学的应用也广泛渗透到自然科学、工程学与经济学等领域,为人类社会的进步做出了重要贡献。
数学文化故事精选

数学文化故事精选数学文化是指与数学相关的各种文化现象,包括数学历史、数学传统、数学思维方式等。
数学文化不仅是一种学术研究对象,也是人类智慧与创造力的重要体现。
以下是一些有代表性的数学文化故事,以展示数学在不同文化中的奇妙之处。
1.风筝定理(中国)风筝定理是中国古代数学的杰作之一、相传春秋时期,中国著名的工匠墨子发明了风筝,并用来进行军事侦察。
在风筝上悬挂一根铜线,通过拉动铜线的方式,可以测量出水平方向与地面的距离。
这一发明被后人总结为风筝定理:在一个直角三角形中,直角的两条直线分别与斜边相交,相交点与顶点的连线平分斜边。
2.黄金分割比例(古希腊)古希腊是数学文化的发源地之一、黄金分割比例就是从古希腊开始研究的数学现象。
黄金分割是指将一条线段分为两个部分,使整个线段与较长部分的比例等于较长部分与较短部分的比例。
古希腊哲学家伽利略斯德提出了黄金分割的概念,并将其运用于建筑、艺术等领域。
3.零的发现(印度)零的发现是数学史上的一大突破。
在古印度的数学家们发现了零这个概念以前,他们使用的是罗马数字等方式来表示数值。
然而,罗马数字并没有零这个概念,因此计算和记录都存在一定的困难。
公元6世纪,印度的数学家布拉马叶首次提出并运用零的概念,这不仅为日后的数学家们提供了更好的运算工具,也为代数学的发展奠定了基础。
4.费马大定理(法国)费马大定理是一道困扰数学家长达300多年的数学难题。
费马大定理是法国数学家费尔马在17世纪提出的,它表述为“对于任意大于2的整数n,方程x^n+y^n=z^n没有正整数解”。
数学家们经历了漫长的努力,终于在1994年由安德鲁·怀尔斯宣布证明了该定理的最终解答。
费马大定理的证明过程涉及到了许多高深的数学概念和技巧,展示了人类智慧和数学思维的辉煌。
5.计算巧妙(古巴比伦)古巴比伦是世界上最早开始进行数学研究的地方之一、古巴比伦人在计算中采用了一种被称为“基60”的进位制。
这种进位制在计算过程中很巧妙地避免了一些繁琐的运算,使得他们能够进行更快速、更准确的计算。
数学史与数学文化

数学史与数学文化姓名:钱凯敏学号:11231016班级:土木1102单位:土木建筑工程学院时间:2013年12月9日论数学史与数学文化的重要性[摘要]:数学史与数学文化包括介绍数学的发展状况、数学家生平、数学家高贵品质和数学成就等等,内容十分丰富。
数学史与数学文化能激发学生学习数学的兴趣,是学生学习数学的动力,在帮助学生感悟科学方法,培养创新意识等方面有非常重要的价值。
[关键词]: 数学史数学教学应用一、以数学史例激发学生学习数学的兴趣和热情认识兴趣是青少年在学习过程中的一个重要心里特征,也是学习动机中最现实最活跃的部分,是促成学生学习的重要因素。
抓住中学生的这一特点,利用数学史提出问题,促成学生思考,由此引入新课,能使学生尽快进入学习数学的情景之中,获得鲜明、生动、深刻的印象。
比如说我在上初三年级有关圆的计算这个内容的时候,我首先给学生讲讲圆的圆周率π,求算圆周率的值是数学中一个非常重要也是非常困难的研究课题,中国古代许多数学家都致力于圆周率的计算,魏晋时,刘徽曾用使正多边形的边数逐渐增加去逼近圆周的方法(即“割圆术”),求得π的近似值3.1416。
在公元5世纪,祖冲之在前人的基础上经过刻苦钻研,反复演算,将圆周率推算至小数点后7位数(即3.1415926与3.1415927之间),并得出了圆周率分数形式的近似值。
祖冲之计算得出的圆周率,外国数学家获得同样结果,已是一千多年以后的事了。
学生听了很兴奋,觉得中国数学在古代时处于领先的地位。
这样的史实不仅让学生对圆周率印象深刻,同时还引发学生学习数学知识的兴趣。
总之,数学史记载了人类揭开世界奥秘和令人兴奋的探索历程。
老师能抓住学生的心理,穿插一些数学史的材料,就会收到好的效果。
二、数学史能使学生正确理解数学概念和数学定理多数的数学概念和数学定理的形成都离不开当时的历史条件,都少不了数学家科学思想的逻辑发展的历史行程。
回顾这些数学概念、数学定律逐渐建立的历史过程,可帮助中学生正确理解概念的内涵,正确运用数学定律来解决实际问题。
数学史在中学数学教学中的作用

数学史在中学数学教学中的作用数学史是关于数学发展的历史,它记录了数学领域的重大事件、成就和突破,可以帮助学生更好地理解数学的起源、发展和应用。
在中学数学教学中,数学史起着重要的作用,可以激发学生对数学的兴趣,提高学习效果。
以下是数学史在中学数学教学中的几个重要作用。
1.培养数学兴趣和学习动力:通过学习数学史,学生可以了解到数学的魅力和广泛应用,从而激发对数学的兴趣和学习动力。
了解数学史中伟大数学家的故事和成就,可以让学生明白数学并非是一种枯燥无味的学科,而是一门充满智慧和创造力的科学。
2.加深对数学概念的理解:学习数学史可以帮助学生更深入地理解数学概念的起源和发展。
通过了解数学史中的思想和方法,学生可以更好地理解抽象概念,并将其应用于解决实际问题。
数学史可以帮助学生通过历史案例了解数学概念的具体应用和发展过程,从而更好地理解和运用数学知识。
3.启发创新思维:数学史中有许多数学家在面对问题时的创新思维与方法,这对于培养学生的创新精神和解决问题的能力非常重要。
通过学习数学史,学生可以了解到数学家们是如何发现和解决问题的,从而激发他们思考问题的独特方式和灵感,培养创新思维和解决实际问题的能力。
4.传承数学文化:数学作为一门古老而庞大的学科,有着丰富的数学文化。
学习数学史可以帮助学生了解到不同文化中的数学成就和贡献。
通过了解不同文化中的数学思想和方法,学生可以更好地理解和尊重不同的数学传统,加深对数学的文化意识。
