8.4++磁偶极子的辐射特性
电偶极子天线电磁场辐射特性

电偶极子天线电磁场辐射特性
石新军
【期刊名称】《兰州大学学报:自然科学版》
【年(卷),期】2009(045)F06
【摘要】为了研究电偶极子天线电磁场辐射特性,利用电磁场理论和解析的方法求出电偶极子天线电磁场表达式,并对结果进行讨论.结果表明电偶极子天线的近区场为静态场,远区场为辐射场.
【总页数】0页(P145-146,152)
【作者】石新军
【作者单位】武警广州指挥学院,广州510440
【正文语种】中文
【中图分类】TN821.4
【相关文献】
1.电偶极子的各向异性辐射特性 [J], 李瑾;冯晓毅;王明军
2.球形天线罩对垂直电偶极子辐射特性的影响 [J], 朱秀芹;官伯然
3.电偶极子电磁场特性的MATLAB仿真研究 [J], 陈庆朋;侯欣;杨其利;刘伟;王旭娟;李院平
4.电偶极子天线电磁场辐射特性 [J], 石新军
5.非均匀海水中水平电偶极子在空气中产生的电磁场 [J], 任英达;王宏磊;杨坤德因版权原因,仅展示原文概要,查看原文内容请购买。
主导极点和偶极子的定义及作用

主导极点和偶极子的定义及作用主导极点和偶极子是电磁场中的重要概念,下面对它们的定义和作用进行解释:1. 主导极点(Monopole):主导极点指的是电荷的分布不均匀,或者说电荷分布不对称的情况。
如果一个电荷分布具有主导极点,那么这个电荷分布将会产生一个电荷偏离中心的电场。
这个电势场会随着电荷的密度分布的改变而改变。
主导极点是产生静电场的主要来源,它们的存在可以引起感应电荷在另一个电荷中的重新分布。
2. 偶极子(Dipole):偶极子是由两个相等但符号相反的电荷构成的系统。
两个电荷的质心之间的距离称为偶极子的几何中心。
偶极子的电场是由两个电荷的电场叠加而成的,它具有一个中性区域和两个电荷区域。
在中性区域,电势为零,而在电荷区域,电势具有非零值。
电场随着距离的增加而衰减,其方向始终指向远离偶极子几何中心的方向。
偶极子常常用于描述分子极性、电偶极子分子的相互作用等现象。
主导极点和偶极子在电磁学中具有重要的作用:1. 电磁辐射与天线:主导极点是电磁辐射的主要机制之一。
在天线等设备中,通过改变主导极点的分布,可以调整和控制辐射的方向、极化和频率等特性。
2. 电场和电势分布:主导极点和偶极子的存在会导致电场和电势的变化。
这些变化可以用于描述和解释电场中的电势分布、电场强度和电荷分布等现象。
3. 分子极性和相互作用:偶极子在分子中扮演着重要的角色。
分子的偶极矩可以影响它与周围环境的相互作用、溶剂效应、分子间力等。
偶极矩对于描述分子的极性和电性质具有重要意义。
总之,主导极点和偶极子是电磁场中产生电势、电场和辐射的重要机制,对于描述和解释电场中的现象具有重要的作用。
fdtd 偶极子、磁偶极子电四偶极子

偶极子、磁偶极子电四偶极子是电磁学中的重要概念,对于研究电磁场和电磁波的传播具有重要的理论意义和实际应用价值。
本文将对偶极子、磁偶极子和电四偶极子进行深入探讨,包括其定义、性质、数学表达及在电磁学中的应用等方面进行详细阐述。
一、偶极子的定义与性质偶极子是指在电场或磁场中具有一对相等但反向的电荷或者磁荷的物理系统。
偶极子的性质包括电偶极矩和磁偶极矩两个方面。
1. 电偶极子电偶极子是指在外电场作用下,在物质内部正负电荷中心不重合所形成的电荷对。
其电偶极矩的数学表达为:\[ \vec{p} = q \cdot \vec{d} \]其中,\( \vec{p} \) 表示电偶极矩,q为电荷量,\(\vec{d}\) 表示正负电荷之间的距离。
