平面向量应用举例教案

平面向量应用举例教案
平面向量应用举例教案

龙文教育个性化辅导教案提纲

学生: 日期: 年 月 日 第 次 时段: 教学课题 平面向量应用举例-----导学案

教学目标 考点分析 1. 掌握向量的加减运算法则和向量的数量积运算

2. 掌握向量在数学和物理中的应用

教学重点 理解并能灵活运用向量加减法与向量数量积的法则.

教学难点 理解并能灵活运用向量加减法与向量数量积的意义和性质

教学方法 问答式、启发式教学

教学过程:上节课知识点复习回顾及习题疑难解惑

第一课时:2.5.1 向量在几何中的应用举例

一、复习准备:

1.提问:向量的加减运算和数量积运算是怎样的?

2.讨论:① 若o 为ABC ?的重心,则OA +OB +OC

=0

②水渠横断面是四边形ABCD ,DC =12AB ,且|AD |=|BC |,则这个四边形为等腰梯形.类比几何元素之间的关系,你会想到向量运算之间都有什么关系?

二、讲授新课:

1.平面向量在平面几何中的应用:

① 平移、全等、相似、长度、夹角等几何性质可以由向量线性运算及数量积表示出来例如,向量数量积对应着几何中的长度.如图: 平行四边行ABCD 中,设AB =a ,AD =b ,则AC AB BC a b =+=+ (平移),DB AB AD a b =-=- ,222||AD b AD == (长度)

.向量AD ,AB 的夹角为DAB ∠ ② 讨论:(1)向量运算与几何中的结论"若a b =,则||||a b =,且,a b 所在直线平行或重合"相类比,你有什么体会?(2)由学生举出几个具有线性运算的几何实例.

③ 用向量方法解平面几何问题的步骤(一般步骤)

(1) 建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量. (2) 通过向量运算研究几何运算之间的关系,如距离、夹角等.

(3) 把运算结果"翻译"成几何关系.

2.教学例题:

① 出示例1:求证:平行四边形两条对角线的平方和等于四条边的平方和.

分析:由向量的数量积的性质,线段的长的平方可看做相应向量自身的内积.

练习:已知平行四边形ABCD ,AB =a ,BC = b ,且||||a b =,试用向量a b ,表示BD 、AC

,并计算BD .AC ,判断BD 与AC 的位置关系. ② 出示例2:如图,在OBCA 中,OA a = ,OB b = ,||||a b a b +=-,求证四边形O BCA 为矩形

分析:要证四边形O BCA 为矩形,只需证一角为直角.

③ 练习:AC 为O 的一条直径,ABC ∠为圆周角,求证90ABC ∠=?

④ 出示例3:在ABC 中,M 是BC 的中点,点N 在边AC 上,且2AN NC =,AM BN 与相交于点P ,如

图,求:AP PM 的值.

3. 小结:向量加减法与向量数量积的运算法则;向量加减法与向量数量积的意义和性质.

三、巩固练习:

1. 已知平行四边形ABCD ,E F 、在对角线BD 上,并且BE=FD ,求证AECF 是平行四边形.

2. 求证:两条对角线互相垂直平分的四边形是菱形.

3. 在平行四边形ABCD 中,已知AD=1,AB=2,对角线BD=2,求对角线AC 的长.

第二课时:2.5.2 向量在物理中的应用举例

一、复习准备:

1. 讨论: ①两个人提一个旅行包,夹角越大越费力.

②在单杠上做引体向上运动,两臂夹角越小越省力.

2. 提问: 类比物理元素之间的关系,你会想到向量运算之间有什么关系?

二、讲授新课:

1. 教学物理中的向量:

① 物理中有许多量,比如力、速度、加速度、位移都具有大小和方向,因而它们都是向量.

② 力、速度、加速度、位移的合成就是向量的加法,因而它们也符合向量加法的三角形法则和平行四边形法则. 力、速度、加速度、位移的分解也就是向量的分解,运动的叠加也用到了向量的加法.

③力所做的功就是作用力F 与物体在力F 的作用下所产生的位移s 的数量积.

④用向量研究物理问题的方法:首先把物理问题转化成数学问题,即将物理量之间的关系抽象成数学模型,然后利用建立起来的数学模型解释和回答相关的物理现象.

2 .教学例题:

① 出示例1:某人在静水中游泳,速度为43km/h

(1) 如果他径直游向河对岸,水流速度为4km/h ,那么他实际上沿什么方向前进?速度大小为多少?

(2) 他必须朝哪个方向游才能沿与水流垂直的方向前进?实际前进的速度大小为多少?

(分析:解决此类行船问题的关键在于"水速+船速=船实际速度”,注意到速度是一个向量,既有大小,又有方向.) ② 练习:某人在无风天气行走,速度为4km/h ,如果他沿正北方向行走,东风的风速为4km/h ,那么他实际沿什么方向前进?速度大小为多少?

② 出示例2:如图,用两根分别长5210m m 和的绳子将100N 的物体吊在水平屋顶

上,平衡后G 点距屋顶的距离恰好为5m ,求A 处受力的大小.

(分析:解决此类问题要先依题意将物理向量用有向线段来表示,利用向量加法的平行四边形法则,将物理问题转化为数学中向量加法,然后由已知条件进行计算.)

④ 练习:用两条成120 角的等长的绳子挂一个灯具,已知灯具的重量10N,则,每根绳子的拉力大小是多少?.

3. 小结:物理中的向量;用向量研究物理问题的方法.

三、巩固练习:

1. 静水中船的速度是每分钟40m,水水流的速度是每分钟20m,如果船沿着垂直水流的方向到达对岸,那么船行进的方向与河岸的夹角为_________.

2. 甲飞机从A 城市向北飞行了3003km ,然后向东飞行300km ;乙飞机从B 城市向东飞行了300km ,然后向北飞行3003km ,那么甲、乙两飞机飞行的位移相等吗?为什么?

