第四章糖代谢

合集下载

第四章糖代谢-A

第四章糖代谢-A

CHO
CO
CHOH
CH 2OH 磷酸丙糖异构酶 CH 2 O P
磷酸二羟丙酮
3-磷酸甘油醛
磷酸丙糖异构酶(triose phosphate isomerase)
G→2分子3-磷酸甘油醛,消耗2分子ATP。
6. 3-磷酸甘油醛氧化为1,3-二磷酸 甘油酸
NA+DPi NADH++H
CHO
O C O~ P
7. 延胡索酸加水生成苹果酸
延胡索酸酶 延胡索酸
苹果酸
8. 苹果酸脱氢生成草酰乙酸
苹果酸
苹果酸脱氢酶
草酰乙酸
NADH+H+
NAD+

H2O

CoASH
①柠檬酸合酶 ②顺乌头酸梅
H2O

H2O

③异柠檬酸脱氢酶
④α-酮戊二酸脱氢酶复合体
GTP
GDP ⑤琥珀酰CoA合成酶
核苷二磷酸激酶 ⑥琥珀酸脱氢酶
COO -
COO -
CHO P
C O~ P +H2O
CH2OH 烯醇化酶 CH2
2-磷酸甘油酸
磷酸烯醇式 丙酮酸
反应引起分子内能量重新分布,形成高 能磷酸键。
10. PEP转变成丙酮酸(pyruvate)
COO-
ADP
ATP COO-
C O~ P
CH2
丙酮酸激酶
PEP
烯醇式立即自发转变为酮式
第四章 糖代谢
Metabolism of Carbohydrates
糖的化学
糖的概念:化学本质为多羟醛或多羟酮类 及其衍生物或多聚物。(又被称为碳水化 合物[Cn(H2O)m]。)

最新第四章-糖代谢(1)ppt课件

最新第四章-糖代谢(1)ppt课件
磷酸烯醇式丙酮酸→烯醇式丙酮酸
-1 -1 2×1 2×1
净得 2
第三节
糖的有氧氧化
❖ 机体利用氧将葡萄糖彻底氧化成CO2和H2O的反应过程称 为有氧氧化。
❖ 有氧氧化是体内糖分解供能的主要方式,绝大多数细胞都 通过它获得能量。
❖ 肌组织中葡萄糖通过无氧氧化所生成的乳酸,也可作为运 动时某些组织的重要能源,彻底氧化生成CO2和H2O提供 足够的能量。
三、糖酵解的生理意义
❖ 主要的生理功能是在机体缺氧时迅速提供能量 ❖ 正常情况下为一些细胞提供部分能量 ❖ 1mol葡萄糖经过糖酵解可净生成2mol ATP储存起来,
其储存效率为31%
反应步骤
ATP变化/每分子葡萄糖
葡萄糖→6-磷酸葡萄糖
6-磷酸果糖→1,6-二磷酸果 糖 1,3-二磷酸甘油酸→3-磷酸甘油酸
H2O
H
COO
COO
CHH 琥珀酸脱氢酶 HCH
CH
FAD
COO H2 H
2CH FADC2 O
OH
HS-
COO
三羧酸循环
CH3COS~ CoA
HC
NADH +H+
HO HC2oA OOCC O
C CHO2
HO HC 2 O

OC C H
HCO2
① 柠檬酸合酶OH
NA
⑧ OH
② 顺乌头酸酶
D+
COO
有氧氧化过程概括:
(第一阶段)
O2
O2
葡萄糖
葡萄糖
葡糖-6- 丙
磷酸


