北师大版八年级下册2.2不等式的基本性质练习题
必考点解析北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组章节练习试题(含解析)

第二章一元一次不等式和一元一次不等式组章节练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分) 1、不等式820x ->的解集在数轴上表示正确的是 ( ) A .B .C .D .2、下列各式:①1﹣x :②4x +5>0;③x <3;④x 2+x ﹣1=0,不等式有( )个. A .1B .2C .3D .43、如图,一次函数y kx b =+(,k b 为常数,且0k ≠)的图像经过点(3,2)-,则关于x 的不等式2kx b +<的解集为( )A .3x >-B .3x <-C .2x >D .2x <4、关于x 的方程3﹣2x =3(k ﹣2)的解为非负整数,且关于x 的不等式组()21323x x k x x ⎧--≥⎪⎨+≤⎪⎩无解,则符合条件的整数k 的值的和为( ) A .5B .2C .4D .65、如果x >y ,则下列不等式正确的是( ) A .x ﹣1<y ﹣1B .5x <5yC .33x y >D .﹣2x >﹣2y6、若不等式﹣3x <1,两边同时除以﹣3,得( ) A .x >﹣13B .x <﹣13C .x >13D .x <137、下列变形中,错误的是( ) A .若3a +5>2,则3a >2-5B .若213x ->,则23x <-C .若115x -<,则x >﹣5D .若1115x >,则511x > 8、已知两直线()0y kx k k =+≠与36y x =-相交于第四象限,则k 的取值范围是( ) A .60k -<<B .30k -<<C .3k <-D .6k <-9、已知一次函数y=ax +b (a 、b 是常数),x 与y 的部分对应值如下表:下列说法中,正确的是( ) A .图象经过第二、三、四象限 B .函数值y 随自变量 x 的增大而减小 C .方程ax +b =0的解是x =2 D .不等式ax +b >0的解集是x >-110、已知关于x 的不等式组0320x a x ->⎧⎨->⎩的整数解共有3个,则a 的取值范围是( )A .21a -≤<-B .21a -<≤C .21a -<<-D .21a -≤≤第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、不等式组250112x x -<⎧⎪⎨+≥-⎪⎩所有整数解的和是___.2、不等式组:3561162x x x x <+⎧⎪+-⎨≥⎪⎩,写出其整数解的和_____.3、不等式3141x +>-的解集是______.4、如果一个三角形的两边长分别为2,5,则第三边x 可以取的整数解为______5、已知a >b ,且c ≠0,用“>”或“<”填空. (1)2a ________a +b(2)2ac _______2b c (3)c -a _______c -b (4)-a |c |_______-b |c |三、解答题(5小题,每小题10分,共计50分)1、春节将至,小明家亲友团准备去某地旅游,甲旅行社的优惠办法是:买4张全票其余人按半价优惠;乙旅行社的优惠办法是:一律按原价的七五折优惠;已知这两家旅行社的原价均为4000元每人. (1)若亲友团有6人,甲、乙旅行社各需多少费用? (2)亲友团为多少人时,甲、乙旅行社的费用相同?(3)当亲友团人数满足什么条件时,甲旅行社的收费更优惠?当亲友团人数满足什么条件时,乙旅行社的收费更优惠?(直接写出结果,不需说明理由)2、(1)解方程组:2523517x y x y +=⎧⎨-=⎩(2)解不等式组()202131x x x +>⎧⎨+≥-⎩3、解不等式()()()()11851x x x x +-+>+-.4、解不等式3x ﹣1≤x +3,并把解在数轴上表示出来.5、如图,已知一次函数y 1=k 1x +b 1的图象与一次函数y 2=k 2x +b 2的图象交于点A ,根据图象回答下列问题.(1)求关于x 的方程k 1x +b 1=k 2x +b 2的解; (2)求出关于x 的不等式k 1x +b 1>k 2x +b 2的解集;(3)当满足什么条件时,直线y 1=k 1x +b 1与直线为y 2=k 2x +b 2没有公共点?-参考答案-一、单选题 1、B 【分析】先解不等式,得到不等式的解集,再在数轴上表示不等式的解集即可. 【详解】 解:820x ->, 移项得:28,x解得:4,x <所以原不等式得解集:4x <. 把解集在数轴上表示如下:故选B 【点睛】本题考查的是一元一次不等式的解法,在数轴上表示不等式的解集,掌握“画图时,小于向左拐,大于向右拐”是解本题的关键,注意实心点与空心圈的使用. 2、B 【分析】主要依据不等式的定义:用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式来判断. 