midas fea_水化热参数化分析
FEA功能介绍

六面体网格
FEA 正在开发 H-morph网格生成器 以划分准六面体网格. H-morph 是一种为任意实体几何模型按照边界划分准六面体网格的方法 (FEA 采用 S.Owen.提出的
Q-morph和H-morph算法) FEA 也提供 棱柱层网格划分功能. (外层:棱柱 – 内实体几何模型
杆系实体转换功能通过导入Civil 和 Gen里面的杆系模型数据(*.MCS) 自动生成实体几何和网格
分析模型 (3D棱柱网格)
高级结构分析的新典范
1 概述 2 几何建模 3 生成网格 4 分析 5 后处理
界面单元 (滑移, 摩擦)
桁架 + 界面单元 (协调)
棱柱网格 嵌入式钢筋 (非协调)
分析结果
检查网格/网格质量
检查网格
• 自由线 • 自由面 • 流形线 • 非流形线 • 单元坐标系
网格质量
• 纵横比 • 歪扭角 • 锥度 (2D) • 翘曲 (2D) • 雅可比比率 • 扭曲 • 坍塌 (四面体) • 长度 /面积
连接
一般连接 刚性连接
非流形面连接
检查网格
非流形边线 自由边线
自动网格生成
FEA 提供自动定义和网格划分功能,能定义曲线围 成的可划分网格的区域而不用生成面,继而为每个 区域划分网格
自动定义和网格划分函数对复杂二维模型十分有用, 尤其对 AutoCAD建模的模型
导入的 DXF模型 (173 区域)
扭曲的五面体
坍塌的四面体 (体积接近为零)
检查自由面 (未连接单元面)
网格质量图
高级结构分析的新典范
1 概述 2 几何建模 3 生成网格 4 分析 5 后处理
FEA功能介绍

• 箱形, 楔形 • 圆柱, 圆锥 • 球体, 圆环 • 修剪, 分割 • 嵌入 •布尔运算 (并集, 差集, …) • 缝合曲面 …
• 延伸 • 旋转 • 放样 • 扫描 • 倒角, 圆角 • 偏移, 斜面 • 脱壳 • 局部扩展 • 检查, 修补 • 转换 …
高级建模功能支持自下而上 和从上而下两种建模方式
导入的 DXF模型
多线段
曲面分割
直线
圆
轮廓线 (多线段+切线弧)
隧道截面
B样条曲线
MIDAS Information Technology Co., Ltd.
面建模
顶点群
共面曲线
虚拟栅格 (M X N)
标高
平面
栅格面
顶点面
2~4 曲线
任意曲线 (边界线/切线/内部线)
MIDAS Information Technology Co., Ltd.
线建模
建立
• 直线 • 圆弧 •圆 • 椭圆 • 抛物线 • 双曲线
圆弧
编辑
• B样条曲线 • 多线段 • 矩形 • 正多边形 • 轮廓线 • 隧道截面
• 面上建线 • 最短路径直线 • 曲面交线 • 偏移曲线 • 扩展顶点 • 切线 • 倒角 / 圆角 • 修剪 / 延伸 • 合并 / 打断 • 交叉分割 • 排列, 重合 • 生成线组
实例示范
实体几何
网格 (二阶四面体网格)
应力分析结果
MIDAS Information Technology Co., Ltd.