教学反思

课后作业:

学生对于本次课评价: ○ 特别满意 ○ 满意 ○ 一般 ○ 差 学生签字: 教师评定:

1、上次作业评价: ○非常好 ○好 ○ 一般 ○ 需要优化

2、上课情况评价: ○非常好 ○好 ○ 一般 ○ 需要优化

教师签字:

教务主任签字: ___________

龙文教育教务处

人教版高中数学必修四 2.5平面向量应用举例

一、选择题 1.已知作用在A 点的三个力F 1=(3,4),F 2=(2,-5),F 3=(3,1)且A (1,1),则合力F =F 1+F 2+F 3的终点坐标为( ) A .(9,1) B .(1,9) C .(9,0) D .(0,9) 解析:F =F 1+F 2+F 3=(8,0). 又因为起点坐标为(1,1),所以终点坐标为(9,1). 答案:A 2.初速度为v 0,发射角为θ,若要使炮弹在水平方向的速度为1 2v 0,则发射角θ应为( ) A .15° B .30° C .45° D .60° 解析:炮弹的水平速度为v =v 0·cos θ=12v 0?cos θ=12?θ=60°. 答案:D 3.△ABC 中,D 、E 、F 分别为BC 、CA 、AB 的中点,则AD +BE +CF =( ) A .0 B .0 C .AB D .AC 解析:设AB =a ,AC =b , 则AD =12a +1 2 b , BE =BA +12AC =-a +1 2b , CF =CA +1 2AB =-b +1 2a . ∴AD +BE +CF =0. 答案:B 4.在△ABC 中,D 为BC 边的中点,已知AB =a ,AC =b ,则下列向量中与AD 同向的是( ) A.a +b |a +b | B.a |a |+b |b | C.a -b |a -b | D.a |a |-a |b | 解析:AD =12AB +12AC =1 2(a +b ),而a +b |a +b | 是与a +b 同方向的单位向量.

答案:A 二、填空题 5.平面上有三个点A (-2,y ),B (0,y 2),C (x ,y ),若AB ⊥BC ,则动点C 的轨迹方 程为________. 解析:AB =(2,-y 2),BC =(x ,y 2 ). ∵AB ⊥BC ,∴A AB ·BC =2x -1 4y 2=0,即y 2=8x . 答案:y 2=8x 6.已知A ,B 是圆心为C ,半径为5的圆上的两点,且|AB |=5,则AC · CB =________. 解析:由弦长|AB |=5,可知∠ACB =60°, AC ·CB =-CA ·CB =-|CA ||CB |cos ∠ACB =-5 2. 答案:-5 2 7.质量m =2.0 kg 的物体,在4 N 的水平力作用下,由静止开始在光滑水平面上运动了3 s ,则水平力在3 s 内对物体所做的功为________. 解析:水平力在3 s 内对物体所做的功:F·s =F ·12at 2=12F ·F m t 2=12m F 2t 2=12×1 2×42×32 =36(J). 答案:36 J 8.设坐标原点为O ,已知过点(0,12)的直线交函数y =1 2x 2的图像于A 、B 两点,则OA · OB 的值为________. 解析:由题意知直线的斜率存在,可设为k ,则直线方程为y =kx +12,与y =1 2x 2联立 得12x 2=kx +1 2 , ∴x 2-2kx -1=0,∴x 1x 2=-1,x 1+x 2=2k , y 1y 2=(kx 1+12)(kx 2+12) =k 2x 1x 2+14+k (x 1+x 2) 2 =-k 2+k 2+1 4 =14 , ∴OA · OB =x 1x 2+y 1y 2=-1+14=-3 4.

2.5平面向量应用举例教案

2.5.1 平面向量应用举例 一.【教材分析】 前面已学习了向量的概念及向量的线性运算以及向量的数量积,本节课应用向量的知识来解决一些几何问题,例如利用向量解决平面内两条直线平行、垂直位置关系的判定等问题! 二.【教学目标】 1.通过应用举例,让学生会用平面向量知识解决几何问题的两种方法-----向量法和坐标法,可以用向量知识研究几何结论和生活中的实际问题; 2.通过本节的学习,让学生体验向量在解决几何问题中的工具作用,增强学生的积极主动的探究意识,培养创新精神. 三.【教学重难点】 重点:理解并能灵活运用向量加减法与向量数量积的法则解决几何问题. 难点:选择适当的方法,将几何问题转化为向量问题加以解决. 四.【教学过程】 (一). (二).【新课引入】 平移、全等、相似、长度、夹角等几何性质可以由向量线性运算及数量积表示出来,因此,可用向量方法解决平面几何中的一些问题.通过向量运算研究几何运算之间的关系,如距离、夹角等.本节课,我们就通过几个具体实例,来研讨 建议 说明向量方法在平面几何中的运用 (三)【典例精讲】 例1. 证明:平行四边形两条对角线的平方和等于相邻两条边的平方和. 已知:平行四边形ABCD. 求证:2222 2() AC BD AB BC +=+ 证明:不妨设AB=a,AD=b,则 AC=a+b,DB=a-b,2 || AB=|a|2,2 || AD=|b|2. 得2 || AC AC AC =?=( a+b)·( a+b) = a·a+ a·b+b·a+b·b =|a|2+2a·b+|b|2.① 同理,2 || DB=|a|2-2a·b+|b|2.② ①+②得2 || AC+2 || DB=2(|a|2+|b|2)=2(2 || AB+2 || AD). 所以,平行四边形两条对角线的平方和等于四条边的平方和. 对比其他方法: 建系设坐标法和做辅助线勾股定理等方法体验向量法的优越性. 跟踪练习应用上述结论解题 引导学生归纳,用向量方法解决平面几何问题“三步曲”: ⑴建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面 几何问题转化为向量问题; ⑵通过向量运算,研究几何元素之间的关系,如距离、夹角等问题; ⑶把运算结果“翻译”成几何关系. 简述为: 几何问题向量化向量运算关系化向量关系几何化