同时,传承数学文化也是培养学生民族自豪感和创新精神的重要途径。
5.拓宽数学知识面:数学史中不仅涉及到数学发展的历史事件,还涉及到数学与其他学科的交叉和关联。
通过学习数学史,学生可以了解到数学与自然科学、哲学等其他学科的关系,并且可以了解到数学在不同领域的应用。
这样可以帮助学生拓宽数学知识面,提高学科综合能力。
总的来说,数学史在中学数学教学中起着重要的作用。
它能够激发学生对数学的兴趣和探索欲望,提高学习动力;加深学生对数学概念的理解和应用能力;培养创新思维和解决实际问题的能力;传承数学文化,增强数学的文化意识;同时,还可以帮助学生拓宽数学知识面,提高学科综合能力。
数学史(数学文化2)全套课件250pp

06 数学史上的重要 事件和争议
2024/1/27
25
第一次数学危机及其解决过程
第一次数学危机的背景
无理数的发现及其与有理数体系的矛盾。
危机的表现
毕达哥拉斯学派内部对无理数的排斥和争议。
2024/1/27
解决过程
欧多克索斯提出比例理论,通过几何方法处理无理数,为数学发展 奠定基础。
26
第二次数学危机及其影响
2024/1/27
19
05 著名数学家及其 贡献
2024/1/27
20
阿基米德与古希腊数学学派
阿基米德是古希腊最杰出的数学家之 一,他在几何学、静力学和流体静力 学等领域做出了重要贡献。
阿基米德还发明了阿基米德螺旋,这 是最早的机械装置之一,用于将水从 一个水平面提升到另一个水平面。
阿基米德通过穷竭法证明了圆的面积 和周长之间的关系,以及球体和圆柱 体的体积之间的关系,为后来的微积 分学发展奠定了基础。
庞加莱、希尔伯特等数学家在拓扑学和微 分几何方面取得了重要突破,推动了现代 几何学的发展。
计算机与数学的结合
应用数学的广泛应用
计算机技术的飞速发展,为数学研究提供 了新的工具和方法,推动了计算数学、离 散数学等分支的发展。
随着科学技术的发展,应用数学在各个领 域的应用越来越广泛,如金融数学、生物 数学、地球数学等。
19世纪非欧几何的诞生
如罗巴切夫斯基与高斯等人在非欧几何领域的贡 献与争议。
29
07 数学文化与社会 影响
2024/1/27
30
数学在哲学、宗教等领域的应用和影响
2024/1/27
数学与哲学的关系
数学为哲学提供了逻辑和推理的工具,哲学则为数学提供 了思考和探索的方向。
《数学课程标准》中的数学史及数学文化

例呈现数学 发展历 史 中 的一些 过 程 , 使学 生体 会 数
学 的重要思 想和发 展轨 迹 , 而使 学 生感 到数 学不 从
数 学 史 在 数 学 教 育 中 的作 用 近 年 来 也 常 有论 述 , 括起来 主要 指对 学 生学 习数学 的 作 用和 对学 概 生素 质能力 培养 的作 用 。对 前 者 , 课 标 》 新《 中讲 了
王青建 , 陈洪 鹏
( 宁师 范大 学 数 学学 院 ,辽 宁 大连 1 6 2 ) 辽 1 0 9
摘 要: 阐述 新 的《 学 课 程 标 准 》 数 中数 学史 及 数 学 文 化 内容 的设 置 , 析 其 产生 背 景 、 分 相应 教 材 的 构 成 及 问 题 。 对 有 关 教 学 并
数学 史进入 中学《 课标 》 是数 学史界 和数学 教育
界 多年共 同努力 的结果 。早在 1 8 年 7月 , 96 中国高 等 学校 的数学史工 作者就 在江苏徐 州《 九章 》 习 双 讲
班 上成立 了“ 高校 数 学史 研究 会 筹 委会 ” 目的之 一 , 就 是使高 等学校数 学 史 教学 在 形成 一定 规 模 后 , 促
结 报告 , 数学发展 的历史 轨迹 , 对 自己感兴趣 的历史 事件与人 物 , 出 自己的研 究报告 。 由此可见 , 写 高中
阶段并不要 求学生 系 统学 习数 学 史 , 而是 通过 学 生
容易理解 的 内容 、 生动 活 泼 的语 言 和喜 闻乐 见 的事
20 0 0年 教育部 《 务教 育 阶 段数 学 课 程 标 准 ( 义 征求
基于数学史的数学文化课例研究

ʌ课堂研究·特设专栏:HPM课例研究(之二十四)ɔ编者按:随着新一轮数学课程改革的发展,数学文化逐渐融入数学教育教学,日益受到师生的关注㊂为推动基于数学史的数学文化课例教学的实证研究,2021年,本刊将继续特邀华东师范大学汪晓勤教授及其HPM研究团队分享基础教育阶段数学文化课例教学的实证研究,旨在让大家更好地认识数学本质㊁洞见数学价值㊁品味数学文化,促进教师专业发展,落实数学学科立德树人的教育任务㊂基于数学史的数学文化课例研究余庆纯1,汪晓勤2(1 华东师范大学数学科学学院,上海㊀200241;2 华东师范大学教师教育学院,上海㊀200062)ʌ摘㊀要ɔ基于数学史的数学文化课例研究聚焦数学的知识源流㊁学科联系㊁社会角色㊁审美娱乐与多元文化五个维度,彰显数学四大价值㊂数学文化课例研究强调数学史内容㊁实证方法与技术融合㊂ 互联网+教育 时代,数学文化课例研究要不断深挖数学史素材,扎根实证教学,融合信息技术,促进文化育师,落实立德树人的根本任务㊂ʌ关键词ɔ数学史;数学文化;课例研究;实证方法;技术融合ʌ作者简介ɔ余庆纯,华东师范大学数学科学学院在读博士研究生,主要从事数学史与数学教育研究;汪晓勤,华东师范大学教师教育学院教授㊁博士生导师,主要从事数学史与数学教育研究㊂ʌ基金项目ɔ上海高校 立德树人 人文社会科学重点研究基地之数学教育教学研究基地研究项目 数学课程与教学中落实立德树人根本任务的研究(A8)什么是数学文化?