高级结构分析的新典范
1
概述 几何建模
2
3
生成网格 分析
4
5
midas桥梁分析结果查看

143查看分析结果模式的转换MIDAS/Civil 为提高程序的效率和方便使用者而将程序的环境体系区分为前处理模式(Preprocessing Mode)和后处理模式(Post-processing Mode)。
建模过程中的所有输入工作只有在前处理模式才有可能,而荷载组合、反力、位移、构件内力、应力等分析结果的查看和整理工作则可在后处理模式中进行。
模式的转换可使用模式菜单或在图标(Icon Menu)上点击前处理模式或后处理模式。
若分析顺利结束的话,前处理模式会自动转换为后处理模式。
荷载组合及最大/最小值的查寻分析结果的组合MIDAS/Civil 利用结果>荷载组合功能可对静力分析、移动荷载分析、动力分析、水化热分析、非线性分析及各施工阶段分析所算出的所有结果进行任意组合,并可将组合的结果在后处理模式以图形或文本形式输出。
另外,已利用荷载工况组合的荷载组合还可以与其它荷载组合进行重新组合。
请注意,分析结束后若重新回到前处理模式对输入的事项进行修改或变更的话分析结果会被删除。
G ETTING S TARTED144MIDAS/Civil输入荷载组合数据的方法有以下两种。
用户直接输入荷载组合条件的方法从已输入的荷载组合条件文件导入数据的方法种类: 指定分析结果的荷载组合方法添加: 将分析结果进行线性组合包络: 各分析结果的最大(max),最小(min)及绝对值的最大值ABS : 反应谱分析中绝对值的和与其它分析结果的线性组合SRSS : 反应谱分析中SRSS组合结果与其它分析结果的线性组合荷载组合条件的自动生成和修改对于所输入的荷载组合条件可根据用户的需要,在结果分析过程中利用激活功能予以采用或予以排除。
查看分析结果查看分析结果MIDAS/Civil的后处理模式中对分析结果提供图形和文本两种形式以便可以对所有结果进行分析和验算。
MIDAS/Civil的各种后处理功能从属于结果菜单,其具体的种类如下。
基于MIDAS-CIVIL 的桥梁大体积混凝土水化热分析与施工控制

基于MIDAS/CIVIL 的桥梁大体积混凝土水化热分析与施工控制摘要:结合四川乐自高速岷江特大桥主桥承台设计与施工,利用三维有限元软件midas/civil对承台的大体积混凝土进行模拟仿真分析,掌握水化热变化规律及其应力影响,据此指导现场施工控制。
结果表明:仿真分析很好地反映了水化热变化规律及其应力影响,施工控制措施得当,没有出现温度裂缝,保证了混凝土施工质量。
关键词:承台;水化热;有限元midas/civil;温度应力;施工控制中图分类号:tu37 文献标识码:a 文章编号:1 概述大体积混凝土施工的关键在于混凝土水化热的控制,由于水化热的存在,大体积混凝土经常出现温度裂缝这样的质量缺陷,为了解决这些问题,可以对大体积混凝土施工期的水化热进行仿真分析,根据分析结果采取相应的方法对其进行控制。
本文依据具体工程实例——岷江特大桥主墩承台施工,利用有限元软midas/civil 建立实体模型,通过仿真分析,提出了解决施工过程中水化热的具体措施,保证了岷江特大桥主墩承台的顺利施工。
2 工程概况岷江特大桥是四川乐山至自贡高速公路全线的控制性工程,为预应力混凝土连续梁桥。
主桥设计跨径布置为 100.4 m + 3 × 180 m + 100.4 m,,是目前同类型桥梁中跨径排名前列的连续梁桥,该桥立面图如图1,该桥主墩承台结构尺寸为15 m × 12.7m × 5 m,混凝土用量约953m3,设计强度为c30,泵送c30混凝土一次浇筑施工,承台尺寸见图2。
利用midas/civil有限元计算分析软件对承台施工过程进行仿真分析,以掌握其温度及应力变化规律,并据此在施工中采取相应控制措施,有效地防止了温度裂缝的产生,保证了承台大体积混凝土的施工质量。
图1 岷江特大桥立面图立面平面图2主墩承台尺寸示意图(cm)3 有限元仿真分析3.1有限元模型建立采用大型有限元软件midas /civil模拟承台建立有限元模型,由于承台的对称性,取承台的1/4进行计算分析,模型主体由2部分结构组成,分别为地基和承台混凝土,模型单元采用8节点等参元即实体单元,在单元划分过程中尽量使相邻单元之间大小均匀变化,在测点处划分较细致,从而能够更好地分析其温度的变化情况,整个结构共计1056个单元,建立的模型如图3所示,计算主要参数见表1。