【详解】解:根据不等式的定义可知,所有式子中是不等式的是②4x +5>0; ③x <3,有2个. 故选:B . 【点睛】本题主要考查了不等式的定义,用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子叫作不等式. 3、A 【分析】根据图像的意义当x =-3时,kx +b =2,根据一次函数的性质求解即可. 【详解】解:∵当x =-3时,kx +b =2, 且y 随x 的增大而减小, ∴不等式2kx b +<的解集3x >-, 故选A . 【点睛】本题考查了一次函数与不等式的关系,一次函数图像的性质,灵活运用数形结合思想确定不等式的解集是解题的关键. 4、C先求出3﹣2x=3(k﹣2)的解为x932k-=,从而推出3k≤,整理不等式组可得整理得:1xx k≤-⎧⎨≥⎩,根据不等式组无解得到k>﹣1,则﹣1<k≤3,再由整数k和932kx-=是整数进行求解即可.【详解】解:解方程3﹣2x=3(k﹣2)得x932k-=,∵方程的解为非负整数,∴932k-≥0,∴3k≤,把()213x xx k⎧--≥⎨≥⎩整理得:1xx k≤-⎧⎨≥⎩,由不等式组无解,得到k>﹣1,∴﹣1<k≤3,即整数k=0,1,2,3,∵932kx-=是整数,∴k=1,3,综上,k=1,3,则符合条件的整数k的值的和为4.故选C.【点睛】本题主要考查了解一元一次方程,根据一元一次不等式组的解集情况求参数,解题的关键在于能够熟练掌握相关知识进行求解.5、C根据不等式的性质解答.①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变. 【详解】 解:A .∵x >y ,∴x ﹣1>y ﹣1,故本选项不符合题意;B .∵x >y ,∴5x >5y ,故本选项不符合题意;C .∵x >y ,∴33x y,故本选项符合题意; D .∵x >y ,∴﹣2x <﹣2y ,故本选项不符合题意; 故选:C . 【点睛】此题考查了不等式的性质,熟记不等式的性质并正确应用是解题的关键. 6、A 【分析】根据题意直接利用不等式的性质进行计算即可得出答案. 【详解】解:不等式﹣3x <1,两边同时除以﹣3,得x >﹣13. 故选:A .本题主要考查不等式的基本性质.解不等式依据不等式的性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.特别是在系数化为1这一个过程中要注意不等号的方向的变化. 7、B 【分析】根据不等式的两边都加(或减)同一个数(或同一个整式),不等号的方向不变;不等式的两边都乘以同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变. 【详解】解:A 、不等式的两边都减5,不等号的方向不变,故A 不符合题意;B 、不等式的两边都乘以32-,不等号的方向改变得到32x <-,故B 符合题意;C 、不等式的两边都乘以(﹣5),不等号的方向改变,故C 不符合题意;D 、不等式的两边都乘以同一个正数,不等号的方向不变,故D 不符合题意; 故选:B . 【点睛】本题考查了不等式的性质,熟记不等式的性质并根据不等式的性质计算式解题. 8、A 【分析】先求出交点坐标,然后列不等式组即可求解. 【详解】 解:由题意得,36y kx ky x =+⎧⎨=-⎩,解得6393k x k k y k --⎧=⎪⎪-⎨-⎪=⎪-⎩, ∵两直线()0y kx k k =+≠与36y x =-相交于第四象限,∴603903k k k k --⎧>⎪⎪-⎨-⎪<⎪-⎩, ∴-6<k <0; 故选:A . 【点睛】本题考查一次函数的图象及性质,以及不等式组的解法,能够掌握直线交点坐标的求法,牢记象限内点的坐标特点是解题的关键. 9、D 【分析】利用待定系数法求一出函数解析式,把表格数据代入两组数值得02a b b -+=⎧⎨=⎩,解方程组求出一次函数解析式,根据一次函数性质可判断选项. 【详解】解:设一次函数解析式为y kx b =+,由表格可知,一次函数过点(-1,0),(0,2),则: 02a b b -+=⎧⎨=⎩,解得:22a b =⎧⎨=⎩, ∴一次函数解析式为:22y x =+,∴2020a b =>=>,,故函数经过第一、二、三象限,故选项A 错误;∴=20a >,故函数值y 随x 增大而增大,故选项B 错误;令220x +=,得x=-1,故选项C 错误;令220x +>,得1x >-,故选项D 正确;故选:D .【点睛】本题主要考查了一次函数的图象和性质,待定系数法求根一次函数解析式,表格信息,解方程组是解题的关键.10、A【分析】先分别求出每个不等式的解集,然后确定不等式组的解集,最后根据整数解的个数确定a 的范围.【详解】解:0320x a x ->⎧⎨->⎩①② 解不等式①得:x >a ,解不等式②得:x<32, ∴不等式组的解集是a <x<32, ∵原不等式组的整数解有3个为1,0,-1,∴-2≤a <-1.故选择:A.