2. 磁偶极子磁偶极子是指在外磁场作用下,在物质内部正负磁荷中心不重合所形成的磁荷对。
其磁偶极矩的数学表达为:\[ \vec{m} = I \cdot \vec{s} \]其中, \( \vec{m} \) 表示磁偶极矩,I为电流,\(\vec{s}\) 表示正负磁荷之间的距离。
二、电四偶极子电四偶极子是指由四个电荷组成的系统,在外电场或磁场中,正负电荷的电偶极子配对成对出现。
1. 定义电四偶极子是当二级相互作用显著时,产生一种由八个常见带电粒子组成的电磁多极子现象。
2. 性质电四偶极子在外电场或磁场中会受到力矩的作用,产生旋转运动,这种运动对于材料的磁性和导电性具有重要的影响,广泛应用于电子学、材料科学和生物医学领域。
三、偶极子在电磁学中的应用偶极子理论在电磁学中有着广泛的应用,包括电磁波传播、天线设计、材料电磁特性研究等方面。
1. 电磁波传播偶极子理论对电磁波传播的研究有着重要的意义,通过对偶极子辐射和辐射场的分析,可以深入了解电磁波在空间中的传播规律,为通信技术和雷达技术的发展提供了重要的理论基础。
2. 天线设计天线是无线通信系统中的重要组成部分,利用偶极子理论可以设计出具有良好辐射特性的天线结构,提高信号的传输距禿和接收精度。
磁电偶极子天线原理

磁电偶极子天线原理一、引言磁电偶极子天线是一种常用的无线通信天线,其原理基于磁电偶极子的辐射特性。
本文将详细介绍磁电偶极子天线的原理和工作原理。
二、磁电偶极子天线的定义磁电偶极子天线是一种将电磁波转换为电流的设备,可以将电流转换为辐射电磁波的设备。
磁电偶极子天线常用于无线通信中,如蜂窝移动通信、无线局域网等。
三、磁电偶极子天线的结构磁电偶极子天线由两个电极和一个磁场组成。
两个电极之间通过电场连接,电极上的电流可以产生磁场。
当电流通过电极时,电极上的电场会产生磁场,从而形成一个磁电偶极子。
四、磁电偶极子天线的工作原理磁电偶极子天线的工作原理基于电磁波的辐射特性。
当电流通过电极时,电极上的电场会产生磁场。
这个磁场可以将电流转换为辐射电磁波。
辐射的电磁波可以传播到空间中,从而实现无线通信。
五、磁电偶极子天线的应用磁电偶极子天线广泛应用于无线通信领域。
例如,在蜂窝移动通信中,磁电偶极子天线被用作基站天线,用于发送和接收无线信号。
在无线局域网中,磁电偶极子天线被用作无线路由器的天线,用于传输无线信号。
六、磁电偶极子天线的特点磁电偶极子天线具有以下特点:1. 磁电偶极子天线可以实现高效的无线通信,具有较高的传输速率和较低的信号衰减。
2. 磁电偶极子天线可以实现多频段通信,适用于不同频率的无线通信系统。
3. 磁电偶极子天线具有较小的尺寸和重量,便于安装和维护。
4. 磁电偶极子天线具有较好的方向性,可以实现定向传输和接收。
七、磁电偶极子天线的发展趋势随着无线通信技术的不断发展,磁电偶极子天线也在不断创新和改进。
未来的磁电偶极子天线可能会更加小型化、高效化和智能化。
同时,磁电偶极子天线还可能应用于更多领域,如物联网、智能家居等。
八、结论磁电偶极子天线是一种常用的无线通信设备,其原理基于磁电偶极子的辐射特性。
磁电偶极子天线具有高效的无线通信能力、多频段通信、小型化和方向性等特点。
随着无线通信技术的发展,磁电偶极子天线将在未来得到更广泛的应用。
电偶极子近场区和远场区的特点

电偶极子是一种由两个相互平行的、大小相等、极性相反的电荷组成的系统。
在电磁学中,研究电偶极子近场区和远场区的特点对于理解电磁场的传播和相互作用具有重要意义。
本文将分析电偶极子在近场区和远场区的特点,以便读者对这一重要概念有更深入的理解。