FEA功能介绍

导入的CAD 几何模型 生成的网格
实例示范
实体几何
网格 (二阶四面体网格)
应力分析结果
高级结构分析的新典范
1 概述 2 几何建模 3 生成网格 4 分析 5 后处理
几何建模
线
面
实体
高级建模
• 直线, 多线段 • 弧, 圆 • 多边形 • B样条曲线 • 隧道截面 • 倒角, 圆角 • 修剪, 延伸 • 交叉分割 • 偏移, 切线 • 打断, 合并 …
生成网格
自动
映射
扩展网格
编辑网格
• 实体 •面 •线 • 平面区域 • 4线区域 • 2D 3D
单元类型 • 四边形 • 组合网格 • 三角形
• 实体 •面 • k线面 • k面体 • 4节点区域
…
• 延伸 • 旋转 • 投影 • 填充 • 扫描
对象
• 几何 • 单元 • 节点
界面单元 (滑移, 摩擦)
桁架 + 界面单元 (协调)
棱柱网格 嵌入式钢筋 (非协调)
分析结果
检查网格/网格质量
检查网格
• 自由线 • 自由面 • 流形线 • 非流形线 • 单元坐标系
网格质量
• 纵横比 • 歪扭角 • 锥度 (2D) • 翘曲 (2D) • 雅可比比率 • 扭曲 • 坍塌 (四面体) • 长度 /面积
面建模
共面曲线
2~4 曲线
平面
虚拟栅格 (M X N)
标高
栅格面
顶点群
顶点面
边界面
任意曲线 (边界线/切线/内部线)
NURBS 面
实体建模
修剪 分割
布尔运算
A
B
midas-FEA在桥梁检测上的应用

4.连续箱梁顶板裂缝成因分析研究(湖南省交通科学研究院)
首次出现微量的裂纹;
⑤ 箱梁底板崩裂原因分析
⑥ 箱梁零号块裂缝成因分析
随着荷载的增大,该区域将出现沿顺桥向贯通的裂纹带,其发展方向约与水平面成45°夹角,
⑦ 箱梁后浇段施工缝开裂成因分析
并且在紧邻直角的区域裂纹发展较为充分,其他区域相对较弱,但整个加载过程裂纹状态均
⑧ 空心板底板裂缝成因分析
未完全张开;
对于施工、温度、收缩徐变、基础沉降荷载考虑不够全面 D区依然采用杆单元,配筋无依据(例如花瓶墩) 不进行大体积混凝土的水化热分析
温控措施不合理,合拢时机不合理 改变设计要求的施工工序且工序没有经过严密验算 设备支架设计不合理(变形过大) 使用的材料不满足设计要求
运营管理
超载严重
长期超载引起变形过大、发生裂缝、疲劳等破坏
1.某桥墩凹槽开裂验算报告(某施工单位)
目录
① 桥墩裂缝成因分析 ② 花瓶墩配筋设计(两例) ③ 箱梁顶板裂缝成因分析 ④ 箱梁腹板裂缝成因分析 ⑤ 箱梁底板崩裂原因分析 ⑥ 箱梁零号块裂缝成因分析 ⑦ 箱梁后浇段施工缝开裂成因分析 ⑧ 空心板底板裂缝成因分析 ⑨ 曲线梁桥支座病害成因分析 ⑩ 预支空心板铰缝破坏影响分析 11 ⑪ 膨胀土危害分析
简单、实用,具体对比见表2。
(2)最大拉应力出现在墩帽中心开口处,设计配筋时应予以重视,可以配置拉筋或主动
加预应力的方法,来提高混凝土的抗裂性能和极限承载能力。
midas铁路工程整体解决方案

钢浮箱
(南平樟湖库区大桥)
栈桥 围堰
(晋陕黄河特大桥)
(榕江特大桥)
沉井
(合福铁路铜陵长江大桥)
midas铁路工程整体解决方案
1. midas Civil 2. midas FEA 3. midas GTS、Soilworks、GeoX 4. midas Gen 5. midas NFX
6. midas SmartBDS
midas GTS 在铁路上的应用
植草护坡对路基稳定影响分析
(oo铁路)
落石对防护结构影响分析
(宝兰客运专线)
复合地基动力特性分析
(OO高铁低矮路堤灰土桩复合地基)
基坑降水对高铁路基沉降影响分析
(济南西客站站房基坑)
施工阶段模拟
(郑西客运专线)
衬砌分析
(成昆线桥隧结合段)
midas GTS 在铁路隧道上的 应用
(天津市规划公路与津山铁路相交工程)
支架
(九龙江大桥)
造桥机
(普兰店海湾特大桥)
midas Civil 在铁路施工上的 应用
