MATLAB实验遗传算法与优化设计

合集下载

MATLAB实验遗传算法与优化设计(可编辑)

MATLAB实验遗传算法与优化设计(可编辑)

MATLAB实验遗传算法与优化设计遗传算法与优化设计一实验目的1 了解遗传算法的基本原理和基本操作选择交叉变异2 学习使用Matlab中的遗传算法工具箱 gatool 来解决优化设计问题二实验原理及遗传算法工具箱介绍1 一个优化设计例子图1所示是用于传输微波信号的微带线电极的横截面结构示意图上下两根黑条分别代表上电极和下电极一般下电极接地上电极接输入信号电极之间是介质如空气陶瓷等微带电极的结构参数如图所示Wt分别是上电极的宽度和厚度D是上下电极间距当微波信号在微带线中传输时由于趋肤效应微带线中的电流集中在电极的表面会产生较大的欧姆损耗根据微带传输线理论高频工作状态下假定信号频率1GHz电极的欧姆损耗可以写成简单起见不考虑电极厚度造成电极宽度的增加图1 微带线横截面结构以及场分布示意图1其中为金属的表面电阻率为电阻率可见电极的结构参数影响着电极损耗通过合理设计这些参数可以使电极的欧姆损耗做到最小这就是所谓的最优化问题或者称为规划设计问题此处设计变量有3个WDt它们组成决策向量[W D t] T待优化函数称为目标函数上述优化设计问题可以抽象为数学描述2其中是决策向量x1xn为n个设计变量这是一个单目标的数学规划问题在一组针对决策变量的约束条件下使目标函数最小化有时也可能是最大化此时在目标函数前添个负号即可满足约束条件的解X 称为可行解所有满足条件的X组成问题的可行解空间2 遗传算法基本原理和基本操作遗传算法 Genetic Algorithm GA 是一种非常实用高效鲁棒性强的优化技术广泛应用于工程技术的各个领域如函数优化机器学习图像处理生产调度等遗传算法是模拟生物在自然环境中的遗传和进化过程而形成的一种自适应全局优化算法按照达尔文的进化论生物在进化过程中物竞天择对自然环境适应度高的物种被保留下来适应度差的物种而被淘汰物种通过遗传将这些好的性状复制给下一代同时也通过种间的交配交叉和变异不断产生新的物种以适应环境的变化从总体水平上看生物在进化过程中子代总要比其父代优良因此生物的进化过程其实就是一个不断产生优良物种的过程这和优化设计问题具有惊人的相似性从而使得生物的遗传和进化能够被用于实际的优化设计问题按照生物学知识遗传信息基因Gene 的载体是染色体Chromosome 染色体中一定数量的基因按照一定的规律排列即编码遗传基因在染色体中的排列位置称为基因座Locus在同一个基因座上所有可能的基因就称为等位基因Allele生物所持有的基因以及基因的构成形式称为生物的基因型Genotype而该生物在环境中所呈现的相应性状称为该生物的表现型Phenotype在遗传过程中染色体上的基因能够直接复制给子代从而使得子代具有亲代的特征此外两条染色体之间也通过交叉 Crossover 而重组即两个染色体在某个相同的位置处被截断其前后两串基因交叉组合而形成两个新的染色体在基因复制时也会产生微小的变异Mutation从而也产生了新的染色体因此交叉和变异是产生新物种的主要途径由于自然选择在子代群体新产生的物种或染色体当中只有那些对环境适应度高的才能生存下来即适应度越高的被选择的概率也越大然后又是通过遗传和变异再自然选择一代一代不断进化因此生物遗传和进化的基本过程就是选择即复制交叉和变异遗传算法就是通过模拟生物进化的这几个基本过程而实现的①编码编码是设计遗传算法首要解决的问题在生物进化中选择交叉变异这些基本过程都是基于遗传信息的编码方式进行的即基于染色体的基因型而非表现型因此要模拟生物进化过程遗传算法必须首先对问题的可行解X决策向量进行某种编码以便借鉴生物学中染色体和基因等概念在遗传算法中将每一个决策向量X用一个染色体V来表示3其中每一个vi代表一个基因染色体的长度m不一定等于设计变量的数目n取决于染色体上基因的编码方式一般有两种编码方式二进制编码和浮点数编码如果是二进制编码每一个设计变量xi的真实值用一串二进制符号0和1按照一定的编码规则来表示每个二进制符号就代表一个基因因此染色体长度要远大于设计变量的数目这种由二进制编码构成的排列形式V就是染色体也称个体的基因型而基因型经过解码后所对应的决策向量X即可行解就是个体的表现型如果是浮点数编码每个设计变量用其取值范围内的一个浮点数表示构成染色体的一个基因vi因此个体的编码长度m也就等于决策变量的个数n由于这种编码方式使用的是决策变量的真实值所以也称真值编码方法无论哪种编码方式所有可能的染色体个体V构成问题的搜索空间种群遗传算法对最优解的搜索就是在搜索空间中搜索适应度最高的染色体后面叙述适应度的计算因此通过编码将一个问题的可行解从其解空间转换到了遗传算法能够处理的搜索空间经过个体的编码后就可以进行遗传算法的基本操作选择交叉和变异②选择复制操作选择也就是复制是在群体中选择适应度高的个体产生新群体的过程生物的进化是以集团为主体的与此相应遗传算法的运算对象是有M个个体或染色体组成的集合称为种群M也称为种群规模遗传算法在模拟自然选择时以个体的适应度Fitness高低为选择依据即适应度高的个体被遗传到下一代种群的概率较高而适应度低的个体遗传到下一代的概率则相对较低个体适应度由适应度函数计算适应度函数总是和个体表现型 ie X 的目标函数值f X 关联一般是由目标函数经过一定的变换得到一种最简单的方法就是直接使用目标函数f X 作为适应度函数4选定了适应度函数之后个体适应度也随之确定则在选择操作时个体被选中的概率5其中Fi为个体的适应度这种选择方式称为比例选择也称轮盘赌选择除此之外还有多种选择方法如随机竞争选择均匀选择无回放随机选择等不一一介绍③交叉操作所谓交叉就是以一定的概率交叉概率从群体中选择两个个体染色体按照某种方式交换其部分基因从而形成两个新的个体在遗传算法中它是产生新个体同时也是获得新的优良个体的主要方法它决定了遗传算法的全局搜索能力对于不同的编码方式交叉操作的具体方法也不相同对于浮点数编码一般使用算术交叉对于二进制编码有单点交叉和多点交叉等方式不论何种方式在交叉操作时首先应定义交叉概率Pc这个概率表明种群中参与交叉的个体数目的期望值是M 是种群规模通常交叉概率应取较大的值以便产生较多的新个体增加全局搜索力度但是Pc过大时优良个体被破坏的可能性也越大如果Pc 太小则搜索进程变慢影响算法的运行效率一般建议的取值范围是04–099④变异操作遗传算法中的变异操作就是将染色体上某些基因座上的基因以一定的变异概率Pm用其他的等位基因替代从而形成新的个体对于浮点数编码变异操作就是将变异点处的基因用该基因取值范围内的一个随机数替换对于二进制编码则是将变异点处的基因由1变成00变成1变异操作也有多种方法如均匀变异非均匀变异高斯变异等变异操作的概率Pm要比交叉操作的概率Pc小得多变异只是产生新个体的辅助手段但它是遗传算法必不可少的一个环节因为变异操作决定了算法的局部搜索能力它弥补了交叉操作无法对搜索空间的细节进行局部搜索的不足因此交叉和变异操作相互配合共同完成对搜索空间的全局和局部搜索以上简要介绍了遗传算法的基本原理和操作归纳起来基本遗传算法一般可以表示为一个8元组6式中C 个体的编码方法E 个体适应度评价函数P0 初始种群M 种群规模选择操作交叉操作变异操作是进化终止代数进化终止条件其中有4个运行参数需要预先设定M T PcPm 种群规模M一般取为20100 终止代数T一般取100500交叉概率Pc一般取04099 