一、电偶极子近场区特点1. 强烈的非均匀性:在电偶极子非常接近的范围内,电场和磁场的强度存在很大的变化,呈现出强烈的非均匀性。
这一特点使得电偶极子在近场区内的电磁场分布非常不规则。
2. 高度的定向性:电偶极子在近场区内的电磁场具有高度的定向性,即在特定方向上具有较强的电场或磁场分布。
这种定向性使得电偶极子在近场区内对外界的影响与位置关系密切相关。
3. 非辐射场:在近场区,电偶极子所产生的电磁场并不表现出辐射场的特点,而是以强烈的相互作用为主,呈现出一种非辐射场的特性。
二、电偶极子远场区特点1. 球面波辐射特性:当距离电偶极子足够远时,其所产生的电磁场将呈现出球面波辐射的特性,即电场和磁场以波的形式向外传播。
2. 均匀性和稳定性:与近场区不同,电偶极子在远场区所产生的电磁场具有相对均匀和稳定的特点。
在远场区内,电磁场的强度分布相对均匀,呈现出一种稳定的特性。
3. 传播特性:在远场区,电偶极子所产生的电磁场将以波的形式沿着径向向外传播,同时遵循麦克斯韦方程组的各种规律,表现出传播特性。
以上是电偶极子在近场区和远场区的一些主要特点,这些特点对于理解电磁场的传播和相互作用具有重要的指导意义。
通过对电偶极子近场区和远场区特点的分析,人们可以更好地理解电磁场的行为规律,同时也能够在实际应用中更好地利用电磁场的特性。
希望本文的介绍能够帮助读者更好地理解和应用电偶极子的相关知识。
电偶极子的近场区和远场区特点在电磁学领域有着广泛的应用。
通过对这些特点的深入理解,人们可以更好地设计和优化无线通讯系统、雷达系统和天线系统,同时也能够更好地利用电磁场在医学成像、遥感技术等领域的应用。
本文将继续探讨电偶极子的近场区和远场区特点在现实应用中的重要性和应用价值。
电偶极子和磁偶极子的对比讲解

电偶极子和磁偶极子的对比目录1引言 (1)2定义 (1)2.1电偶极子的定义 (1)2.2磁偶极子的定义 (2)3电偶极子和磁偶极子比较---主动方面 (2)3.1电偶极子和磁偶极子的场分布 (2)3.2电偶极子和磁偶极子辐射 (4)4电偶极子和磁偶极子比较---被动方面 (4)4.1电偶极子和磁偶极子在外场E和B中的力和力矩 (4)4.2电偶极子和磁偶极子在外场中的相互作用能 (5)5应用 (8)5.1心脏的活动 (8)5.2赫濨磁偶极子天线 (9)6结论 (9)参考文献:...................................致谢......................................电偶极子和磁偶极子的对比摘要:本文介绍了电偶极子和磁偶极子模型的建立,并对两者在数学表达上的类似和内在结构土的不同所引起的差别作了讨论。
这里的关键是通过电偶极子和磁偶极子各方面的的性质做出了基本论述电偶极子和磁偶极子都是非常实用的物理模型,让同学们更好的认识电磁偶极子非常重要的事。
在研究物质电磁性态时,用电偶极子和磁偶极子就能很好地说明极化和磁化现象,在研究电磁辐射时,偶极辐射不论在理论上或实际应用中都十分重要。
由于电偶极子和磁偶极子分别是复杂点体系和次体系的一级近似在数学表达上有不少的类似之处,使得研究更具更利,但应当认识到,这种类似只是形式上的,因为至今尚未有存在磁单极的实验证据,我们在进行类比并由此高清电偶极子和磁偶极子。
关键词:电偶极子;磁偶极子;相互作用力;相互作用能1引言电偶极子和磁偶极子都是非常实用的物理模型,让同学们更好的认识电磁偶极子非常重要的事,但数学公式较繁琐,导致初学者在认识上要产生障碍,使得教与学都功倍事半。