有研究者基于国内数学文化研究,分别从数学学科㊁文化㊁数学共同体㊁数学活动等多元角度阐释数学文化的内涵,即数学文化是指一群人(数学家),当他们从事数学活动时,遵循共同的数学规则,经过长期的㊁历史的沉淀,形成了关于数学知识㊁精神㊁思想方法㊁思维方式等的共同约定的总和[1]㊂‘普通高中数学课程标准(2017年版)“(以下简称‘标准“)提出,数学文化不仅是指数学的思想㊁精神㊁语言㊁方法㊁观点以及它们的形成和发展,还包括数学在人类生活㊁科学技术㊁社会发展中的贡献和意义,以及与数学相关的人文活动[2]㊂其中,数学史是数学文化的有机组成部分,不仅展现了数学概念公式㊁定理命题㊁问题解决㊁思想方法等的演进过程,而且展现了多元文化背景下数学的学科联系㊁社会角色与人文活动㊂课程改革以来,我国全面深化新时代教师队伍改革,强调教师要树立正确的历史观㊁民族观㊁国家观㊁文化观,开展中小学教师活动,促进教师终身学习与专业发展[3]㊂因此,如何在数学课程中提升数学教师的专业发展,促进数学文化的教学实践,已然成为新时代数学教师队伍改革普遍关注的热点问题之一㊂有研究表明,学科教学是教师专业发展的核心,课例研究是教师专业发展的有效抓手㊂早在21世纪初,顾泠沅教授便开展了基于数学学科的课例教学研究,依据行动研究的实证范式,总结数学教师教学特征与实践智慧,推进新世纪数学教师队伍的专业发展[4]㊂HPM(数学史与数学教育之间的关系)是数学教育的重要研究领域之一,其以喜闻乐见的形式呈现数学知识的来龙去脉,在科学严谨的数学逻辑体系中渗透丰富多彩的数学文化㊂从21世纪初至今,在HPM与教师专业发展研究中,课例研究不仅提升了数学教师个体的专业知识㊁教学能力与人文情怀,而且帮助一线数学教师㊁教研员与高校数学教育研究者共同组建教师专业学习共同体(pro⁃fessionallearningcommunity,简称PLC)㊂其中,在课例教学环节里,已有实证研究表明,教育取向的数学史在不同程度上彰显知识之谐㊁方法之美㊁探究之乐㊁能力之助㊁文化之魅㊁德育之效等教育价值[5]㊂然而,在HPM教学实践中依旧存在 高评价㊁低运用 的现象㊂为了突破这一教学实践困境,教师专业学习共同体基于‘标准“中数学文化的概念内涵与数学四类价值,提出基于数学史的数学文化理论框架[6-7],借鉴该理论框架,在基础教育阶段开展一系列的数学文化课例实践,旨在推动数学文化走进课堂㊁助教学㊁促成长㊂鉴于此,本研究主要阐述基于数学史的数学文化内涵与理论框架,介绍基于数学史的数学文化课例研究的基本要素㊁实证方法㊁技术融合等内容,为促进文化育师,落实立德树人的根本任务提供理论支撑与实践参考㊂一㊁数学文化内涵扎根于西方学者总结的数学史教育价值,结合‘标准“提出的课程目标㊁教学建议等内容,构建基于数学史的数学文化的概念内涵与理论框架,将其分成知识源流㊁学科联系㊁社会角色㊁审美娱乐与多元文化五个维度(见表1),指向数学的科学价值㊁应用价值㊁文化价值㊁审美价值四类价值(见表2),进一步基于德尔菲法㊁文本分析法对该理论框架进行修正与论证,且以初中和高中HPM课例实证该理论框架的普适性(如图1)[8]㊂表1㊀基于数学史的数学文化内涵的五个维度五个维度具体内涵知识源流在某个知识点的历史演进过程中,涉及的人物与事件㊁概念与术语㊁问题与求解㊁命题与证明等学科联系数学与其他学科之间的密切联系社会角色数学在人类生活㊁科学技术㊁社会发展中的价值㊁贡献与意义审美娱乐数学美(包括对称美㊁奇异美㊁简洁美㊁统一美等)与趣味数学,展现出人类对美学标准㊁智力好奇㊁趣味娱乐的追求多元文化不同时期㊁不同地域的数学家在同一数学课题上的贡献,以及与数学相关的人文活动表2㊀数学的四类价值四类价值价值内涵科学价值数学是自然科学的基础,不仅是运算和推理的工具,而且是表达和交流的语言,帮助人们理解和表达现实世界中事物的本质㊁关系与规律应用价值数学与人类社会生活紧密关联,数学应用渗透到现代社会及人们日常生活的各个方面;数学助力现代科学技术的发展,推动社会生产力的发展,为社会创造价值文化价值数学承载着思想和文化,是人类文明的重要组成部分㊂数学相关的人文活动展现科学主义与人文主义的丰富底蕴,彰显数学的人文内涵审美价值数学能陶冶情操,让人从感性走向理性,提升审美情趣和审美能力;数学改善思维品质,在形象思维的基础上增强理性思维能力图1㊀基于数学史的数学文化理论框架随着新一轮基础教育改革的不断推进,基于数学史的数学文化理论逐渐走进一线教学实践,分别在基础教育阶段开展实证性的课例研究,旨在探寻数学学科文化育人的本质内涵,更加深刻地揭示数学文化的核心教育价值,促进数学学科立德树人的有效落实㊂二㊁数学文化课例研究(一)研究内容基于数学史的数学文化课例研究,是指教师专业学习共同体(PLC)围绕某一特定的数学概念术语㊁公式定理㊁问题解决等内容,借助线上线下融合式研修的形式,携手开展主题课例的系列研修活动,如资料习得㊁教学设计㊁交流研讨㊁实践教学㊁反馈评价㊁反思整理㊁课例记录等㊂基于数学史的数学文化课例研究,其主要流程有五个基本环节(如图2)㊂图2㊀基于数学史的数学文化课例研究流程(1)确定课例主题㊂数学文化课例研究强调数学史内容,聚焦某一特定的数学概念术语㊁公式定理㊁问题解决等内容,进行教育取向的数学史料研究,且基于数学史的数学文化五个维度展开分析㊂(2)规划教学设计㊂聚焦该主题的数学文化㊁课标要求㊁教材比较㊁教学实况㊁学情基础等相关内容,综合考虑 历史发生序 数理逻辑序 心理认知序 三个序列的有机统一,经历数学文化课例主题的教学设计㊁共同研讨㊁优化设计等过程㊂现以 锐角三角比的意义 课例主题为例,进行阐述说明㊂①知识源流:借鉴20世纪上㊁中叶英美教科书中的锐角三角函数的引入方式,选择性地进行教学重构,以校园生活为背景,引导学生基于不同实际情境,探究系列 不可测问题 的解决方法,在分析问题㊁解决问题的过程中掌握锐角三角比的概念定义,学会根据直角三角形中两边的长求解锐角三角比的值,揭示学习锐角三角比的重要性㊁必要性,为学生在高中学习三角函数奠定基础㊂②学科联系:在跨学科联系中,锐角三角比是天文学㊁航海学的重要内容之一㊂③社会角色: 