变异概率Pm一般取0000101最后给出遗传算法的基本步骤①选择二进制编码或浮点数编码把问题的解表示成染色体②随机产生一群染色体个体也就是初始种群③计算每一个个体的适应度值按适者生存的原则从中选择出适应度较大的染色体进行复制再通过交叉变异过程产生更适应环境的新一代染色体群即子代④重复第3步经过这样的一代一代地进化最后就会收敛到最适应环境适应度最大的一个染色体即个体上它就是问题的最优解图2给出了基本遗传算法设计流程图其中t代表当前代数T是进化终止代数图2 基本遗传算法设计流程图3 Matlab遗传算法工具箱 gatoolMatlab的遗传算法工具箱有一个精心设计的图形用户界面可以帮助用户直观方便快速地利用遗传算法求解最优化问题在Matlab命令窗口输入命令gatool可以打开遗传算法工具箱的图形用户界面如图3所示GA工具箱的参数设置步骤如下图3 遗传算法工具1 首先使用遗传算法工具箱必须输入下列信息Fitness function 适应度函数这里指的是待优化的函数也即目标函数该工具箱总是试图寻找目标函数的最小值输入适应度函数的格式为fitnessfun其中符号产生函数fitnessfun的句柄fitnessfun代表用户编写的计算适应度函数目标函数的M文件名该M文件的编写方法如下假定我们要计算Rastrigin函数的最小值7M函数文件确定这个函数必须接受一个长度为2的行向量X也即决策向量向量的长度等于变量数目行向量X的每个元素分别和变量x1和x2对应另外M文件要返回一个标量Z其值等于该函数的值下面是计算Rastrigin函数的M文件代码function Z Ras_fun XZ 20X 1 2X 2 2-10 cos 2piX 1 cos 2piX 2M文件编写保存后再在gatool工具箱界面Fitness function栏输入 Ras_funNumber of variable 变量个数目标函数中的变量数目也即适应度函数输入向量的长度在上例中它的值是22 其次设置遗传算法参数即Options设置以下只介绍部分运行参数的设置其他未提及的参数采用默认设置即可①种群参数 PopulationPopulation size 种群规模每一代中的个体数目一般是20-100之间种群规模大算法搜索更彻底可以增加算法搜索全局最优而非局部最优的概率但是耗时也更长Initial range 初始范围其值是两行的矩阵代表初始种群中个体的搜索范围实际上是决策向量X中每个变量xi的初始搜索范围矩阵的列数等于变量个数Number of variable第一行是每个变量的下限第二行是每个变量的上限如果只输入2 1的矩阵则每个变量的初始搜索范围都一样注意初始范围仅限定初始种群中个体或决策向量的范围后续各代中的个体可以不在初始范围之内初始范围不能设置太小否则造成个体之间的差异过小即种群的多样性降低不利于算法搜索到最优解②复制参数 ReproductionCrossover fraction 交叉概率一般取04099默认08③算法终止准则 Stopping Criteria提供了5种算法终止条件Generations最大的进化代数一般取100500默认是100当遗传算法运行到该参数指定的世代计算终止Time limit指明算法终止执行前的最大时间单位是秒缺省是Inf 无穷大Fitness limit 适应度限当最优适应度值小于或等于此参数值时计算终止缺省是-InfStall generation 停滞代数如果每一代的最佳适应度值在该参数指定的代数没有改善则终止计算缺省是50代Stall time 停滞时间如果每一代的最佳适应度值在该参数指定的时间间隔内没有改善则终止计算缺省是20秒3 设置绘图参数即Plots设置绘图参数Plots工作时可以从遗传算法得到图形数据当选择各种绘图参数并执行遗传算法时一个图形窗口在分离轴上显示这些图形下面介绍其中2个参数Best fitness 选择该绘图参数时将绘制每一代的最佳适应度值和进化世代数之间的关系图如图4的上图所示图中蓝色点代表每一代适应度函数的平均值黑色点代表每一代的最佳值Distance 选择此参数时绘制每一代中个体间的平均距离它反映个体之间的差异程度所以可用来衡量种群的多样性图4的下图显示的即是每一代个体间的平均距离图44 执行算法参数设置好了之后点击工具箱界面上的按钮Star 执行求解器在算法运行的同时Current generation当前代数文本框中显示当前的进化代数通过单击Pause按钮可以使计算暂停之后再点击Resume可以恢复计算当计算完成时Status and results窗格中出现如图5所示的情形图5其中包含下列信息算法终止时适应度函数的最终值即目标函数的最优值Fitness function value 0003909079476983379算法终止原因Optimization terminated imum number of generations exceeded 超出最大进化世代数最终点即目标函数的最优解[x1 x2] [-0004 -000193]两个变量的例子三实验内容1 Rastrigin函数的最小值问题函数表达式如 7 式函数图像如下图6所示它有多个局部极小值但是只有一个全局最小值Rastrigin函数的全局最小值的精确解是0出现在[x1 x2] [0 0]处图6 Rastrigin函数图像使用遗传算法工具箱近似求解Rastrigin函数的最小值首先编写计算适应度函数的M文件然后设置运行参数绘图参数Plots勾选Best fitness和Distance两项其它参数可以使用默认值执行求解器Run solver计算Rastrigin函数的最优值观察种群多样性对优化结果的影响决定遗传算法的一个重要性能是种群的多样性个体之间的距离越大则多样性越高反之则多样性越低多样性过高或过低遗传算法都可能运行不好通过实验调整Population 种群的Initial range 初始范围参数可得到种群适当的多样性取Initial range参数值[1 11]观察Rastrigin函数最小值的计算结果取Initial range参数值[1 100]观察Rastrigin函数最小值的计算结果取Initial range参数值[1 2]观察Rastrigin函数最小值的计算结果2 微带电极欧姆损耗的优化微带电极的欧姆损耗公式可由 1 式表示令设计变量[WDt] [x1 x2 x3] X变量的约束条件如下8根据 1 式和 8 式使用遗产算法工具箱优化设计电极的结构参数W 宽度 D 间距 t 厚度使得电极的欧姆损耗最小 1 式中用到的常数提示对约束条件 8 式的处理可以在编写计算适应度函数的M文件中实现方法是在M文件中引入对每个输入变量值范围的判断语句如果任一变量范围超出 8 式的限制则给该个体的适应度施加一个惩罚使得该个体被遗传到下一代的概率减小甚至为0一般可用下式对个体适应度进行调整9其中F x 是原适应度F x 是调整后的适应度P x 是罚函数为简单计本问题中我们可以给个体的适应度 com件的返回值Z 加上一个很大的数即可如正无穷Inf四思考题1 在遗传算法当中个体的变异对结果有何影响如果没有变异结果又将如何试以Rastrigin函数最小值的计算为例说明取变异概率为0即交叉概率Crossover fraction 102 遗传算法工具箱针对的是最小化函数值问题如果要利用该工具箱计算函数的最大值该如何实现。