应用它们往往能将复杂的问题大大简化又不失本质的东西例如,在研究物质电磁性态时,用电偶极子和磁偶极子就能很好地说明极化和磁化现象;在研究电磁辐射时,偶极辐射不论在理论上或实际应用中都十分重要由于电偶极子和磁偶极子分别是复杂电体系和磁体系的一级近似,,在数学表达上有不少类似之处,使得研究更具便利,但是应当认识到,这种类似只是形式上的,因为至今尚未有存在磁单极的实验证据,现有电磁理论的电磁对称是破缺的,所以我们在进行类比时要时刻记住偶极模型的根源,并由此搞清电偶极子和磁偶极子的差别。
(整理)电磁场理论知识点总结

电磁场与电磁波总结第1章 场论初步一、矢量代数A •B =AB cos θA B ⨯=AB e AB sin θA •(B ⨯C ) = B •(C ⨯A ) = C •(A ⨯B ) A ⨯ (B ⨯C ) = B (A •C ) – C •(A •B ) 二、三种正交坐标系 1. 直角坐标系矢量线元 x y z =++l e e e d x y z矢量面元 =++S e e e x y z d dxdy dzdx dxdy 体积元 d V = dx dy dz单位矢量的关系 ⨯=e e e x y z ⨯=e e e y z x ⨯=e e e z x y 2. 圆柱形坐标系矢量线元 =++l e e e z d d d dz ρϕρρϕl 矢量面元 =+e e z dS d dz d d ρρϕρρϕ 体积元 dV = ρ d ρ d ϕ d z 单位矢量的关系 ⨯=⨯⨯=e e e e e =e e e e zz z ρϕϕρρϕ3. 球坐标系矢量线元 d l = e r d r + e θ r d θ + e ϕ r sin θ d ϕ 矢量面元 d S = e r r 2sin θ d θ d ϕ 体积元 dv = r 2sin θ d r d θ d ϕ 单位矢量的关系 ⨯=⨯⨯=e e e e e =e e e e r r r θϕθϕϕθcos sin 0sin cos 0 001x r y z z A A A A A A ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ϕϕϕϕϕsin cos sin sin cos cos cos cos sin sin sin cos 0x r y z A A A A A A ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦θϕθϕθϕθθϕθϕθϕϕsin 0cos cos 0sin 010r r z A A A A A A ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦θϕϕθθθθ三、矢量场的散度和旋度 1. 通量与散度=⋅⎰A S Sd Φ 0lim∆→⋅=∇⋅=∆⎰A S A A Sv d div v2. 环流量与旋度=⋅⎰A l ld Γ maxn 0rot =lim∆→⋅∆⎰A lA e lS d S3. 计算公式∂∂∂∇=++∂∂∂⋅A y x zA A A x y z11()∂∂∂∇=++∂∂∂⋅A zA A A z ϕρρρρρϕ 22111()(sin )sin sin ∂∂∂∇=++∂∂∂⋅A r A r A A r r r r ϕθθθθθϕx y z ∂∂∂∇⨯=∂∂∂e e e A x y z x y z A A A ∂∂∂∇⨯=∂∂∂e e e A z z z A A A ρϕρϕρρϕρ sin sin ∂∂∂∇⨯=∂∂∂e e e A r r zr r r A r A r A ρϕθθθϕθ 4. 