零号块托架
(云龙公铁立交桥)
桥塔横梁支撑
挂篮
(黄冈公铁两用长江大桥)
(沪昆高速铁路OO桥)
桥墩模板
(OO桥)
施工平台
(嘉绍跨江大桥)
防撞钢套箱
(椒江二桥)
midas Civil 在铁路施工上的 应用
6. midas SmartBDS
7. 软件间的数据接口
产品
适用领域
详细说明
悬索桥 斜拉桥
节能
保证使用期限内安全 方案比选优化
环保
铁路桥梁设计
拱桥
刚构桥 连续梁桥 简支桥
FEA功能介绍 PPT

生成网格
自动
映射
扩展网格
编辑网格
• 实体 •面 •线 • 平面区域 • 4线区域 • 2D 3D
单元类型
• 四边形 • 组合网格 • 三角形
• 实体 •面 • k线面 • k面体 • 4节点区域
…
• 延伸 • 旋转 • 投影 • 填充 • 扫描
对象
• 几何 • 单元 • 节点
• 建立单元 • 析取单元 • 连接单元 • 修改参数 • 平滑单元 • 细分 • 检查网格 • 网格质量 • 合并 • 转换
Advanced Nonlinear and Detail Analysis System
midas FEA功能介绍
高级结构分析的新典范 1 概述 2 几何建模 3 生成网格 4 分析 5 后处理
2001
关于 FEA
2003
2005
2006
“FEA 作为综合有限元分析尖端科技的代表,为桥梁/建筑结构提供 非线性和细部分析的解决办法…”
脱壳
Civil, Gen
杆系 实体
FEA
杆系模型 (一般截面)
MCS 格式
生成的实体几何模型
杆系实体转换功能通过导入Civil 和 Gen里面的杆系模型数据(*.MCS) 自动生成实体几何和网格
分析模型 (3D棱柱网格)
高级结构分析的新典范
1 概述 2 几何建模 3 生成网格 4 分析 5 后处理
程序构成
几何建模
计算书生成器
网格生成
FEA
后处理器
FEA 前处理器
FEM 求解器
大家应该也有点累了,稍作休息
大家有疑问的,可以询问和交流
主菜单 工作树
操作界面
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.概要1.水化热分析浇筑混凝土时,水泥在水化过程中产生大量热量会使混凝土的温度升高。
虽然随时间的推移混凝土的温度会慢慢冷却,但结构各个位置的温度下降速度不均匀,结构不同位置将发生相对温差,此温差会使混凝土发生温度应力。
温度裂缝发生类型混凝土浇筑初期,因内部温度升高将发生膨胀,但混凝土表面的温度下降较快,相对应变较小,从而使混凝土表面产生拉应力。
混凝土内部不同的温度分布引起的不同的体积变化而导致的应力称为内部约束应力。
此类拉应力裂缝主要发生在构件尺寸比较大的结构。
混凝土在高温状态下温度下降会发生收缩,但受到与其接触的已浇筑混凝土或者地基等的约束而产生的拉力,像这样变形受外部边界约束的状态称为外部约束。
此类应力主要发生在像墙这样约束度比较大的结构中。
利用温度裂缝指数预测温度裂缝韩国混凝土规范中使用温度裂缝指数(抗拉强度与发生的温度应力之比)i 值预测是否发生裂缝。
一般采用下面的值。
FEA程序的水化热分析水化热分析主要分为热传导分析和热应力分析。
.热传导分析主要计算水泥的水化过程中发热、传导、对流等引起的随时间变化的节点温度。
将得到的节点温度作为荷载加载后,计算随时间变化的应力称为热应力分析。
因此通过查看温度分布可以看出输入数据是否有误,如果温度分布没有问题可说明输出的应力结果也是正确的。
2. 水化热参数化分析水化热分析必须进行反复计算大体积混凝土的温度裂缝可以利用温度裂缝指数(Crack Ratio, Icr) 来验算。
温度裂缝指数要满足结构的重要性、功能、环境条件等因素的要求。
温度裂缝指数受水泥的类型、浇筑温度、养生方法等多因素的影响,所以需要对多种条件进行反复分析以找出最佳的浇筑方法。
参数化分析功能为比较多种条件的分析结果需要建立多个模型进行分析,分析结束后需要整理大量的分析结果、还要进行结果保存、对比等工作。
通过FEA的水化热参数化分析功能,可以实现一个模型多种条件分析。
可以大大减少单纯繁琐的反复分析过程,从而提高工作效率。