matlab多目标优化遗传算法

matlab多目标优化遗传算法

matlab多目标优化遗传算法Matlab多目标优化遗传算法引言:多目标优化是在现实问题中常见的一种情况,它涉及到在多个目标函数的约束下,寻找一组最优解,从而使得多个目标函数达到最优状态。

遗传算法是一种常用的优化方法,它模拟了自然界中的遗传和进化过程,通过不断迭代、选择和交叉变异等操作,逐步搜索最优解。

本文将介绍如何使用Matlab中的遗传算法工具箱来实现多目标优化。

多目标优化问题描述:在传统的单目标优化问题中,我们寻找的是一组参数,使得目标函数的值最小或最大。

而在多目标优化问题中,我们需要考虑多个目标函数的最优化。

具体来说,我们假设有m个目标函数,目标向量为f(x)=(f1(x), f2(x), ..., fm(x)),其中x是决策变量向量。

我们的目标是找到一组解x∗,使得f(x∗)在所有可行解中最优。

然而,由于多目标问题中的目标函数之间往往存在冲突,即改善一个目标函数的同时可能会导致其他目标函数的恶化,导致不存在一个唯一最优解。

因此,我们常常追求一组非劣解,即无法通过改变解的一个目标值而不改变其他目标值。

Matlab多目标优化遗传算法工具箱:Matlab提供了一个强大的工具箱,即Multiobjective Optimization Toolbox,可用于解决多目标优化问题。