【点睛】本题考查了解一元一次不等式、解一元一次不等式组、不等式组的整数解的应用,确定不等式组的解集是解答本题的关键.二、填空题1、-3【分析】分别解不等式得到不等式组的解集,确定整数解得到答案.【详解】解:250112xx-<⎧⎪⎨+≥-⎪⎩①②,解不等式①,得52x<,解不等式②,得3x≥-,∴不等式组的解集为532x-≤<,∴整数解为:-3、-2、-1、0、1、2,-3-2-1+0+1+2=-3,故答案为:-3.【点睛】此题考查求不等式组的整数解,有理数的加减法,解不等式,熟练掌握解不等式的解法是解题的关键.2、0【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,即可求出整数解,最后相加即可.【详解】 解:3561162x x x x <+⎧⎪⎨+-≥⎪⎩①②,解不等式①,得3x >-;解不等式②,得2x ≤.∴不等式组的解集为32x -<≤,∴不等式组的整数解分别为-2、-1、0、1、2,∴不等式组的整数解的和为:210120--+++=.故答案为:0.【点睛】本题考查求不等式组的整数解.正确的求出不等式组中每一个不等式的解集是解答本题的关键.3、x >-5【分析】根据不等式的性质求解即可.【详解】解:3141x +>-,3x>-15,解得x >-5,故答案为:x >-5.【点睛】此题考查求不等式的解集,正确掌握解不等式的步骤及方法是解题的关键.4、4、5、6【分析】根据三角形三边关系可得5252x -<<+,得出整数解即可.【详解】解:∵三角形的两边长分别为2,5,则5252x -<<+,即37x ,∴第三边x 可以取的整数解为:4、5、6,故答案为:4、5、6.【点睛】本题考查了三角形的三边关系,熟知两边之和大于第三边,两边之差小于第三边,是解本题的关键.5、> > < <【分析】(1)根据不等式的性质:不等式两边同时加上一个数,不等号不变号,即可得;(2)根据不等式的性质:不等式两边同时除以一个正数,不等号不变号,即可得;(3)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时加上一个数,不等号不变号,即可得;(4)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时乘以一个正数,不等号不变号,即可得.【详解】解:(1)∵a b >,∴a a b a +>+,即:2a b a >+;(2)∵a b >,20c >,∴22a b c c >; (3)∵a b >,∴a b -<-,∴c a c b -<-;(4)∵a b >,∴a b -<-,0c >, ∴a c b c -<-;故答案为:(1)>;(2)>;(3)<;(4)<.【点睛】题目主要考查不等式的基本性质,熟练掌握不等式的性质并综合运用是解题关键.三、解答题1、(1)甲旅行社费用20000元,乙旅行社费用18000元;(2)8人;(3)亲友团人数超过8人时,甲旅行社的收费更优惠,亲友团人数少于8人时,乙旅行社的收费更优惠.【分析】(1)由题意直接根据甲、乙旅行社的优惠办法列式进行计算即可;(2)根据题意设亲友团有x 人,进而依据甲、乙旅行社的费用相同建立方程求解即可;(3)由题意直接根据(2)的结论可知当亲友团人数满足什么条件时,甲、乙旅行社的收费更优惠.【详解】解:(1)甲旅行社费用=1400044000(64)200002⨯+⨯⨯-=元, 乙旅行社费用=0.754000618000⨯⨯=元;(2)设亲友团有x 人,甲旅行社费用=1400044000(4)200080002x x ⨯+⨯⨯-=+ 乙旅行社费用=0.7540003000x x ⨯=由20008000x +=3000x解得:x =8∴亲友团有8人,甲、乙旅行社的费用相同(3)由(2)可知当亲友团有8人,甲、乙旅行社的费用相同,则8x >,有200080003000x x +<,即亲友团人数超过8人时,甲旅行社的收费更优惠;则8x <,有200080003000x x +>,亲友团人数少于8人时,乙旅行社的收费更优惠.【点睛】本题考查一元一次方程的运用以及一元一次不等式的运用,读懂题意并根据题意列出方程和不等式求解是解题的关键.2、(1)43x y =⎧⎨=⎩;(2)﹣2﹤x ≤3. 【分析】(1)方程运用加减消元法求解即可;(2)分别求出每个不等式的解集,再取它们的公共部分即可【详解】解:(1)2523517x y x y +=⎧⎨-=⎩①②①+②×5得:27x =23+17×5,解得:x=4,将x=4代入②中,得:20﹣y=17,解得:y=3,∴原方程组的解为43xy=⎧⎨=⎩.(2)202(1)31xx x+>⎧⎨+≥-⎩①②,解:解①得:x﹥﹣2,解②得:x≤3,∴不等式组的解集为:﹣2﹤x≤3【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3、x<3【分析】利用平方差公式、多项式乘多项式法则计算,移项合并,把x系数化为1,即可求出解集.