参数化分析的使用方法首先建立一个基本模型,在基本模型里使用替换变量的方式定义分析工况。
下图是把材料作为变量条件的示例,“Case I”为将混凝土C24变更为C30的工况,“Case II”为将混凝土C35变更为C40的工况。
| 参数化分析的构成|参数化分析里可以考虑的变量在水化热参数化分析的功能里可以调整的变量有五个,较常用的调整方法具体如下。
•施工阶段:降低浇筑高度缩小各阶段的温度差。
浇筑间距过小的话很难达到分段浇筑的效果,但如果太大分界面会产生较大的温差。
.•对流边界:对流系数较低时,热量不容易对外流失,可以减少内外温差。
•材料:使用弹性模量大的材料时,抗拉强度也较大,可增大裂缝指数。
•发热特性:是变量中最为敏感的因素, 定义水化过程中发生的热量。
•是否考虑自重:使混凝土产生压应力的荷载,在一定程度上可以减少拉应力,但效果不明显。
|温度裂缝指数与裂缝发生几率|裂缝指数(i) =混凝土抗拉强度发生的温度应力•防止裂缝发生时:1.5 以上•限制裂缝发生时:1.2 ~ 1.5•限制有害裂缝发生时:0.7 ~ 1.2输入混凝土的散热特性及浇筑条件等混凝土的温度应力裂缝指数ENDYesNo | 内部约束产生的裂缝(放热时)|| 外部约束产生的裂缝(冷却时)|二.建立基本模型1.结构分析所需的数据水化热参数化分析如前面图形所示。
首先建立基本模型,通过在基本模型里定义“Used ”和“New”的对应关系来定义分析工况。
| 进行参数化分析时输入变量的示意图|但是利用这种方法很难输入多个变量,虽然输入热源函数或对流系数函数很简单,但反复定义施工阶段和对流边界面的过程较繁琐。
为避免这种繁琐的定义过程,在定义水化热分析变量时,先不定义此两项。
而是先定义阶段工况,即按不同的施工方案定义不同的施工阶段工况,然后再对不同的阶段工况定义各自的材料、对流系数等。
| 进行参数化分析所输入的数据|1) 建立模型此操作例题主要介绍“水化热参数化分析”的方法,仅对于相关变量的输入、各种分析条件的定义、查看分析结果部分进行详细说明。
导入附件里的“HYD_Pier_Mesh.feb”模型文件。
¼对称模型施工阶段水化热分析模型一般单元数量较多,所以分析所需的时间也较长,而且还要进行多条件分析工况的分析,所以需要更多的分析时间。
如果模型属于对称模型,可以只建立¼模型以减少分析时间。
这样不但可以减少分析时间也有利于查看模型中心部位的分析结果。
2) 特性时间依存材料特性在FEA里可以考虑徐变/收缩特性和混凝土的抗压强度变化。
徐变计算方法可以选择用户定义或者使用规范的计算方法。
弹性模量折减方法是假设发生徐变,然后折减混凝土弹性模量的简易计算方法,一般的水化热分析里均使用这种方法。
因弹性模量折减方法只适用于水化热分析,为了避免在一般的施工阶段分析中误用,在水化热分析控制里单独定义。
采用弹性模量折减方法时,为了要指定计算徐变的单元(通过材料对话框中的相应选项将徐变函数与材料连接起来,然后通过给单元赋予材料将徐变函数与单元连接起来),需要任意定义一个徐变计算方法,但在这里定义的徐变计算方法并不参与水化热分析的徐变的计算。
Procedure1.名称: (C30)2.规范:(中国(JTG D62-2004)3.混凝土28天材龄抗压强度: (3.0e7)4. 点击[适用]5.名称: (C45)6.混凝土28天材龄抗压强度:(4.5e7)7.点击[确认]1操作步骤Procedure 分析> 分析控制...1.单位体系:确认指定为(N, m, J)操作步骤分析> 时间依存性材料> 徐变/收缩计算裂缝指数用的抗拉强度类型里选择“用户定义”后,用户可以通过表格自定义随时间变化的弹性模量、抗压强度、抗拉强度。
选择“设计规范”时,利用规范提供的公式计算弹性模量和抗拉强度。
利用抗拉强度计算温度裂缝指数。
混凝土抗压强度系数与水泥的种类有关,一般硅酸盐水泥a为4.5, b为0.95。