矢量场的高斯定理与斯托克斯定理⋅=∇⋅⎰⎰A S A SV d dV⋅=∇⨯⋅⎰⎰A l A S lSd d四、标量场的梯度 1. 方向导数与梯度00()()lim∆→-∂=∂∆l P u M u M u llcos cos cos ∂∂∂∂=++∂∂∂∂P uu u ulx y zαβγ cos ∇⋅=∇e l u u θ grad ∂∂∂∂==+∂∂∂∂e e e +e n x y zu u u uu n x y z2. 计算公式∂∂∂∇=++∂∂∂e e e xy z u u uu x y z1∂∂∂∇=++∂∂∂e e e z u u u u z ρϕρρϕ 11sin ∂∂∂∇=++∂∂∂e e e r u u uu r r r zθϕθθ 五、无散场与无旋场1. 无散场 ()0∇⋅∇⨯=A =∇⨯F A2. 无旋场 ()0∇⨯∇=u =∇F u六、拉普拉斯运算算子 1. 直角坐标系22222222222222222222222222222222∂∂∂∇=++∇=∇+∇+∇∂∂∂∂∂∂∂∂∂∂∂∂∇=++∇=++∇=++∂∂∂∂∂∂∂∂∂A e e e x x y y z zy y y x x x z z z x y zu u u u A A A x y zA A A A A A A A A A A A x y z x y z x y z,,2. 圆柱坐标系22222222222222111212⎛⎫∂∂∂∂∇=++ ⎪∂∂∂∂⎝⎭∂∂⎛⎫⎛⎫∇=∇--+∇-++∇ ⎪ ⎪∂∂⎝⎭⎝⎭A e e e z z u u uu zA A A A A A A ϕρρρρϕϕϕρρρρρϕρρϕρρϕ3. 球坐标系22222222111sin sin sin ⎛⎫∂∂∂∂∂⎛⎫∇=++ ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭u u uu r r r r r r θθθϕθϕ ⎪⎪⎭⎫⎝⎛∂∂+-∂∂+∇+⎪⎪⎭⎫⎝⎛∂∂--∂∂+∇+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂---∇=∇ϕθθθϕθϕθθθθϕθθθθϕϕϕϕθθθϕθθA r A r A r A A r A r A r A A r A r A r A r A r r r r r 222222222222222222sin cos 2sin 1sin 2sin cos 2sin 12sin 22cot 22e e e A 七、亥姆霍兹定理如果矢量场F 在无限区域中处处是单值的,且其导数连续有界,则当矢量场的散度、旋度和边界条件(即矢量场在有限区域V ’边界上的分布)给定后,该矢量场F 唯一确定为()()()=-∇+∇⨯F r r A r φ其中 1()()4''∇⋅'='-⎰F r r r r V dV φπ1()()4''∇⨯'='-⎰F r A r r r V dV π第2章 电磁学基本规律一、麦克斯韦方程组 1. 静电场基本规律真空中方程:d ⋅=⎰SE S qεd 0⋅=⎰lE l 0∇⋅=E ρε 0∇⨯=E 场位关系:3''()(')'4'-=-⎰r r E r r r r V q dV ρπε =-∇E φ 01()()d 4π''='-⎰r r |r r |V V ρφε介质中方程:d ⋅=⎰D S Sqd 0⋅=⎰lE l ∇⋅=D ρ 0∇⨯=E极化:0=+D E P ε e 00(1)=+==D E E E r χεεεε 极化电荷:==⋅P e PS n n P ρ =-∇⋅P P ρ2. 