【详解】解:去括号得:x2-1+8>x2+4x-5,移项合并得:4x<12,解得:x<3.【点睛】本题考查了平方差公式、多项式乘多项式,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.4、x ≤2;数轴表示见解析.【分析】按移项、合并同类项、系数化为1的步骤求得不等式的解集,然后在数轴上表示出来即可.【详解】解:313x x -≤+,移项,得331x x -≤+,合并同类项,得24x ≤,系数化为1,得x ≤2,把解集在数轴上表示如图所示:【点睛】本题考查了解一元一次不等式,在数轴上表示不等式的解集,熟练掌握解一元一次不等式的基本步骤以及在数轴上表示解集的方法是解题的关键.5、(1)x =3;(2)x <3;(3)k 1=k 2,b 1≠b 2【分析】(1)由题意根据两一次函数图象的交点横坐标即可得出方程的解即可求得;(2)根据题意可将两函数交点坐标左边的图象所对应的自变量的取值即可;(3)根据题意可知当两函数图象平行时,直线y 1=k 1x +b 1与直线为y 2=k 2x +b 2没有公共点.【详解】解:(1)∵一次函数y 1=k 1x +b 1和y 2=k 2x +b 2的图象交于点A (3,5),∴关于x 的方程k 1x +b 1=k 2x +b 2的解为x =3.(2)一次函数y 1=k 1x +b 1与一次函数y 2=k 2x +b 2的图象相交于点A (3,5),所以不等式k1x+b1>k2x+b2的解集是x<3.(3)∵两直线平行,则k1=k2,b1≠b2,∴当k1=k2,b1≠b2时,直线y1=k1x+b1与直线为y2=k2x+b2没有公共点.【点睛】本题考查两条直线相交或平行问题,熟练掌握两函数图象与方程解之间,函数图象与不等式之间的关系是解题的关键.。
最新北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组章节测评试卷(含答案详解)

第二章一元一次不等式和一元一次不等式组章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若m >n ,则下列不等式不成立的是( )A .m +4>n +4B .﹣4m <﹣4nC .44m n >D .m ﹣4<n ﹣42、下列说法中,正确的是( )A .x =3是不等式2x >1的解B .x =3是不等式2x >1的唯一解C .x =3不是不等式2x >1的解D .x =3是不等式2x >1的解集3、一次函数y =mx ﹣n (m ,n 为常数)的图象如图所示,则不等式mx ﹣n ≥0的解集是( )A .x ≥2B .x ≤2C .x ≥3D .x ≤34、在数轴上表示不等式1x >-的解集正确的是( )A.B.C.D.5、已知a>b,下列变形一定正确的是()A.3a<3b B.4+a>4﹣b C.ac2>bc2D.3+2a>3+2b6、设m为整数,若方程组3131x y mx y m+=-⎧⎨-=+⎩的解x、y满足175x y+>-,则m的最大值是()A.4 B.5 C.6 D.77、如图,一次函数y=ax+b的图象交x轴于点(2,0),交y轴与点(0,4),则下面说法正确的是()A.关于x的不等式ax+b>0的解集是x>2B.关于x的不等式ax+b<0的解集是x<2C.关于x的方程ax+b=0的解是x=4D.关于x的方程ax+b=0的解是x=28、一次函数y=kx+b的图象如图所示,则下列说法错误的是()A.y随x的增大而减小B.k<0,b<0C.当x>4时,y<0x的图象D.图象向下平移2个单位得y=﹣129、一个不等式的解集为x≤1,那么在数轴上表示正确的是()A.B.C.D.10、下列说法正确的是()A.若a<b,则3a<2b B.若a>b,则ac2>bc2 C.若﹣2a>2b,则a<b D.若ac2<bc2,则a<b第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某种药品的说明书上贴有如下的标签,一次服用这种药品的剂量范围是_________mg .2、如图所示,在天平右盘中的每个砝码的质量都是1g ,则物体A 的质量m (g)的取值范围为_____________.3、当|x ﹣4|=4﹣x 时,x 的取值范围是___.4、如果a >b ,那么﹣2﹣a ___﹣2﹣b .(填“>”、“<”或“=”)5、已知点M (-6,3-a )是第二象限的点,则a 的取值范围是________.三、解答题(5小题,每小题10分,共计50分)1、学校计划购买甲、乙两种品牌的羽毛球拍若干副.已知购买3副甲种品牌球拍和2副乙种品牌球拍共需230元;购买2副甲种品牌球拍和1副乙种品牌球拍共需140元.(1)甲、乙两种品牌球拍的单价分别是多少元?(2)学校准备购买这两种品牌球拍共100副,要求乙种品牌球拍数量不超过甲种品牌球拍数量的3倍,那么购买多少副甲种品牌球拍最省钱?2、人和人之间讲友情,有趣的是,数与数之间也有相类似的关系.