序列号名称抗压强度 a b1 C30_Normal 3.0e7 4.5 0.952 C45_Normal 4.5e7 4.5 0.95 序列号名称弹性模量泊松比膨胀系数重量密度徐变/收缩抗压强度1 Soil 1e7 0.2 1e-5 26000 - -2 C30_Normal 3.0e10 0.2 1e-5 24517 C30 C30_Normal3 C45_Normal 3.35e10 0.2 1e-5 24517 C45 C45_Normal序列号名称材料1 Soil 1: Soil2 Foundation 2: C30_Normal3 Pier 3: C45_Normal操作步骤Procedure分析> 时间依存性材料> 抗压强度1. 名称: (C30_Normal)2.类型: 设计规范3.规范: ACI4.混凝土28天抗压强度(f28) : (3.0e7)5. a : (4.5)6. b : (0.95)7.点击[适用]8.重复上面的步骤定义‘C45_Normal’的强度发展函数。
过程Procedure分析> 材料1.名称:(Soil)2.弹性模量: (1e7)3.泊松比: (0.2)4.膨胀系数. : (1e-5)5.重量密度:(26000)6.点击[适用]7.参考下表输入‘C30_Normal’和‘C45_Normal’特性。
Procedure1.点击下拉菜单选择3D。
2.参考下表定义三个特性。
操作步骤分析> 特性2地基-1: Soil 基础-2: Foundation 桥墩-3: Pier 3) 边界条件对称面边界条件对于Y-Z平面上的所有节点约束DX。
需要查看输入的对称边界条件时,可将网格显示为特征边线后查看。
如下图所示。
7操作步骤Procedure 分析> 材料1.点击“前视图”2.特性:(3D)3.选择“1:Soil”4.选择“3D Element(R)5.选择地基1710个单元6.点击[适用]7.重复上述过程定义基础和桥墩的特性。
5 41操作步骤Procedure分析> 边界条件> 约束1.点击“前视图”2.边界组: Sym3.选择Y-Z 对称面上的360个节点4. DOF : (T1)5.点击[适用]6.点击“左视图”7.选择X-Z对称面上的705个节点8.自由度: (T2)9.点击[确认]3固结边界条件水化热分析模型里建立地基时,一般将地基下部的边界条件设为完全固结。
混凝土产生的热量将充分地传递给地基,后续不再传递温度,也不存在温差,所以也不会发生相对位移。
为了让混凝土产生的热量充分地传递给地基,需要建立足够大的地基模型。
2. 热传导分析所需的数据1) 材料的热特性数据定义水化过程产生的热传递的特性。
模型单元内的热传导由比热和热传导率确定,单元外的散热由下一节定义的对流系数来确定。
| 一般岩体和混凝土的热工系数 |热传导率 (W / m2 ·°C)比热 (kJ / kg · °C)岩体 1.7 ~ 5.2 0.71 ~ 0.88 混凝土 2.6 ~ 2.81.05 ~ 1.26| 热工特性 |序列号 材料名称 热传导率 比热 1 Soil 3.45 784 2 C 30_Normal 2.7 1176 3C 45_Normal2.711765 5操作步骤 Procedure 分析 > 边界 > 约束1. 边界组 : Support2. 点击 “前视图”3. 选择地基的外部轮廓4. 点击 “左视图”5. 选择地基的外部轮廓6. 自由度 : (T1, T2, T3)实体单元没有旋转自由度所以只选择上述三个自由度。
7. 点击[确认] Procedure 1. 定义的材料列表里选择1:Soil 2. 点击 [修改] 3. 点击 [热工参数…] 4. 传导率 : (3.45) 5. 比热 : (784) 6. 点击 [确认]7. 参考下表输入混凝土的热特性值。
操作步骤 分析 > 材料2) 固定温度为了定义实体单元表面与外界的热传递关系,需要定义相应的对流边界条件。
固定温度边界、对流边界、绝热边界如下图所示。
3) 发热特性输入混凝土的绝热温度上升曲线。
混凝土的发热特性应根据材料配合比条件不同会有所不同,所以对于实际工程项目要进行绝热温度上升试验,然后在自定义类型里输入实验结果数据。
没有实验数据时可以根据混凝土规范里的说明输入数据。
固定温度隔热边界对流边界绝热边界输入DX,DY对称边界的部分。
不输入与外界的热传递关联数据时,自动认为是绝热边界。
仅单元内部进行热传递,不对外散热。