黄冈中学2013年高考数学压轴题
2013年湖北高考文科数学压轴题

2013 年湖北高考文科数学压轴题18.(本小题满分12 分)在△ ABC 中,角 A , B ,C对应的边分别是 a , b , c . 已知 cos2 A 3cos( B C) 1 .(Ⅰ)求角 A 的大小;(Ⅱ)若△ABC 的面积 S 5 3 , b 5 ,求 sin B sin C 的值 .19.(本小题满分13 分)已知 S n是等比数列 { a n } 的前 n 项和, S4, S2, S3成等差数列,且 a2a3a418 .(Ⅰ)求数列{ a n } 的通项公式;(Ⅱ)能否存在正整数n ,使得 S n2013 ?若存在,求出切合条件的全部n 的会合;若不存在,说明原因.20.(本小题满分13 分)如图,某地质队自水平川面A,B,C 三处垂直向地下钻探,自 A 点向下钻到 A1处发现矿藏,再持续下钻到 A2处后下边已无矿,进而获得在 A 处正下方的矿层厚度为A1 A2 d1.相同可得在 B,C 处正下方的矿层厚度分别为 B1B2 d 2, C1C2d3,且 d1 d 2d3 . 过AB,AC 的中点 M , N 且与直线AA2平行的平面截多面体A1B1C1A2 B2C2所得的截面DEFG为该多面体的一此中截面,其面积记为S中.(Ⅰ)证明:中截面DEFG 是梯形;(Ⅱ)在△ ABC 中,记BC a ,BC边上的高为h ,面积为S . 在估测三角形ABC 地区内正下方的矿藏储量(即多面体A1 B1C1 A2 B2 C2的体积 V )时,可用近似公式V估 S中 h 来估量 . 已知 V 1与 V 的大小关系,并加( d1 d 2 d3 ) S,试判断 V估3以证明 .第 20题图21.(本小题满分13 分)设 a0 , b0 ,已知函数 f ( x)ax b .x 1(Ⅰ)当a b 时,议论函数 f ( x) 的单一性;(Ⅱ)当 x0 时,称 f (x) 为 a 、b对于x 的加权均匀数.(i )判断 f (1) , f (b ) ,a f (b ) 能否成等比数列,并证明af ( b )af (b )a;( ii ) a 、 b 的几何均匀数记为G. 称2ab为 a 、 b 的调解均匀数,记为H .若a bH f ( x)G ,求x 的取值范围.22.(本小题满分 14 分)如图,已知椭圆C1与 C2的中心在座标原点 O ,长轴均为MN且在 x 轴上,短轴长分别为 2m ,2n ( m n) ,过原点且不与x 轴重合的直线 l 与 C1, C2的四个交点按纵坐标从大到小挨次为A,B,C,D.记m,△ BDM 和△ ABN 的面积分别为S1和S2. n(Ⅰ)当直线 l 与y轴重合时,若 S1S2,求的值;(Ⅱ)当变化时,能否存在与坐标轴不重合的直线l,使得 S1S2?并说明原因.yABM O N xCD第22题图答案及分析18.(Ⅰ)由 cos2 A 3cos( B23cos A20 , C ) 1 ,得 2cos A即 (2cos A1)(cos A2)0 ,解得 cos A1或 cosA 2 (舍去).2由于 0Aπ,所以πA. 3(Ⅱ)由 S 1bc sin A1bc33bc53,得 bc20. 又b 5 ,知 c 4 . 2224由余弦定理得 a2b2c22bc cos A25162021,故 a21 .又由正弦定理得sin Bsin C bsin Acsin Abc2A2035a a a2 sin214.719.(Ⅰ)设数列 { a n } 的公比为q,则 a10 , q0 . 由题意得S2S4S3S2 ,即a1q 2a1q3a1q 2 ,a2a3a418,a1q (1q q2 )18,解得a13, q 2.故数列 { a n } 的通项公式为 a n3(2) n 1 .(Ⅱ)由(Ⅰ)有S n3[1 (2) n ]1(2)n .1(2)若存在 n ,使得 S n2013 ,则1(2) n2013,即 ( 2)n2012.当 n 为偶数时, (2) n0 ,上式不建立;当 n 为奇数时,(2)n2n2012,即n2012 ,则n 11.2综上,存在切合条件的正整数n ,且全部这样的n 的会合为 { n n 2k1, k N , k 5} .20.(Ⅰ)依题意 A1 A2平面 ABC ,B1B2平面 ABC ,C1C2平面 ABC ,所以 A1A2∥ B1B2∥C1C2. 又 A1 A2d1, B1B2d2, C1C2d3,且 d1 d 2 d3 .所以四边形 A1 A2 B2 B1、 A1 A2C2C1均是梯形 .由 AA2∥平面MEFN, AA2平面 AA2 B2 B ,且平面 AA2 B2 B平面 MEFN ME ,可得 AA 2∥ ME,即 A1A2∥DE. 同理可证 A1A2∥FG ,所以 DE∥FG .又 M 、 N分别为 AB、 AC 的中点,则 D 、 E 、 F 、G分别为A1B1、A2B2、A2C2、A1C1的中点,即 DE 、 FG 分别为梯形A1A2B2B1、A1A2C2C1的中位线.所以 DE 1111( A1 A2 B1B2 )(d1 d2 ) , FG( A1 A2 C1 C2 )(d1 d3 ) ,2222而 d1 d2d3,故DE FG ,所以中截面DEFG 是梯形.(Ⅱ)V 估 V. 证明以下:由 A 1A 2 平面 ABC , MN 平面 ABC ,可得 A 1 A 2MN .而 EM ∥ A 1A 2,所以 EM MN ,同理可得 FN MN .由 MN 是 △ ABC 的中位线,可得 MN 1 1a 即为梯形 DEFG 的高, BC22 所以 S 中 S 梯形 DEFG 1 ( d 1 d 2 d 1 d3 ) aa(2 d 1 d 2d 3 ) ,2 22 2 8 即 V 估 S 中 h ah (2d 1 d 2 d3 ) .8又 S1ah ,所以 V1(d 1d 2 d 3 ) Sah(d 1 d 2 d 3 ) .2 36于是 V V估ah (d 1d 2d 3 ) ah(2 d 1d 2d 3 ) ahd 1) ( d 3 d 1 )] .68[( d 224 由 d 1 d 2d 3 ,得 d 2 d 1 0 , d 3 d 1 0,故 V 估 V .21. (Ⅰ) f ( x) 的定义域为 (, 1) ( 1,) ,f ( x)a( x 1) ( ax b) a b(x2( x2.1) 1)当 ab 时, f ( x) 0 ,函数 f (x) 在 (, 1), ( 1, ) 上单一递加;当 a b 时, f ( x) 0 ,函数 f (x) 在 (, 1), ( 1,) 上单一递减 .(Ⅱ)( i )计算得 f (1)a b0 , f ( b 2ab 0 , f (b ab0 .2) ab)aa故 f (1) f ( b) a b 2ab ab [ f ( b )] 2 , 即a 2 ab af (1) f (b)[ f (b)]2 .①aa所以 f (1), f (b), f ( b) 成等比数列 .aa因a b ab ,即 f (1)f ( b由①得f ( bf (b .2) . ))a aa( ii )由( i )知 f ( b)H , f (b ) G.故由 Hf ( x) G ,得aaf ( b) f ( x)f ( b) .②aa当ab 时, f ( b) f ( ) f ( b )a .a xa这时, x 的取值范围为 (0,) ;当 ab 时, 0b 1 ,进而b b ,由 f (x) 在 (0,) 上单一递加与②式,a aa得bxb,即x 的取值范围为b , b ;aaa a当 ab 时,b1 ,进而bb,由 f ( x) 在 (0,) 上单一递减与②式,aaa得b xb,即 x 的取值范围为b , b .a aa a22. 依题意可设椭圆 C 1 和 C 2 的方程分别为x 2y 2x 2 y 21 . 此中 a m n 0m1.C 1 :22 1,C 2:2 2,a m ann(Ⅰ) 解法 1:如图 1,若直线 l 与 y 轴重合,即直线l 的方程为 x 0 ,则S 11 |BD | |OM |1, S 21|ON | 1S 1 |BD| 2a | BD ||AB|a | AB | ,所以.222S 2|AB|在 C 1 和 C 2 的方程中分别令 x 0 ,可得 y Am , y Bn , y Dm ,于是 | BD | | y By D | m n 1 .| AB | | y Ay B | m n1若S 1,则1 ,化简得221 0 . 由1,可解得2 1 .S 21故当直线 l 与 y 轴重合时,若S 1S 2 ,则2 1 .解法 2:如图 1,若直线 l 与 y 轴重合,则| BD | | OB | | OD | m n , | AB | | OA | | OB | mn ; S 11 |BD | |OM |1 , S 211a | AB |.2a | BD ||AB| |ON|222所以 S 1|BD | m n 1 .S 2 |AB| m n 1若S 1,则1 ,化简得2 21 0 . 由1,可解得2 1 .S 21故当直线 l 与 y 轴重合时,若S 1S 2 ,则21 .yyAA BBMON xMO NxCCDD第 22 题解答图 1第 22 题解答图 2(Ⅱ) 解法 1:如图 2,若存在与坐标轴不重合的直线 l ,使得 S 1S 2 . 依据对称性,不如设直线 l : y kx (k 0) ,点 M ( a, 0) , N (a, 0) 到直线 l 的距离分别为 d 1 , d 2 ,则由于 d 1| ak 0|ak , d 2| ak 0 | ak,所以 d 1 d 2 .1 k1 k 21 k 221 k 2又S 11| BD | d 11| AB | d 2 ,所以S 1 |BD|,即|BD||AB|.2 , S 2S 2|AB|2由对称性可知 | AB | |CD |,所以 |BC | |BD||AB | (1)| AB |,|AD | |BD| |AB| (1)| AB |,于是|AD|1①|BC |.1将 l 的方程分别与 C 1, C 2 的方程联立,可求得x Aam , x Ban.a 2k 2 m 2a 2k 2n 2依据对称性可知 x Cx B , x D x A ,于是|AD|2x D | 2x A2221 k | x Am a kn2 .②|BC |2x C |2x B2k 2m1 k | x B n a进而由①和②式可得a 2 k 2 n 21. ③a 2 k 2m 2( 1)令t( 1,则由 mn ,可得t 1,于是由③可解得2n 2 ( 2t 2 1)1)ka 2 (1 t 2 ) .由于 k 0 ,所以 k 20 . 于是③式对于 k 有解,当且仅当n 2 ( 2t 2 1) 0 ,a 2 (1 t 2 )等价于 2210 . 由1,可解得1t 1 ,(t1)(t2 )即1( 1 1,由1,解得12 ,所以1)当 112 时,不存在与坐标轴不重合的直线 l ,使得 S 1S 2 ;当12 时,存在与坐标轴不重合的直线l 使得 S 1S 2 .解法 2:如图 2,若存在与坐标轴不重合的直线 l ,使得 S 1 S 2 . 依据对称性,不如设直线 l : ykx (k0) ,点 M ( a, 0) , N (a, 0) 到直线 l 的距离分别为 d 1 , d 2 ,则由于 d 1| ak0|ak , d 2| ak 0 |ak ,所以 d 1d 2 .1 k21 k21 k21 k2又S 1 1| BD | d 1 , S 21| AB | d 2 ,所以 S 1|BD| .2 2 S 2|AB|由于 |BD|2,所以x A1 1 k | x B x D | x A x B.|AB|1 k2 | x A x B | x A x Bx B1由点 A(x A , kx A ) , B( x B , kx B ) 分别在 C 1, C 2 上,可得x A 2 k 2 x A 2 x B 2 k 2 x B 21 ,两式相减可得 x A2 x B 2k 2 ( x A 22x B2 ),a 2m 21 ,n 2a 2m 2a 2依题意 x Ax B 0 ,所以 x A2x B 2 . 所以由上式解得 k 2m 2 (x A 2 x B 2 ) .a 2 (2 x 2x2 )B A由于 k 20,所以由m2 (x A2x B2 )0 ,可解得 1x A.a2 ( 2 x B2x A2 )xB进而11,解得1 2 ,所以1当 11 2 时,不存在与坐标轴不重合的直线l,使得 S1S2;当1 2 时,存在与坐标轴不重合的直线l 使得 S1S2 .。
2013年湖北省高考数学试卷(理科)答案及解析

2013年湖北省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•湖北)在复平面内,复数(i为虚数单位)的共轭复数对应的点位于()A .第一象限B.第二象限C.第三象限D.第四象限2.(5分)(2013•湖北)已知全集为R,集合,则A∩∁R B=()A .{x|x≤0}B.{x|2≤x≤4}C.{x|0≤x<2或x>4}D.{x|0<x≤2或x≥4}3.(5分)(2013•湖北)在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为()A .(¬p)∨(¬q)B.p∨(¬q)C.(¬p )∧(¬q)D.p∨q4.(5分)(2013•湖北)将函数的图象向左平移m(m >0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是()A .B.C.D.5.(5分)(2013•湖北)已知,则双曲线的()A .实轴长相等B.虚轴长相等C.焦距相等D.离心率相等6.(5分)(2013•湖北)已知点A(﹣1,1),B(1,2),C(﹣2,﹣1),D (3,4),则向量在方向上的投影为()A B C D7.(5分)(2013•湖北)一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度的单位:s,v的单位:m/s)行驶至停止,在此期间汽车继续行驶的距离(单位:m)是()A .1+25ln5B.8+25ln C.4+25ln5D.4+50ln28.(5分)(2013•湖北)一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为V1,V2,V3,V4,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有()A .V1<V2<V4<V3B.V1<V3<V2<V4C.V2<V1<V3<V4D.V2<V3<V1<V49.(5分)(2013•湖北)如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X ,则X的均值E(X)=()A .B.C.D.10.(5分)(2013•湖北)已知a为常数,函数f(x)=x(lnx ﹣ax)有两个极值点x1,x2(x1<x2)()A B C D二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.(一)必考题(11-14题)(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B铅笔涂黑.如果全选,则按第15题作答结果计分.)11.(5分)(2013•湖北)从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示:(Ⅰ)直方图中x的值为_________;(Ⅱ)在这些用户中,用电量落在区间[100,250)内的户数为_________.12.(5分)(2013•湖北)阅读如图所示的程序框图,运行相应的程序,输出的结果i=_________.13.(5分)(2013•湖北)设x,y,z∈R,且满足:,则x+y+z=_________.14.(5分)(2013•湖北)古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n个三角形数为.