日晷 作为古代计时工具,凝结着锐角三角比在社会生活中的实际运用,展现出数学源于生活㊁服务于生活的重要角色㊂④审美娱乐:正切和余切等锐角三角比有着密切关系,体现了数学的简洁美㊁统一美㊂⑤多元文化:基于20世纪早期英美教科书,将数学家们探索 锐角三角比的意义 的过程转化为校园生活中 不可测问题 的活动探究㊂通过古今对照,表现出不同时期㊁不同文化下数学家们对 锐角三角比 研究的贡献,展现多元的数学文化㊂(3)实施课堂教研㊂开展数学文化课例教学与研究,要聚焦课堂教学的自然生成㊁数理人文的和谐统一;同时要注意收集学生反馈㊁同行评议等实证数据㊂(4)反思课例教学㊂反思主题课例教学中数学史文化素材的运用与教育价值的达成㊁教师自身专业知能的发展㊁教师专业学习共同体的合作等,有助于进一步优化课例㊂(5)撰写课例记录㊂基于数学史的数学文化课例研究流程,记录课例研究过程的实践智慧㊁心得体会与专业成长,进一步聚焦数学文化课例的教学与评价,为今后开展主题的数学文化课例提供参考㊂(二)研究主体数学文化课例研究的主体是由一线数学教师㊁教研员与高校HPM研究者共同组成,形成教师专业学习共同体(PLC)㊂近年来,其从个体化学习转向合作式学习,聚焦特定的课例主题,开展自主学习+合作学习的行动研究,在设计 教学 观察 反思中螺旋式地优化数学文化课例研究㊂教师学习(teacherlearning)是教师专业发展的必经之路[9],教师主体角色从教学者向学习者转变㊂对于数学文化课例研究的教师专业学习共同体来说,需要树立共享学习的价值观,充分发挥各自的专业优势,如一线数学教师㊁教研员扎根于基础教育实践,提供本土化的教学智慧;高校HPM研究者立足数学文化课例研究等教育理论,聚焦国际化的教育洞见㊂这将打通基础教育阶段与高等教育阶段之间的教育鸿沟,形成 中小学 大学 合作机制(schoolanduniversitypartnershipmechanism,简称SUPM)㊂(三)研究形式数学文化课例研究主要有以下四种形式㊂(1)专家引导㊂采用专家讲座的方式,自上而下对数学史㊁数学文化㊁课例研究等相关内容进行专业性的引导㊂(2)自主学习㊂学习基于数学史的数学文化等HPM相关理论,阅读相关主题的数学史素材,分析数学文化内涵不同维度的分布情况,比较不同版本的课标㊁教材之间的异同等㊂(3)合作学习㊂聚焦某一课例主题,以线上线下融合的方式进行小组合作学习,开展基于数学史的数学文化课例主题汇报㊂同时,教师专业学习共同体基于理论或实践视角,对该课例汇报内容进行反馈与评价㊂(4)实践应用㊂融合数学文化素材,开展课例教学,收集学生反馈㊁同行评价等数据,不断优化数学文化课例实践㊂(四)实证方法一般而言,教育研究分为思辨研究和实证研究两类㊂思辨研究主要解决 应然 问题,注重概念㊁理论与观点等内容的构建,通过逻辑推理来回答概念性㊁规范性的问题,而实证研究主要关注 实然 问题,基于收集与分析数据信息得出研究结果㊂实证研究又分为质性研究㊁量化研究与混合研究㊂长期以来,在传统的思辨研究范式主导下,理论研究常常具有较大的争议性㊁不确定性㊂近年来,随着对科学化㊁规范化研究方法的不断探索,数学教育研究逐渐摆脱思辨研究的束缚,开展了实证研究新范式㊂在数学文化课例研究中,教师专业学习共同体主要基于行动研究范式,开展课例设计 教学 观察 反思,这与21世纪初顾泠沅教授开展的课例研究有相似之处㊂在数学文化课例研究的不同环节,呈现出不同的教育实证研究方法,其中较具有代表性的为以下几个方面㊂(1)在教育取向的数学史研究中,高校研究者往往采用历史研究法,按照历史演进的时间顺序㊁数学文化内涵的分类维度等,对不同主题的数学史料进行解析㊂(2)在数学文化课例教学中,教师经常采用问卷调查㊁深度访谈㊁视频分析等方法,对学生反馈㊁同行评议㊁教师反思等方面的实证数据进行收集,基于理论与实践的角度,共同评价数学文化课例的教学质量㊂其中,问卷调查聚焦课例教学前后学生认知水平的变化情况㊁数学文化的感知异同与情感信念的转变发展;深度访谈关注学生在教学前后转变的深层动因;视频分析常运用于课例教学,通过分析教学片段中的师生互动㊁生生互动,深度解析数学文化融入教学的分布状况与价值彰显,助力教师改进教学,促进其专业化发展㊂(五)技术融合在 互联网+教育 时代,技术在数学文化课例的研究过程中扮演着重要的角色,线上线下融合式的课例研究成为主流㊂基于在线网络平台开展数学文化课例研究,常采用线上形式进行资料共享㊁主题汇报㊁交流研讨,线下形式进行自主学习㊁教学设计㊁实践教学㊁观察反思等,助力教师专业学习共同体的多元发展㊂其中,线上课例研讨可借助腾讯会议㊁钉钉㊁Classin㊁微信等在线网络平台搭建网络学习社区,运用腾讯文档㊁思维导图等技术工具呈现教学设计,开展在线编辑;在课例教学中,教师可结合几何画板㊁GeoGebra㊁希沃白板㊁流转笔记等信息化工具,再现数学家探寻概念公式㊁命题定理等过程,揭示化曲为直㊁以直代曲㊁数形结合等方法的本质;基于PPT㊁数位板㊁白板等演示工具制作的HPM微视频㊁微课,生动地展示数学知识的来龙去脉㊁数学思想的古今传承,彰显不同时期㊁不同国家数学文化的历史性㊁人文性㊂三㊁结语基于数学史的数学文化课例研究聚焦数学的知识源流㊁学科联系㊁社会角色㊁审美娱乐与多元文化五个维度,彰显数学四大价值㊂数学文化课例研究强调数学史内容㊁实证方法与技术融合㊂在 互联网+教育 