平面向量经典例题讲解

平面向量经典例题讲解 讲课时间:___________姓名:___________课时:___________讲课教师:___________ 一、选择题(题型注释) 1. 空间四边形OABC 中,OA a =u u u r r ,OB b =u u u r r , OC c =u u u r r ,点M 在OA 上,且MA OM 2=,N 为BC 的 中点,则MN u u u u r =( ) A C 【答案】B 【解析】 试 题 分 析 : 因 为 N 为 BC 的中点,则 , ,选 B 考点:向量加法、减法、数乘的几何意义; 2.已知平面向量a ,b 满足||1= a ,||2= b ,且()+⊥a b a ,则a 与b 的夹角是( ) (A (B (C (D 【答案】D 【解析】 试题分析:2()()00a b a a b a a a b +⊥∴+?=∴+?=r r r r r r r r r Q ,||1=a ,||2=b ,设夹角为θ,则 考点:本题考查向量数量积的运算 点评:两向量垂直的充要条件是点乘积得0,用向量运算得到cos θ的值,求出角 3.若OA u u r 、 OB u u u r 、OC uuu r 三个单位向量两两之间夹角为60u u r 【答案】D 【解析】 试题分析 :ΘOA u u r 、OB u u u r 、OC uuu r 三个单位向量两两之间夹角为 60° 6= r 考点:向量的数量积. 4.在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延长线与CD 交于点F , 若AC a =u u u r r ,BD b =u u u r r ,则AF =u u u r ( ) A.1142a b +r r B.1233a b +r r C.1124a b +r r D.2133 a b +r r 【答案】D 【解析】 试题分析:由题意可知,AEB ?与FED ?相似,且相似比为3:1,所以由向量加减法 的平行四边形法则可知,,AB AD a AD AB b +=-=u u u r u u u r r u u u r u u u r r ,解得,故D 正确。 考点:平面向量的加减法 5.在边长为1的等边ABC ?中,,D E 分别在边BC 与AC 上,且BD DC =u u u r u u u r ,2 AE EC =u u u r u u u r 则AD BE ?=u u u r u u u r ( ) A .【答案】A 【解析】 试题分析:由已知,D E 分别在边BC 与AC 上,且BD DC =u u u r u u u r , 2AE EC =u u u r u u u r 则D 是BC 的中轴点,E 为AC 的三等分点,以D 为坐标原点,DA 所在直线为y 轴,BC 边所在直线为x 轴,建立平面直角坐标系, ,设),(y x E ,由EC AE =2可得:

北师大版数学高一 2.7《平面向量应用举例》教案(必修4)

2.7平面向量应用举例 一.教学目标: 1.知识与技能 (1)经历用向量的方法解决某些简单的平面几何问题、力学问题与其它一些实际问题的过程,体会向量是一种处理几何问题、物理问题等的工具. (2)揭示知识背景,创设问题情景,强化学生的参与意识;发展运算能力和解决实际问题的能力. 2.过程与方法 通过本节课的学习,让学生体会应用向量知识处理平面几何问题、力学问题与其它一些实际问题是一种行之有效的工具;和同学一起总结方法,巩固强化. 3.情感态度价值观 通过本节的学习,使同学们对用向量研究几何以及其它学科有了一个初步的认识;提高学生迁移知识的能力、运算能力和解决实际问题的能力. 二.教学重、难点 重点: (体现向量的工具作用),用向量的方法解决某些简单的平面几何问题、力学问题与其它一些实际问题,体会向量在几何、物理中的应用. 难点: (体现向量的工具作用),用向量的方法解决某些简单的平面几何问题、力学问题与其它一些实际问题,体会向量在几何、物理中的应用. 三.学法与教学用具 学法:(1)自主性学习法+探究式学习法 (2)反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距. 教学用具:电脑、投影机. 四.教学设想 【探究新知】 同学们阅读教材P116---118的相关内容思考: 1.直线的向量方程是怎么来的? 2.什么是直线的法向量? 【巩固深化,发展思维】 教材P118练习1、2、3题 例题讲评(教师引导学生去做) 例1.如图,AD、BE、CF是△ABC的三条高,求证:AD、BE、CF相交于一点。 证:设BE、CF交于一点H, ?→ ? AB= a, ?→ ? AC= b, ?→ ? AH= h, 则 ?→ ? BH= h-a , ?→ ? CH= h-b , ?→ ? BC= b-a ∵ ?→ ? BH⊥ ?→ ? AC, ?→ ? CH⊥ ?→ ? AB B C

平面向量的应用教学案 (5)

平面向量的应用 一、教学目标 1.能用向量方法解决某些简单的平面几何中的距离(线段长度)、夹角等问题. 2.能用向量方法解决物理中的有关力、速度等方面的问题 二、教学重点 1.能用向量方法解决某些简单的平面几何中的距离(线段长度)、夹角等问题. 2.能用向量方法解决物理中的有关力、速度等方面的问题 三、教学难点 能用向量方法解决物理中的有关力、速度等方面的问题 四、教学过程 知识提炼 1.用向量方法解决平面几何问题的“三步曲” 第一步,建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题; 第二步,通过向量运算,研究几何元素之间的关系; 第三步,把运算结果“翻译”成几何关系. 2.向量在物理中的应用 (1)物理问题中常见的向量有力,速度,加速度,位移等. (2)向量的加减法运算体现在力,速度,加速度,位移的合成与分解. (3)动量mv 是向量的数乘运算. (4)功是力F 与所产生的位移s 的数量积. 思考尝试 1.思考判断(正确的打“√”,错误的打“×”) (1)求力F 1和F 2的合力可按照向量加法的平行四边形法则.( ) (2)若△ABC 为直角三角形,则有AB →·BC → =0.( ) (3)若向量AB →∥CD → ,则AB ∥CD .( ) 解析:(1)正确.物理中的力既有大小又有方向,所以力可以看作向量,F 1,F 2的合力可按照向量加法的平行四边形法则求解. (2)错误.因为△ABC 为直角三角形,∠B 并不一定是直角,有可能是∠A 或∠C 为直角. (3)错误.向量AB →∥CD → 时,直线AB ∥CD 或AB ,CD 重合. 答案:(1)√ (2)× (3)×