记第n个k边形数为N(n,k)(k≥3),以下列出了部分k边形数中第n 个数的表达式:三角形数,正方形数N(n,4)=n2,五边形数,六边形数N(n,6)=2n2﹣n,…可以推测N(n,k)的表达式,由此计算N(10,24)=_________.15.(5分)(2013•湖北)(选修4﹣1:几何证明选讲)如图,圆O上一点C在直径AB上的射影为D,点D在半径OC上的射影为E.若AB=3AD,则的值为_________.16.(2013•湖北)(选修4﹣4:坐标系与参数方程)在直角坐标系xOy中,椭圆C的参数方程为为参数,a>b>0).在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l与圆O的极坐标方程分别为为非零常数)与ρ=b.若直线l经过椭圆C的焦点,且与圆O相切,则椭圆C的离心率为_________.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(12分)(2013•湖北)在△ABC中,角A,B,C对应的边分别是a,b,c,已知cos2A﹣3cos(B+C)=1.(Ⅰ)求角A的大小;(Ⅱ)若△ABC的面积,求sinBsinC的值.18.(12分)(2013•湖北)已知等比数列{a n}满足:|a2﹣a3|=10,a1a2a3=125.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)是否存在正整数m,使得?若存在,求m的最小值;若不存在,说明理由.19.(12分)(2013•湖北)如图,AB是圆O的直径,点C是圆O上异于A,B的点,直线PC⊥平面ABC,E,F 分别是PA,PC的中点.(Ⅰ)记平面BEF与平面ABC的交线为l,试判断直线l与平面PAC的位置关系,并加以证明;(Ⅱ)设(Ⅰ)中的直线l与圆O的另一个交点为D,且点Q满足.记直线PQ与平面ABC所成的角为θ,异面直线PQ与EF所成的角为α,二面角E﹣l﹣C的大小为β.求证:sinθ=sinαsinβ.20.(12分)(2013•湖北)假设每天从甲地去乙地的旅客人数X是服从正态分布N(800,502)的随机变量.记一天中从甲地去乙地的旅客人数不超过900的概率为p0.(Ⅰ)求p0的值;(参考数据:若X~N(μ,σ2),有P(μ﹣σ<X≤μ+σ)=0.6826,P(μ﹣2σ<X≤μ+2σ)=0.9544,P(μ﹣3σ<X≤μ+3σ)=0.9974.)(Ⅱ)某客运公司用A,B两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次,A,B两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1600元/辆和2400元/辆.公司拟组建一个不超过21辆车的客运车队,并要求B型车不多于A型车7辆.若每天要以不小于p0的概率运完从甲地去乙地的旅客,且使公司从甲地去乙地的营运成本最小,那么应配备A型车、B型车各多少辆?21.(13分)(2013•湖北)如图,已知椭圆C1与C2的中心在坐标原点O,长轴均为MN且在x轴上,短轴长分别为2m,2n(m>n),过原点且不与x轴重合的直线l与C1,C2的四个交点按纵坐标从大到小依次为A,B,C,D,记,△BDM和△ABN的面积分别为S1和S2.(Ⅰ)当直线l与y轴重合时,若S1=λS2,求λ的值;(Ⅱ)当λ变化时,是否存在与坐标轴不重合的直线l,使得S1=λS2?并说明理由.22.(14分)(2013•湖北)设n是正整数,r为正有理数.(Ⅰ)求函数f(x)=(1+x)r+1﹣(r+1)x﹣1(x>﹣1)的最小值;(Ⅱ)证明:;(Ⅲ)设x∈R,记[x]为不小于x的最小整数,例如.令的值.(参考数据:.2013年湖北省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)考点:复数的代数表示法及其几何意义.专题:计算题.分析:将复数z=的分母实数化,求得z=1+i,即可求得,从而可知答案.解答:解:∵z====1+i,∴=1﹣i.∴对应的点(1,﹣1)位于第四象限,故选D.点评:本题考查复数的代数表示法及其几何意义,将复数z=的分母实数化是关键,属于基础题.2.(5分)考点:其他不等式的解法;交、并、补集的混合运算.专题:计算题;不等式的解法及应用.分析:利用指数函数的性质可求得集合A,通过解一元二次不等式可求得集合B,从而可求得A∩C R B.解答:解:∵≤1=,∴x≥0,∴A={x|x≥0};又x2﹣6x+8≤0⇔(x﹣2)(x﹣4)≤0,∴2≤x≤4.∴B={x|2≤x≤4},∴∁R B={x|x<2或x>4},∴A∩∁R B={x|0≤x<2或x>4},故选C.点评:本题考查指数函数的性质与元二次不等式,考查交、并、补集的混合运算,属于中档题.3.(5分)考点:复合命题的真假.专题:阅读型.分析:由命题P和命题q写出对应的¬p和¬q,则命题“至少有一位学员没有降落在指定范围”即可得到表示.解答:解:命题p是“甲降落在指定范围”,则¬p是“甲没降落在指定范围”,q是“乙降落在指定范围”,则¬q是“乙没降落在指定范围”,命题“至少有一位学员没有降落在指定范围”包括“甲降落在指定范围,乙没降落在指定范围”或“甲没降落在指定范围,乙降落在指定范围”或“甲没降落在指定范围,乙没降落在指定范围”三种情况.所以命题“至少有一位学员没有降落在指定范围”可表示为(¬p)V(¬q).故选A.点评:本题考查了复合命题的真假,解答的关键是熟记复合命题的真值表,是基础题.4.(5分)考点:两角和与差的正弦函数;函数y=Asin(ωx+φ)的图象变换.专三角函数的图像与性质.分析:函数解析式提取2变形后,利用两角和与差的正弦函数公式化为一个角的正弦函数,利用平移规律得到平移后的解析式,根据所得的图象关于y轴对称,即可求出m的最小值.解答:解:y=cosx+sinx=2(cosx+sinx)=2sin (x+),∴图象向左平移m(m >0)个单位长度得到y=2sin[(x+m)+]=2sin(x+m+),∵所得的图象关于y轴对称,∴m+=kπ+(k∈Z),则m的最小值为.故选B点评:此题考查了两角和与差的正弦函数公式,以及函数y=Asin(ωx+φ)的图象变换,熟练掌握公式是解本题的关键.5.(5分)考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:根据双曲线的标准方程求出双曲线的几何性质同,即可得出正确答案.解答:解:双曲线的实轴长为2cosθ,虚轴长2sinθ,焦距2,离心率,双曲线的实轴长为2sinθ,虚轴长2sinθtanθ,焦距2tanθ,离心率,故它们的离心率相同.故选D.点评:本题主要考查了双曲线的标准方程、双曲线的简单性质等,属于基础题.6.(5分)考平面向量数量积的含义与物理意义.专题:平面向量及应用.分析:先求出向量、,根据投影定义即可求得答案.解答:解:,,则向量方向上的投影为:•cos<>=•===,故选A.点评:本题考查平面向量数量积的含义与物理意义,考查向量投影定义,属基础题,正确理解相关概念是解决问题的关键.7.(5分)考点:定积分.专题:导数的综合应用.分析:令v(t)=0,解得t=4,则所求的距离S=,解出即可.解答:解:令v(t)=7﹣3t+,化为3t2﹣4t ﹣32=0,又t>0,解得t=4.∴由刹车行驶至停止,在此期间汽车继续行驶的距离s===4+25ln5.故选C.点评:熟练掌握导数的运算法则和定积分的几何意义是解题的关键.8.(5分)考点:由三视图求面积、体积.专题:计算题.分析:利用三视图与已知条件判断组合体的形状,分别求出几何体的体积,即可判断出正确选项.解答:解:由题意以及三视图可知,该几何体从上到下由:圆台、圆柱、正四棱柱、正四棱台组成,体积分别记λ为V1==.V2=12×π×2=2π,V3=2×2×2=8V4==;∵,∴V2<V1<V3<V4故选C.点评:本题考查简单组合体的三视图与几何体的体积的求法,正确判断几何体的形状与准确利用公式求解体积是解题的关键.9.(5分)考点:离散型随机变量的期望与方差.专题:压轴题;概率与统计.分析:由题意可知:X所有可能取值为0,1,2,3.①8个顶点处的8个小正方体涂有3面,②每一条棱上除了两个顶点处的小正方体,还剩下3个,一共有3×12=36个小正方体涂有2面,③每个表面去掉四条棱上的16个小正方形,还剩下9个小正方形,因此一共有9×6=54个小正方体涂有一面,④由以上可知:还剩下125﹣(8=36+54)=27个内部的小正方体的6个面都没有涂油漆,根据上面的分析即可得出其概率及X的分布列,利用数学期望的计算公式即可得出.解答:解:由题意可知:X所有可能取值为0,1,2,3.①8个顶点处的8个小正方体涂有3面,∴P(X=3)=;②每一条棱上除了两个顶点处的小正方体,还剩下3个,一共有3×12=36个小正方体涂有2面,∴P (X=2)=;③每个表面去掉四条棱上的16个小正方形,还剩下9个小正方形,因此一共有9×6=54个小正方体涂有一面,∴P(X=1)=.④由以上可知:还剩下125﹣(8+36+54)=27个内部的小正方体的6个面都没有涂油漆,∴P(X=0)=.X0123P故X的分布列为因此E(X)==.故选B.点评:正确找出所涂油漆的面数的正方体的个数及古典概型的概率计算公式、分布列与数学期望是解题的关键.10.(5分)考点:利用导数研究函数的极值;函数在某点取得极值的条件.专题:压轴题;导数的综合应用.分析:先求出f′(x),令f′(x)=0,由题意可得lnx=2ax﹣1有两个解x1,x2⇔函数g(x)=lnx+1﹣2ax有且只有两个零点⇔g′(x)在(0,+∞)上的唯一的极值不等于0.利用导数与函数极值的关系即可得出.解答:解:∵=lnx+1﹣2ax,(x>0)令f′(x)=0,由题意可得lnx=2ax﹣1有两个解x1,x2⇔函数g(x)=lnx+1﹣2ax有且只有两个零点⇔g′(x)在(0,+∞)上的唯一的极值不等于0..①当a≤0时,g′(x)>0,f′(x)单调递增,因此g(x)=f′(x)至多有一个零点,不符合题意,应舍去.②当a>0时,令g′(x)=0,解得x=,∵x,g′(x)>0,函数g(x )单调递增;时,g′(x )<0,函数g(x )单调递减.∴x=是函数g(x)的极大值点,则>0,即>0,∴ln(2a)<0,∴0<2a<1,即.∵,f′(x1)=lnx1+1﹣2ax1=0,f′(x2)=lnx2+1﹣2ax2=0.且f(x1)=x1(lnx1﹣ax1)=x1(2ax1﹣1﹣ax 1)=x 1(ax1﹣1)=﹣<0,f(x2)=x2(lnx2﹣ax2)=x2(ax 2﹣1)>=﹣.().故选D.点评:熟练掌握利用导数研究函数极值的方法是解题的关键.二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.(一)必考题(11-14题)(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B铅笔涂黑.如果全选,则按第15题作答结果计分.)11.(5分)考点:频率分布直方图.专题:图表型.分析:(I)根据频率分布直方图中,各组的频率之和为1,我们易得到一个关于x的方程,解方程即可得到答案.(II)由已知中的频率分布直方图,利用[100,250)之间各小组的纵坐标(矩形的高)乘以组距得到[100,250)的频率,利用频率乘以样本容量即可求出频数.解答:解:(Ⅰ)依题意及频率分布直方图知,0.0024×50+0.0036×50+0.0060×50+x×50+0.0024×50+0.0012×50=1,解得x=0.0044.(II)样本数据落在[100,150)内的频率为0.0036×50=0.18,样本数据落在[150,200)内的频率为0.006×50=0.3.样本数据落在[200,250)内的频率为0.0044×50=0.22,故在这些用户中,用电量落在区间[100,250)内的户数为(0.18+0.30+0.22)×100=70.故答案为:0.0044;70.点根据新高考服务于新教材的原则,作为新教材的新增内容﹣﹣频率分布直方图是新高考的重要考点.对评:于“频率分布直方图学习的关键是学会画图、看图和用图.12.(5分)考点:程序框图.分析:框图首先给变量a和变量i赋值,然后对a是否等于4进行判断,不等于4,继续判断a是否为奇数,是执行路径a=3a+1,否执行路径,再执行i=i+1,依次循环执行,当a等于4时跳出循环,输出i 的值.解答:解:框图首先给变量a和变量i赋值,a=4,i=1.判断10=4不成立,判断10是奇数不成立,执行,i=1+1=2;判断5=4不成立,判断5是奇数成立,执行a=3×5+1=16,i=2+1=3;判断16=4不成立,判断16是奇数不成立,执行,i=3+1=4;判断8=4不成立,判断8是奇数不成立,执行,i=4+1=5;判断4=4成立,跳出循环,输出i的值为5.故答案是5.点评:本题考查了程序框图,循环结构中含有条件结构,外面的循环结构为直到型,即不满足条件执行循环,直到条件满足跳出循环.是基础题.13.(5分)考点:一般形式的柯西不等式;进行简单的合情推理.专题:计算题;不等式的解法及应用.分析:根据柯西不等式,算出(x+2y+3z)2≤14(x2+y2+z2)=14,从而得到x+2y+3z恰好取到最大值,由不等式的等号成立的条件解出x=、y=且z=,由此即可得到x+y+z的值.解答:解:根据柯西不等式,得(x+2y+3z)2≤(12+22+32)(x2+y 2+z 2)=14(x2+y2+z 2)当且仅当时,上式的等号成立∵x2+y2+z2=1,∴(x+2y+3z)2≤14,结合,可得x+2y+3z恰好取到最大值∴=,可得x=,y=,z=因此,x+y+z=++=故答案为:点评:本题给出x、y、z 的平方和等于1,在x+2y+3z恰好取到最大值的情况下求x+y+z的值.着重考查了运用柯西不等式求最值的方法,属于中档题.抓住柯西不等式的等号成立的条件,是本题得以解决的关键.14.(5分)考点:归纳推理.专题:计算题.分析:观察已知式子的规律,并改写形式,归纳可得,把n=10,k=24代入可得答案.解答:解:原已知式子可化为:,,,,由归纳推理可得,故=1100﹣100=1000故答案为:1000点评:本题考查归纳推理,观察已知式子的规律并改写形式是解决问题的关键,属基础题.15.(5分)考点:与圆有关的比例线段;直角三角形的射影定理.专题:压轴题;选作题.分析:设圆O的半径为3x,根据射影定理,可以求出OD2=OE•OC=x2,CD 2=CE•OC=8x2,进而得到的值.解解:设圆O的半径OA=OB=OC=3x,答:∵AB=3AD,∴AD=2x,BD=4x,OD=x又∵点C在直径AB上的射影为D,在△ABC中,由射影定理得:CD2=AD•BD=8x2,在△ODC中,由射影定理得:OD2=OE•OC=x2,CD2=CE•OC=8x2,故==8故答案为:8点评:本题考查的知识点是直角三角形射影定理,射影定理在使用时一定要注意其使用范围…“双垂直”.16.(2013•湖北)考点:参数方程化成普通方程;椭圆的简单性质;点的极坐标和直角坐标的互化.专题:压轴题;圆锥曲线的定义、性质与方程.分析:先根据极坐标与直角坐标的转换关系将直线l的极坐标方程分别为为非零常数)化成直角坐标方程,再利用直线l经过椭圆C的焦点,且与圆O相切,从而得到c=b,又b2=a2﹣c2,消去b后得到关于a,c的等式,即可求出椭圆C的离心率.解答:解:直线l的极坐标方程分别为为非零常数)化成直角坐标方程为x+y﹣m=0,它与x轴的交点坐标为(m,0),由题意知,(m ,0)为椭圆的焦点,故|m|=c,又直线l与圆O:ρ=b相切,∴,从而c=b,又b2=a2﹣c2,∴c2=2(a2﹣c2),∴3c2=2a2,∴=.则椭圆C的离心率为.故答案为:.点评:本题考查了椭圆的离心率,考查了参数方程化成普通方程,点的极坐标和直角坐标的互化,考查提高学生分析问题的能力.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(12分)考点:余弦定理;正弦定理.专题:解三角形.分析:(I)利用倍角公式和诱导公式即可得出;(II)由三角形的面积公式即可得到bc=20.