该工具箱基于遗传算法,并结合了其他优化策略和算子,能够高效地搜索多目标优化问题的非劣解集合。

使用Matlab多目标优化遗传算法工具箱的步骤如下:1. 定义目标函数:根据具体问题,编写目标函数,输入为决策变量向量,输出为目标函数向量。

2. 设置优化参数:包括种群大小、迭代次数、交叉概率、变异概率等。

3. 定义决策变量的上下界:根据问题的约束条件,设置决策变量的取值范围。

4. 运行遗传算法:使用Matlab中的gamultiobj函数来运行多目标优化遗传算法,得到非劣解集合。

5. 分析结果:根据具体问题,分析非劣解集合,选择最优解。

Matlab中的遗传算法实现与优化

Matlab中的遗传算法实现与优化

Matlab中的遗传算法实现与优化引言遗传算法是一种模拟生物遗传和自然选择的计算方法,被广泛应用于优化和搜索问题。

在Matlab中,我们可以利用其强大的编程功能和优秀的优化工具箱来实现和优化遗传算法。

一、遗传算法简介遗传算法的基本思想是通过模拟自然选择和遗传操作,逐步演化出最优解。

它包含了种群的初始化、适应度评估、选择、交叉和变异等步骤。

1. 种群初始化在遗传算法开始前,我们需要初始化一个种群。

每个个体都表示一个可能的解。

个体的表达方式可以是二进制、浮点数等。

2. 适应度评估适应度函数用于评估每个个体的适应度,即其解决问题的能力。

适应度函数可以根据具体问题进行设计。

例如,对于求解最优化问题,适应度函数可以是目标函数的值。

3. 选择选择操作根据个体的适应度,以一定的概率选择父代个体。

适应度高的个体被选中的概率更大,从而保留优秀的基因。

4. 交叉交叉操作模拟了基因的杂交。

通过对两个个体的基因进行交叉,产生新的子代个体。

交叉操作可以保留原始个体的优点,同时引入新的变化。

5. 变异变异操作模拟了基因的突变。

通过对个体的基因进行随机变化,引入新的多样性。

变异操作有助于避免陷入局部最优解。

6. 迭代优化通过重复进行选择、交叉和变异,逐步优化种群中的个体,直到满足停止准则。

二、Matlab中的遗传算法实现在Matlab中,我们可以使用优化工具箱中的遗传算法函数来实现和优化遗传算法。

1. 遗传算法函数Matlab中的遗传算法函数包括`ga`、`gamultiobj`和`patternsearch`等。

其中,`ga`是最常用的单目标遗传算法函数,而`gamultiobj`用于多目标优化问题。

`ga`函数的基本调用形式为:```[x, fval] = ga(fun, nvars)```其中,`fun`为适应度函数,`nvars`为变量的个数。

`ga`函数会返回最优解`x`和最优值`fval`。

2. 适应度函数的设计适应度函数的设计对于遗传算法的性能至关重要。

MATLAB中的遗传算法和优化方法

MATLAB中的遗传算法和优化方法

MATLAB中的遗传算法和优化方法概述:遗传算法是一种常见的优化方法,通过模拟生物进化过程来求解最优解。

在MATLAB中,遗传算法和其他优化方法一起被广泛应用于各个领域,如工程设计、数据分析、机器学习等。

本文将介绍MATLAB中遗传算法的原理和应用,并比较它与其他优化方法的优缺点。

第一部分:遗传算法的基本原理1.1 基因编码遗传算法的核心在于基因编码。

在MATLAB中,基因编码可以通过二进制、十进制或其他方式实现。

二进制编码是最常用的一种方式,通过0和1表示基因的不同状态。

1.2 适应度函数适应度函数用于衡量个体的适应性,即个体对问题的解决程度。

在MATLAB 中,适应度函数可以根据具体问题的要求进行定义和评估。

适应度函数越高,个体的生存能力越强,有更大的概率被选择和交叉。

1.3 选择、交叉和变异选择、交叉和变异是遗传算法的三个基本操作。

选择操作根据适应度函数选择优秀的个体,并根据其适应度进行概率加权选择。

交叉操作模拟生物的基因交换,通过重新组合个体的基因来产生新的个体。

变异操作则引入一定的随机性,以避免陷入局部最优解。

第二部分:MATLAB中的遗传算法2.1 遗传算法工具箱MATLAB提供了专门用于遗传算法的工具箱,包括遗传算法、多目标优化、进化策略等。

这些工具箱提供了一系列可直接调用的函数和示例,使得遗传算法的实现变得简单和高效。

2.2 遗传算法的应用案例在工程设计领域,遗传算法被广泛应用于优化传感器网络、控制系统、机器人路径规划等。

在数据分析领域,遗传算法可以用于参数估计、特征选择等问题。

在机器学习领域,遗传算法可以用于优化神经网络的权重、结构等。

这些应用案例都充分展示了遗传算法在各个领域的优势和应用价值。