高三高考平面向量题型总结,经典

平面向量 一、平面向量的基本概念: 1.向量:既有大小又有方向的量叫做________.我们这里的向量是自由向量,即不改变大小和方向可以平行移动。 向量可以用_________来表示.向量的符号表示____________________. 2.向量的长度:向量的大小也是向量的长度(或_____),记作_________. 3.零向量:长度为0的向量叫做零向量,记作________. 4.单位向量:__________________________. 5.平行向量和共线向量:如果向量的基线平行或重合,则向量平行或共线;两个非零向量方向相同或相反.记作________规定:___________________. 注意:理解好共线(平行)向量。 6.相等向量:_______________________. 例:下列说法正确的是_____ ①有向线段就是向量,向量就是有向线段; ②,,a == 则c a = ;③,//,//a a // ④若CD AB =,则A ,B ,C ,D 四点是平行四边形的四个顶点; ⑤所有的单位向量都相等; 二、向量的线性运算: (一)向量的加法: 1.向量的加法的运算法则:____________、_________和___________. (1)向量求和的三角形法则:适用于任何两个向量的加法,不共线向量或共线向量;模长之间的不等式关系_______________________;“首是首,尾是尾,首尾相连” 例1.已知AB=8,AC=5,则BC 的取值范围__________ 例2.化简下列向量 (1)+++ (2))()()(+++++ (2)平行四边形法则:适用不共线的两个向量,当两个向量是同一始点时,用平行四边形法则; a + 是以a ,b 为邻边的平行四边形的一条对角线,如图: 例1.(09 )设P 是三角形ABC 所在平面内一点,BP BA BC 2=+,则 A.0=+PB PA B.0=+PC PA C.0=+PB PC D.0=++PC PB PA 例2.(13四川)在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AO AD AB λ=+ ,则.______=λ (3)多边形法则 2.向量的加法运算律:交换律与结合律 (二)向量的减法: 减法是加法的逆运算,A.PB PA OB OA BA -=-= (终点向量减始点向量)

高一数学平面向量应用举例教案

高一数学平面向量应用举例教案 一、教学分析 1.本节的目的是让学生加深对向量的认识,更好地体会向量这个工具的优越性.对于向量方法,就思路而言,几何中的向量方法完全与几何中的代数方法一致,不同的只是用“向量和向量运算”来代替“数和数的运算”.这就是把点、线、面等几何要素直接归结为向量,对这些向量借助于它们之间的运算进行讨论,然后把这些计算结果翻译成关于点、线、面的相应结果.代数方法的流程图可以简单地表述为: 则向量方法的流程图可以简单地表述为: 这就是本节给出的用向量方法解决几何问题的“三步曲”,也是本节的重点. 2.研究几何可以采取不同的方法,这些方法包括: 综合方法——不使用其他工具,对几何元素及其关系直接进行讨论; 解析方法——以数(代数式)和数(代数式)的运算为工具,对几何元素及其关系进行讨论; 向量方法——以向量和向量的运算为工具,对几何元素及其关系进行讨论; 分析方法——以微积分为工具,对几何元素及其关系进行讨论,等等. 前三种方法都是中学数学中出现的内容. 有些平面几何问题,利用向量方法求解比较容易.使用向量方法要点在于用向量表示线段或点,根据点与线之间的关系,建立向量等式,再根据向量的线性相关与无关的性质,得出向量的系数应满足的方程组,求出方程组的解,从而解决问题.使用向量方法时,要注意向量起点的选取,选取得当可使计算过程大大简化. 二、教学目标 1.知识与技能: 通过平行四边形这个几何模型,归纳总结出用向量方法解决平面几何问题的“三步曲”. 2.过程与方法: 明了平面几何图形中的有关性质,如平移、全等、相似、长度、夹角等可以由向量的线性运算及数量积表示. 3.情感态度与价值观: 通过本节学习,让学生深刻理解向量在处理有关平面几何问题中的优越性,活跃学生的思维,发展学生的创新意识,激发学生的学习积极性,并体会向量在几何和现实生活中的意义.教学中要求尽量引导学生使用信息技术这个现代化手段. 三、重点难点 教学重点:用向量方法解决实际问题的基本方法;向量法解决几何问题的“三步曲”. 教学难点:如何将几何等实际问题化归为向量问题. 四、教学设想 (一)导入新课

平面向量典型例题67629

平面向量经典例题: 1. 已知向量a =(1,2),b =(2,0),若向量λa +b 与向量c =(1,-2)共线,则实数λ等于( ) A .-2 B .-13 C .-1 D .-23 [答案] C [解析] λa +b =(λ,2λ)+(2,0)=(2+λ,2λ),∵λa +b 与c 共线,∴-2(2+λ)-2λ=0,∴λ=-1. 2. (文)已知向量a =(3,1),b =(0,1),c =(k , 3),若a +2b 与c 垂直,则k =( ) A .-1 B .- 3 C .-3 D .1 [答案] C [解析] a +2b =( 3,1)+(0,2)=( 3,3), ∵a +2b 与c 垂直,∴(a +2b )·c = 3k +3 3=0,∴k =-3. (理)已知a =(1,2),b =(3,-1),且a +b 与a -λb 互相垂直,则实数λ的值为( ) A .- 611 B .-116 C.611 D.11 6 [答案] C [解析] a +b =(4,1),a -λb =(1-3λ,2+λ), ∵a +b 与a -λb 垂直, ∴(a +b )·(a -λb )=4(1-3λ)+1×(2+λ)=6-11λ=0,∴λ=611 . 3. 设非零向量a 、b 、c 满足|a |=|b |=|c |,a +b =c ,则向量a 、b 间的夹角为( ) A .150° B .120° C .60° D .30° [答案] B [解析] 如图,在?ABCD 中, ∵|a |=|b |=|c |,c =a +b ,∴△ABD 为正三角形,∴∠BAD =60°,