时代,为进一步提升数学文化课例研究的数理人文,教师专业学习共同体需做好以下三个方面的工作㊂(1)深挖数学史素材㊂数学文化课例扎根于数学史研究,为数学教学提供丰富的教学素材与思想养料,然而在教学实证研究中,笔者发现数学文化内涵的五个维度运用却不均衡,因此教师专业学习共同体需要进一步深挖数学史素材,梳理数学知识的来龙去脉与文化维度的分布情况,寻找数学与其他学科之间的密切联系,发现数学在社会生活中的重要运用,品味数学奇趣之美,揭示东西方数学文化的互融互通㊂(2)扎根实证教学㊂基于数学史的数学文化课例研究,承载了发展学生数学学科核心素养的理性知能与人文情怀,支撑了教师专业学习共同体的合作学习与专业发展㊂可见,数学文化课例教学不仅要聚焦教学实践,而且要注重教育实证方法㊂基于问卷调查㊁深度访谈㊁视频分析等实证方法,还原数学文化课堂的自然生成,揭示数学的教育价值㊂(3)融合信息技术㊂信息技术为数学文化课例研究插上腾飞的翅膀,优化教学内容,提高教学效率,提升教学水平,推动信息化课例研修的历史性嬗变㊂数学教师借助信息技术开展基于数学文化的章节起始课㊁基于问题解决的探究重构课㊁基于历史命题的单元复习课,巧妙地融入翻转课堂㊁同步课堂㊁云课堂等多元教学形式,借助电子学习单㊁流转笔记㊁电子档案袋等形式,开展以学生为本的数学阅读㊁数学写作等活动,助力 互联网+教育 时代数学文化课例的实践㊂参考文献:[1]杨豫晖,吴姣,宋乃庆.中国数学文化研究述评[J].数学教育学报,2015(1):87-90.[2]中华人民共和国教育部.普通高中数学课程标准(2017年版)[M].北京:人民教育出版社,2018.[3]张侨平,陈敏.课例研究的缘起和流变:回顾与前瞻[J].全球教育展望,2020(8):75-91.[4]顾泠沅,王洁.教师在教育行动中成长:以课例为载体的教师教育模式研究[J].全球教育展望,2003(1):44-49.[5]WANGXQ,WANGK.Acategorizationmodelforeduca⁃tionalvaluesofhistoryofmathematics:anempiricalstudy[J].Sci⁃ence&Education,2017(26):1029-1052.[6]汪晓勤.基于数学史的数学文化内涵课例分析[J].上海课程教学研究,2019(2):37-43.[7]余庆纯,汪晓勤.基于数学史的数学文化内涵实证研究[J].数学教育学报,2020(3):68-74.[8]林庄燕,汪晓勤.初中HPM课例中的数学文化内涵分析[J].教育研究与评论(中学教育教学),2019(1):57-63.[9]桑国元.教师作为学习者:教师学习研究的进展与趋势[J].首都师范大学学报(社会科学版),2017(1):142-148.(责任编辑:陆顺演)(上接第4页)本技能和基础性核心素养的落实㊂在此前提下,教学还要关注学生学习的差异性㊂不同区域㊁不同家庭背景㊁不同学生的个性特征,对教学目标的设立㊁教学内容的选择㊁教学方法的运用㊁教学评价的指标都有所不同㊂当然,教学的差异应该统一在一个课程标准㊁一本语文教材中,即无论何时何地的教学,都应该努力实现课程标准和语文教材所设立的基准,以基准为轴心并在基准上,向左右拓展㊁向纵深发展,形成丰富多彩的差异化㊁风格化教学㊂(三)高标期求与底线坚守语文教材为学生的语文知识学习和能力获得提供了基本资源,也提出了基本的达标要求㊂但是,作为 语文要素 和 人文主题 双线并进的语文教材,没有明确的人文达标的标准和具体要求,这一问题不仅表现在教材中,也表现在‘课程标准(2011)“中,或许正是‘课程标准(2011)“对人文素养语焉不详以致语文教材无从做实做细㊂这就给语文教育中的人文教育带来了难题㊂在语文教学中,人文教育时常 天马行空 ,不仅内容上空疏高远而不切实际,而且在目标与程度上也混乱模糊㊂有些语文教学热衷于在人文主题教育上往高处飘㊁往大处行㊁往空里谈㊂况且,语文教材中涉及人文教育的内容,一般是宏大叙事㊁英雄典范㊁道德楷模㊁君子圣贤,有些教学更是喜欢对此拔高渲染,要求学生与之看齐,自以为这样做可以收到感动㊁震动的效果㊂殊不知,这样过高过大的道德教育不仅没有实效,反而适得其反,会导致学生道德的低能感和挫败感㊂因为,我们的孩子往往终归平凡㊂事实上,基础教育阶段就是平凡的教学教平凡的人㊂语文教学中关于人文教育的着力点主要是底线教育㊁准则教育,引导学生坚守道德底线,在日常生活中恪守准则,这便是基础教育基础性的人文要义,也是基础教育阶段人文教育的重心所在㊂如何处理好人文理想教育与道德底线教育关系,是当代语文教育迫切需要解决的重大课题㊂参考文献:[1]叶圣陶.叶圣陶语文教育论集[M].北京:教育科学出版社,2015.(责任编辑:罗小荧)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学史和数学文化篇一:数学史与数学文化数学史与数学价值摘要:数学史上三次危机的发生使得人类更进一步的了解数学,数学的思想.精神.文化对于人类历史文化变革有有着重要的影响.数学文化的研究可以使我们发现数学美,了解数学的内涵.关键词:数学发展三次数学危机分析方法数学美数学与哲学一. 前言数学常常被人们认为是自然科学中发展得最完善的一门学科,但在数学的发展史中,却经历了三次危机,人们为了使数学向前发展,从而引入一些新的东西使问题化解,在第一次危机中导致无理数的产生;第二次危机发生在十七世纪微积分诞生后,无穷小量的刻画问题,最后是柯西解决了这个问题;第三次危机发生在_世纪末,罗素悖论的产生引起数学界的轩然大波,最后是将集合论建立在一组公理之上,以回避悖论来缓解数学危机.在数学发展史中,我们可以发现数学的思想,数学的美所在.二. 数学的发展历程首先是数学的萌芽阶段,在这一时代的杰出代表是古巴比伦数学.中国数学.埃及数学.印度数学等.古埃及文化可追溯到公元前4_0年,在那里,公元前3_年就已有了统一的国家.公元前29_年,开始建筑金字塔,就金字塔的建筑来讲,已经具备一些初等几何的知识;巴比伦文化可以上溯到公元前_年左右的苏美尔文化,这一时期,人们基于对量的认识,经建立了数的概念.