(第二阶段)
(第三阶段)
O2
H2O
H++e

第二单元 物质代谢和能量代谢 第四章 糖代谢

第二单元 物质代谢和能量代谢 第四章 糖代谢

第二单元物质代谢和能量代谢第四章糖代谢二、生化术语1.中间代谢:通常指消化吸收的营养物质和体内原有的物质在一切组织和细胞中进行的各种化学变化。

2.糖原(glycogen):动物细胞中葡萄糖的贮存形式。

肌糖原主要供给肌肉收缩时能量的需要,肝糖原主要维持血糖的稳定。

3.血糖:血液中的葡萄糖。

其水平的稳定对确保细胞执行正常功能具有重要意义(正常人的血糖值为每100ml血含有80~120mg葡萄糖)。

4.糖酵解(glycolysis):在无氧条件下,由葡萄糖氧化分解转化为丙酮酸的过程。

5.发酵(fermentation):指葡萄糖及其他有机物的厌氧降解过程,生成乳酸称乳酸发酵,生成乙醇称生醇发酵。

6.丙酮酸脱氢酶系(pyruvate dehydrogenase complex):一种多酶复合体,分布在线粒体内膜上,催化丙酮酸氧化脱羧,生成乙酰辅酶A。

在大肠杆菌中,这种复合体包括3种酶(丙酮酸脱氢酶E1、和6种辅因子(TPP+、硫辛酸、辅酶A、FAD、NAD 二氢硫辛酸转乙酰基酶E2、二氢硫辛酸脱氢酶E3)+、Mg2+)。

7.三羧酸循环(tricarboxylic acid cycle 简称TCA循环):以乙酰CoA和草酰乙酸缩合成柠檬酸后再经一系列反应又重新生成草酰乙酸的环状途径。

该途径的第一个代谢物是柠檬酸,所以又称柠檬酸循环;柠檬酸含有三个羧基,故称三羧酸循环;德国科学家H.Krebs发现,又称Krebs循环。

8.回补反应(anaplerotic reaction):三羧酸循环的中间代谢物也是其他物质生物合成的前体,当它们为了同化的目的而被移去时,必须进行“补充”或“填充”,才能维持TCA循环的正常进行。

如丙酮酸在丙酮酸羧化酶的催化下生成草酰乙酸反应。

9.乙醛酸循环(glyoxylate cycle):存在于植物和微生物中,是将2个乙酰CoA转变成一分子草酰乙酸的环状途径。

循环中有乙醛酸,所以称乙醛酸循环。

第四章糖代谢ppt课件

第四章糖代谢ppt课件

⑥结合糖 糖与非糖物质的结合物。
糖脂 (glycolipid): 糖蛋白 (glycoprotein):
三、糖的主要生理功能
1.氧化供能:50~70% 2.构成组织细胞的基本成分 3.转变为其它成分
三、糖的主要生理功能 氧化供能:50~70% 构成组织细胞的基本成分 转变为其它成分
目录
四、糖的消化与吸收
H 2 C O PO 3 H 2
6-磷酸葡萄糖
(glucose-6-phosphate)
H
O PO 3 H 2
CH
H C OH
H C OH
HO C H
H C OH
CH 2 OH
1-磷酸葡萄糖
(glucose 1-phosphate)
葡萄糖是体内糖代谢的中心
(1)可转变成其它的糖 (2)主要供能物质 (3)可转变为氨基酸和脂肪酸
第四章糖代谢ppt课件
物质代谢:
合成代谢
分解代谢
分解代谢的三个阶段
第一阶段:大分子分解为基本组成单位 第二阶段:基本分子转变为代谢中间产物,
可有少量能量的释放 第三阶段:乙酰CoA氧化生成CO2和H2O
可生成大量ATP
合成代谢的一般特点 由不同酶催化,要消耗ATP和NADPH。
代谢调节:
代谢途径: A E1 B E2 C E3 通过关键酶实现
(D-glucose)
6 CH 2 OH
5
OH
4
OH
OH
3
1C
2
OH
OH
α-D-吡喃葡萄糖
6CH 2 OH O OH
OH OH
C H
OH
β-D-吡喃葡萄糖
葡萄糖及其磷酸酯