北京四中数学必修四平面向量应用举例基础版

平面向量应用举例 编稿:丁会敏 审稿:王静伟 【学习目标】 1.会用向量方法解决某些简单的平面几何问题. 2.会用向量方法解决简单的力学问题与其他一些实际问题. 3.体会用向量方法解决实际问题的过程,知道向量是一种处理几何、物理等问题的工具,提高运算能力和解决实际问题的能力. 【要点梳理】 要点一:向量在平面几何中的应用 向量在平面几何中的应用主要有以下几个方面: (1)证明线段相等、平行,常运用向量加法的三角形法则、平行四边形法则,有时用到向量减法的意义. (2)证明线段平行、三角形相似,判断两直线(或线段)是否平行,常运用向量平行(共线)的条件://λ?=a b a b (或x 1y 2-x 2y 1=0). (3)证明线段的垂直问题,如证明四边形是矩形、正方形,判断两直线(线段)是否垂直等,常运用向量垂直的条件:0⊥??=a b a b (或x 1x 2+y 1y 2=0). (4)求与夹角相关的问题,往往利用向量的夹角公式cos |||| θ?=a b a b . (5)向量的坐标法,对于有些平面几何问题,如长方形、正方形、直角三角形等,建立直角坐标系,把向量用坐标表示,通过代数运算解决几何问题. 要点诠释: 用向量知识证明平面几何问题是向量应用的一个方面,解决这类题的关键是正确选择基底,表示出相关向量,这样平面图形的许多性质,如长度、夹角等都可以通过向量的线性运算及数量积表示出来,从而把几何问题转化成向量问题,再通过向量的运算法则运算就可以达到解决几何问题的目的了. 要点二:向量在解析几何中的应用 在平面直角坐标系中,有序实数对(x ,y )既可以表示一个固定的点,又可以表示一个向量,使向量与解析几何有了密切的联系,特别是有关直线的平行、垂直问题,可以用向量方法解决. 常见解析几何问题及应对方法:

平面向量的应用(教学设计)

平面向量的应用 一、江苏省高考说明对平面向量的要求 平面向量的概念,平面向量的加法、减法及数乘运算,平面向量的坐标表示,平面向量的平行与垂直这几个方面都是B 级要求,平面向量的应用是A 级要求,仅平面向量的数量积是C 级要求. 二、高考命题规律 1、高考对向量的考查主要是向量的概念及其运算(坐标运算、几何运算),平面向量的加、减法的几何意义,数量积及运算律,两个非零向量平行及垂直的充要条件; 2、常在大题中兼顾对向量的考查,主要涉及向量在三角函数、解析几何、函数及数列中的应用; 3、题目大都是容易题和中等题,题型多为一道填空题或一道大题. 三、复习目标 1、通过本节课的复习,进一步掌握向量数量积的几何运算法则和坐标运算法则; 2、使学生正确掌握向量的具体应用,并能通过解题体验平面向量应用问题的常规解法. 四、复习重点 1、平面向量的概念、加减法、数量积的灵活应用; 2、平面向量的具体应用. 五、复习过程 (一)小题训练 1、(高考题改编)已知两点M (-2,0)、N (2,0),点P 为坐标平 面内的动点,满足||||MN MP MN NP ?+?u u u u r u u u r u u u u r u u u r =0,则动点P (x ,y )的轨迹方程为 . 28y x =- 2、若向量a ρ ,b ρ满足2=a ρ ,1=b ρ ,()1=+?b a a ρ ρ ρ,则向量a ρ ,b ρ 的夹角 的大小为 . 34 π 3、已知向量2 (,1)a x x =+r ,(1,)b x t =-r ,若函数()f x a b =r r g 在区间(-1,1) 上是增函数,则t 的取值范围是 . 4、在△ABC 中,π 6 A ∠=,D 是BC 边上任意一点(D 与 B 、 C 不重合),且 22||||AB AD BD DC =+?u u u r u u u r u u u r u u u r ,则B ∠等于 . 512 π (二)典型例题 例1:已知向量(cos ,sin )a αα=r , sin ,cos )b αα=r ,(,)22 ππ α∈-.

平面向量经典练习题(含答案)

高中平面向量经典练习题 【编著】黄勇权 一、填空题 1、向量a=(2,4),b=(-1,-3),则向量3a-2b的坐标是。 2、已知向量a与b的夹角为60°,a=(3,4),|b | =1,则|a+5b | = 。 3、已知点A(1,2),B(2,1),若→ AP=(3,4),则 → BP= 。 4、已知A(-1,2),B(1,3),C(2,0),D(x,1),若AB与CD共线,则|BD|的值等于________。 5、向量a、b满足|a|=1,|b|= 2 ,(a+b)⊥(2a-b),则向量a与b的夹角为________。 6、设向量a,b满足|a+b|= 10,|a-b|= 6 ,则a·b=。 7、已知a、b是非零向量且满足(a-2b)⊥a,(b-2a)⊥b,则a与b的夹角是。 8、在△ABC中,D为AB边上一点,→ AD = 1 2 → DB, → CD = 2 3 → CA + m → CB,则 m= 。 9、已知非零向量a,b满足|b|=4|a|,a⊥(2a+b),则a与b的夹角是。 10、在三角形ABC中,已知A(-3,1),B(4,-2),点P(1,-1)在中线AD 上,且→ AP= 2 → PD,则点C的坐标是()。 二、选择题 1、设向量→ OA=(6,2),→ OB=(-2,4),向量→ OC垂直于向量→ OB,向量 → BC平行于 →OA,若→ OD + → OA= → OC,则 → OD坐标=()。 A、(11,6) B、(22,12) C、(28,14) D、(14,7) 2、把A(3,4)按向量a(1,-2)平移到A',则点A'的坐标() A、(4 , 2) B、(3,1) C、(2,1) D、(1,0) 3、已知向量a,b,若a为单位向量, 且 | a| = | 2b| ,则(2a+ b)⊥(a-2b),则向量a与b的夹角是()。 A、90° B、60° C、30° D、0° 4、已知向量ab的夹角60°,| a|= 2,b=(-1,0),则| 2a-3b|=()