从大约公元前__年开始,巴比伦已经使用较为系统的以60为基数的数系;另一个重要的是古希腊数学,希腊文化在世界文明史上的贡献是至高无上的.它广泛的吸取了其他文明中的有价值的东西,创立了自己的文明与文化,对西方文明乃至世界文明的发展起了重要作用;同时,在中亚和东方也创造了灿烂的数学文化.自公元前8世纪起,印度已有一些丰富的数学知识.中国数学是世界数瑰宝,在仰韶文化中,已经出土的陶器上已刻有用 |,||,|||,||||等表示1,2,3,4的记号.西安半坡出土的陶器中就有用圆点堆成的三角形或正多边形. 然后是常数学阶段,这时期,数位希腊数学家取得辉煌成就,在_年时间内,希腊人创造的文明一直延续到牛顿时代.M.克莱因在评价希腊人的>和>时说:〝从这些精心撰述的著作中,我们看得出此前三百年间数学上的创造性工作,或此后数学史上关系重大的一些问题.〞说道希腊时代的辉煌,不得不提到希腊璀璨的数学家们.毕达哥拉斯,曾被人们认为是一个神秘主义者,他把证明引入了数学,这也是他最伟大的功绩之一.毕达哥拉斯还提出了抽象,抽象引发了几何的思辨,从实物的数与形,抽象到数学上的数与形,本身就把数学推向科学的开始.在希腊数学时期还有芝诺的四个简单悖论,这四个简单悖论震惊了哲学界.在希腊数学里最主要的工作精华和最大的光荣落在了欧几里德和阿波罗尼奥斯的头上.欧几里德撰写的>是古希腊数学的集大成,它充分发挥了希腊哲学的优势,借助演绎推理,展现给人们一个完整的典范的学科系统..阿波罗尼奥斯的突出工作是>,>的杰出工作,几乎将圆锥曲线的所有性质开采殆尽,以至使后代许多几何学工作者至少是在笛卡尔之前的近_年间,不敢对此再有发言权.后人提到评价圆锥曲线,评价阿波罗尼奥斯,就联想到我国李白登黄鹤楼时,看到崔颢诗后的〝眼前有景道不得,崔颢题诗在上头〞的那样一种心情.还有阿基米德的得意之作>,也是数学上的杰作.中国著作>给出了三元一次方程组的解法,同时在世界历史上第一次使用负数,叙述了对负数进行运算的规则,也给出了求平方根和立方根的方法.然后就进入了变量数学建立时期,有笛卡尔著作>,以及牛顿和莱布尼兹创立的微积分,,在数学发展史上是很重要的一个里程碑.在大一的时候就学了微积分,微分及其中的变量.函数和极限等概念,运动.变化等思想,是辩证法渗入了全部数学:并使数学成为精确表述自然科学和技术的规律及有效地解决问题的有力工具. 最后是现代数学时期,其中比较突出的问题是高于四次的代数方程的根式求解问题.欧几里德几何中平行线公设的证明问题和微积分方法的逻辑基础问题.代数.几何.分析领域中这些问题得以研究和解决,数学学科的分支得以迅速展.顺着时间的发展将数学史大概说了下,现在说说在数学史上出现的三次数学危机. 第一次数学危机:由毕达哥拉斯提出的著名命题〝万物皆数〞和〝一切数均可表成整数或整数之比〞.毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示.希帕索斯的发现导致了数学史上第一个无理数√2 的诞生.小小√2的出现,却在当时的数学界掀起了一场巨大风暴.它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌. 第二次数学危机导源于微积分工具的使用.伴随着人们科学理论与实践认识的提高,十七世纪几乎在同一时期,微积分这一锐利无比的数学工具为牛顿.莱布尼兹各自独立发现.这一工具一问世,就显示出它的非凡威力.许许多多疑难问题运用这一工具后变得易如翻掌.但是不管是牛顿,还是莱布尼兹所创立的微积分理论都是不严格的.两人的理论都建立在无穷小分析之上,但他们对作为基本概念的无穷小量的理解与运用却是混乱的.因而,从微积分诞生时就遭到了一些人的反对与攻击. 罗素悖论与第三次数学危机:十九世纪下半叶,康托尔创立了著名的集合论, __年,英国数学家罗素提出著名的罗素悖论.罗素构造了一个集合S:S由一切不是自身元素的集合所组成.然后罗素问:S是否属于S呢?根据排中律,一个元素或者属于某个集合,或者不属于某个集合.因此,对于一个给定的集合,问是否属于它自己是有意义的.但对这个看似合理的问题的回答却会陷入两难境地.如果S属于S,根据S的定义,S就不属于S;反之,如果S不属于S,同样根据定义,S就属于S.无论如何都是矛盾的.罗素悖论一提出就在当时的数学界与逻辑学界内引起了极大震动,引起的巨大反响则导致了第三次数学危机.三. 数学的价值(一)数学:科学的语言有不少自然科学家.特别是理论物理学家都曾明确地强调了数学的语言功能.例如,著名物理学家玻尔(N.H.D.Bohr)就曾指出:〝数学不应该被看成是以经验的积累为基础的一种特殊的知识分支,而应该被看成是普通语言的一种精确化,这种精确化给普通语言补充了适当的工具来表示一些关系,对这些关系来说普通字句是不精确的或过于纠缠的.严格说来,量子力学和量子电动力学的数学形式系统,只不过给推导关于观测的预期结果提供了计算法则.〞一般地说,就像对客观世界量的规律性的认识一样,人们对于其他各种自然规律的认识也并非是一种直接的.简单的反映,而是包括了一个在思想中〝重新构造〞相应研究对象的过程,以及由内在的思维构造向外部的〝独立存在〞的转化(在爱因斯坦看来,〝构造性〞究对象〞的构造则又往往是借助于数学语言得以完成的(数学与一般自然科学的认识活动的区别之一就在于:数学对象是一种〝逻辑结构〞,一般的〝科学对象〞则可以说是一种〝数学建构〞),显然,这也就更为清楚地表明了数学的语言性质.随着社会的数学化程度日益提高,数学语言已成为人类社会中交流和贮存信息的重要手段.如果说,从前在人们的社会生活中,在商业交往中,运用初等数学就够了,而高等数学一般被认为是科学研究人员所使用的一种高深的科学语言,那么在今天的社会生活中,只懂得初等数学就会感到远远不够用了.