若两个不同的自然数的所有真因数(即除了自身以外的正因数)之和相等,我们称这两个数为“亲和数”.例如:18的正因数有1、2、3、6、9、18,它的真因数之和为1236921++++=;51的正因数有1、3、17、51,它的真因数之和为131721++=,所以称18和51为“亲和数”.又如要找8的亲和数,需先找出8的真因数之和为1247++=,而7133=++,所以8的亲和数为1339⨯⨯=,数还可以与动物形象地联系起来,我们称一个两头(首位与末位)都是1的数为“两头蛇数”.例如:121、1351等.(1)10的真因数之和为_______;(2)求证:一个四位的“两头蛇数”11ab 与它去掉两头后得到的两位数的3倍的差,能被7整除;(3)一个百位上的数为4的五位“两头蛇数”,能被16的“亲和数”整除,若这个五位“两头蛇数”的千位上的数字小于十位上的数字,求满足条件的五位“两头蛇数”.3、解不等式组求它的整数解:()202131x x x ->⎧⎪⎨+≥-⎪⎩ 4、解不等式(组)(1)3(1)5x x -≤+(2)4614312163x x x x +>-⎧⎪++⎨-≤⎪⎩ 5、为做好“园林城市创建”工作,打造美丽城市,达州市绿化提质改造工程正如火如荼地进行.某施工队计划购买甲、乙两种树苗共400棵对芙蓉路的某桥标段道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,至少应购买甲种树苗多少棵?-参考答案-一、单选题1、D【分析】根据不等式的基本性质对各选项进行逐一分析即可.【详解】解:A .∵m >n ,∴m +4>n +4,故该选项正确,不符合题意;B .∵m >n ,∴44m n -<-,故该选项正确,不符合题意;C .∵m >n , ∴44m n >,故该选项正确,不符合题意; D .∵m >n ,∴44m n ->-,故该选项错误,符合题意;故选:D .【点睛】本题考查不等式的基本性质.掌握不等式的基本性质“1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;2.不等式两边都乘(或除以)同一个正数,不等号的方向不变;3.不等式两边都乘(或除以)同一个负数,不等号的方向改变.”是解答本题的关键.2、A【分析】对A 、B 、C 、D 选项进行一一验证,把已知解代入不等式看不等式两边是否成立.【详解】解:A 、当x =3时,2×3>1,成立,故A 符合题意;B 、当x =3时,2×3>1成立,但不是唯一解,例如x =4也是不等式的解,故B 不符合题意;C 、当x =3时,2×3>1成立,是不等式的解,故C 不符合题意;D 、当x =3时,2×3>1成立,是不等式的解,但不是不等式的解集,其解集为:x >12,故D 不符合题意;故选:A .【点睛】此题着重考查不等式中不等式的解、唯一解、解集概念之间的区别和联系,是一道非常好的基础题.3、D【分析】观察直线位于x轴及x轴上方的图象所对应的自变量的值即可完成解答.【详解】由图象知:不等式的解集为x≤3故选:D【点睛】本题考查了一次函数与一元一次不等式的关系,数形结合是解答本题的关键.4、A【分析】根据在数轴上表示不等式的解集的方法进行判断即可.【详解】在数轴上表示不等式1x>-的解集如下:故选:A.【点睛】本题考查不等式在数轴上的表示,掌握不等式在数轴上的画法是解题的关键.5、D【分析】根据不等式的基本性质逐项排查即可.【详解】解:A.在不等式的两边同时乘或除以同一个正数,不等号的方向不发生改变,这里应该是3a>3b,故A不正确,不符合题意;B.无法证明,故B选项不正确,不符合题意;C .当c =0时,不等式不成立,故C 选项不正确,不符合题意;D .不等式的两边同时乘2再在不等式的两边同时3,不等式,成立,故D 选项正确,符合题意. 故选:D .【点睛】本题主要考查了不等式的性质,1.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变; 2.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;3.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变.6、B【分析】先把m 当做常数,解一元二次方程,然后根据175x y +>-得到关于m 的不等式,由此求解即可 【详解】解:3131x y m x y m +=-⎧⎨-=+⎩①② 把①×3得:9333x y m +=-③,用③+①得:1042x m =-,解得25m x -=, 把25m x -=代入①得6315m y m -+=-,解得125m y --=, ∵175x y +>-, ∴21217555m m ---+>-,即131755m ->-, 解得6m <,∵m 为整数,∴m 的最大值为5,故选B.【点睛】本题主要考查了解二元一次方程组和解一元一次不等式和求不等式的整数解,解题的关键在于能够熟练掌握解二元一次方程组的方法.7、D【分析】直接根据函数图像与x轴的交点,进行逐一判断即可得到答案.