平面向量应用举例

平面向量应用举例 【学习目标】 1.会用向量方法解决某些简单的平面几何问题. 2.会用向量方法解决简单的力学问题与其他一些实际问题. 3.体会用向量方法解决实际问题的过程,知道向量是一种处理几何、物理等问题的工具,提高运算能力和解决实际问题的能力. 【要点梳理】 要点一:向量在平面几何中的应用 向量在平面几何中的应用主要有以下几个方面: (1)证明线段相等、平行,常运用向量加法的三角形法则、平行四边形法则,有时用到向量减法的意义. (2)证明线段平行、三角形相似,判断两直线(或线段)是否平行,常运用向量平行(共线)的条件://λ?=a b a b (或x 1y 2-x 2y 1=0). (3)证明线段的垂直问题,如证明四边形是矩形、正方形,判断两直线(线段)是否垂直等,常运用向量垂直的条件:0⊥??=a b a b (或x 1x 2+y 1y 2=0). (4)求与夹角相关的问题,往往利用向量的夹角公式cos |||| θ?= a b a b . (5)向量的坐标法,对于有些平面几何问题,如长方形、正方形、直角三角形等,建立直角坐标系,把向量用坐标表示,通过代数运算解决几何问题. 要点诠释: 用向量知识证明平面几何问题是向量应用的一个方面,解决这类题的关键是正确选择基底,表示出相关向量,这样平面图形的许多性质,如长度、夹角等都可以通过向量的线性运算及数量积表示出来,从而把几何问题转化成向量问题,再通过向量的运算法则运算就可以达到解决几何问题的目的了. 要点二:向量在解析几何中的应用 在平面直角坐标系中,有序实数对(x ,y )既可以表示一个固定的点,又可以表示一个向量,使向量与解析几何有了密切的联系,特别是有关直线的平行、垂直问题,可以用向量方法解决. 常见解析几何问题及应对方法: (1)斜率相等问题:常用向量平行的性质. (2)垂直条件运用:转化为向量垂直,然后构造向量数量积为零的等式,最终转换出关于点的坐标的方程. (3)定比分点问题:转化为三点共线及向量共线的等式条件. (4)夹角问题:利用公式cos |||| θ?= a b a b . 要点三:向量在物理中的应用 (1)利用向量知识来确定物理问题,应注意两方面:一方面是如何把物理问题转化成数学问题,即将物理问题抽象成数学模型;另一方面是如何利用建立起来的数学模型解释相关物理现象. (2)明确用向量研究物理问题的相关知识:①力、速度、位移都是向量;②力、速度、位移的合成与分解就是向量的加减法;③动量mv 是数乘向量;④功即是力F 与所产生位移s 的数量积. (3)用向量方法解决物理问题的步骤:一是把物理问题中的相关量用向量表示;二是转化为向量问题的模型,通过向量运算解决问题;三是把结果还原为物理结论. 【典型例题】 类型一:向量在平面几何中的应用

数学:平面向量应用举例教案北师大版必修

7.2平面向量应用举例 一.教学目标: 1.知识与技能 (1)经历用向量的方法解决某些简单的平面几何问题、力学问题与其它一些实际问题的过程,体会向量是一种处理几何问题、物理问题等的工具. (2)揭示知识背景,创设问题情景,强化学生的参与意识;发展运算能力和解决实际问题的能力. 2.过程与方法 通过本节课的学习,让学生体会应用向量知识处理平面几何问题、力学问题与其它一些实际问题是一种行之有效的工具;和同学一起总结方法,巩固强化. 3.情感态度价值观 通过本节的学习,使同学们对用向量研究几何以及其它学科有了一个初步的认识;提高学生迁移知识的能力、运算能力和解决实际问题的能力. 二.教学重、难点 重点:(体现向量的工具作用),用向量的方法解决某些简单的平面几何问题、力学问题与其它一些实际问题,体会向量在几何、物理中的应用. 难点:(体现向量的工具作用),用向量的方法解决某些简单的平面几何问题、力学问题与其它一些实际问题,体会向量在几何、物理中的应用. 三.学法与教学用具 学法:(1)自主性学习法+探究式学习法 (2)反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距. 教学用具:电脑、投影机. 四.教学设想 【探究新知】

[展示投影] 同学们阅读教材的相关内容思考: 1.直线的向量方程是怎么来的? 2.什么是直线的法向量? 【巩固深化,发展思维】 教材P 103练习1、2、3题 [展示投影]例题讲评(教师引导学生去做) 例1.如图,AD 、BE 、CF 是△ABC 的三条高,求证:AD 、BE 、CF 相交于一点。 证:设BE 、CF 交于一点H , ?→ ?AB = a , ?→?AC = b , ?→ ?AH = h , 则?→ ?BH = h a , ?→ ?CH = h b , ?→ ?BC = b a ∵?→ ?BH ?→ ?AC , ?→?CH ?→ ?AB ∴ 0)()()(0)(0)(=-???-=?-?? ?? =?-=?-a b h a b h b a h a a h b a h ∴?→ ?AH ?→ ?BC 又∵点D 在AH 的延长线上,∴AD 、BE 、CF 相交于一点 [展示投影]预备知识: 1.设P 1, P 2是直线l 上的两点,P 是l 上不同于P 1, P 2的任一点,存在实数λ,使?→ ?P P 1=λ?→ ?2PP ,λ叫做点P 分?→ ?21P P 所成的比, 有三种情况: λ>0(内分) (外分) λ<0 (λ<—1) ( 外分)λ<0 (—1<λ<0) A B C E F H P P P 222P P P