第三部分:遗传算法与其他优化方法的比较3.1 遗传算法与蚁群算法遗传算法和蚁群算法都属于启发式算法,都能够帮助求解复杂的优化问题。

与遗传算法相比,蚁群算法模拟了蚂蚁寻找食物的行为,具有更强的自适应性和分布式特性。

MATLAB实验遗传算法与优化设计

MATLAB实验遗传算法与优化设计

实验六 遗传算法与优化设计一、实验目的1. 了解遗传算法的基本原理和基本操作(选择、交叉、变异);2. 学习使用Matlab 中的遗传算法工具箱(gatool)来解决优化设计问题;二、实验原理及遗传算法工具箱介绍1. 一个优化设计例子图1所示是用于传输微波信号的微带线(电极)的横截面结构示意图,上下两根黑条分别代表上电极和下电极,一般下电极接地,上电极接输入信号,电极之间是介质(如空气,陶瓷等)。

微带电极的结构参数如图所示,W 、t 分别是上电极的宽度和厚度,D 是上下电极间距。

当微波信号在微带线中传输时,由于趋肤效应,微带线中的电流集中在电极的表面,会产生较大的欧姆损耗。

根据微带传输线理论,高频工作状态下(假定信号频率1GHz ),电极的欧姆损耗可以写成(简单起见,不考虑电极厚度造成电极宽度的增加):图1 微带线横截面结构以及场分布示意图 28.6821ln 5020.942ln 20.942SW R W D D D t D W D D W W t D W W D e D D(1) 其中 0S R 为金属的表面电阻率,为电阻率。

可见电极的结构参数影响着电极损耗,通过合理设计这些参数可以使电极的欧姆损耗做到最小,这就是所谓的最优化问题或者称为规划设计问题。

此处设计变量有3个:W 、D 、t ,它们组成决策向量[W, D ,t ] T ,待优化函数(,,)W D t称为目标函数。

上述优化设计问题可以抽象为数学描述:min ..0,1,2,...,jf X stg X j p (2) 其中T n x x x X ,...,,21 是决策向量,x 1,…,x n 为n 个设计变量。

这是一个单目标的数学规划问题:在一组针对决策变量的约束条件 0,1,...,jg X j p 下,使目标函数最小化(有时也可能是最大化,此时在目标函数 X f 前添个负号即可)。

满足约束条件的解X 称为可行解,所有满足条件的X 组成问题的可行解空间。

使用Matlab进行多目标遗传算法优化问题求解的方法

使用Matlab进行多目标遗传算法优化问题求解的方法

使用Matlab进行多目标遗传算法优化问题求解的方法引言多目标优化问题是在现实生活中经常遇到的一种复杂的决策问题,其目标是寻找一个最优解来同时优化多个冲突的目标。

在实际应用中,往往难以找到一个能够满足所有目标的最优解,因此需要采取一种合理的方法来寻找一个最优的解集,这就是多目标优化问题。

多目标遗传算法是一种常用的方法之一,本文将介绍如何使用Matlab进行多目标遗传算法优化问题求解。

1. 问题的定义首先,我们需要明确多目标优化问题的定义和目标函数的形式。

多目标优化问题可以写成如下形式:minimize F(X) = [f1(X), f2(X), ..., fn(X)]subject to constraints(X)其中,X表示问题的决策变量,fi(X)表示问题的第i个目标函数(i=1,2,...,n),constraints(X)为问题的约束条件。

2. 遗传算法的基本原理遗传算法是一种模拟自然进化过程的优化方法,它模拟了遗传、交叉和突变等自然进化的过程。

遗传算法的基本原理包括:种群初始化、适应度评估、选择、交叉、变异和新种群更新等步骤。

3. 多目标遗传算法的改进传统的遗传算法只能求解单目标优化问题,对于多目标优化问题需要进行改进。

常用的改进方法有非支配排序、拥挤度距离以及遗传算子的设计等。

非支配排序:对于多目标优化问题,需要定义支配关系。

如果一个解在优化问题的所有目标上都比另一个解好,则称这个解支配另一个解。

非支配排序根据支配关系将解分为多个非支配层级,层级越高的解越优。

拥挤度距离:拥挤度距离用于衡量解的分布情况,越分散的解拥挤度越大。

拥挤度距离可以有效地保持种群的多样性,避免收敛到局部最优解。

遗传算子的设计:选择、交叉和变异是遗传算法中的三个重要操作。

在多目标遗传算法中,需要设计合适的遗传算子来保持种群的多样性,并尽可能地寻找高质量的解。

4. Matlab实现多目标遗传算法Matlab是一种功能强大的数学软件,它提供了丰富的工具箱和函数来实现多目标遗传算法。

基于Matlab遗传算法工具箱的优化计算实现

基于Matlab遗传算法工具箱的优化计算实现

基于Matlab遗传算法工具箱的优化计算实现一、概述随着科技的发展和社会的进步,优化问题在众多领域,如工程设计、经济管理、生物科学、交通运输等中扮演着越来越重要的角色。