【详解】解:A、由图象可知,关于x的不等式ax+b>0的解集是x<2,故不符合题意;B、由图象可知,关于x的不等式ax+b<0的解集是x>2,故不符合题意;C、由图象可知,关于x的方程ax+b=0的解是x=2,故不符合题意;D、由图象可知,关于x的方程ax+b=0的解是x=2,符合题意;故选:D.【点睛】本题主要考查了一次函数图像与x轴的交点问题,利用一次函数与x轴的交点求不等式的解集,解题的关键在于能够利用数形结合的思想求解.8、B【分析】由一次函数的图象的走势结合一次函数与y轴交于正半轴,可判断A,B,由图象可得:当x>4时,函数图象在x轴的下方,可判断C,先求解一次函数的解析式,再利用一次函数图象的平移可判断D,从而可得答案.【详解】解:一次函数y=kx+b的图象从左往右下降,所以y随x的增大而减小,故A不符合题意;k b故B符合题意;一次函数y=kx+b, y随x的增大而减小,与y轴交于正半轴,所以0,0,由图象可得:当x >4时,函数图象在x 轴的下方,所以y <0,故C 不符合题意;由函数图象经过0,2,4,0,240b k b ,解得:1,22k b 所以一次函数的解析式为:12,2y x 把122y x =-+向下平移2个单位长度得:12y x =-,故D 不符合题意; 故选B 【点睛】本题考查的是一次函数的性质,一次函数的平移,利用待定系数法求解一次函数的解析式,掌握“一次函数的图象与性质”是解本题的关键.9、C【分析】根据数轴上数的大小关系解答.【详解】解:解集为x ≤1,那么在数轴上表示正确的是C ,故选:C .【点睛】此题考查利用数轴表示不等式的解集,正确掌握数轴上数的大小关系及表示解集的方法是解题的关键.10、D【分析】利用不等式的性质,即可求解.【详解】解:A、若a<b,则3a<3b,故本选项错误,不符合题意;B、若a>b,当c=0时,则ac2=bc2,故本选项错误,不符合题意;C、若﹣2a>﹣2b,则a<b,故本选项错误,不符合题意;D、若ac2<bc2,则a<b,故本选项正确,符合题意;故选:D【点睛】本题主要考查了不等式的性质,熟练掌握不等式的性质是解题的关键.二、填空题1、20~45【分析】根据60≤2次服用的剂量≤90,60≤3次服用的剂量≤90,列出两个不等式组,求出解集,再求出解集的并集即可.【详解】解:设一次服用的剂量为x mg,根据题意得;60≤2x≤90或60≤3x≤90,解得30≤x≤45或20≤x≤30,则一次服用这种药品的剂量范围是:20~45mg.故答案为:20~45.【点睛】此题考查一元一次不等式组的应用,得到不同次数服用剂量的数量关系是解决本题的关键.2、1<m<2【分析】根据左右两个天平的倾斜得出不等式即可;【详解】由第一幅图得m >1,由第二幅图得m <2,故1<m <2;故答案是:1<m <2.【点睛】本题主要考查了一元一次不等式的解集,准确分析计算是解题的关键.3、4x ≤【分析】根据绝对值的意义进行分析解答【详解】解:∵ |4|4x x =-=-,∴40x -≥,故答案为:4x ≤.【点睛】本题考查绝对值的意义,解一元一次不等式,熟练掌握基础知识即可.4、<【分析】根据不等式的基本性质:不等式的两边乘(或除以)同一个负数,不等号的方向改变;不等式两边加上同一个数,不等式的方向不变.【详解】解:∵a >b ,∴﹣a <﹣b ,∴﹣2﹣a <﹣2﹣b ,故答案为:<.【点睛】本题考查不等式的性质,熟练掌握不等式的基本性质是解题的关键.5、a<3【分析】根据第二象限的符号特点(-,+),建立不等式解答即可.【详解】∵M(-6,3-a)是第二象限的点,∴3-a>0,解得a<3,故答案为:a<3.【点睛】本题考查了坐标与象限,不等式的解法,根据点的位置,正确建立不等式求解是解题的关键.三、解答题1、(1)甲种品牌球拍的单价是50元,乙种品牌球拍的单价是40元(2)购买25副甲种品牌球拍最省钱【分析】(1)设甲种品牌球拍的单价是x元,乙种品牌球拍的单价是y元,根据“购买3副甲种品牌球拍和2副乙种品牌球拍共需230元;购买2副甲种品牌球拍和1副乙种品牌球拍共需140元”,即可得出关于x,y的二元一次方程组,解之即可得出甲、乙两种品牌球拍的单价;(2)设购买m副甲种品牌球拍,则购买(100﹣m)副乙种品牌球拍,根据乙种品牌球拍数量不超过甲种品牌球拍数量的3倍,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,设学校购买100副球拍所需费用为w元,利用总价=单价×数量,即可得出w关于m的函数关系式,再利用一次函数的性质,即可解决最值问题.(1)解:设甲种品牌球拍的单价是x 元,乙种品牌球拍的单价是y 元,依题意得:{3x +2x =2302x +x =140, 解得:5040x y =⎧⎨=⎩. 答:甲种品牌球拍的单价是50元,乙种品牌球拍的单价是40元.(2)解:设购买m 副甲种品牌球拍,则购买(100﹣m )副乙种品牌球拍,依题意得:100﹣m ≤3m ,解得:m ≥25.