平面向量经典习题_提高篇

平面向量: 1. 已知向量a =(1,2),b =(2,0),若向量λa +b 与向量c =(1,- 2)共线,则实数λ等于( ) A .-2 B .-13 C .-1 D .-23 [答案] C [解析] λa +b =(λ,2λ)+(2,0)=(2+λ,2λ), ∵λa +b 与c 共线, ∴-2(2+λ)-2λ=0,∴λ=-1. 2. (文)已知向量a =(3,1),b =(0,1),c =(k ,3),若a +2b 与 c 垂直,则k =( ) A .-1 B .- 3 C .-3 D .1 [答案] C [解析] a +2b =(3,1)+(0,2)=(3,3), ∵a +2b 与c 垂直,∴(a +2b )·c =3k +33=0, ∴k =-3. (理)已知a =(1,2),b =(3,-1),且a +b 与a -λb 互相垂直,则实数λ的值为( ) A .-611 B .-116

C.6 11D. 11 6 [答案] C [解析] a+b=(4,1),a-λb=(1-3λ,2+λ), ∵a+b与a-λb垂直, ∴(a+b)·(a-λb)=4(1-3λ)+1×(2+λ)=6-11λ=0,∴λ =6 11 . 3.设非零向量a、b、c满足|a|=|b|=|c|,a+b=c,则向量a、 b间的夹角为( ) A.150° B.120° C.60° D.30° [答案] B [解析] 如图,在?ABCD中, ∵|a|=|b|=|c|,c=a+b,∴△ABD为正三角形, ∴∠BAD=60°,∴〈a,b〉=120°,故选B.

(理)向量a ,b 满足|a |=1,|a -b |=3 2,a 与b 的夹角为60°, 则|b |=( ) A.12 B.1 3 C.1 4 D.15 [答案] A [解析] ∵|a -b |=32,∴|a |2+|b |2 -2a ·b =34, ∵|a |=1,〈a ,b 〉=60°, 设|b |=x ,则1+x 2 -x =34,∵x >0,∴x =1 2 . 4. 若AB →·BC →+AB →2=0,则△ABC 必定是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰直角三角形 [答案] B [解析] AB →·BC →+AB →2=AB →·(BC →+AB →)=AB →·AC →=0,∴AB →⊥AC →, ∴AB ⊥AC ,∴△ABC 为直角三角形. 5. (文)若向量a =(1,1),b =(1,-1),c =(-2,4),则用a ,b 表示 c 为( ) A .-a +3b B .a -3b

平面向量应用举例(教学案)

2.5平面向量应用举例 一、教材分析 向量概念有明确的物理背景和几何背景,物理背景是力、速度、加速度等,几何背景是有向线段,可以说向量概念是从物理背景、几何背景中抽象而来的,正因为如此,运用向量可以解决一些物理和几何问题,例如利用向量计算力沿某方向所做的功,利用向量解决平面内两条直线平行、垂直位置关系的判定等问题。 二、教案目标 1.通过应用举例,让学生会用平面向量知识解决几何问题的两种方法-----向量法和坐标法,可以用向量知识研究物理中的相关问题的“四环节”和生活中的实际问题 2.通过本节的学习,让学生体验向量在解决几何和物理问题中的工具作用,增强学生的积极主动的探究意识,培养创新精神。 三、教案重点难点 重点:理解并能灵活运用向量加减法与向量数量积的法则解决几何和物理问题. 难点:选择适当的方法,将几何问题或者物理问题转化为向量问题加以解决. 四、学情分析 在平面几何中,平行四边形是学生熟悉的重要的几何图形,而在物理中,受力分析则是其中最基本的基础知识,那么在本节的学习中,借助这些对于学生来说,非常熟悉的内容来讲解向量在几何与物理问题中的应用。 五、教案方法 1.例题教案,要让学生体会思路的形成过程,体会数学思想方法的应用。 2.学案导学:见后面的学案 3.新授课教案基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习 六、课前准备 1.学生的学习准备:预习本节课本上的基本内容,初步理解向量在平面几何和物理中的应用 2.教师的教案准备:课前预习学案,课内探究学案,课后延伸拓展学案。 七、课时安排:1课时 八、教案过程 (一)预习检查、总结疑惑 检查落实了学生的预习情况并了解了学生的疑惑,使教案具有了针对性。 (二)情景导入、展示目标 教师首先提问:(1)若O为ABC 重心,则OA+OB+OC=0 (2)水渠横断面是四边形ABCD,DC=1 2 AB,且|AD|=|BC|,则这个四边形 为等腰梯形.类比几何元素之间的关系,你会想到向量运算之间都有什么关系? (3)两个人提一个旅行包,夹角越大越费力.为什么? 教师:本节主要研究了用向量知识解决平面几何和物理问题;掌握向量法和坐标法,以及用向量解决平面几何和物理问题的步骤,已经布置学生们课前预习了这部分,检查学生预习情况并让学生把预习过程中的疑惑说出来。 (设计意图:步步导入,吸引学生的注意力,明确学习目标。) (三)合作探究、精讲点拨。

新人教A版《平面向量应用举例》word教案

2.5 平面向量应用举例 [教学目标] 一、知识与能力: 1.运用向量方法解决某些简单的平面几何问题. 2.运用向量方法解决某些简单的物理问题. 二、过程与方法: 经历用向量方法解决某些简单的平面几何问题和物理问题的过程;体会向量是一种处理几何问题和物理问题的工具;发展运算能力和解决实际问题的能力. 三、情感、态度与价值观: 培养对现实世界中的数学现象的好奇心,学习从数学角度发现和提出问题;树立学科之间相互联系、相互促进的辩证唯物主义观点. [教学重点] 运用向量方法解决某些简单的平面几何问题和物理问题. [教学难点] 运用向量方法解决某些简单的平面几何问题和物理问题. [教学时数] 2课时. [教学要求] 教师应该引导学生运用向量解决一些物理和几何问题,例如,利用向量计算力使物体沿某方向运动所做的功,利用向量解决平面内两条直线平行与垂直的位置关系等问题. [教学过程] 第一课时 一、复习回顾 1.向量的概念; 2.向量的表示方法:几何表示、字母表示; 3.零向量、单位向量、平行向量的概念; 4.在不改变长度和方向的前提下,向量可以在空间自由移动; 5.相等向量:长度(模)相等且方向相同的向量; 6.共线向量:方向相同或相反的向量,也叫平行向量. 7.要熟练地掌握向量加法的平行四边形法则和三角形法则,并能做出已知两个向量的和向量;