优化计算的目标是在给定的约束条件下,寻找一组变量,使得某个或某些目标函数达到最优。

许多优化问题具有高度的复杂性,传统的数学方法往往难以有效求解。

寻求新的、高效的优化算法成为了科研人员的重要任务。

遗传算法(Genetic Algorithm, GA)是一种模拟自然选择和遗传学机制的搜索算法,通过模拟自然界的进化过程,寻找问题的最优解。

自20世纪70年代初由美国密歇根大学的John Holland教授提出以来,遗传算法因其全局搜索能力强、鲁棒性好、易于与其他算法结合等优点,被广泛应用于各种优化问题中。

1. 遗传算法简介遗传算法(Genetic Algorithm, GA)是一种模拟自然选择和遗传学机制的优化搜索算法。

该算法起源于对生物进化过程中遗传机制的研究,通过模拟自然选择和遗传过程中的交叉、突变等操作,在搜索空间内寻找最优解。

自20世纪70年代初由John Holland教授提出以来,遗传算法已在多个领域取得了广泛的应用,包括函数优化、机器学习、模式识别、自适应控制等。

遗传算法的基本思想是将问题的解表示为“染色体”,这些染色体在算法中通过选择、交叉和突变等操作进行演化。

选择操作模仿了自然选择中“适者生存”的原则,根据适应度函数对染色体进行筛选交叉操作则模拟了生物进化中的基因重组过程,通过交换染色体中的部分基因,生成新的个体突变操作则是对染色体中的基因进行小概率的随机改变,以维持种群的多样性。

在遗传算法中,种群初始化是算法的起点,通过随机生成一组初始解作为初始种群。

根据适应度函数对种群中的个体进行评估,选择出适应度较高的个体进行交叉和突变操作,生成新的种群。

这个过程不断迭代进行,直到满足终止条件(如达到最大迭代次数或找到满足精度要求的最优解)为止。

MATLAB实验遗传算法和优化设计

MATLAB实验遗传算法和优化设计

MATLAB实验遗传算法和优化设计遗传算法是一种模拟自然界生物进化过程的优化算法,它通过模拟选择、交叉和变异等操作来寻找问题的最优解。

在MATLAB中,我们可以使用遗传算法工具箱来实现遗传算法,并应用于优化设计问题。

优化设计是指在给定约束条件下,寻找问题的最优设计方案,以最大化或最小化设计目标。

遗传算法在优化设计中具有很好的应用潜力,因为它能够处理复杂的非线性问题,并且可以在多个设计变量之间进行优化。

下面我们以一个简单的优化设计问题为例,来演示如何使用MATLAB中的遗传算法工具箱进行分析。

假设我们要设计一个具有最小扬程损失的水泵系统,其中有三个设计变量:叶片数、叶片角度和进口直径。

我们的设计目标是最小化扬程损失,并且有以下约束条件:叶片数在3至6之间、叶片角度在10至60度之间、进口直径在0.1至0.3之间。

首先,我们需要定义一个适应度函数,用于评估每个设计方案的质量。

对于水泵系统,适应度函数可以定义为扬程损失的倒数,即适应度=1/扬程损失。

这样,我们的目标就是最大化适应度。

然后,我们需要设置遗传算法的参数,如种群大小、迭代次数和变量范围等。

在MATLAB中,遗传算法工具箱提供了一个函数gaoptimset,用于设置遗传算法的参数。

接下来,我们使用遗传算法工具箱中的函数ga来运行遗传算法,以求解最优设计方案。

在调用ga函数时,我们需要传入适应度函数、设计变量的约束条件和参数设置等。

在遗传算法的迭代过程中,每一代最优解都会被记录下来,并通过绘制适应度曲线来观察算法的收敛情况。

在MATLAB中,我们可以使用plot函数来绘制适应度曲线。

最后,我们可以输出找到的最优解,以及对应的适应度值和设计参数。

在MATLAB中,我们可以使用disp函数来输出结果。

通过以上步骤,我们就可以使用MATLAB中的遗传算法工具箱来实现优化设计,并找到最优解。

总结起来,MATLAB提供了强大的遗传算法工具箱,可以用于优化设计问题的求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验六遗传算法与优化设计一、实验目的1. 了解遗传算法的基本原理和基本操作(选择、交叉、变异);2. 学习使用Matlab中的遗传算法工具箱(gatool)来解决优化设计问题;二、实验原理及遗传算法工具箱介绍1. 一个优化设计例子图1所示是用于传输微波信号的微带线(电极)的横截面结构示意图,上下两根黑条分别代表上电极和下电极,一般下电极接地,上电极接输入信号,电极之间是介质(如空气,陶瓷等)。

微带电极的结构参数如图所示,W、t分别是上电极的宽度和厚度,D是上下电极间距。

当微波信号在微带线中传输时,由于趋肤效应,微带线中的电流集中在电极的表面,会产生较大的欧姆损耗。

根据微带传输线理论,高频工作状态下(假定信号频率1GHz),电极的欧姆损耗可以写成(简单起见,不考虑电极厚度造成电极宽度的增加):图1 微带线横截面结构以及场分布示意图(1)其中为金属的表面电阻率,为电阻率。