恒定电场基本规律电荷守恒定律:0∂∇⋅+=∂J tρ传导电流: =J E σ 与运流电流:ρ=J v恒定电场方程:d 0⋅=⎰J S Sd 0l⋅=⎰E l 0∇⋅=J 0∇⨯E =3. 恒定磁场基本规律真空中方程:0 d ⋅=⎰B l lI μ d 0⋅=⎰SB S 0∇⨯=B J μ 0∇⋅=B场位关系:03()( )()d 4π ''⨯-'='-⎰J r r r B r r r VV μ =∇⨯B A 0 ()()d 4π'''='-⎰J r A r r r V V μ 介质中方程:d ⋅=⎰H l lId 0⋅=⎰SB S ∇⨯=H J 0∇⋅=B磁化:0=-BH M μ m 00(1)=+B H =H =H r χμμμμ 磁化电流:m =∇⨯J M ms n =⨯J M e4. 电磁感应定律d d ⋅=-⋅⎰⎰S E l B S ld dt ∂∇⨯=-∂BE t5. 全电流定律和位移电流全电流定律: d ()d ∂⋅=+⋅∂⎰⎰D H l J S l S t ∂∇⨯=+∂DH J t 位移电流: d =DJ d dt6. Maxwell Equationsd ()d d d d d 0∂⎧⋅=+⋅⎪∂⎪∂⎪⋅=-⋅⎪∂⎨⎪⋅=⎪⎪⋅=⎪⎩⎰⎰⎰⎰⎰⎰⎰D H J S B E S D S B S l S l SSV Sl t l t V d ρ 0∂⎧∇⨯=+⎪∂⎪∂⎪∇⨯=-⎨∂⎪∇⋅=⎪⎪∇⋅=⎩D H J B E D B t t ρ ()() ()()0∂⎧∇⨯=+⎪∂⎪∂⎪∇⨯=-⎨∂⎪∇⋅=⎪⎪∇⋅=⎩E H E H E E H t t εσμερμ 二、电与磁的对偶性e m e m e m e e m m e e m mm e 00∂∂⎫⎧∇⨯=-∇⨯=⎪⎪∂∂⎪⎪∂∂⎪⎪∇⨯=+∇⨯=--⎬⎨∂∂⎪⎪∇=∇=⎪⎪⎪⎪∇=∇=⎩⎭⋅⋅⋅⋅B D E H D B H J E J D B D B t t &t t ρρ m e e m ∂⎧∇⨯=--⎪∂⎪∂⎪∇⨯=+⇒⎨∂⎪∇=⎪⎪∇=⎩⋅⋅B E J D H J D B tt ρρ 三、边界条件 1. 一般形式12121212()0()()()0⨯-=⨯-=⋅-=⋅-=e E E e H H J e D D e B B n n S n Sn ρ2. 理想导体界面 和 理想介质界面111100⨯=⎧⎪⨯=⎪⎨⋅=⎪⎪⋅=⎩e E e H J e D e B n n Sn S n ρ 12121212()0()0()0()0⨯-=⎧⎪⨯-=⎪⎨⋅-=⎪⎪⋅-=⎩e E E e H H e D D e B B n n n n 第3章 静态场分析一、静电场分析1. 位函数方程与边界条件位函数方程: 220∇=-∇=ρφφε电位的边界条件:121212=⎧⎪⎨∂∂-=-⎪∂∂⎩s nn φφφφεερ 111=⎧⎪⎨∂=-⎪∂⎩s const nφφερ(媒质2为导体) 2. 电容定义:=qC φ两导体间的电容:=C q /U任意双导体系统电容求解方法:2211⋅⋅===⋅⋅⎰⎰⎰⎰D S E S E lE lS S d d qC Ud d ε 3. 静电场的能量N 个导体: 112==∑ne i i i W q φ 连续分布: 12=⎰e VW dV φρ 电场能量密度:12D E ω=⋅e二、恒定电场分析1. 位函数微分方程与边界条件位函数微分方程:20∇=φ边界条件:121212=⎧⎪⎨∂∂=⎪∂∂⎩nn φφφφεε 12()0⋅-=e J J n 1212[]0⨯-=J J e n σσ 2. 