又b=5,解得c=4.由余弦定理得a 2=b2+c2﹣2bccosA=25+16﹣20=21,即可得出a .又由正弦定理得即可得到即可得出.解答:解:(Ⅰ)由cos2A﹣3cos(B+C)=1,得2cos2A+3cosA﹣2=0,即(2cosA﹣1)(cosA+2)=0,解得(舍去).因为0<A<π,所以.(Ⅱ)由S===,得到bc=20.又b=5,解得c=4.由余弦定理得a2=b2+c2﹣2bccosA=25+16﹣20=21,故.又由正弦定理得.点评:熟练掌握三角函数的倍角公式和诱导公式、三角形的面积公式、余弦定理得、正弦定理是解题的关键.18.(12分)考点:数列的求和;等比数列的通项公式;数列与不等式的综合.专题:计算题;等差数列与等比数列.分析:(I)设等比数列{a n}的公比为q,结合等比数列的通项公式表示已知条件,解方程可求a1,q,进而可求通项公式(Ⅱ)结合(I)可知是等比数列,结合等比数列的求和公式可求,即可判断解答:解:(Ⅰ)设等比数列{a n}的公比为q ,则由已知可得解得故.(Ⅱ)若,则,故是首项为,公比为的等比数列,从而.若,则是首项为,公比为﹣1的等比数列,从而故.综上,对任何正整数m,总有.故不存在正整数m,使得成立.点评:本题主要考查了等比数列的通项公式及求和公式的综合应用,还考查了一定的逻辑推理与运算的能力19.(12分)考点:用空间向量求平面间的夹角;空间中直线与平面之间的位置关系;直线与平面平行的判定;二面角的平面角及求法.专题:空间位置关系与距离;空间角.分析:(I)直线l∥平面PAC.连接EF,利用三角形的中位线定理可得,EF∥AC;利用线面平行的判定定理即可得到EF∥平面ABC.由线面平行的性质定理可得EF∥l.再利用线面平行的判定定理即可证明直线l∥平面PAC.(II)综合法:利用线面垂直的判定定理可证明l⊥平面PBC.连接BE,BF,因为BF⊂平面PBC,所以l⊥BC.故∠CBF就是二面角E﹣l﹣C的平面角,即∠CBF=β.已知PC⊥平面ABC,可知CD是FD在平面ABC内的射影,故∠CDF就是直线PQ与平面ABC所成的角,即∠CDF=θ.由BD⊥平面PBC,有BD⊥BF,知∠BDF=α,分别利用三个直角三角形的边角关系即可证明结论;向量法:以点C为原点,向量所在直线分别为x,y,z轴,建立如图所示的空间直角坐标系,利用两个平面的法向量的夹角即可得出二面角.解答:解:(Ⅰ)直线l∥平面PAC,证明如下:连接EF,因为E,F分别是PA,PC的中点,所以EF∥AC,又EF⊄平面ABC,且AC⊂平面ABC,所以EF∥平面ABC.而EF⊂平面BEF,且平面BEF∩平面ABC=l,所以EF∥l.因为l⊄平面PAC,EF⊂平面PAC,所以直线l∥平面PAC.(Ⅱ)(综合法)如图1,连接BD,由(Ⅰ)可知交线l即为直线BD,且l∥AC.因为AB是⊙O的直径,所以AC⊥BC,于是l⊥BC.已知PC⊥平面ABC,而l⊂平面ABC,所以PC⊥l .而PC∩BC=C,所以l ⊥平面PBC.连接BE,BF,因为BF⊂平面PBC,所以l⊥BF.故∠CBF就是二面角E﹣l﹣C的平面角,即∠CBF=β.由,作DQ∥CP,且.连接PQ,DF,因为F是CP的中点,CP=2PF,所以DQ=PF,从而四边形DQPF是平行四边形,PQ∥FD.连接CD,因为PC⊥平面ABC,所以CD是FD在平面ABC 内的射影,故∠CDF就是直线PQ与平面ABC所成的角,即∠CDF=θ.又BD⊥平面PBC ,有BD⊥BF,知∠BDF=α,于是在Rt△DCF,Rt△FBD,Rt△BCF中,分别可得,从而.(Ⅱ)(向量法)如图2,由,作DQ∥CP,且.连接PQ,EF,BE,BF,BD,由(Ⅰ)可知交线l即为直线BD.以点C为原点,向量所在直线分别为x,y,z轴,建立如图所示的空间直角坐标系,设CA=a,CB=b,CP=2c,则有.于是,∴=,从而,又取平面ABC的一个法向量为,可得,设平面BEF 的一个法向量为,所以由可得.于是,从而.故,即sinθ=sinαsinβ.点评:本题综合考查了线面平行的判定定理和性质定理、线面垂直的判定与性质定理、平行四边形的判定与性质定理、线面角、二面角、异面直线所成的角、通过建立空间直角坐标系利用法向量的夹角求二面角等基础知识与方法,需要较强的空间想象能力、推理能力和计算能力.20.(12分)考点:简单线性规划;正态分布曲线的特点及曲线所表示的意义.专题:不等式的解法及应用;概率与统计.分析:(I)变量服从正态分布N(800,502),即服从均值为800,标准差为50的正态分布,适合700<X≤900范围内取值即在(μ﹣2σ,μ+2σ)内取值,其概率为:95.44%,从而由正态分布的对称性得出不超过900的概率为p0.(II)设每天应派出A型x辆、B型车y辆,根据条件列出不等式组,即得线性约束条件,列出目标函数,画出可行域求解.解答:解:(Ⅰ)由于随机变量X服从正态分布N(800,502),故有μ=800,σ=50,P(700<X≤900)=0.9544.由正态分布的对称性,可得p0=(P(X≤900)=P(X≤800)+P(800<X≤900)=(Ⅱ)设A型、B型车辆的数量分别为x,y辆,则相应的营运成本为1600x+2400y.依题意,x,y还需满足:x+y≤21,y≤x+7,P(X≤36x+60y)≥p0.由(Ⅰ)知,p0=P(X≤900),故P(X≤360x+60y)≥p0等价于36x+60y≥900.于是问题等价于求满足约束条件且使目标函数z=1600x+2400y达到最小值的x,y.作可行域如图所示,可行域的三个顶点坐标分别为P(5,12),Q(7,14),R(15,6).由图可知,当直线z=1600x+2400y经过可行域的点P时,直线z=1600x+2400y在y轴上截距最小,即z取得最小值.故应配备A型车5辆,B型车12辆.点评:本题考查正态分布曲线的特点及曲线所表示的意义,考查简单线性规划.本题解题的关键是列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数,将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.21.(13分)考点:直线与圆锥曲线的关系;三角形的面积公式;点到直线的距离公式.专题:压轴题;圆锥曲线的定义、性质与方程.分(Ⅰ)设出两个椭圆的方程,当直线l与y轴重合时,求出△BDM和△ABN的面积S1和S2,直接由面析:积比=λ列式求λ的值;(Ⅱ)假设存在与坐标轴不重合的直线l,使得S1=λS2,设出直线方程,由点到直线的距离公式求出M 和N到直线l的距离,利用数学转化思想把两个三角形的面积比转化为线段长度比,由弦长公式得到线段长度比的另一表达式,两式相等得到,换元后利用非零的k值存在讨论λ的取值范围.解答:解:以题意可设椭圆C1和C2的方程分别为,.其中a >m>n >0,.(Ⅰ)如图1,若直线l与y轴重合,即直线l的方程为x=0,则,,所以.在C1和C2的方程中分别令x=0,可得y A=m,y B=n ,y D=﹣m,于是.若,则,化简得λ2﹣2λ﹣1=0,由λ>1,解得.故当直线l与y轴重合时,若S1=λS2,则.(Ⅱ)如图2,若存在与坐标轴不重合的直线l,使得S1=λS2,根据对称性,不妨设直线l:y=kx(k >0),点M(﹣a ,0),N(a,0)到直线l的距离分别为d1,d2,则,所以d1=d2.又,所以,即|BD|=λ|AB|.由对称性可知|AB|=|CD|,所以|BC|=|BD|﹣|AB|=(λ﹣1)|AB|,|AD|=|BD|+|AB|=(λ+1)|AB|,于是.将l的方程分别与C1和C2的方程联立,可求得根据对称性可知x C =﹣x B,x D=﹣x A,于是②从而由①和②可得③令,则由m>n,可得t≠1,于是由③可得.因为k≠0,所以k 2>0.于是③关于k有解,当且仅当,等价于,由λ>1,解得,即,由λ>1,解得,所以当时,不存在与坐标轴不重合的直线l,使得S1=λS2;当时,存在与坐标轴不重合的直线l,使得S1=λS2.点评:本题考查了三角形的面积公式,考查了点到直线的距离公式,考查了直线与圆锥曲线的关系,该题重点考查了数学转化思想方法和分类讨论的数学思想方法,(Ⅱ)中判断λ的存在性是该题的难题,考查了灵活运用函数和不等式的思想方法.22.(14分)考点:导数在最大值、最小值问题中的应用;利用导数研究函数的单调性;数列的求和;不等式的证明.专题:压轴题;导数的综合应用;不等式的解法及应用.分析:(Ⅰ)先求出函数f (x)的导函数f′(x),令f'(x)=0,解得x=0,再求出函数的单调区间,进而求出最小值为f(0)=0;(Ⅱ)根据(Ⅰ)知,即(1+x)r+1≥1+(r+1)x,令代入并化简得,再令得,,即结论得到证明;(Ⅲ)根据(Ⅱ)的结论,令,n分别取值81,82,83,…,125,分别列出不等式,再将各式相加得,,再由参考数据和条件进行求解.解答:解;(Ⅰ)由题意得f'(x)=(r+1)(1+x)r﹣(r+1)=(r+1)[(1+x)r﹣1],令f'(x)=0,解得x=0.当﹣1<x<0时,f'(x)<0,∴f(x)在(﹣1,0)内是减函数;当x>0时,f'(x)>0,∴f(x)在(0,+∞)内是增函数.故函数f(x)在x=0处,取得最小值为f (0)=0.(Ⅱ)由(Ⅰ),当x∈(﹣1,+∞)时,有f (x)≥f(0)=0,即(1+x)r+1≥1+(r+1)x,且等号当且仅当x=0时成立,故当x>﹣1且x≠0,有(1+x)r+1>1+(r+1)x,①在①中,令(这时x>﹣1且x≠0),得.上式两边同乘n r+1,得(n+1)r+1>n r+1+n r(r+1),即,②当n>1时,在①中令(这时x>﹣1且x≠0),类似可得,③且当n=1时,③也成立.综合②,③得,④(Ⅲ)在④中,令,n 分别取值81,82,83, (125)得,,,…,将以上各式相加,并整理得.代入数据计算,可得由[S]的定义,得[S]=211.点评:本题考查了利用导数研究函数的单调性和求最值,以及学生的创新精神,是否会观察,会抽象概括,会用类比的方法得出其它结论,难度较大,注意利用上一问的结论.。
2013年高考数学压轴题训练及详细的解析

2013年高考数学压轴题训练注:试题均为历年高考试题,精选其中有代表性的题目。
非常适合2013年参加高考的学生和老师复习及冲刺使用。
1.(本小题满分14分)已知椭圆)0(12222>>=+b a by ax 的左、右焦点分别是F 1(-c ,0)、F 2(c ,0),Q 是椭圆外的动点,满足.2||1a Q F =点P 是线段F 1Q 与该椭圆的交点,点T 在线段F 2Q 上,并且满足.0||,022≠=⋅TF TF PT (Ⅰ)设x 为点P 的横坐标,证明x ac a P F +=||1;(Ⅱ)求点T 的轨迹C 的方程;(Ⅲ)试问:在点T 的轨迹C 上,是否存在点M , 使△F 1MF 2的面积S=.2b 若存在,求∠F 1MF 2的正切值;若不存在,请说明理由.本小题主要考查平面向量的概率,椭圆的定义、标准方程和有关性质,轨迹的求法和应用,以及综合运用数学知识解决问题的能力.满分14分. (Ⅰ)证法一:设点P 的坐标为).,(y x由P ),(y x 在椭圆上,得.)()()(||222222221x ac a xab bc x y c x P F +=-++=++=由0,>+-≥+≥a c x ac a a x 知,所以 .||1x ac a P F +=………………………3分证法二:设点P 的坐标为).,(y x 记,||,||2211r P F r P F ==则.)(,)(222221y c x r y c x r ++=++=由.||,4,211222121x a c a r P F cx r r a r r +===-=+得 证法三:设点P 的坐标为).,(y x 椭圆的左准线方程为.0=+x a c a由椭圆第二定义得ac cax P F =+||||21,即.||||||21x ac a c a x a c P F +=+=由0,>+-≥+-≥a c x ac a a x 知,所以.||1x ac a P F +=…………………………3分(Ⅱ)解法一:设点T 的坐标为).,(y x当0||=PT 时,点(a ,0)和点(-a ,0)在轨迹上.当|0||0|2≠≠TF PT 且时,由0||||2=⋅TF PT ,得2TF PT ⊥. 又||||2PF PQ =,所以T 为线段F 2Q 的中点. 在△QF 1F 2中,a Q F OT ==||21||1,所以有.222a yx =+综上所述,点T 的轨迹C 的方程是.222a y x =+…………………………7分解法二:设点T 的坐标为).,(y x 当0||=PT 时,点(a ,0)和点(-a ,0)在轨迹上. 当|0||0|2≠≠TF PT 且时,由02=⋅TF PT ,得2TF PT ⊥.又||||2PF PQ =,所以T 为线段F 2Q 的中点.设点Q 的坐标为(y x '',),则⎪⎪⎩⎪⎪⎨⎧'=+'=.2,2y y c x x因此⎩⎨⎧='-='.2,2y y c x x ①由a Q F 2||1=得.4)(222a y c x ='++' ② 将①代入②,可得.222a y x =+综上所述,点T 的轨迹C 的方程是.222a y x =+……………………7分(Ⅲ)解法一:C 上存在点M (00,y x )使S=2b 的充要条件是⎪⎩⎪⎨⎧=⋅=+.||221,2022020b y c a y x 由③得a y ≤||0,由④得.||20cby ≤ 所以,当cb a 2≥时,存在点M ,使S=2b ;当cba2<时,不存在满足条件的点M.………………………11分 当cba 2≥时,),(),,(002001y x c MF y x c MF --=---=,由2222022021b c a y c x MF MF =-=+-=⋅,212121cos ||||MF F MF MF MF MF ∠⋅=⋅,③ ④22121sin ||||21b MF F MF MF S =∠⋅=,得.2tan 21=∠MF F解法二:C 上存在点M (00,y x )使S=2b 的充要条件是⎪⎩⎪⎨⎧=⋅=+.||221,2022020b y c a y x 由④得.||20cby ≤ 上式代入③得.0))((2224220≥+-=-=cba cba cb a x于是,当cba 2≥时,存在点M ,使S=2b ;当cba2<时,不存在满足条件的点M.………………………11分当cb a 2≥时,记cx y k k cx y k k M F M F -==+==00200121,,由,2||21a F F <知︒<∠9021MF F ,所以.2|1|tan212121=+-=∠k k k k MF F (14)分2.(本小题满分12分)函数)(x f y =在区间(0,+∞)内可导,导函数)(x f '是减函数,且.0)(>'x f 设m kx y x +=+∞∈),,0(0是曲线)(x f y =在点()(,00x f x )得的切线方程,并设函数.)(m kx x g +=(Ⅰ)用0x 、)(0x f 、)(0x f '表示m ; (Ⅱ)证明:当)()(,),0(0x f x g x ≥+∞∈时;(Ⅲ)若关于x 的不等式),0[231322+∞≥+≥+在x b ax x 上恒成立,其中a 、b 为实数,求b 的取值范围及a 与b 所满足的关系.本小题考查导数概念的几何意义,函数极值、最值的判定以及灵活运用数形结合的思想判断函数之间的大小关系.考查学生的学习能力、抽象思维能力及综合运用数学基本关系解决问题的能力.满分12分 (Ⅰ)解:).()(000x f x x f m '-=…………………………………………2分 (Ⅱ)证明:令.0)(),()()(),()()(00=''-'='-=x h x f x f x h x f x g x h 则 因为)(x f '递减,所以)(x h '递增,因此,当0)(,0>'>x h x x 时;当0)(,0<'<x h x x 时.所以0x 是)(x h 唯一的极值点,且是极小值点,可知)(x h 的最小值为0,因此,0)(≥x h 即).