可见电极的结构参数影响着电极损耗,通过合理设计这些参数可以使电极的欧姆损耗做到最小,这就是所谓的最优化问题或者称为规划设计问题。

此处设计变量有3个:W、D、t,它们组成决策向量[W, D ,t] T,待优化函数称为目标函数。

上述优化设计问题可以抽象为数学描述:(2)其中是决策向量,x1,…,xn为n个设计变量。

这是一个单目标的数学规划问题:在一组针对决策变量的约束条件下,使目标函数最小化(有时也可能是最大化,此时在目标函数前添个负号即可)。

满足约束条件的解X称为可行解,所有满足条件的X组成问题的可行解空间。

2. 遗传算法基本原理和基本操作遗传算法(Genetic Algorithm, GA)是一种非常实用、高效、鲁棒性强的优化技术,广泛应用于工程技术的各个领域(如函数优化、机器学习、图像处理、生产调度等)。

遗传算法是模拟生物在自然环境中的遗传和进化过程而形成的一种自适应全局优化算法。

按照达尔文的进化论,生物在进化过程中“物竞天择”,对自然环境适应度高的物种被保留下来,适应度差的物种而被淘汰。

物种通过遗传将这些好的性状复制给下一代,同时也通过种间的交配(交叉)和变异不断产生新的物种以适应环境的变化。

从总体水平上看,生物在进化过程中子代总要比其父代优良,因此生物的进化过程其实就是一个不断产生优良物种的过程,这和优化设计问题具有惊人的相似性,从而使得生物的遗传和进化能够被用于实际的优化设计问题。

按照生物学知识,遗传信息基因(Gene)的载体是染色体(Chromosome),染色体中一定数量的基因按照一定的规律排列(即编码),遗传基因在染色体中的排列位置称为基因座(Locus),在同一个基因座上所有可能的基因就称为等位基因(Allele),生物所持有的基因以及基因的构成形式称为生物的基因型(Genotype),而该生物在环境中所呈现的相应性状称为该生物的表现型(Phenotype)。

在遗传过程中,染色体上的基因能够直接复制给子代从而使得子代具有亲代的特征,此外,两条染色体之间也通过交叉(Crossover)而重组,即两个染色体在某个相同的位置处被截断,其前后两串基因交叉组合而形成两个新的染色体。

在基因复制时也会产生微小的变异(Mutation),从而也产生了新的染色体。

因此交叉和变异是产生新物种的主要途径。

由于自然选择,在子代群体新产生的物种(或染色体)当中,只有那些对环境适应度高的才能生存下来,即适应度越高的被选择的概率也越大,然后又是通过遗传和变异再自然选择,一代一代不断进化。

因此生物遗传和进化的基本过程就是:选择(即复制)、交叉和变异。

遗传算法就是通过模拟生物进化的这几个基本过程而实现的。

① 编码编码是设计遗传算法首要解决的问题。

在生物进化中,选择、交叉、变异这些基本过程都是基于遗传信息的编码方式进行的,即基于染色体的基因型而非表现型,因此要模拟生物进化过程,遗传算法必须首先对问题的可行解X(决策向量)进行某种编码,以便借鉴生物学中染色体和基因等概念。

在遗传算法中,将每一个决策向量X用一个染色体V来表示:(3)其中每一个vi代表一个基因,染色体的长度m不一定等于设计变量的数目n,取决于染色体上基因的编码方式。

一般有两种编码方式:二进制编码和浮点数编码。

如果是二进制编码,每一个设计变量xi的真实值用一串二进制符号0和1按照一定的编码规则来表示,每个二进制符号就代表一个基因,因此染色体长度要远大于设计变量的数目。

这种由二进制编码构成的排列形式V就是染色体(也称个体)的基因型,而基因型经过解码后所对应的决策向量X(即可行解)就是个体的表现型。

如果是浮点数编码,每个设计变量用其取值范围内的一个浮点数表示,构成染色体的一个基因vi,因此个体的编码长度m也就等于决策变量的个数n,由于这种编码方式使用的是决策变量的真实值,所以也称真值编码方法。

无论哪种编码方式,所有可能的染色体(个体)V构成问题的搜索空间(种群),遗传算法对最优解的搜索就是在搜索空间中搜索适应度最高的染色体(后面叙述适应度的计算),因此通过编码将一个问题的可行解从其解空间转换到了遗传算法能够处理的搜索空间。

经过个体的编码后,就可以进行遗传算法的基本操作:选择、交叉和变异。

② 选择(复制)操作选择也就是复制,是在群体中选择适应度高的个体产生新群体的过程。

生物的进化是以集团为主体的,与此相应,遗传算法的运算对象是有M个个体或染色体组成的集合,称为种群,M也称为种群规模。

遗传算法在模拟自然选择时,以个体的适应度(Fitness)高低为选择依据,即适应度高的个体被遗传到下一代种群的概率较高,而适应度低的个体遗传到下一代的概率则相对较低。