欧姆定律与焦耳定律欧姆定律的微分形式: =J E σ 焦耳定律的微分形式: =⋅⎰E J VP dV3. 任意电阻的计算2211d d 1⋅⋅====⋅⋅⎰⎰⎰⎰E l E l J SE SSSU R G Id d σ (L R =σS )4. 静电比拟法:C —— G ,ε —— σ2211⋅⋅===⋅⋅⎰⎰⎰⎰D S E S E lE lS S d d qC Ud d ε 2211d d d ⋅⋅===⋅⋅⎰⎰⎰⎰J S E SE lE lS S d I G Uσ三、恒定磁场分析1. 位函数微分方程与边界条件矢量位:2∇=-A J μ 12121211⨯⨯⨯A A e A A J n s μμ()=∇-∇=标量位:20m φ∇= 211221∂∂==∂∂m m m m n nφφφφμμ 2. 电感定义:d d ⋅⋅===⎰⎰B S A l SlL IIIψ=+i L L L3. 恒定磁场的能量 N 个线圈:112==∑Nm j j j W I ψ 连续分布:m 1d 2A J =⋅⎰V W V 磁场能量密度:m 12H B ω=⋅ 第4章 静电场边值问题的解一、边值问题的类型● 狄利克利问题:给定整个场域边界上的位函数值()=f s φ ● 纽曼问题:给定待求位函数在边界上的法向导数值()∂=∂f s nφ● 混合问题:给定边界上的位函数及其向导数的线性组合:2112()()∂==∂f s f s nφφ ● 自然边界:lim r r φ→∞=有限值二、唯一性定理静电场的惟一性定理:在给定边界条件(边界上的电位或边界上的法向导数或导体表面电荷分布)下,空间静电场被唯一确定。
偶极子天线的基本模式

偶极子天线的基本模式引言:偶极子天线是一种常见的天线类型,广泛应用于通信、雷达、无线电、电视等领域。
它是一种简单而有效的辐射结构,具有较高的辐射效率和方向性。
本文将介绍偶极子天线的基本模式和工作原理。
一、偶极子天线的定义偶极子天线是一种基于电场的辐射元件,由两个相等且反向的电荷构成。
这两个电荷之间通过导线相连,形成一个线性结构。
偶极子天线的长度通常为半波长或四分之一波长。
二、基本模式偶极子天线的基本模式是指天线的辐射特性和电场分布图案。
常见的偶极子天线基本模式有全向辐射模式、指向性辐射模式和波导模式。
1. 全向辐射模式全向辐射模式是指偶极子天线在所有方向上均匀辐射能量。
在全向辐射模式下,天线的辐射图案呈360度均匀分布,天线的增益相对较低。
全向辐射模式适用于需要在各个方向上进行广播或接收信号的应用场景,如无线电广播、移动通信等。
2. 指向性辐射模式指向性辐射模式是指偶极子天线在某个或某些方向上辐射能量更强。
在指向性辐射模式下,天线的辐射图案呈现出主瓣和副瓣的形态,主瓣是辐射能量最强的方向,副瓣是辐射能量较弱的方向。
指向性辐射模式适用于需要在特定方向上进行信号传输或接收的应用场景,如雷达、卫星通信等。
3. 波导模式波导模式是指偶极子天线在导体附近辐射能量被限制在导体表面附近的模式。
波导模式适用于需要在导体附近进行信号传输或接收的应用场景,如微波通信、雷达引导等。
三、工作原理偶极子天线的工作原理基于Maxwell方程组和电磁辐射理论。
当偶极子天线上的电流激励时,电场和磁场会相互作用并形成辐射场。
当电流的频率与天线的谐振频率相匹配时,天线将以最大效率辐射能量。
偶极子天线的辐射特性和电场分布图案与天线的尺寸和形状密切相关。
较长的偶极子天线具有较低的谐振频率和较高的辐射效率,适用于低频段的通信。
较短的偶极子天线具有较高的谐振频率和较低的辐射效率,适用于高频段的通信。
四、应用领域偶极子天线广泛应用于通信、雷达、无线电、电视等领域。