()(x f x g ≥…………………………6分(Ⅲ)解法一:10≤≤b ,0>a 是不等式成立的必要条件,以下讨论设此条件成立.③ ④0)1(,122≥-+-+≥+b ax x b ax x 即对任意),0[+∞∈x 成立的充要条件是.)1(221b a -≤另一方面,由于3223)(x x f =满足前述题设中关于函数)(x f y =的条件,利用(II )的结果可知,3223x b ax =+的充要条件是:过点(0,b )与曲线3223x y=相切的直线的斜率大于a ,该切线的方程为.)2(21b x b y +=-于是3223x b ax≥+的充要条件是.)2(21b a ≥…………………………10分综上,不等式322231x b ax x ≥+≥+对任意),0[+∞∈x 成立的充要条件是.)1(2)2(2121b a b -≤≤- ①显然,存在a 、b 使①式成立的充要条件是:不等式.)1(2)2(2121b b -≤- ②有解、解不等式②得.422422+≤≤-b ③因此,③式即为b 的取值范围,①式即为实数在a 与b 所满足的关系.…………12分(Ⅲ)解法二:0,10>≤≤a b 是不等式成立的必要条件,以下讨论设此条件成立. 0)1(,122≥-+-+≥+b ax x b ax x 即对任意),0[+∞∈x 成立的充要条件是.)1(221b a -≤………………………………………………………………8分令3223)(x b ax x -+=φ,于是3223x b ax ≥+对任意),0[+∞∈x 成立的充要条件是.0)(≥x φ 由.0)(331--==-='ax x a x 得φ当30-<<ax 时;0)(<'x φ当3->ax 时,0)(>'x φ,所以,当3-=ax 时,)(x φ取最小值.因此0)(≥x φ成立的充要条件是0)(3≥-a φ,即.)2(21-≥b a ………………10分综上,不等式322231x b ax x≥+≥+对任意),0[+∞∈x 成立的充要条件是.)1(2)2(2121b a b -≤≤- ①显然,存在a 、b 使①式成立的充要条件是:不等式2121)1(2)2(b b -≤- ②有解、解不等式②得.422422+≤≤-b因此,③式即为b 的取值范围,①式即为实数在a 与b 所满足的关系.…………12分3.(本小题满分12分)已知数列{}n a 的首项15,a =前n 项和为n S ,且*15()n n S S n n N +=++∈ (I )证明数列{}1n a +是等比数列;(II )令212()n n f x a x a x a x =+++ ,求函数()f x 在点1x =处的导数(1)f '并比较2(1)f '与22313n n -的大小.解:由已知*15()n n S S n n N +=++∈可得12,24n n n S S n -≥=++两式相减得()1121n n n n S S S S +--=-+即121n n a a +=+从而()1121n n a a ++=+当1n =时21215S S =++所以21126a a a +=+又15a =所以211a =从而()21121a a +=+ 故总有112(1)n n a a ++=+,*n N ∈又115,10a a =+≠从而1121n n a a ++=+即数列{}1n a +是等比数列;(II )由(I )知321n n a =⨯-因为212()n n f x a x a x a x =+++ 所以112()2n n f x a a x na x -'=+++ 从而12(1)2n f a a na '=+++ =()()23212321(321)n n ⨯-+⨯-++⨯- =()232222n n +⨯++⨯ -()12n +++ =()1(1)31262n n n n ++-⋅-+由上()()22(1)23131212n f n n n '--=-⋅-()21221n n --=()()1212121(21)nn n n -⋅--+=12(1)2(21)nn n ⎡⎤--+⎣⎦① 当1n =时,①式=0所以22(1)2313f n n '=-;当2n =时,①式=-120<所以22(1)2313f n n '<-当3n ≥时,10n ->又()011211nnn nn n nn C C C C -=+=++++ ≥2221n n +>+所以()()12210nn n ⎡⎤--+>⎣⎦即①0>从而2(1)f '>22313n n -4.(本小题满分14分) 已知动圆过定点,02p⎛⎫⎪⎝⎭,且与直线2p x =-相切,其中0p >.(I )求动圆圆心C 的轨迹的方程;(II )设A 、B 是轨迹C 上异于原点O 的两个不同点,直线O A 和O B 的倾斜角分别为α和β,当,αβ变化且αβ+为定值(0)θθπ<<时,证明直线A B 恒过定点,并求出该定点的坐标.yA xoB,02p F ⎛⎫⎪⎝⎭MN2p x =-解:(I )如图,设M 为动圆圆心,,02p⎛⎫⎪⎝⎭为记为F ,过点M 作直线2p x =-的垂线,垂足为N ,由题意知:M F M N =即动点M 到定点F 与定直线2p x =-的距离相等,由抛物线的定义知,点M 的轨迹为抛物线,其中,02pF ⎛⎫⎪⎝⎭为焦点,2p x =-为准线,所以轨迹方程为22(0)y px P =>;(II )如图,设()()1122,,,A x y B x y ,由题意得12x x ≠(否则αβπ+=)且12,0x x ≠所以直线A B 的斜率存在,设其方程为y kx b =+,显然221212,22y y x x pp==,将y kx b =+与22(0)y px P =>联立消去x ,得2220ky py pb -+=由韦达定理知121222,p pb y y y y kk+=⋅=①(1)当2πθ=时,即2παβ+=时,tan tan 1αβ⋅=所以121212121,0y y x x y y x x ⋅=-=,221212204y y y y p-=所以2124y y p =由①知:224pb p k=所以2.b pk =因此直线A B 的方程可表示为2y k x P k =+,即(2)0k x P y +-=所以直线A B 恒过定点()2,0p - (2)当2πθ≠时,由αβθ+=,得tan tan()θαβ=+=tan tan 1tan tan αβαβ+-=122122()4p y y y y p+-将①式代入上式整理化简可得:2tan 2p b pkθ=-,所以22tan p b pk θ=+,此时,直线A B 的方程可表示为y kx =+22tan ppk θ+即2(2)0tan p k x p y θ⎛⎫+--= ⎪⎝⎭ 所以直线A B 恒过定点22,tan p p θ⎛⎫- ⎪⎝⎭所以由(1)(2)知,当2πθ=时,直线A B 恒过定点()2,0p -,当2πθ≠时直线A B 恒过定点22,tan p p θ⎛⎫- ⎪⎝⎭. 5.(本小题满分12分)已知椭圆C 1的方程为1422=+yx,双曲线C 2的左、右焦点分别为C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点. (Ⅰ)求双曲线C 2的方程;(Ⅱ)若直线2:+=kx y l 与椭圆C 1及双曲线C 2都恒有两个不同的交点,且l 与C 2的两个交点A和B 满足6<⋅OB OA (其中O 为原点),求k 的取值范围.解:(Ⅰ)设双曲线C 2的方程为12222=-by a x ,则.1,31422222==+=-=b c b a a 得再由故C 2的方程为.1322=-yx(II )将.0428)41(1422222=+++=++=kx x k yxkx y 得代入由直线l 与椭圆C 1恒有两个不同的交点得,0)14(16)41(16)28(22221>-=+-=∆kk k即 .412>k ①0926)31(1322222=---=-+=kx x k yxkx y 得代入将.由直线l 与双曲线C 2恒有两个不同的交点A ,B 得.131.0)1(36)31(36)26(,0312222222<≠⎪⎩⎪⎨⎧>-=-+-=∆≠-k k k k k k 且即)2)(2(,66319,3126),,(),,(22+++=+<+<⋅--=⋅-=+B A B A B A B A B A B A B A B A B B A A kx kx x x y y x x y y x x OB OA kx x kk x x y x B y x A 而得由则设.1373231262319)1(2)(2)1(222222-+=+-⋅+--⋅+=++++=kk kk k kk x x k x x kB A B A.0131315,613732222>--<-+kk kk 即于是解此不等式得.31151322<>k k或 ③由①、②、③得.11513314122<<<<kk或故k 的取值范围为)1,1513()33,21()21,33()1513,1( ----6.(本小题满分12分)数列{a n }满足)1(21)11(1211≥+++==+n a nn a a nn n 且.(Ⅰ)用数学归纳法证明:)2(2≥≥n a n ;(Ⅱ)已知不等式)1(:,0)1ln(2≥<><+n e a x x x n 证明成立对,其中无理数e=2.71828…. (Ⅰ)证明:(1)当n=2时,222≥=a ,不等式成立. (2)假设当)2(≥=k k n 时不等式成立,即),2(2≥≥k a k那么221))1(11(1≥+++=+kk k a k k a . 这就是说,当1+=k n 时不等式成立.根据(1)、(2)可知:22≥≥n a k 对所有成立. (Ⅱ)证法一:由递推公式及(Ⅰ)的结论有 )1.()2111(21)11(221≥+++≤+++=+n a nn a nn a n nnn n两边取对数并利用已知不等式得 n nn a nn a ln )2111ln(ln 21++++≤+.211ln 2nn nn a +++≤ 故nn n n n a a 21)1(1ln ln 1++≤-+ ).1(≥n上式从1到1-n 求和可得 121212121)1(1321211ln ln -++++-++⨯+⨯≤-n n nn a a.22111121121121111)3121(211<-+-=--⋅+--++-+-=nnn nn即).1(,2ln 2≥<<n ea a n n 故(Ⅱ)证法二:由数学归纳法易证2)1(2≥->n n n n对成立,故).2()1(1)1(11(21)11(21≥-+-+<+++=+n n n a n n a nn a n nn n令).2())1(11(),2(11≥-+≤≥+=+n b n n b n a b nn n n 则取对数并利用已知不等式得 n n b n n b ln ))1(11ln(ln 1+-+≤+).2()1(1ln ≥-+≤n n n b n上式从2到n 求和得 )1(1321211ln ln 21-++⨯+⨯≤-+n n b b n.11113121211<--++-+-=nn因).2(3,3ln 1ln .313ln 11122≥=<+<=+=+++n ee b b a b n n 故故1,,,2,132222121≥<<<≥<-<+n e a e a e a n e e a n n 对一切故又显然成立. 7.(本小题满分12分)已知数列:,}{且满足的各项都是正数n a .),4(,21,110N n a a a a n n n ∈-==+(1)证明;,21N n a a n n ∈<<+ (2)求数列}{n a 的通项公式a n . 解:(1)方法一 用数学归纳法证明:1°当n=1时,,23)4(21,10010=-==a a a a∴210<<a a ,命题正确. 2°假设n=k 时有.21<<-k k a a 则)4(21)4(21,1111k k k k k k a a a a a a k n ---=-+=--+时).4)((21))((21)(211111k k k k k k k k k k a a a a a a a a a a ---=+---=-----而.0,04.0111<-∴>--<----k k k k k k a a a a a a又.2])2(4[21)4(2121<--=-=+k k k k a a a a∴1+=k n 时命题正确.由1°、2°知,对一切n ∈N 时有.21<<+n n a a 方法二:用数学归纳法证明:1°当n=1时,,23)4(21,10010=-==a a a a ∴2010<<<a a ;2°假设n=k 时有21<<-k k a a 成立, 令)4(21)(x x x f -=,)(x f 在[0,2]上单调递增,所以由假设有:),2()()(1f a f a f k k <<-即),24(221)4(21)4(2111-⨯⨯<-<---k k k k a a a a也即当n=k+1时 21<<+k k a a 成立,所以对一切2,1<<∈+k k a a N n 有 (2)下面来求数列的通项:],4)2([21)4(2121+--=-=+n n n n a a a a 所以21)2()2(2--=-+n n a an n n n n n n n n b b b b b a b 22212122222112)21()21(21)21(2121,2-+++----==⋅-=--=-=-= 则令, 又b n =-1,所以1212)21(22,)21(---=+=-=n nn n n b a b 即。
2013年高考-湖北省高考压轴卷 数学(文)试题

2013年高考-湖北省高考压轴卷文科数学本试卷共22题,满分150分.考试用时120分钟.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集(){}(){}2,21,ln 1x x U A x B x y x -==<==-R ,则如图所示阴影部分表示的集合为( ){}.1A x x ≥{}.12B x x ≤<{}.01C x x <≤{}.1D x x ≤2.下列四个命题中真命题的个数是( )①“1x <”是“2320x x -+>”的充分不必要条件;②命题“2,0x x x ∃∈->R ”的否定是“2,0x x x ∀∈-≤R ”;③“若22am bm <,则a b <”的逆命题为真; ④命题[]:0,1,21x p x ∀∈≥,命题2:,10q x x x ∃∈++<R ,则p q ∨为真. .0A .1B .2C .3D3.甲、乙两同学用茎叶图记录高三前5次数学测试的成绩,如图所示.他们在分析对比成绩变化时,发现乙同学成绩的一个数字看不清楚了,若已知乙的平均成绩低于甲的平均成绩,则看不清楚的数字为( ).9A .6B .3C .0D 4.已知函数()ln 1xf x ex x =--(其中e 为自然对数的底数),则函数()1y f x =+的大致图象为( )5.某程序框图如图所示,该程序运行后输出的x 值是( ).3A .4B .6C .8D6.已知变量,x y 满足240,2,20,x y x x y -+≥⎧⎪≤⎨⎪+-≥⎩则32x y x +++的取值范围是( )5.2,2A ⎡⎤⎢⎥⎣⎦ 55.,42B ⎡⎤⎢⎥⎣⎦ 45.,52C ⎡⎤⎢⎥⎣⎦5.,24D ⎡⎤⎢⎥⎣⎦ 7.如图,正五边形ABCDE 的边长为2,甲同学在ABC ∆中用余弦定理解得88cos108AC =- ,乙同学在Rt ACH ∆中解得1cos 72AC =,据此可得cos 72 的值所在区间为( )().0.1,0.2A().0.2,0.3B().0.3,0.4C().0.4,0.5D8.如图,矩形ABCD 中,点E 为边CD 的中点,点F 为边AD 的中点,AE 和BF 相交于点O ,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自ABO ∆内部的概率等于( )1.10A 1.8B 1.5C 1.4D9.已知双曲线()222210,0x y a b a b -=>>右支上的一点()00,P x y到左焦点与到右焦点的距离之差为8,且到两渐近线的距离之积为165,则双曲线的离心率为( )5.2A 5.2B 6.2C 5.4D10.