个体适应度由适应度函数计算,适应度函数总是和个体表现型(i.e. X )的目标函数值f(X)关联,一般是由目标函数经过一定的变换得到。

一种最简单的方法就是直接使用目标函数f(X)作为适应度函数:(4)选定了适应度函数之后,个体适应度也随之确定,则在选择操作时,个体被选中的概率(5)其中Fi为个体的适应度。

这种选择方式称为比例选择,也称轮盘赌选择。

除此之外还有多种选择方法,如随机竞争选择、均匀选择、无回放随机选择等,不一一介绍。

③ 交叉操作所谓交叉就是以一定的概率(交叉概率)从群体中选择两个个体(染色体)按照某种方式交换其部分基因,从而形成两个新的个体。

在遗传算法中它是产生新个体同时也是获得新的优良个体的主要方法,它决定了遗传算法的全局搜索能力。

对于不同的编码方式,交叉操作的具体方法也不相同,对于浮点数编码,一般使用算术交叉;对于二进制编码有单点交叉和多点交叉等方式。

不论何种方式,在交叉操作时首先应定义交叉概率Pc,这个概率表明种群中参与交叉的个体数目的期望值是,M是种群规模。

通常交叉概率应取较大的值,以便产生较多的新个体,增加全局搜索力度。

但是Pc过大时优良个体被破坏的可能性也越大,如果Pc太小则搜索进程变慢,影响算法的运行效率。

一般建议的取值范围是0.4–0.99。

④ 变异操作遗传算法中的变异操作就是将染色体上某些基因座上的基因以一定的变异概率Pm用其他的等位基因替代,从而形成新的个体。

对于浮点数编码,变异操作就是将变异点处的基因用该基因取值范围内的一个随机数替换。

对于二进制编码则是将变异点处的基因由“1”变成“0”,“0”变成“1”。

变异操作也有多种方法,如均匀变异、非均匀变异、高斯变异等。

变异操作的概率Pm要比交叉操作的概率Pc小得多,变异只是产生新个体的辅助手段。

但它是遗传算法必不可少的一个环节,因为变异操作决定了算法的局部搜索能力,它弥补了交叉操作无法对搜索空间的细节进行局部搜索的不足,因此交叉和变异操作相互配合共同完成对搜索空间的全局和局部搜索。

以上简要介绍了遗传算法的基本原理和操作,归纳起来,基本遗传算法一般可以表示为一个8元组:(6)式中,C 个体的编码方法;E 个体适应度评价函数;P0 初始种群;M 种群规模;选择操作;交叉操作;变异操作;是进化终止代数(进化终止条件)。

其中有4个运行参数需要预先设定:M, T, Pc,Pm种群规模M一般取为20~100;终止代数T一般取100~500;交叉概率Pc一般取0.4~0.99;变异概率Pm一般取0.0001~0.1最后给出遗传算法的基本步骤:① 选择二进制编码或浮点数编码把问题的解表示成“染色体”。

② 随机产生一群“染色体”(个体),也就是初始种群。

③ 计算每一个个体的适应度值,按适者生存的原则,从中选择出适应度较大的“染色体”进行复制,再通过交叉、变异过程产生更适应环境的新一代“染色体”群,即子代。

④ 重复第3步。

经过这样的一代一代地进化,最后就会收敛到最适应环境(适应度最大)的一个“染色体”(即个体)上,它就是问题的最优解。

图2给出了基本遗传算法设计流程图,其中t代表当前代数,T是进化终止代数。

图2 基本遗传算法设计流程图3. Matlab遗传算法工具箱(gatool)Matlab的遗传算法工具箱有一个精心设计的图形用户界面,可以帮助用户直观、方便、快速地利用遗传算法求解最优化问题。

在Matlab命令窗口输入命令:gatool可以打开遗传算法工具箱的图形用户界面,如图3所示。

GA工具箱的参数设置步骤如下:图3. 遗传算法工具(1) 首先,使用遗传算法工具箱必须输入下列信息:1 Fitness function(适应度函数)这里指的是待优化的函数,也即目标函数。

该工具箱总是试图寻找目标函数的最小值。

输入适应度函数的格式为@fitnessfun,其中符号@产生函数fitnessfun的句柄,fitnessfun代表用户编写的计算适应度函数(目标函数)的M 文件名,该M文件的编写方法如下:假定我们要计算Rastrigin函数的最小值(7)M函数文件确定这个函数必须接受一个长度为2的行向量X,也即决策向量,向量的长度等于变量数目,行向量X的每个元素分别和变量x1和x2对应。

另外M 文件要返回一个标量Z,其值等于该函数的值。

下面是计算Rastrigin函数的M文件代码:function Z=Ras_fun(X)Z=20+X(1)^2+X(2)^2-10*(cos(2*pi*X(1))+cos(2*pi*X(2)));M文件编写、保存后,再在gatool工具箱界面Fitness function栏输入@Ras_fun2 Number of variable(变量个数)目标函数中的变量数目,也即适应度函数输入向量的长度。

在上例中,它的值是2。

(2) 其次,设置遗传算法参数,即Options设置。

以下只介绍部分运行参数的设置,其他未提及的参数采用默认设置即可。

① 种群参数(Population)● Population size (种群规模):每一代中的个体数目,一般是20-100之间。

相关文档
最新文档