事实上,高等数学(如微积分.线性代数)的一些概念.语言正在越来越多地渗透到现代社会生活各个方面的各种信息系统中,而现代数学的一些新的概念(如算子.泛函.拓扑.(二)数学:思维的工具数学是任何人分析问题和解决问题的思想工具.这是因为:首先,数学具有运用抽象思维去把握实在的能力.数学概念是以极度抽象的形式出现的.在现代数学中,集合.结构等概念,作为数学的研究对象,它们本身确是一种思想的创造物.其次,数学赋予科学知识以逻辑的严密性和结论的可靠性,是使认识从感性阶段发展到理性阶段,并使理性认识进一步深化的重要手段.第三,数学也是辩证的辅助工具和表现方式.这是恩格斯(F.Engels)对数学的认识功能的一个重要论断.在数学中充满着辩证法,而且有自己特殊的表现方式,即用特殊的符号语言,简明的数学公式,明确地表达出各种辩证的关系和转化.(二)数学:思想方法数学作为推理工具的作用是巨大的.特别是对由于技术条件限制暂时难以观测的感性经狄拉克根据逻辑推理而得出的.后来由宇宙射线观测实验证实了这一论断.数学是研究量的推导和演算的方法.数学的思想方法体现着它作为一般方法论的特征和性质,是物质世界质与量的统一.内容与形式的统一的最有效的表现方式.这些表现方式主要有:提供数量分四. 数学的内涵在数学的发展中,形成许多哲学的观点,有以罗素为代表的逻辑主义,以布劳威尔为代表的直觉主义,以希尔伯特为代表的形式主义三大学派.(一).逻辑主义罗素在__年出版的>中对于数学的本性发表了自己的见解.他说:〝纯粹数学是所有形如‘p蕴涵q’的所有命题类,其中p和q都包含数目相同的一个或多个变元的命题,且p和q除了逻辑常项之外,不包含任何常项.所谓逻辑常项是可由下面这些对象定义的概念:蕴涵,一个项与它所属类的关系,如此这般的概念,关系的概念,以及象涉及上述形式一般命题概念的其他概念.除此之外,数学使用一个不是它所考虑的命题组成部分的概念,即真假的概念.〞(二).直觉主义直觉主义有着长远的历史,它植根于数学的构造性当中.古代数学大多是算,只是在欧几里得几何学中逻辑才起一定作用.到了十七世纪解析几何和微积分发明之后,计算的倾向大大超过了逻辑倾向.十七.十八世纪的创造,并不考虑逻辑的严格,而只是醉心于计算.现代直觉主义的奠基人是布劳威尔,布劳威尔是从哲学中得出自己观点的,基本的直觉是按照时间顺序出现的感觉,而这形成自然数的概念.(三).形式主义一般认为形式主义的奠基人是希尔伯特,但是希尔伯特自己并不自命为形式主义者.希尔伯特是二十世纪最有影响的数学家,他对于数学基础问题有着长时期的持久关注,他的思想在现代数学也占有统治地位.关于数学中的存在,他认为不限于感觉经验的存在.在物理世界中,他认为没有无穷小.无穷大和无穷集合,但是在数学理论的各个分支中却都有无穷集合.数学对于人类理性精神发展有着特殊的意义,这也清楚地说明数学作为整个人类文化的一个有机组成成分的重要性.数学中存在无数的内涵与美丽,生活中每个地方都存在数学的身影,数学在不知不觉中改善了人类的生活.数学文化博大精深.参考文献>.中国少年儿童出版社>.高等教育出版社>.清华大学出版社篇二:数学史和数学文化>班级: 网营_-1班姓名: 学号:云南财经大学中华职业学院数学史和数学文化数学可能是中国所有上学的人爱恨交加的科目了吧,一方面苦于数学的枯燥和难懂,另一方面又应用于各个方面,可以说对它的感情很复杂了.而数学史和数学文化这门课却讲了不少数学史中有意思数学家和他们的故事以及数学文化,数学俨然给人一种活泼感,就好像是一个印象中〝严肃刻板〞的人,做出了一系列生动幽默的动作,发生了一连串的故事;而数学文化就像是人类其他形式的文化一样,它活跃在人类历史进程中,推进了人类的进步.数学是美的,数学美把就是把数学溶入语言之中,人们自然会联想到令人心驰神往的优美而和谐的黄金分割;各种有趣的数字比如说:完全数.水仙花数.亲和数.黑洞数等等;雄伟壮丽的科学宫殿的欧几里得平面几何;数学皇冠上的明珠?哥德巴赫猜想.数学美可以分为形式美和内在美.数学中的公式.定理.图形等所呈现出来的简单.整齐以及对称的美是形式美的体现.数学中有字符美和构图美还有对称美,数学中的对称美反映的是自然界的和谐性,在几何形体中,最典型的就是轴对称图形.数学中的简洁美,数学具有形式简洁.有序.规整和高度统一的特点,许多纷繁复杂的现象,可以归纳为简单的数学公式.数学的内在美有数学的和谐美,数量的和谐,空间的协调是构成数学美的重要因素.数学中的严谨美,严谨美是数学独特的内在美,我们通常用?滴水不漏?来形容数学.它表现在数学推理的严密,数学定义准确揭示概念的本质属性,数学结构系统的协调完备等等.总之,数学美的魅力是诱人的,数学美的力量是巨大的,数学美的思想是神奇的,数学是一个五彩缤纷的美的世界.数学是好玩的,在北京举行国际数学家大会期间,91岁高龄的数学大师陈省身先生为少年儿童题词,写下了〝数学好玩〞4个大字.数是一切事物的参与者,数学当然就无所不在了.在很多有趣的活动中,数学是幕后的策划者,是游戏规则的制定者.玩七巧板,玩九连环,玩华容道,不少人玩起来乐而不倦,玩的人不一定知道,所玩的其实是数学.数学的好玩之处,并不限于数学游戏.数学中有些极具实用意义的内容,包含了深刻的奥妙,发人深思,使人惊讶.早在_多年前,人们就认识到数的重要.中国古代哲学家老子在经>>中说:〝道生一,一生二,二生三,三生万物.〞古希腊毕达哥拉斯学派的思想家菲洛劳斯说得就更加确定有力:〝庞大.万能和完美无缺是数字的力量所在,它是人类生活的开始和主宰者,是一切事物的参与者.没有数字,一切都是混乱和黑暗的.〞数学是严谨的,从数学史上的三次数学危机来看,数学是一个不断完善,趋于严谨,合乎理性的科学,因而数学是需要与他人交流和互动的,只有这样才可以发现问题,解决问题.