设学校购买100副球拍所需费用为w 元,则w =50m +40(100﹣m )=10m +4000.∵10>0,∴w 随m 的增大而增大,∴当m =25时,w 取得最小值,∴购买25副甲种品牌球拍最省钱.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w 关于m 的函数关系式.2、(1)8;(2)见解析;(3)10461,11451,12441.【分析】(1)先求出10的真因数,再求10的真因数之和即可;(2)先把给出的数用代数式表示111001+10010ab a b =+,10ab a b =+,根据要求列代数式得1121001100103(10)ab ab a b a b -=++-+=7(10143)a b ++,说明括号中的数为整式即可;(3)设五位“两头蛇数”为141x y (x y <),先求出16的真因数之和15,找到16的亲和数为131133⨯⨯= ,根据能被16的“亲和数”整除,将五位数写成33的倍数与剩余部分为14133315333010106x y x x y =⨯+⨯+++,可得553x y ++能被33整除,根据08x ≤≤,19y ≤≤且x y <,得出555388x y ≤++≤能被33整除得出6x y +=即可.【详解】.解:(1)10的真因数为1,2,5,10的真因数之和为1+2+5=8,故答案为8;(2)11100010010+1=1001+10010ab a b a b =+++,10ab a b =+, ∵1131001100103(10)ab ab a b a b -=++-+,=7071001a b ++,=7(10143)a b ++,又因为09a ≤≤,09b ≤≤的整数,∴10143a b ++为整数,∴一个四位“两头蛇数”与它去掉两头后得到的两位数的3倍的差能被7整除;(3)设五位“两头蛇数”为141x y (x y <),∵末位数为1,∴不能被2(真因数)整除,∵16的真因数之和1248151311=+++==++,∴16的亲和数为131133⨯⨯= ,1411040110001033315633301010x y x y x x y =++=⨯++⨯++能被33整除,101062(553)x y x y ∴++=++能被33整除,又2不能被33整除,553x y ∴++能被33整除,08x ≤≤又,19y ≤≤且x y <,∴555388x y ≤++≤,55333x y ∴++=或66.5530x y ∴+=或5563x y +=(舍去),6x y ∴+=,09x y ≤≤<,∴06x y ==,或1,5x y ==或2,4x y ==,所以五位“两头蛇数”为10461,11451,12441.【点睛】本题考查数字之间的新定义,仔细阅读题目,把握实质,明确真因数与亲和数,整除性质,五位数的代数式表示,不等式组的解集,二元一次方程的非负整数解,掌握真因数与亲和数,整除性质,五位数的代数式表示,不等式组的解集,二元一次方程的非负整数解是解题关键.3、不等式组的解集为23x <≤,不等式组的整数解为3.【分析】先求出每个不等式的解集,然后求出不等式组的解集,最后求出不等式组的整数解即可.【详解】解:()202131x x x ->⎧⎪⎨+≥-⎪⎩①② 解不等式①得:2x >,解不等式②得:3x ≤,∴不等式组的解集为23x <≤,∴不等式组的整数解为3.【点睛】本题主要考查了解一元一次不等式组和求一元一次不等式组的整数解,解题的关键在于能够熟练掌握解不等式组的方法.4、(1)4x ≤;(2)1x >-【分析】(1)根据解不等式的基本步骤求解即可;(2)先求得每一个不等式的解集,后确定出解集即可.【详解】(1)∵3(1)5x x -≤+ ,∴335x x -≤+,∴28x ≤,∴4x ≤;(2)4614312163x x x x +>-⎧⎪⎨++-≤⎪⎩①② 由①:1x >-,由②:4x ≥-,1x ∴>-.【点睛】本题考查了一元一次不等式和一元一次不等式组的解法,熟练掌握解题的基本步骤是解题的关键.5、(1)购买甲种树苗300棵,则购买乙种树苗100棵;(2)至少应购买甲种树苗240棵【分析】(1)设购买甲种树苗x棵,则购买乙种树苗(400-x)棵,根据购买两种树苗的总金额为90000元建立方程求出其解即可;(2)设应购买甲种树苗a棵,则购买乙种树苗(400-a)棵,根据购买甲种树苗的金额不少于购买乙种树苗的金额建立不等式求出其解即可.【详解】解:(1)设购买甲种树苗x棵,则购买乙种树苗(400-x)棵,由题意得200x+300(400-x)=90000,解得:x=300,∴购买乙种树苗400-300=100棵,答:购买甲种树苗300棵,则购买乙种树苗100棵;(2)设应购买甲种树苗a棵,则购买乙种树苗(400-a)棵,由题意,得200a≥300(400-a),解得:a≥240.答:至少应购买甲种树苗240棵.【点睛】本题考查了列一元一次方程解实际问题的运用,一元一次不等式的解法的运用,解答时建立方程和不等式是关键.。