在ABC ∆中,16,7,cos 5AC BC A ===,O 是ABC ∆的内心,若OP xOA yOB =+,其中01,01x y ≤≤≤≤,动点P 的轨迹所覆盖的面积为( )106.3A 56.3B10.3C 20.3D 二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在题中横线上.11.已知复数121,1z i z bi =+=+(i 是虚数单位),若12z z 为纯虚数,则实数b 的值是_______________________.12. 已知函数()xe x F =满足()()()x h x g x F +=,且()x g ,()x h 分别是R 上的偶函数和奇函数,若[]2,1∈∀x 使得不等式()()02≥-x ah x g 恒成立,则实数a 的取值范围是13.已知直线1:4360l x y -+=和直线2:0l x =,抛物线24y x=上一动点P 到直线1l 和直线2l 的距离之和的最小值是________________.14.如图为某几何体的三视图,其中正视图是腰长为2的等腰三角形,侧视图是半径为1的半圆,则该几何体的表面积是_______________. (第13题图)15.记123k k kk S =+++ k n +,当1,2,3,k =…时,观察下列等式:(第14题图)21322432354346542511,22111,326111,4241111,5233015,212S n n S n n n S n n n S n n n n S An n n Bn =+=++=++=++-=+++…可以推测A B -=_____________________. 16.已知不等式2342x x a-+-<.(1)若1a =,则不等式的解集为_______________;(2)若不等式的解集不是空集,则实数a 的取值范围为________________.17.已知函数()()()1,0,x f x x C ∈⎧⎪=⎨∈⎪⎩R Q Q 则 (1)()()f f x =______________;(2)下列三个命题中,所有真命题的序号是__________. ①函数()f x 是偶函数;②任取一个不为零的有理数T ,()()f x T f x +=对任意的x ∈R 恒成立;③存在三个点()()()()()()112233,,,,,A x f x B x f x C x f x ,使得ABC ∆为等边三角形.三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤.18.(本小题满分12分) 已知()()cos sin ,2cos ,cos sin ,sin m x x x n x x x =+=--.(1)求()f x m n=⋅ 的最小正周期和单调递减区间;(2)将函数()y f x =的图象向右平移8π个单位,再将所得图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数()y g x =的图象.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若()20,,222A f g B b ⎛⎫=== ⎪⎝⎭,求a 的值.19. (本小题满分12分)已知等差数列{}n a 的公差d 大于0,且35,a a 是方程214450x x -+=的两根,数列{}nb 的前n 项和为()1,2nn n b S S n N *-=∈.(1)求数列{}{},n n a b 的通项公式;(2)记n n n c a b =⋅,求证:1n n c c +<;(3)求数列{}n c 的前n 项和n T .20. (本小题满分13分) 如图,1AA 、1BB 为圆柱1OO 的母线,BC 是底面圆O 的直径,D 、E 分别是1AA 、1CB 的中点,1DE CBB ⊥平面.(1) 证明://DE ABC 平面; (2)求四棱锥11C ABB A -与圆柱1OO 的体积比;(3)若1BB BC =,求直线1CA 与平面1BBC 所成角的正弦值.21. (本小题满分14分)已知椭圆C 的中心在坐标原点,离心率22e =,且其中一个焦点与抛物线214y x =的焦点重合.(1)求椭圆C 的方程;(2)过点1,03S ⎛⎫- ⎪⎝⎭的动直线l 交椭圆C 于,A B 两点,试问:在坐标平面上是否存在一个定点T ,使得无论l 如何转动,以AB 为直径的圆恒过点T ?若存在,求出点T 的坐标;若不存在,请说明理由.22. (本小题满分14分) 已知函数()22ln f x x x =-+.(1)求函数()f x 的最大值;(2)若函数()f x 与()ag x x x =+有相同极值点,①求实数a 的值;②若对于121,,3x x e ⎡⎤∀∈⎢⎥⎣⎦(e 为自然对数的底数),不等式()()1211f x g x k -≤-恒成立,求实数k 的取值范围.2013湖北省高考压轴卷文科数学答案1.B【解析】:对于()221x x -<,等价于()20x x -<,解得02x <<,所以()0,2A =集合B表示函数()ln 1y x =-的定义域,由10x ->,得1x <,故()[),1,1,B C B =-∞=+∞R ,则阴影部分表示()[)1,2A C B = R .故选B . 2.D【解析】:命题①中,{}1x x <是不等式2320x x -+>的解集{}12x x x <>或的真子集,∴“1x <”是“2320x x -+>”的充分不必要条件,∴①正确.命题②显然正确.命题③中,当0m =时,其逆命题不成立,故③错.命题④中,p 为真,q 为假,所以p q ∨为真,故④正确.综上所述,真命题的个数为3.故选D . 3. D【解析】:本题考查茎叶图、平均数.甲的平均分为991001011021031015++++=,设看不清楚的数字为x ,则乙的平均分为939497110110+1015x++++<,解得1x <,因为0x ≥,x N ∈,所以0x =,看不清楚的数字为0.故选D .4.A【解析】据已知关系式可得()()()ln ln 101,111,x x e x x x x f x e x x x x -⎧⎛⎫+-=<≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪--=> ⎪⎪⎝⎭⎩作出其图象,再将所得图象向左平移1个单位即得函数()1g f x =+的图象.故选A . 5.D【解析】:第一次循环结束时,4,2S k ==;第二次循环结束时,22,3S k ==;第三次循环结束时,103,4S k ==,此时103100>,不满足100S <,则输出8x =.故选D . 6.B【解析】:根据题意作出不等式组所表示的可行域如图阴影部分所示,即ABC ∆的边界及其内部,又因为31122x y y x x +++=+++,而12y x ++表示可行域内一点(),x y 和点()2,1P --连线的斜率,由图可知12PB PC y k k x +≤≤+,根据原不等式组解得()()2,0,0,2B C ,所以0112111322202422y y x x ++++≤≤⇒≤≤++++535422x y x ++⇒≤≤+.故选B . 7.C【解析】:因为188c o s 108c o s 72-=,令c o s 72t =,则188t t+=,所以328810t t +-=.令()32881f t t t =+-,则当0t >时,()224160f t t t '=+>,所以()32881f t t t =+-在()0,+∞上单调递增.又因为()()0.30.40f f ⋅<,所以()32881f t t t =+-在()0.3,0.4上有唯一零点,所以cos 72 的值所在区间为()0.3,0.4.故选C . 8. C【解析】:设矩形ABCD 的长AB x =,宽BC y =,涉及相关图形的面积问题,那么矩形A B C D 的面积为A B C D S x y=矩形.如图所示,过O 点作OG //AB 交AD 于点G ,则有OG AGDE AD=,即12OG AGy x=,亦即2OG AG x y =.又OG FG AB FA =,即1212y AG OG x y -=,可得12122y AG AG y y -=,解得25AG y =.那么ABO ∆的面积为121255ABO S x y xy ∆⎛⎫=⨯= ⎪⎝⎭. 由几何概型的概率公式,得所求的概率为1155ABO ABCDxyS P S xy ∆===矩形.故选C . 9. A【解析】:因为双曲线()222210,0x y a b a b -=>>右支上的一点()00,P x y ()0x a ≥到左焦点的距离与到右焦点的距离之差为8,所以28,4a a ==,又因为点()00,P x y ()0x a ≥到两条渐近线的距离之积为165,双曲线的两渐近线方程分别为0x ya b+=和0x y a b-=,所以根据距离公式得220000002222222222111111111x y x y x y a b a b a b a b a b a b a b -+-⋅==++++22222165a b ab a b c ⎛⎫=== ⎪+⎝⎭,所以45ab c =,即55c b =,又因为2222165c c a b =+=+,所以25c =,离心率52c e a ==.故选A .10. A【解析】:根据向量加法的平行四边形法则得动点P 的轨迹是以,OA OB 为邻边的平行四边形,其面积为A O B ∆的面积的2倍.在ABC ∆中,由余弦定理可得2222cos a b c bc A =+-,代入数据解得5c =,设ABC ∆的内切圆的半径为r ,则()11sin 22bc A a b c r =++,解得263r =,所以11265652233AO BS A B r ∆=⨯⨯=⨯⨯=,故动点P 的轨迹所覆盖的面积为10623AOB S ∆=.故选A . 二、填空题11.1-【解析】:()()()()()()122111111111i bi b b i z iz bi bi bi b +-++-+===++-+,因为12z z 为纯虚数,则10b +=且10b -≠,解得1b =-. 12. 22≤a .【解析】:()()()x e x h x g x F =+=,得()()()x e x h x g x F -=-+-=-,即()()()xe x h x g x F -=-=-,解得()2x x e e x g -+=,()2xx e e x h --=,()()02≥-x ah x g 即得02222≥--+--xx x x e e a e e ,参数分离得()xx xx x x x x x x x x e e e e e e e e e e e e a -------+-=-+-=-+≤22222,因为222≥-+---x x x x e e e e (当且仅当xx xxee ee ---=-2,即2=--xx e e 时取等号,x 的解满足[]2,1),所以22≤a . 13.1【解析】:如图所示,作抛物线24y x =的准线1x =-,延长PE 交准线于点N ,由抛物线的定义可得11PM PE PM PN PM PF +=+-=+-1F d ≥-(F d 表示焦点F 到直线1l 的距离)()22406121143-+=-=-=+-.14.223π+【解析】:由三视图知,该几何体由两个共底面的半圆锥构成(如图所示),两个半圆锥侧面积的和为2π,四边形ABCD 由两个等边三角形构成,其面积为324234⨯⨯=,故该几何体的表面积为223π+.15.14【解析】:本题考查归纳推理问题.根据各式的规律,显然16A =.令1n =,则5511S ==,代入得511511621212S B B =+++=⇒=-,所以1116124A B ⎛⎫-=--= ⎪⎝⎭. 16.(1)843x x ⎧⎫<<⎨⎬⎩⎭(2)1,2⎛⎫+∞ ⎪⎝⎭【解析】:(1)当1a =时,2342x x -+-<.①若4x ≥,则3102,4x x -<<,∴舍去;②若34x <<,则22x -<,34x ∴<<;③若3x ≤,则81032,33x x -<∴<≤.综上,不等式的解集为843x x ⎧⎫<<⎨⎬⎩⎭.(2)设()234f x x x =-+-,则()()()()()3104,234,11033,x x f x x x f x x x -≥⎧⎪=-<<∴≥⎨⎪-≤⎩,若不等式2342x x a -+-<的解集不是空集,则121,2a a >∴>,即a 的取值范围为1,2⎛⎫+∞ ⎪⎝⎭. 17.(1)1(2)①②③【解析】:(1)依题意可知,当x Q ∈时,()()()11ff x f ==;当x CQ ∈R时,()()()01f f x f ==.因此()()1f f x =.(2)对于①,当x Q ∈时,x Q -∈,此时()()1f x f x -==;当x CQ ∈R时,x C Q -∈R ,此时()()0f x f x -==,因此对任意的x ∈R ,都有()()f x f x -=,所以函数()f x 是偶函数,①正确.对于②,任取一个不为零的有理数T ,当x Q ∈时,x T Q +∈,()()1f x T f x +==;当x C Q ∈R 时,()(),0x T C Q f x T f x +∈+==R ,因此对任意的x ∈R ,都有()()fx T f x +=,②正确.对于③,取点()330,1,,0,,033A B C ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,易知点,,A B C 均在函数()f x 的图象上,且ABC ∆是等边三角形,③正确.综上所述,所有真命题的序号是①②③.三、解答题18.(1)()()()cos sin cos sin 2sin cos f x m n x x x x x x =⋅=+--22cos sin sin 2x x x =--cos 2sin 2x x =-32sin 22sin 244x x ππ⎛⎫⎛⎫=-=+⎪ ⎪⎝⎭⎝⎭. 所以()f x 的最小正周期T π=. (3分)又由()33222242k x k k Z πππππ+≤+≤+∈,得()388k x k k Z ππππ-≤≤+∈,故()f x 的单调递减区间是()3,88k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. (6分)(2)由02A f ⎛⎫= ⎪⎝⎭,得32si n 04A π⎛⎫+= ⎪⎝⎭,所以()34A k k Z ππ+=∈,因为0A π<<,所以4A π=,将函数()y f x =的图象向右平移8π个单位,得到32s i n 22s i n 22c o s 2842y x x x πππ⎡⎤⎛⎫⎛⎫=-+=+=⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,再将所得图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数()2cos y g x x ==的图象,因为()22g B =,所以22cos 2B =,即1cos 2B =,又0B π<<,所以3B π=,由正弦定理sin sin a b A B =,得2sinsin 264sin 3sin 3b Aa Bππ===. (12分)19.(1)因为35,a a 是方程214450x x -+=的两根,且数列{}n a 的公差0d >,所以355,9a a ==,公差53253a a d -==-.所以()5521n a a n d n =+-=-. (2分) 又当1n =时,有11112b b S -==,所以113b =.当2n ≥时,有()1112n n n n n b S S b b --=-=-,所以()1123n n b n b -=≥. 