糖代谢

糖代谢

三羧酸循环及有氧氧化的意义
1. TAC是三大营养物质氧化分解的共同途径和联系的枢纽; 2. 为氧化磷酸化提供NADH+H+和FADH2 3. 为其他物质代谢提供前体物质; 4. 糖的有氧氧化是机体产能最主要的途径。它不仅产能效
率高,而且由于产生的能量逐步分次释放,所以能量的 利用率也高。
1mol葡萄糖彻底氧化生成36或者38个 ATP
1. 是机体在缺氧情况下获取能量的有效方式
2. 某些细胞在氧供应正常情况下的重要供能途径 ① 无线粒体的细胞,如:红细胞 ② 代谢活跃的细胞,如:白细胞、骨髓细胞、肿瘤细胞等
3. 为其他物质合成提供原料
磷酸二羟丙酮
磷酸甘油
脂肪
丙酮酸
丙氨酸
蛋白质
(在缺氧等情况下乳酸生成增多,可导致代谢性酸中毒。)
糖酵解的调节
食物 (淀粉、蔗糖、 麦芽糖、乳糖)
糖异生
乳酸、 氨基酸、
甘油
糖酵解
糖代谢
概况
剧烈运动后为什 么会感觉肌肉酸痛?
乳酸
糖酵解
6-磷酸 葡萄糖 葡 萄 糖
6-磷酸 果糖
1,6-二磷酸 果糖
3-磷酸 磷酸二 甘油醛 羟丙酮
NAD+ NADH+H+
1,3-二磷酸甘油酸
乳酸
NAD+
ADP ATP
3-磷酸甘油酸
血糖(blood sugar)指血液中单糖的总称, 临床称血中葡萄糖为血糖。
正常成人血糖浓度为 3.9 ~ 6.1 mmol/L (0.7-1.1g/L、70-110mg/dl)
血糖恒定可保证脑、红细胞、骨髓及神经 组织等重要组织器官的能量供应。
北京国际马拉松邀请赛

第四章 糖代谢

第四章  糖代谢

(一) 糖酵解过程 糖酵解是通过一系列酶促反应将一分子葡萄糖转变为两分子丙酮
酸并伴有ATP生成的过程,共包括11个反应步骤,全部反应位于细 胞质中。
糖酵解是动物、植物以及微生物细胞中葡萄糖分解产生能量的共
同代谢途径。事实上,在所有的细胞中都存在糖酵解途径,对于某 些细胞,糖酵解是唯一生成ATP的途径。
RE
0.8nm
6个残基
直链淀粉的螺旋结构
支链淀粉或糖原分子示意图
支链淀粉或糖原分支点的结构
纤维素一级结构
纤维素链
微纤维 细胞壁
纤维素片层结构
植物细胞中的 纤维素微纤维
植物细胞壁与纤维素的结构
糖复合物
(Complex Carbohydrates)
糖—肽链
糖—脂质
糖—核酸
肽聚糖
糖蛋白
蛋白聚糖
(peptidoglycans) (glycproteins) (proteoglycans)
糖鞘脂
糖基酰基甘油
脂多糖
(pglycosphingolipids) (glycosylacylglycerols) (lipopolysauhards)
二、 多糖的降解
(一) 胞外水解
多糖在细胞外的降解是一种加水分解的过程,催化多糖胞外水解的酶 称为糖苷酶,包括-淀粉酶、-淀粉酶、-淀粉酶及R酶(脱支酶)和纤维 素酶。消化道内水解淀粉的酶主要有-淀粉酶和-1,6-糖苷酶。
③果糖-1,6-二磷酸的形成 果糖-6-磷酸在果糖磷酸激
酶的催化下,由ATP提供能量和磷酸基,生成果糖-1, 6-二磷酸。该酶催化的反应是不可逆的,是酵解途径中 最关键的反应步骤。
由葡萄糖转变为果糖-1,6-二磷酸要消耗2分子 ATP。

生物化学教案第四章糖代谢

生物化学教案第四章糖代谢

生物化学教案第四章糖代谢第四章糖代谢教案第一节糖的分类及生理功能一、教学目标1.了解糖的分类。

2.了解糖在生物体内的生理功能。

3.掌握糖对人体能量供给的重要性。

二、教学内容1.糖的分类及结构特点。

2.糖的生理功能。

3.糖对人体能量供给的重要性。

三、教学步骤1.导入引入本节课的主题,让学生回顾上一章关于生物大分子的知识,形成知识链条。

2.知识讲解(1)糖的分类及结构特点a.单糖:葡萄糖、果糖等b.双糖:蔗糖、乳糖、麦芽糖等c.多糖:淀粉、糖原、纤维素等d.结构特点:含有2个或多个羟基,是羟基代谢的主要物质。