8. 要理解向量加法的交换律和结合律,能说出这两个向量运算律的几何意义; 9. 理解向量减法的意义;能作出两个向量的差向量. 10. 理解实数与向量的积的意义,能说出实数与一个向量的积这与个向量的模及方向间的关系; 11. 能说出实数与向量的积的三条运算律,并会运用它们进行计算; 12. 能表述一个向量与非零向量共线的充要条件; 13. 会表示与非零向量共线的向量,会判断两个向量共线. 二、讲授新课 由于向量的线性运算和数量积运算具有鲜明的几何背景,平面几何图像的许多性质,如平移、全等、相似、长度、夹角等都可以由向量的线性运算及数量积表示出来.因此可用向量方法解决平面几何中的一些问题. 例1 证明:对角线互相平分的四边形是平行四边形. 1111 ,2222 ,/./. ABCD AC BD O AO OC AB AC DB DC DB AC AB DC AB DC AB BO DC AB D C O D === +=+∴==,即且所以四边形是平行四边形,即对角证明:设四边形的对角线、交于点,且线互相平分的四边形是平行四边形, 1 //. 2 DE ABC DE BC DE BC ?=已知是的中位线, 用向量的方法证明:,且例2 () 11,,22 11 .22 1 //. 2AD AB AE AC DE AE AD AC AB BC DE BC D BC DE BC = ==-=-==证明:易知所以即,又不在上,所以 例3 用向量方法证明:三角形三条高线交于一点.

第4讲 平面向量应用举例

第4讲 平面向量应用举例 一、选择题 1.△ABC 的三个内角成等差数列,且(AB → +AC →)·BC →=0,则△ABC 一定是( ). A .等腰直角三角形 B .非等腰直角三角形 C .等边三角形 D .钝角三角形 解析 △ABC 中BC 边的中线又是BC 边的高,故△ABC 为等腰三角形,又A ,B ,C 成等差数列,故B =π3 . 答案 C 2. 半圆的直径AB =4,O 为圆心,C 是半圆上不同于A 、B 的任意一点,若P 为半径OC 的中点,则(PA →+PB →)·PC →的值是( ) A .-2 B .-1 C .2 D .无法确定,与C 点位置有关 解析 (PA →+PB →)·PC →=2PO →·PC →=-2. 答案 A 3. 函数y =tan π4x -π2的部分图象如图所示,则(OA →+OB →)·AB →= ( ). A .4 B .6 C .1 D .2 解析 由条件可得B (3,1),A (2,0), ∴(OA →+OB →)·AB →=(OA →+OB →)·(OB →-OA →)=OB →2-OA →2=10-4=6. 答案 B 4.在△ABC 中,∠BAC =60°,AB =2,AC =1,E ,F 为边BC 的三等分点,则

AE →·AF →=( ). A.53 B.54 C.109 D.158 解析 法一 依题意,不妨设BE →=12 E C →,B F →=2FC →, 则有AE →-AB →=12(AC →-AE →),即AE →=23AB →+13 AC →; AF →-AB →=2(AC →-AF →),即AF →=13AB →+23 AC →. 所以AE →·AF →=? ????23AB →+13AC →·? ?? ??13AB →+23AC → =19(2AB →+AC →)·(AB →+2AC →) =19(2AB →2+2AC →2+5AB →·AC →) =19(2×22+2×12+5×2×1×cos 60°)=53,选A. 法二 由∠BAC =60°,AB =2,AC =1可得∠ACB =90°, 如图建立直角坐标系,则A (0,1),E ? ????-233,0,F ? ?? ??-33,0, ∴AE →·AF →=? ????-233,-1·? ????-33,-1=? ????-233·? ????-33+(-1)·(-1)=23+1=53,选A. 答案 A 5.如图所示,已知点G 是△ABC 的重心,过G 作直线与AB ,AC 两边分别交于M , N 两点,且AM →=xAB →,AN →=yAC → ,则x ·y x +y 的值为( ).

高中数学典型例题解析平面向量与空间向量

高中数学典型例题分析 第八章 平面向量与空间向量 §8.1平面向量及其运算 一、知识导学1.模(长度):向量的大小,记作||。长度为0的向量称为零向量,长度等于1个单位长度的向量,叫做单位向量。 2.平行向量:方向相同或相反的非零向量叫做平行向量,又叫做共线向量。 3.相等向量:长度相等且方向相同的向量。 4.相反向量:我们把与向量a 长度相等,方向相反的向量叫做a 的相反向量。记作-a 。 5.向量的加法:求两个向量和的运算。 已知a ,b 。在平面内任取一点,作AB =a ,BC =b ,则向量AC 叫做a 与b 的和。 记作a +b 。 6. 向量的减法:求两个向量差的运算。 已知a ,b 。在平面内任取一点O ,作OA =a ,OB =b ,则向量BA 叫做a 与b 的差。 记作a -b 。 7.实数与向量的积: (1)定义: 实数λ与向量a 的积是一个向量,记作λa ,并规定: ①λa 的长度|λa |=|λ|·|a |; ②当λ>0时,λa 的方向与a 的方向相同; 当λ<0时,λa 的方向与a 的方向相反; 当λ=0时,λa =0 (2)实数与向量的积的运算律:设λ、μ为实数,则 ①λ(μa )=(λμ) a ②(λ+μ) a =λa +μa ③λ(a +)=λa +λ 8.向量共线的充分条件:向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使得b =λa 。 另外,设a =(x 1 ,y 1), b = (x 2,y 2),则a //b x 1y 2-x 2y 1=0 9.平面向量基本定理: 如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1、λ 2 使 a =λ11e +λ22e ,其中不共线向量1e 、2e 叫做表示这一

相关文档
最新文档