所以数列{}n b 是首项为13,公比为13的等比数列,所以1111333n n nb -⎛⎫=⨯=⎪⎝⎭. (4分)(2)由(1)知112121,33n n n n n n n n c a b c ++-+=⋅==, 所以()1114121210333n n n n n n n n c c +++-+--=-=≤, 所以1n n c c +≤. (8分)(3)因为213n n n nn c a b -=⋅=, 则123135333n T =+++ 213n n -+,①23411353333n T =+++ 1232133n n n n +--++,② 由①-②,得2321223333n T =+++ 122133n n n +-+-231131112123333n n n +-⎛⎫=+++- ⎪⎝⎭+ ,整理,得113n n n T +=-. (12分) 20.(1)如图,连接.E OA O O E 、、分别为1CB BC 、的中点,EO ∴是1BB C ∆的中位线,1//EO BB ∴且112EO BB =.又111//,DA BB AA BB =,故11,2DA BB EO DA ==∴//EO 且DA EO =,∴四边形AOED 是平行四边形,即//DE OA ,又,,//DE ABC OA ABC DE ABC ⊄⊂∴平面平面平面. (4分) (2)如图,连接CA .由题知1DE CBB ⊥平面,且由(1)知//DE OA , 1,AO CBB AO BC ∴⊥∴⊥平面, 2AC AB OA ∴==.BC 是底面圆O 的直径,CA AB ∴⊥.又1AA 是圆柱的母线,1AA ABC ∴⊥平面,11,AA CA AA AB A ∴⊥= 又,11CA AA B B ∴⊥平面,即CA 为四棱锥11C ABB A -的高. (7分)设圆柱高为h ,底面半径为r ,则()()112212=,2233C ABB A V r h V hr r hr π-=⋅=圆柱,1122223:3C ABB A hrV V r h ππ-∴==圆柱. (9分) (3)如图,作过C 的母线1CC ,连接11B C ,则11B C 是上底面圆1O 的直径,连接11AO ,则11//AO AO ,又111111,AO CBBC AO CBBC ⊥∴⊥平面平面,连接1CO ,则11ACO ∠为直线1CA 与平面1BBC 所成的角. (11分) ()()22221111226,A C AC AA rr r A O r =+=+== ,∴在11Rt AO C ∆中,111116sin 6AO ACO AC ∠==. ∴直线1CA 与平面1BBC 所成角的正弦值为66. (13分) 21.(1)依题意可设椭圆的方程为()222210x y a b b a+=>>,离心率22,22c e a ==, 又抛物线214y x =的焦点为()0,1, 所以1,2,1c a b ===,∴椭圆C 的方程是2212y x +=. (5分) (2)若直线l 与x 轴重合,则以AB 为直径的圆是221x y +=,若直线l 垂直于x 轴,则以AB 为直径的圆是2211639x y ⎛⎫++= ⎪⎝⎭.由22221,116,39x y x y ⎧+=⎪⎨⎛⎫++=⎪ ⎪⎝⎭⎩解得1,0.x y =⎧⎨=⎩ 即两圆相切于点()1,0.因此所求的点T 如果存在,只能是()1,0. (7分) 事实上,点()1,0T 就是所求的点.证明如下:当直线l 垂直于x 轴时,以AB 为直径的圆过点()1,0T .当直线l 不垂直于x 轴时,可设直线1:3l y k x ⎛⎫=+ ⎪⎝⎭.由221,31,2y k x y x ⎧⎛⎫=+ ⎪⎪⎪⎝⎭⎨⎪+=⎪⎩消去y 得()22222122039k x k x k +++-=.设()()1122,,,A x y B x y ,则2122212223,2129.2k x x k k x x k ⎧-⎪+=⎪⎪+⎨⎪-⎪=⎪+⎩(10分)又因为()()11221,,1,TA x y TB x y =-=-, ()()121211TA TB x x y y ∴⋅=--+()()()()()21212222121222222221111331111139122119311123290,x x k x x k x x k x x k k k k k k k k ⎛⎫⎛⎫=--+++ ⎪⎪⎝⎭⎝⎭⎛⎫=++-+++ ⎪⎝⎭--⎛⎫=+⋅+-⋅++ ⎪++⎝⎭=TA TB ∴⊥,即以AB 为直径的圆恒过点()1,0T .故在坐标平面上存在一个定点()1,0T 满足条件. (14分) 22.(1)()()()()211220x x f x x x x x+-'=-+=->, (1分) 由()0,0f x x '⎧>⎨>⎩得01x <<;由()0,0f x x '⎧<⎨>⎩得1x >.()f x ∴在()0,1上为增函数,在()1,+∞上为减函数. (3分) ∴函数()f x 的最大值为()11f =-. (4分)(2)()()2,1a ag x x g x x x'=+∴=- .①由(1)知,1x =是函数()f x 的极值点, 又 函数()f x 与()ag x x x=+有相同极值点, ∴1x =是函数()g x 的极值点,∴()110g a '=-=,解得1a =. (7分)经验证,当1a =时,函数()g x 在1x =时取到极小值,符合题意. (8分)②()()2112,11,392ln 3f f f e e ⎛⎫=--=-=-+ ⎪⎝⎭,易知2192ln 321e -+<--<-,即()()131f f f e ⎛⎫<< ⎪⎝⎭. ()()()()111min max 1,3,392ln 3,11x f x f f x f e ⎡⎤∴∀∈==-+==-⎢⎥⎣⎦. (9分)由①知()()211,1g x x g x x x'=+∴=-.当1,1x e ⎡⎫∈⎪⎢⎣⎭时,()0g x '<;当(]1,3x ∈时,()0g x '>.故()g x 在1,1e ⎡⎫⎪⎢⎣⎭上为减函数,在(]1,3上为增函数.()()11110,12,3333g e g g e e ⎛⎫=+==+= ⎪⎝⎭ ,而()()11012,133e g g g e e ⎛⎫<+<∴<< ⎪⎝⎭.()()()()222min max 110,3,12,33x g x g g x g e ⎡⎤∴∀∈====⎢⎥⎣⎦. (10分)1 当10k ->,即1k >时,对于121,,3x x e ⎡⎤∀∈⎢⎥⎣⎦,不等式()()1211f x g x k -≤-恒成立()()12max 1k f x g x ⇔-≥-⎡⎤⎣⎦()()12max 1k f x g x ⇔≥-+⎡⎤⎣⎦.()()()()1211123f x g x f g -≤-=--=- ,312,1,1k k k ∴≥-+=->∴> 又. (12分)2 当10k -<,即1k <时,对于121,,3x x e ⎡⎤∀∈⎢⎥⎣⎦,不等式()()1211f x g x k -≤-恒成立()()12min 1k f x g x ⇔-≤-⎡⎤⎣⎦()()12min 1k f x g x ⇔≤-+⎡⎤⎣⎦.()()()()1210373392ln 32ln 333f xg x f g -≥-=-+-=-+ , 34342ln 3,1,2ln 333k k k ∴≤-+<∴≤-+ 又. 综上,所求实数k 的取值范围为()34,2ln 31,3⎛⎤-∞-++∞ ⎥⎝⎦. (14分)。
【VIP专享】湖北省黄冈中学2013年秋季高三数学(理科)函数、平面向量、数列、不等式、复数、立体几何、解析

考查范围:函数、平面向量、数列、不等式、复数、立体几何、解析几何 命题人:张智
一.选择题:本大题共 10 小题,每小题 5 分,共 50 分 ,在每小题给出的四个选项中,只 有一项是符合题目要求的
1.集合 A 0,2, a, B 1, a 2 ,若 A B 0,1,2,4,16,则 a 的值为 (B )
A. 1
2
1
B.
2 2
4.【答案】D.法一:【解析】∵| a b || c | ∴| a b || c || a | ,∴解得:
2a b ∴ cos
2 b
a, b
|b |2 a b
a b
| a || b | | b |2 2
1
∴
sin
5. 已知点 M (a, b)(a 0, b 0) 是圆 C : x2 y2 1 内任意一点,点 P(x, y) 是圆上任意一
,解得
D. 0
2
,把点
6 2 62
6
(
6
A
)
,1) 的坐标代入,
2013 f ( n ) f (2011) f (2012) f (2013) f (1) f (2) f (3) 1 。
i 1
7.已知函数
6
f
(
x)
实数 k 的取值范围是 D
A. k 2
kx 2, x lnx, x 0
C. 3 3 2
9【答案】 B(教材选修 4-5 P10 页第 14 题改编)【解析】设该三棱柱的底面边长为 a ,高为
h ,则底面正三角形的外接圆半径是
a2
即
9 12
h2
1,1
a2
2013届全国各地高考押题数学(理科)精选试题分类汇编11概率

2013届全国各地高考押题数学(理科)精选试题分类汇编11:概率一、选择题1 .(2013届湖北省高考压轴卷 数学(理)试题)如图,设D 是图中边长分别为1和2的矩形区域,E 是D内位于函数1(0)y x x =>图象下方的区域(阴影部分),从D 内随机取一个点M ,则点M 取自E 内的概率为( )A .ln 22 B .1ln 22- C .1ln 22+ D .2ln 22- 【答案】C 【解析】:将1y x =与2y =图象交点记为A ,则1(,2)2A ,∴阴影部分E 的面积1121121ln 22S dx x=+⨯=+⎰,而D 的面积为122⨯=,∴所求概率1ln 22P +=.故选 C .2 .(2013届安徽省高考压轴卷数学理试题)投掷一枚正方体骰子(六个面上分别标有1,2,3,4,5,6),向上的面上的数字记为a ,又()n A 表示集合的元素个数,{}2||3|1,A x x ax x R =++=∈,则()4n A =的概率为 ( )A .31B .21 c.32 D .61 【答案】A 【解析】由()4n A =知,函数2|3|yx ax =++和1y =的图像有四个交点,所以23y x ax =++的最小值21214a -<-,解得4(4)a a ><-舍去,所以a 的取值是5,6.又因为a 的取值可能是6种,故概率是2163=,故选 ( )A .3 .(2013届海南省高考压轴卷理科数学)如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆. 在扇形OAB 内随机取一点,则此点取自阴影部分的概率是 ( )A .21π-B .112π-C .2πD .1π【答案】答案:A考点分析:本题考察几何概型及平面图形面积求法.解析:令1=OA ,扇形OAB 为对称图形,ACBD 围成面积为1S ,围成OC 为2S ,作对称轴OD ,则过C 点.2S 即为以OA 为直径的半圆面积减去三角形OAC 的面积,82212121212122-=⨯⨯-⎪⎭⎫ ⎝⎛=ππS .在扇形OAD 中21S 为扇形面积减去三角形OAC 面积和22S ,()1622811812221-=--=ππS S ,4221-=+πS S ,扇形OAB 面积π41=S ,4 .(2013届江西省高考压轴卷数学理试题)已知随机变量ξ服从正态分布2(0,)N σ,若(2)0.023P ξ>=,则(22)P ξ-=≤≤ ( )A .0.477B .0.625C .0.954D .0.977【答案】C 【解析】由随机变量ξ服从正态分布2(0,)N σ可知正态密度曲线关于y 轴对称,而(2)0.023P ξ>=,则(2)0.023P ξ<-=,故(22)1(2)(2)0.954P P p ξξξ-=->-<-=≤≤,故选C5 .(2013届广东省高考压轴卷数学理试题)已知(){}1,1,≤≤=Ωy x y x ,A 是曲线2x y =与21xy =围成的区域,若向区域Ω上随机投一点P,则点P 落入区域A 的概率为 ( )A .31 B .41 C .81 D .121 【答案】D 区域A面积为)3123120211|333x dx x x ⎛⎫-=-= ⎪⎝⎭⎰ 11/4312P ==第8题图二、填空题6 .(2013届上海市高考压轴卷数学(理)试题)已知随机变量ξ服从正态分布2(2,)N σ,且(4)0.8P ξ<=,则(02)P ξ<<等于_____________.【答案】0.3【解析】(4)0.8P ξ<=,则2.0)4(=>ξP ,又分布图像关于直线2=x 对称,2.0)4()0(=>=<ξξP P ,则6.0)40(=<<ξP ,3.0)20(=<<ξP7 .(2013届江苏省高考压轴卷数学试题)从集合{-1,1,2,3}中随机选取一个数记为m,从集合{-1,1,2}中随机选取一个数记为n,则方程22x y m n+=1表示双曲线的概率为________.【答案】5128 .(2013届上海市高考压轴卷数学(理)试题)将正整数1,2,3,4,5,6,7随机分成两组,使得每组至少有一个数,则两组中各数之和相等的概率是_______________.【答案】463【解析】将正整数1,2,3,4,5,6,7随机分成两组,使得每组至少有一个数则有123456777777722126C C C C C C +++++=-=种,因为123456728++++++=,所以要使两组中各数之和相,则有各组数字之和为14.则有7615432++=+++;7526431++=+++;7436521++=+++;7421653+++=++;5432761+++=++;6431752+++=++;6521743+++=++;6537421++=+++共8种,所以两组中各数之和相等的概率是8412663=9 .(2013届北京市高考压轴卷理科数学)设不等式组22,42x y x y -+≥≥-⎧⎪⎨⎪⎩0≤, 表示的平面区域为D .在区域D 内随机取一个点,则此点到直线+2=0y 的距离大于2的概率是________【答案】925【解析】不等式对应的区域为三角形DEF,当点D 在线段BC 上时,点D 到直线+2=0y 的距离等于2,所以要使点D 到直线的距离大于2,则点D 应在三角形BCF 中.各点的坐标为(20)(40)(62)(42)(43)B C D E F ----,,,,,,,,,,所以105DE EF ==,,6BC =,3CF =,根据几何概型可知所求概率为163921251052BCF DEFS P S ∆∆⨯⨯===⨯⨯.三、解答题10.(2013届山东省高考压轴卷理科数学)(2013日照二模)“中国式过马路”存在很大的交通安全隐患.某调查机构为了解路人对“中国式过马路 ”的态度是否与性别有关,从马路旁随机抽取30名路 人进行了问卷调查,得到了如下列联表:男性 女性 合计 反感 10不反感8合计30已知在这30人中随机抽取1人抽到反感“中国式过马路 ”的路人的概率是158. (Ⅰ)请将上面的列联表补充完整(在答题卡上直接填写结果,不需要写求解过程),并据此资料分析反感“中国式过马路 ”与性别是否有关?(Ⅱ)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X 的分布列和数学期望. 【答案】由已知数据得:2230(10866) 1.158 3.84116141614χ⨯-⨯=≈<⨯⨯⨯,所以,没有充足的理由认为反感“中国式过马路”与性别有关(Ⅱ)X 的可能取值为0,1,2.282144(0),13C C P X === 116821448(1),91C C C P X ===2621415(2),91C C P X ===所以XX 的数学期望为:012.1391917EX =⨯+⨯+⨯=11.(2013届天津市高考压轴卷理科数学)袋中有8个大小相同的小球,其中1个黑球,3个白球,4个红球.(I)若从袋中一次摸出2个小球,求恰为异色球的概率;(II)若从袋中一次摸出3个小球,且3个球中,黑球与白球的个数都没有超过红球的个数,记此时红球的个数为ξ,求ξ的分布列及数学期望E ξ.