(2)糖的生理功能a.能量供给:糖是生物体内重要的能量源,提供细胞代谢所需的能量。

b.结构组成:糖是构成细胞壁、核酸、骨骼、关节软骨等的重要成分。

c.调节体内物质平衡:糖可调节体内的水、电解质平衡,调节血液渗透压。

d.保护细胞膜:糖能稳定细胞膜结构,防止脂质氧化。

(3)糖对人体能量供给的重要性a.葡萄糖是人体最重要的糖类,是细胞内氧化还原反应的重要底物。

b.人体细胞通过葡萄糖与氧气进行氧化反应,产生大量的能量。

3.案例分析提供一个案例,由学生分组讨论糖对人体能量供给的重要性,并列举一些与糖代谢相关的疾病。

4.小结总结本节课的重点内容,强调糖作为生物体内重要能量源的重要性。

四、教学方法1.讲授结合讨论,激发学生的思考和探索能力。

2.案例分析,让学生将知识运用到实际问题中。

五、教学评价1.学生对糖的分类和结构特点有一定的了解。

2.学生能够理解糖对人体能量供给的重要性。

3.学生在案例分析中能够灵活运用所学知识。

六、教学改进1.可以增加实验环节,让学生亲自操作提取糖,并观察糖的相关特性。

2.可以引入一些实际生活中与糖代谢相关的例子,让学生更好地理解知识。

以上是关于第四章糖代谢的教案,希望能对您有所帮助!。

4 糖代谢

4 糖代谢

第四章糖代谢内容提要食物中的糖类主要是淀粉,其主要在小肠粘膜细胞中经各种酶催化水解为葡萄糖。

在小肠经特定载体转运,主动吸收入血。

糖酵解是在无氧情况下葡萄糖分解生成乳酸的过程。

葡萄糖经磷酸化、异构化,一分为二分解为2分子磷酸丙糖,再经脱氢氧化、底物水平磷酸化生成ATP和丙酮酸,后者还原转变成2分子乳酸。

反应过程中由己糖激酶(HK)、磷酸果糖激酶-1(PFK-1)及丙酮酸激酶(PK)三个限速酶催化的反应不可逆。

糖酵解在胞浆中进行,1分子葡萄糖经酵解可净生成2分子ATP,是机体在缺氧情况下迅速获得能量的主要途径,也是成熟红细胞获得能量的唯一途径。

机体在有氧条件下可彻底氧化生成CO2和H2O的过程,称为糖的有氧氧化。

它是糖氧化供能的主要方式,反应过程分为三个阶段:(1)在胞液葡萄糖经糖酵解途径分解为丙酮酸;(2)丙酮酸进入线粒体在丙酮酸脱氢酶复合体催化下氧化脱羧生成乙酰CoA 、NADH+H+、CO2;(3)三羧酸循环和氧化磷酸化。

三羧酸循环是以草酰乙酸和乙酰CoA缩合生成柠檬酸开始,经脱氢脱羧等一系列反应又生成草酰乙酸的循环过程。

此循环中由三个关键酶(异柠檬酸脱氢酶、α-酮戊二酸脱氢酶复合体、柠檬酸合酶)催化的反应是不可逆的。

每进行一次三羧酸循环有四次脱氢(生成3分子NADH+H+,1分子FADH2),两次脱羧(生成2分子CO2),一次底物水平磷酸化而氧化1分子乙酰基。

NADH+H+、FADH2经氧化磷酸化生成ATP 及H2O。

1分子乙酰CoA经三羧酸循环彻底氧化可生成12分子ATP。

三羧酸循环的生理意义在于它是三大营养素的最终代谢通路;也是三大营养素相互转变的联系枢纽;还为其他合成代谢提供前体物质。

葡萄糖通过磷酸戊糖途径可产生磷酸核糖和NADPH。

磷酸核糖是合成核苷酸的重要原料。

NADPH作为供氢体参与多种代谢反应。

磷酸戊糖途径在胞浆中进行,其关键酶是6-磷酸葡萄糖脱氢酶。

糖原是体内糖的储存形式。

肝糖原合成的限速酶是糖原合酶,肝糖原可直接分解为葡萄糖补充血糖。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档