数学是一门伟大的科学,它作为一门科学具有悠久的历史,与自然科学相比,数学更是积累性科学.它是经过上千年的演化发展才逐渐兴盛起来.同时数学也反映着每个时代的特征,美国数学史家克莱因曾经说过:〝一个时代的总的特征在很大程度上与这个时代的数学活动密切相关.这种关系在我们这个时代尤为明显.〞数学已经广泛地影响着人类的生活和思想,是形成现代文化的主要力量.德国数学家汉克尔也形象地指出过数学的这一特点:〝在大多数学科里,一代人的建筑被下一代人所摧毁,一个人的创造被另一个人所破坏.惟独数学,每一代人都在古老的大厦上添加一层楼.〞所以研究数学史和数学文化,对于我们认识数学具有重大的作用.数学史与数学文化作为一门课程一门学科,教授给我的绝不仅仅只停留在数学作为一门科学在不断发展演变的历程中不胜枚举的中外数学家以及数学发展史中具体事例和思想运动,更内涵而又丰满地是教授我一种数学的哲学思想.事物的发展规律.唯物理性客观的世界观和方法论,是对我们今后人生的指引和极大丰富.同时也是对身为理工科大学生人文情操和文化素养的磨练及沉淀,这才是我认为学习完数学史数学文化这门课程的精神内核.经过数学史课程的学习,我被数学文化中深刻的哲学思想而深深吸引.通过老师课堂上的丰富举例;通过一个个生动.紧张.严肃.活泼的数学家形象和事例;通过数学史上一次次的猜想.命题.假设.证明,一次次地发展变革,更是引发了我对数学的发展规律和其本质哲学思想变革的不断思索.篇三:>课的实践与反思>课的实践与反思随着人们对数学史和数学文化研究的深入,以及2 1世纪社会发展对〝既具有数学理性精神又具有人文素养,既掌握科学方法又懂得人文价值〞的高素质人才的呼唤,新一轮基础教育数学课程改革将数学史与数学文化作为一个重要的内容和理念纳入教材及>(下文简称>).>(下文简称>)中.为了适应基础教育改革和时代的需求,目前很多的高师院校都开设了数学史或数学文化课程,而>作为一门数学教育专业的必修课程来开设的院校却比较少.本文将对2 0 1 0年以来天津师范大学>优秀课建设的基本理念和初步实践作一介绍.一.>课程的实践本课题结合国内外关于〝数学史〞与〝数学文化〞研究的相关理论,参考了有关教材.文献以及兄弟院校相关课程建设经验,对>课程的教学内容.教学方式及评价方法等进行了实践与探索.(一)教学内容及教学要求鉴于本课程是数学教育方向的必修课程,我们确定〝教学内容设定〞依据的基本原则:以数学历史发展顺序为依托,深入挖掘数学史料中的文化价值,将与基础教育数学教材中涉及的背景知识进行拓展与延伸.教学内容整体分为教师精讲和小组合作研究两部分.小组合作研究内容的具体要求:通过小组合作学习.研讨,共同制作完成约1 5分钟展示资料,最后由主讲教师随机抽取小组成员完成展示;而且除了上台展示之外,还要以小组为单位撰写〝小组学习报告〞. 在选择教学内容过程中主要考虑以下因素:首先,鉴于基础教育阶段涉及的数学知识大部分属于常量数学内容,与此相应的数学发展史内容主要介绍1 7世纪及之前古代埃及.巴比伦.希腊.中国.印度.阿拉伯等所创造的数学专题.其次,数学史与数学文化应该包含这样的意思,就是一种数学印象.数学的〝感觉〞和〝知道〞.由于学生们的基础数学后续课程(比如,拓扑学,实变函数.泛函分析等)没有学习,所以1 8世纪及以后近现代数学发展史的内容主要由学生以小组合作研究完成.这样不仅可以使学生们对相应史料有大致的了解,而且促进他们对数学发展过程获得较完整认识,为以后从事教学工作和后续学习做好铺垫.第三,为了开阔学生们的眼界,本课程将百家讲坛中〝相识数学〞的视频资料作为小组合作研究内容之一,这样就相当于将数学教育名家请进了课堂,让学生有幸聆听和欣赏〝数学大家〞的思想.智慧以及理解他们所具有的数学精神. 最后,为了促进职前教师对数学教材中的数学背景知识熟悉.理解及应用,本课程将〝初等教育阶段数学教材(人教版或北师大版1 2册)中背景知识〞及〝H P M 专题〞作为小组合作研究的另一内容,以帮助她们将学科知识和教学知识进行有效的融合,即不仅要了解〝教什么〞,而且要知道〝怎么教〞.(二)教学方式与评价方法>课采用系列专题讲座,辅以小组合作及撰写〝小组学习报告〞的教学方式.课前,教师精心收集.组织资料,科学设计.课上,教师改变以往〝满堂灌〞的教学方式,精讲和学生汇报相结合,师生一起成为该课程的创造者和主体,共同参与课程的开发与建设.主要采用多媒体授课形式,课件内容充实,图片丰富,辅以必要的动画,以方便学生更好地理解.欣赏,增强教学效果.课后,由于学校提供了课程网络建设平台,借此平台教师可以把所使用的课件.作业.学生讲课的视频以及相关的文献和资料及时上传,方便学生学习以及师生在课余时间交流.在讲授过程中,力求将数学内史与外史相融合,着重介绍数学概念.思想方法.数学家的创造性活动及所表现出来的种种精神.里程碑性的事件及著作等,尤其是与教育阶段数学知识相对应的数学史料.背景知识及文化价值的分析.在讲解中注重采用数学知识与其时代的文化背景相结合的方法和跨文化比较的方法.比如,希腊数学的迅速发展是和希腊与波斯战争之后,希腊成为经济.政治和文化的中心以及民主政治制度的实施等社会大环境有着密切的关系.而中国古代数学的发展在某些时候却和西方有着很大的差异.中国在魏晋南北朝和宋辽金元时期数学产生了两次高潮,但当时社会战乱纷争,而在汉.唐.明.清的鼎盛时期,数学却少有创造性成果.再比如,在讲到埃及的算术成果——倍乘时,从多元文化的角度介绍中国筹算.阿拉伯的格子乘法.印度的棋盘算法以及历史上的其他笔算乘法形式,学生们惊叹古代不同民族人们的奇思妙想,同时了解了现在笔算乘法在过去曾是数学中一道绚丽的彩虹.以此促进他们学会尊重和欣赏各种不同的文化,从而具有以一种开放的心态创造新文化的胸怀与志向,进而将来以一种正确的观点影响他们所面对的学生——对于世界上。