【答案】解: (Ⅰ)摸出的2个小球为异色球的种数为11C 11173419C C C +=从8个球中摸出2个小球的种数为2828C = 故所求概率为1928P =5 分 (Ⅱ)符合条件的摸法包括以下三种: 一种是有1个红球,1个黑球,1个白球,共有11C 114312C C =种一种是有2个红球,1个其它颜色球,共有214424C C =种,一种是所摸得的3小球均为红球,共有344C =种不同摸法, 故符合条件的不同摸法共有40种由题意知,随机变量ξ的取值为1,2,3.其分布列为:3319123105105E ξ=⨯+⨯+⨯= 12.(2013届北京市高考压轴卷理科数学)本小题共14分为了参加2012年全省高中篮球比赛,某中学决定从四个篮球较强的班级中选出12人组成男子篮球队代表所在地区参赛,队员来源人数如下表:(II)该中学篮球队经过奋力拼搏获得冠军.若要求选出两位队员代表冠军队发言,设其中来自高三(7)班的人数为ξ,求随机变量ξ的分布列及数学期望ξE .【答案】解:(I)“从这18名队员中随机选出两名,两人来自于同一班级”记作事件A ,则2222423321213()66C C C C P A C +++== 6' (II)ξ的所有可能取值为0,1,2 7'则02112048484822212121214163(0),(1),(2)333333C C CC C C P P P C C C ξξξ========= ∴ξ的分布列为:10'∴1416320123333333E ξ=⨯+⨯+⨯= 14' 13.(2013届江西省高考压轴卷数学理试题)现有4个人去参加春节联欢活动,该活动有甲、乙两个项目可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个项目联欢,掷出点数为1或2的人去参加甲项目联欢,掷出点数大于2的人去参加乙项目联欢. (I)求这4个人中恰好有2人去参加甲项目联欢的概率;(II)求这4个人中去参加甲项目联欢的人数大于去参加乙项目联欢的人数的概率; (III)用,X Y 分别表示这4个人中去参加甲、乙项目联欢的人数,记X Yξ=-,求随机变量ξ的分布列与数学期望E ξ.【答案】解:依题意,这4个人中,每个人去参加甲项目联欢的概率为13,去参加乙项目联欢的概率为23.设“这4个人中恰有i 人去参加甲项目联欢”为事件i A ,(0,1,2,3,4)i =,则4412()()()33i i ii P A C -=.(Ⅰ)这4个人中恰好有2人去参加甲项目联欢的概率22224128()()()3327P A C ==(Ⅱ)设“这4人中去参加甲项目联欢的人数大于去参加乙项目联欢的人数”为事件B ,34B A A =⋃, 故334434441211()()()()()()3339P B P A P A C C =+=+=.∴这4人中去参加甲项目联欢的人数大于去参加乙项目联欢的人数的概率为19(III)ξ的所有可能取值为0,2,4.28(0)()27P P A ξ===,1340(2)()(),81P P A P A ξ==+=0417(4)()(),81P P A P A ξ==+= 所以ξ的分布列是14881E ξ=14.(2013届海南省高考压轴卷理科数学)中华人民共和国《道路交通安全法》中将饮酒后违法驾驶机动车的行为分成两个档次:“酒后驾车”和“醉酒驾车”,其检测标准是驾驶人员血液中的酒精含量Q (简称血酒含量,单位是毫克/100毫升),当20≤Q ≤80时,为酒后驾车;当Q >80时,为醉酒驾车.某市公安局交通管理部门于2012年1月的某天晚上8点至11点在市区昌隆饭店设点进行一次拦查行动,共依法查出了60名饮酒后违法驾驶机动车者,如图为这60名驾驶员抽血检测后所得结果画出的频率分布直方图(其中Q ≥140的人数计入120≤Q <140人数之内).(1)求此次拦查中醉酒驾车的人数;(2)从违法驾车的60人中按酒后驾车和醉酒驾车利用分层抽样抽取8人做样本进行研究,再从抽取的8人中任取3人,求3人中含有醉酒驾车人数X 的分布列和数学期望. 【答案】解:(Ⅰ) (0.0032+0.0043+0.0050)×20=0.25,0.25×60=15, 所以此次拦查中醉酒驾车的人数为15人.(Ⅱ) 易知利用分层抽样抽取8人中含有醉酒驾车者为2人;所以x 的所有可能取值为0,1,2;P(x =0)=3836C C =145,P(X=1)=381226C C C =2815,P(x =2)=382216C C C =283432832281511450)(=⨯+⨯+⨯=X E . 15.(2013届湖北省高考压轴卷 数学(理)试题)我省某示范性高中为推进新课程改革,满足不同层次学生的要求,决定从高一年级开始,在每周的周一、周三、周五的课外活动期间同时开设数学、物理、化学、生物和信息技术辅导讲座,每位有兴趣的同学可以在期间的任何一天参加任何一门科目的辅导讲座,也可以放弃任何一门科目的辅导讲座(规定:各科达到预先设定的人数时称为满座,否则称为不满座).统计数据表明,各学科讲座各天的满座概率如下表:(1)求数学辅导讲座在周一、周三、周五都不满座的概率; 各辅导讲座满座的科目数为ξ,(2)设周三量ξ的分布列和数学期望.求随机变【答案】(1)设数学辅导讲座在周一、周三、周五都不满座为事件A ,则1221()(1)(1)(1)23318P A =---=.(2)ξ的所有可能取值为0,1,2,3,4,5.4121(0)(1)(1)2348P ξ==-⋅-=; 1344112121(1)(1)(1)(1)223238P C ξ==⋅⋅-⋅-+-⋅=;22213441121127(2)()(1)(1)()(1)22322324P C C ξ==⋅⋅-⋅-+⋅⋅-⋅=; 33222441121121(3)()(1)(1)()(1)2232233P C C ξ==⋅⋅-⋅-+⋅⋅-⋅=;.4334121123(4)()(1)()(1)2322316P C ξ==⋅-+⋅⋅-⋅=;4121(5)()2324P ξ==⋅=. 所以,随机变量ξ的分布列如下:故117131801234548824316243E ξ=⨯+⨯+⨯+⨯+⨯+⨯=. 16.(2013届广东省高考压轴卷数学理试题)生产A,B 两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品.现随机抽取这两种元件各100件进行检测,检测结果统计如下:(Ⅰ)试分别估计元件A,元件B 为正品的概率;(Ⅱ)生产一件元件A,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B,若是正品可盈利50元,若是次品则亏损10元 .在(Ⅰ)的前提下,(ⅰ)记X 为生产1件元件A 和1件元件B 所得的总利润,求随机变量X 的分布列和数学期望;(ⅱ)求生产5件元件B 所获得的利润不少于140元的概率.【答案】【答案】(Ⅰ)解:元件A 为正品的概率约为4032841005++=元件B 为正品的概率约为4029631004++=(Ⅱ)解:(ⅰ)随机变量X 的所有取值为90,45,30,15-433(90)545P X ==⨯=; 133(45)5420P X ==⨯=; 411(30)545P X ==⨯=; 111(15)5420P X =-=⨯=所以,随机变量X 的分布列为:3311904530(15)66520520EX =⨯+⨯+⨯+-⨯=(ⅱ)设生产的5件元件B 中正品有n 件,则次品有5n -件.依题意,得 5010(5)140n n --≥, 解得 196n ≥.所以 4n =,或5n =设“生产5件元件B 所获得的利润不少于140元”为事件A ,则 445531381()C ()()444128P A =⨯+=17.(2013新课标高考压轴卷(一)理科数学)某校从6名学生会干部(其中男生4人,女生2人)中选3人参加市中学生运动会志愿者.(Ⅰ)所选3人中女生人数为ξ,求ξ的分布列及数学期望. (Ⅱ)在男生甲被选中的情况下,求女生乙也被选中的概率【答案】解:(I)ξ得可能取值为 0,1,2;由题意P(ξ=0)=343615C C =, P(ξ=1)=21423635C C C =,P(ξ=2)=12423615C C C = ∴ξ的分布列、期望分别为:E ξ=0×15+1×35+2 ×15=1 (II)设在男生甲被选中的情况下,女生乙也被选中的事件为C男生甲被选中的种数为2510C =,男生甲被选中,女生乙也被选中的 种数为144C =∴P(C)=142542105C C ==在男生甲被选中的情况下,女生乙也被选中的概率为2518.(2013届辽宁省高考压轴卷数学理试题)袋中有大小相同的10个编号为1、2、3的球,1号球有1个,2号球有m 个,3号球有n 个.从袋中依次摸出2个球,已知在第一次摸出3号球的前提下,再摸出一个2号球的概率是13. (Ⅰ)求m 、n 的值;(Ⅱ)从袋中任意摸出2个球,记得到小球的编号数之和为ξ,求随机变量ξ的分布列和数学期望E ξ.【答案】解:(1)记“第一次摸出3号球”为事件A ,“第二次摸出2号球”为事件B ,则31110)/(=-=m A B P , 解得6,3==n m ;(2)随机变量ξ的取值为6,5,4,3,ξ的分布列为所以,数学期望5=ξE 19.(2013届新课标高考压轴卷(二)理科数学)某校中学生篮球队假期集训,集训前共有6个篮球,其中3个是新球(即没有用过的球),3个是旧球(即至少用过一次的球).每次训练,都从中任意取出2个球,用完后放回. (Ⅰ)设第一次训练时取到的新球个数为ξ,求ξ的分布列和数学期望; (Ⅱ)求第二次训练时恰好取到一个新球的概率.【答案】解:(1)ξ的所有可能取值为0,1,2.ξ3 4 5 6P151 51 52 31设“第一次训练时取到i 个新球(即i =ξ)”为事件i A (=i 0,1,2).因为集训前共有6个篮球,其中3个是新球,3个是旧球,所以51)0()(26230====C C P A P ξ, 53)1()(2613131====C C C P A P ξ,51)2()(26232====C C P A P ξ.所以ξ的分布列为(注:不列表,不扣分)ξ的数学期望为1525150=⨯+⨯+⨯=ξE .(2)设“从6个球中任意取出2个球,恰好取到一个新球”为事件B . 则“第二次训练时恰好取到一个新球”就是事件B A B A B A 210++. 而事件B A 0、B A 1、B A 2互斥,所以,)()()()(210210B A P B A P B A P B A B A B A P ++=++. 由条件概率公式,得253535151|()()(261313000=⨯=⨯==C C C A B P A P B A P ), 2581585353|()()(261412111=⨯=⨯==C C C A B P A P B A P ), 151315151|()()(261511222=⨯=⨯==C C C A B P A P B A P ).所以,第二次训练时恰好取到一个新球的概率为7538151258253)(210=++=++B A B A B A P . 20.(2013届重庆省高考压轴卷数学理试题)(本小题满分13分,其中(Ⅰ)小问4分,(Ⅱ)小问9分)某单位有三辆汽车参加某种事故保险,单位年初向保险公司缴纳每辆900元的保险金,对在一年内发生此种事故的每辆汽车,单位可获9000元的赔偿(假设每辆车最多只赔偿一次),设这三辆车在一年内发生此种事故的概率分别为19,110,111,且各车是否发生事故相互独立,求一年内该单位在此保险中: (Ⅰ)获赔的概率;(Ⅱ)获赔金额ξ的分布列与期望.【答案】解:设k A 表示第k 辆车在一年内发生此种事故,123k=,,.由题意知1A ,2A ,3A 独立, 且11()9P A =,21()10P A =,31()11P A =. (Ⅰ)该单位一年内获赔的概率为123123891031()1()()()19101111P A A A P A P A P A -=-=-⨯⨯=.(Ⅱ)ξ的所有可能值为0,9000,18000,27000.12312389108(0)()()()()9101111P P A A A P A P A P A ξ====⨯⨯=,123123123(9000)()()()P P A A A P A A A P A A A ξ==++ 123123123()()()()()()()()()P A P A P A P A P A P A P A P A P A =++19108110891910119101191011=⨯⨯+⨯⨯+⨯⨯ 2421199045==, 123123123(18000)()()()P P A A A P A A A P A A A ξ==++ 123123123()()()()()()()()()P A P A P A P A P A P A P A P A P A =++1110191811910119101191011=⨯⨯+⨯⨯+⨯⨯ 273990110==, 123123(27000)()()()()P P A A A P A P A P A ξ===111191011990=⨯⨯=. 综上知,ξ的分布列为求ξ的期望有两种解法: 解法一:由ξ的分布列得811310900018000270001145110990E ξ=⨯+⨯+⨯+⨯299002718.1811=≈(元). 解法二:设k ξ表示第k 辆车一年内的获赔金额,123k =,,, 则1ξ有分布列故11900010009E ξ=⨯=. 同理得21900090010E ξ=⨯=,319000818.1811E ξ=⨯≈.综上有1231000900818.182718.18E E E E ξξξξ=++≈++=(元).21.(2013届全国大纲版高考压轴卷数学理试题)(注意:在试题卷上作答无效.........) 在进行一项掷骰子放球的游戏中规定:若掷出1点或2点,则在甲盒中放一球;否则,在乙盒中放一球.现在前后一共掷了4次骰子,设x 、y 分别表示甲、乙盒子中球的个数. (Ⅰ)求13y x ≤-≤的概率;【答案】解:依题意知,掷一次骰子,球被放入甲盒、乙盒的概率分别为12,.33(Ⅰ)若13,y x ≤-≤则只能有1,3,x y ==即在4次掷骰子中,有1次在甲盒中放球,有3次在乙盒中放球,因此所求概率3141232.3381P C ⎛⎫=⨯⨯= ⎪⎝⎭(Ⅱ)由于,x y ξ=-所以ξ的可能取值有0,2,4()222412240,3381P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭()33134********,333381P C C ξ⎛⎫⎛⎫⎛⎫⎛⎫==+= ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ()440444111743381P C C ξ⎛⎫⎛⎫==+= ⎪ ⎪⎝⎭⎝⎭所以随机变量ξ的分布列为:故随机变量ξ的数学期望为244017148024.81818181E ξ=⨯+⨯+⨯= 22.(2013届浙江省高考压轴卷数学理试题)如图,已知面积为1的正三角形ABC 三边的中点分别为D、E 、F,从A,B,C,D,E,F 六个点中任取三个不同的点,所构成的三角形的面积为X(三点共线时,规定X=0)(1)求1()2P X ≥;(2)求E(X) CB【答案】【解析】解:⑴从六点中任取三个不同的点共有36C 20=个基本事件,事件“12X ≥”所含基本事件有2317⨯+=,从而17()220P X =≥. ⑵X 的分布列为:X 014 12 P3201020620120则311016113()01204202202040E X =⨯+⨯+⨯+⨯=. 答:17()220P X =≥,13()40E X =. 23.(2013届湖南省高考压轴卷数学(理)试题)( 本小题满分12分)某次体能测试中,规定每名运动员一开始就要参加且最多参加四次测试.一旦测试通过,就不再参加余下的测试,否则一直参加完四次测试为止.已知运动员甲的每次通过率为7.0(假定每次通过率相同). (1) 求运动员甲最多参加两次测试的概率; (2) 求运动员甲参加测试的次数的分布列及数学期望(精确到0.1).【答案】⑴因为运动员甲参加一次测试的概率是0.7运动员甲参加两次测试的概率是0.7×0.3=0.21所以运动员甲最多参加两次测试的概率是0.21+0.7=0.91 ⑵ξ的可能取值是1,2,3,4P(ξ=1)=0.7;P(ξ=2)=0.21; P(ξ=3)=0.063; P(ξ=4)=0.027;所以E ξ=1×0.7+2×0.21+3×0.063+4×0.027≈1.424.(2013届陕西省高考压轴卷数学(理)试题)选聘高校毕业生到村任职,是党中央作出的一项重大决策,这对培养社会主义新农村建设带头人,引导高校毕业生面向基层就业创业具有重大意义.为响应国家号召,某大学决定从符合条件的6名(其中男生4名,女生2名)报名大学生中选择3人到某村参加村主任应聘考核.(1)设所选3人中女生人数为ξ,求ξ的分布列及数学期望; (2)在男生甲被选中的情况下,求女生乙也被选中的概率.【答案】【解析】(Ⅰ):ξ的所有可能取值为0,1,2.依题意得:3436C 1(0)C 5P ξ===,214236C C 3(1)C 5P ξ===,124236C C 1(2)C 5P ξ===.∴ξ的分布列为∴ 10121555E ξ=⨯+⨯+⨯=. (Ⅱ):设“男生甲被选中”为事件A ,“女生乙被选中”为事件B ,则()2536C 1C 2P A ==, ()1436C 1C 5P AB ==, ∴()()()25P AB P B A P A ==.故在男生甲被选中的情况下,女生乙也被选中的概率为25. 25.(2013届福建省高考压轴卷数学理试题)已知甲箱中只放有x 个红球与y 个白球(,0,x y ≥且6)x y +=,乙箱中只放有2个红球、1个白球与1个黑球(球除颜色外,无其它区别). 若甲箱从中任取2个球, 从乙箱中任取1个球.(Ⅰ)记取出的3个球的颜色全不相同的概率为P ,求当P 取得最大值时,x y 的值; (Ⅱ)当2x =时,求取出的3个球中红球个数ξ的期望()E ξ.【答案】【解析】(I)由题意知203)2(60160.211=+≤=⋅=γx xy Cx C C P L r , 当且仅当y x =时等号成立,所以,当P 取得最大值时3==y x .(II)当2=x 时,即甲箱中有2个红球与4个白球,所以ξ的所有可能取值为3,2,1,0则51)0(14261124===C C C C P ξ,157)1(14261224121412=+==C C C C C C C P ξ,103)2(14261214121222=+==C C C C C C C p ξ, 301)3(142612===C C C P ξ, 所以红球个数ξ的分布列为于是67=ξE . 26.(2013届安徽省高考压轴卷数学理试题)某种产品在投放市场前,进行为期30天的试销,获得如下数据:试销结束后(假设商品的日销售量的分布规律不变),在试销期间,每天开始营业时商品有5件,当天营业结束后,进行盘点存货,若发现存量小于3件,则当天进货补充到5件,否则不进货. (1)求超市进货的概率(2)记ξ为第二天开始营业时该商品的件数,求ξ的分布列和数学期望.【答案】【解析】(1)10642()(3)(4)(5)3030303P P P P =++=++=进货销售件销售件销售件 (2)ξ的取值是345.,, 61317(3)(4)(5)305301010P P P ξξξ========,,,即分布列是: 所以数学期望是345 4.551010E ξ=⨯+⨯+⨯=。
2013年高考-湖北省高考压轴卷 数学(理)试题
2013高考-湖北省高考压轴卷理科数学本试卷共22题,其中第15、16题为选考题.满分150分.考试用时120分钟. 一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{3}x M y y =∈=R ,{1,0,1}N =-,则下列结论正确的是( )A .{0,1}M N =B .(0,)M N =+∞C .()(,0)C M N =-∞ RD . (){1,0}C M N =- R2.下列命题错误的是( )A .命题“若220x y +=,则0x y ==”的逆否命题为“若,x y 中至少有一个不为0,则220x y +≠”B .若命题p :2000,10x x x ∃∈-+≤R ,则p ⌝:2,10x x x ∀∈-+>R C .ABC ∆中,sin sin A B >是A B >的充要条件 D .若p q ∧为假命题,则p 、q 均为假命题3.甲、乙两名运动员在某项测试中的6次成绩如茎叶图所示,12,x x 分别表示甲乙两名运动员这项测试成绩的平均数,12,s s 分别表示甲乙两名运动员这项测试成绩的标准差,则有( )A . 12x x >,12s s <B . 12x x =,12s s =C .12x x =,12s s < D . 12x x <,12s s <4.设实数12,,,x a a y 成等差数列,实数12,,,x b b y 成等比数列,则21212()a a b b +的取值范围是( )A .[4,)+∞B .(,0][4,)-∞+∞C .[0,4]D . (,4)(4,)-∞-+∞ 5.函数()3sin()(0)f x x ωϕω=+>的部分图象如图所示,若2AB BC AB⋅= ,则ω等于( )A .6πB . 4πC . 3πD . 12π6.如图,设D 是图中边长分别为1和2的矩形区域,E 是D 内位于函数1(0)y x x =>图象下方的区域(阴影部分),从D 内随机取一个点M ,则点M 取自E 内的概率为( )A .ln 22B .1ln 22- C . 1ln 22+ D . 2ln 22-7.过抛物线22(0)y px p =>的焦点F ,斜率为43的直线交抛物线于,A B 两点,若(1)AF FB λλ=>,则λ的值为( ) A .4 B .5 C .43 D .528.已知直角三角形ABC ,其三边分为a,b,c,(a>b>c )。
2013年湖北高考理科数学压轴题
2013年湖北高考理科数学压轴题17.在ABC ∆中,角A ,B ,C 对应的边分别是a ,b ,c 。
已知()cos23cos 1A B C -+=。
(I )求角A 的大小;(II )若ABC ∆的面积53S =,5b=,求sin sin B C 的值。
18.已知等比数列{}n a 满足:2310a a -=,123125a a a =。
(I )求数列{}n a 的通项公式; (II )是否存在正整数m ,使得121111ma a a +++≥L ?若存在,求m 的最小值;若不存在,说明理由。
19.如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,直线PC ⊥平面ABC ,E ,F 分别是PA ,PC 的中点。
(I )记平面BEF 与平面ABC 的交线为l ,试判断直线l 与平面PAC 的位置关系,并加以证明;(II )设(I )中的直线l 与圆O 的另一个交点为D ,且点Q 满足12DQ CP =u u u r u u u r。
记直线PQ 与平面ABC 所成的角为θ,异面直线PQ 与EF 所成的角为α,二面角E l C --的大小为β,求证:sin sin sin θαβ=。
20.假设每天从甲地去乙地的旅客人数X 是服从正态分布()2800,50N 的随机变量。
记一天中从甲地去乙地的旅客人数不超过900的概率为0p 。
(I )求0p 的值;(参考数据:若()2,X N μσ:,有()0.6826P X μσμσ-<<+=,()220.9544P X μσμσ-<<+=,()330.9974P X μσμσ-<<+=。
)(II )某客运公司用A .B 两种型号的车辆承担甲.乙两地间的长途客运业务,每车每天往返一次,A .B 两种车辆的载客量分别为36人和60人,从甲地去乙地的运营成本分别为1600元/辆和2400元/辆。
公司拟组建一个不超过21辆车的客运车队,并要求B 型车不多于A 型车7辆。
湖北省黄冈中学高考数学压轴题精编精解一 新人教版
(2011年高考必备)湖北省黄冈中学高考数学压轴题精编精解一1.设函数,,其中,记函数的最大值与最小值的差为。
(I)求函数的解析式;(II)画出函数的图象并指出的最小值。
2.已知函数,数列满足,; 数列满足, .求证:(Ⅰ)(Ⅱ)(Ⅲ)若则当n≥2时,.3.已知定义在R上的函数f(x) 同时满足:(1)(R,a为常数);(2);(3)当时,≤2求:(Ⅰ)函数的解析式;(Ⅱ)常数a的取值范围.4.设上的两点,满足,椭圆的离心率短轴长为2,0为坐标原点.(1)求椭圆的方程;(2)若直线AB过椭圆的焦点F(0,c),(c为半焦距),求直线AB的斜率k的值;(3)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.5.已知数列中各项为:(1)证明这个数列中的每一项都是两个相邻整数的积..(2)求这个数列前n项之和Sn6、设、分别是椭圆的左、右焦点.(Ⅰ)若P是该椭圆上的一个动点,求的最大值和最小值;(Ⅱ)是否存在过点A(5,0)的直线l与椭圆交于不同的两点C、D,使得|F2C|=|F2D|?若存在,求直线l的方程;若不存在,请说明理由.7、已知动圆过定点P(1,0),且与定直线L:x=-1相切,点C在l上.(1)求动圆圆心的轨迹M的方程;(i)问:△ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由(ii)当△ABC为钝角三角形时,求这种点C的纵坐标的取值范围.8、定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a、b∈R,有f(a+b)=f(a)f(b),(1)求证:f(0)=1;(2)求证:对任意的x∈R,恒有f(x)>0;(3)证明:f(x)是R上的增函数;(4)若f(x)·f(2x-x2)>1,求x的取值范围。
9、已知二次函数满足,且关于的方程的两实数根分别在区间(-3,-2),(0,1)内。
(1)求实数的取值范围;(2)若函数<在区间(-1->,1->)上具有单调性,求实数C的取值范围10、已知函数且任意的、都有(1)若数列(2)求的值.黄冈中学2011年高考数学压轴题汇总详细解答1.解:(I)(1)当时,函数是增函数,此时,,,所以;——2分(2)当时,函数是减函数,此时,,,所以;————4分(3)当时,若,则,有;若,则,有;因此,,————6分而,故当时,,有;当时,,有;————8分综上所述:。
(高考必备)湖北省黄冈中学高考数学压轴题精编精解五 新人教版
(2011年高考必备)湖北省黄冈中学高考数学压轴题精编精解五41.已知数列的首项(a是常数,且),(),数列的首项,()。
(1)证明:从第2项起是以2为公比的等比数列;(2)设为数列的前n项和,且是等比数列,求实数a的值;(3)当a>0时,求数列的最小项。
42.已知抛物线C:上任意一点到焦点F的距离比到y轴的距离大1。
(1)求抛物线C的方程;(2)若过焦点F的直线交抛物线于M、N两点,M在第一象限,且|MF|=2|NF|,求直线MN的方程;(3)求出一个数学问题的正确结论后,将其作为条件之一,提出与原来问题有关的新问题,我们把它称为原来问题的一个“逆向”问题.例如,原来问题是“若正四棱锥底面边长为4,侧棱长为3,求该正四棱锥的体积”.求出体积后,它的一个“逆向”问题可以是“若正四棱锥底面边长为4,体积为,求侧棱长”;也可以是“若正四棱锥的体积为,求所有侧面面积之和的最小值”.现有正确命题:过点的直线交抛物线C:于P、Q 两点,设点P关于x轴的对称点为R,则直线RQ必过焦点F。
试给出上述命题的“逆向”问题,并解答你所给出的“逆向”问题。
43.已知函数f(x)=,设正项数列满足=l,.(I)写出,的值;(Ⅱ)试比较与的大小,并说明理由;(Ⅲ)设数列满足=-,记Sn =.证明:当n≥2时,Sn<(2n-1).44.已知函数f(x)=x3-3ax(a∈R).(I)当a=l时,求f(x)的极小值;(Ⅱ)若直线菇x+y+m=0对任意的m∈R都不是曲线y=f(x)的切线,求a的取值范围;(Ⅲ)设g(x)=|f(x)|,x∈[-l,1],求g(x)的最大值F(a)的解析式.45.在平面直角坐标系中,已知三个点列{An },{Bn},{Cn},其中,满足向量与向量共线,且点(B,n)在方向向量为(1,6)的线上(1)试用a与n表示;(2)若a6与a7两项中至少有一项是a n的最小值,试求a的取值范围。
46.已知,记点P的轨迹为E.(1)求轨迹E的方程;(2)若直线l过点F2且与轨迹E交于P、Q两点.(i)无论直线l绕点F2怎样转动,在x轴上总存在定点,使恒成立,求实数m的值.(ii)过P、Q作直线的垂线PA、OB,垂足分别为A、B,记,求λ的取值范围.47.设x1、的两个极值点.(1)若,求函数f(x)的解析式;(2)若的最大值;(3)若,求证:48.已知,若数列{a n} 成等差数列.(1)求{a n}的通项a n;(2)设若{bn }的前n项和是Sn,且49.点P在以为焦点的双曲线上,已知,,O为坐标原点.(Ⅰ)求双曲线的离心率;(Ⅱ)过点P作直线分别与双曲线渐近线相交于两点,且,,求双曲线E的方程;(Ⅲ)若过点(为非零常数)的直线与(2)中双曲线E相交于不同于双曲线顶点的两点M、N,且(为非零常数),问在轴上是否存在定点G,使?若存在,求出所有这种定点G的坐标;若不存在,请说明理由.50.已知函数,,和直线,又.(Ⅰ)求的值;(Ⅱ)是否存在的值,使直线既是曲线的切线,又是的切线;如果存在,求出的值;如果不存在,说明理由.(Ⅲ)如果对于所有的,都有成立,求的取值范围.黄冈中学2011年高考数学压轴题汇总详细解答41.解:(1)∵∴(n≥2) …………3分由得,,∵,∴ ,…………4分即从第2项起是以2为公比的等比数列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黄冈中学高考数学压轴题精编精解精选10题,精心解答51.已知二次函数满足:对任意实数x,都有
,且当(1,3)时,有成立。
(1)证明:。
(2)若的表达式。
(3)设,若图上的点都位于直线的上方,求实数m的取值范围。
52.(1)数列{a n}和{b n}满足(n=1,2,3…),}为等差数列的充要条件是{a n}为等差数列。
(8分)
求证{b
n
(2)数列{a n}和{c n}满足,探究为等差数列的充
}为
分必要条件,需说明理由。
[提示:设数列{b
n
53.某次象棋比赛的决赛在甲乙两名棋手之间举行,比赛采用积分制,比赛规则规定赢一局得2分,平一局得1分,输一局得0分;比赛共进行五局,积分有超过5分者比赛结束,否则继续进行. 根据以往经验,每局甲赢的概率为,乙赢的概率为,且每局比赛输赢互不受影响. 若甲第n局赢、平、输的得分分
别记为、、令 .
(Ⅰ)求的概率;
(Ⅱ)若随机变量满足(表示局数),求的分布列和数学期望.
54.如图,已知直线与抛物线相切于点P(2, 1),且与轴交于点A,定点B的坐标为(2, 0) .
(I)若动点M满足,求点M的轨迹C;
(II)若过点B的直线(斜率不等于零)与(I)中的轨迹C交于不同的两点E、F(E在B、F之间),试求OBE与OBF面积之比的取值范围.
55.已知A、B是椭圆的一条弦,M(2,1)是AB中点,以M 为焦点,以椭圆的右准线为相应准线的双曲线与直线AB交于N(4,—1).
(1)设双曲线的离心率e,试将e表示为椭圆的半长轴长的函数.
(2)当椭圆的离心率是双曲线的离心率的倒数时,求椭圆的方程.
(3)求出椭圆长轴长的取值范围.
56已知:在曲线
(1)求数列{a n}的通项公式;
(2)数列{b n}的前n项和为T n,且满足,设定b1的值,使得数列{b n}是等差数列;
(3)求证:
57、已知数列{a
n }的前n项和为S
n
,并且满足a
1
=2,na
n+1
=S
n
+n(n+1).
(1)求数列;
(2)设
58、已知向量的图象按向量m平移后得到函数的图象。
(Ⅰ)求函数的表达式;
(Ⅱ)若函数上的最小值为的最大值。
(1)证明:点在平面上的射影为的中点;
(2)求二面角的大小;
(3)求点到平面的距离.
60、如图,已知四棱锥中,是边长为的正三角形,平面
平面,四边形为菱形,,为的中点,为的中点.
(Ⅰ)求证:平面;
(Ⅱ)求二面角的大小.
黄冈中学2013年高考数学压轴题汇总
详细解答。