北师大版八年级数学下册第一讲 不等式的基本性质(基础讲解)(含解析)

第一讲不等式的基本性质【学习目标】1.了解不等式的意义,认识不等式和等式都可以用来刻画现实世界中的数量关系.2. 知道不等式解集的概念并会在数轴上表示解集.3. 理解不等式的三条基本性质,并会简单应用.【知识总结】一、不等式的概念一般地,用“<”、“>”、“≤”或“≥”表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.(1)不等号“<”或“>”表示不等关系,它们具有方向性,不等号的开口所对的数较大.(2)五种不等号的读法及其意义:(3)有些不等式中不含未知数,如3<4,-1>-2;有些不等式中含有未知数,如2x>5中,x表示未知数,对于含有未知数的不等式,当未知数取某些值时,不等式的左、右两边符合不等号所表示的大小关系,我们说不等式成立,否则,不等式不成立.二、不等式的解及解集1.不等式的解:能使不等式成立的未知数的值,叫做不等式的解.2.不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.不等式的解是具体的未知数的值,不是一个范围不等式的解集是一个集合,是一个范围.其含义:①解集中的每一个数值都能使不等式成立②能够使不等式成立的所有数值都在解集中3.不等式的解集的表示方法(1)用最简的不等式表示:一般地,一个含有未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式来表示.如:不等式x-2≤6的解集为x≤8.(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式的无限个解.如图所示:要点诠释:借助数轴可以将不等式的解集直观地表示出来,在应用数轴表示不等式的解集时,要注意两个“确定”:一是确定“边界点”,二是确定方向.(1)确定“边界点”:若边界点是不等式的解,则用实心圆点,若边界点不是不等式的解,则用空心圆圈;(2)确定“方向”:对边界点a而言,x>a或x≥a向右画;对边界点a而言,x<a或x≤a 向左画.注意:在表示a的点上画空心圆圈,表示不包括这一点.三、不等式的基本性质不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a>b,那么a±c>b±c.不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a>b,c>0,那么ac>bc(或a bc c >).不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a>b,c<0,那么ac<bc(或a bc c <).要点诠释:不等式的基本性质的掌握注意以下几点:(1)不等式的基本性质是对不等式变形的重要依据,是学习不等式的基础,它与等式的两条性质既有联系,又有区别,注意总结、比较、体会.(2)运用不等式的性质对不等式进行变形时,要特别注意性质2和性质3的区别,在乘(或除以)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,不等号的方向要改变. 【典型例题】【类型】一、不等式的概念例1.给出下列表达式:①()a b c ab ac +=+;②20-<;③5x ≠;④21a b >+;⑤222x xy y -+;⑥236x ->,其中属于不等式的是______.(填序号) 【答案】②③④⑥【分析】根据不等式的定义判断即可. 解:①a (b+c )=a b+ac 是等式;②-2<0是用不等号连接的式子,故是不等式; ③x≠5是用不等号连接的式子,故是不等式; ④2a >b+1是用不等号连接的式子,故是不等式; ⑤x 2-2xy+y 2是代数式;⑥2x-3>6是用不等号连接的式子,故是不等式, 故答案为:②③④⑥.【点拨】本题考查的是不等式的定义,即用“>”或“<”号表示大小关系的式子,叫做不等式,用“≠”号表示不等关系的式子也是不等式.【训练】下列式子:①-1>2;②3x≥-1;③x -3;④s =vt ;⑤3x -4<2y ;⑥3x -5=2x +2;⑦a 2+2≥0;⑧a 2+b 2≠c 2.其中是不等式的是___________________.(只填序号) 【答案】①②⑤⑦⑧ 【解析】【分析】根据不等式的定义即可得出结论.解:根据不等式的定义:①-1>2,②3x ≥-1,⑤3x -4<2y ,⑦a 2+2≥0,⑧a 2+b 2≠c 2是不等式;③x -3,④s =vt ,⑥3x -5=2x +2不是不等式. 故答案为:①②⑤⑦⑧.【点拨】本题考查了不等式的概念.掌握不等式的概念是解题的基础. 【训练】下列式子属于不等式的是_______________.① 50-< ② 2x 3= ③ 3x 12-> ④4x 2y 0-≤ ⑤ 2x 3x 20-+> ⑥ x 2y - ⑦ 57x ≠ ⑧54< ⑨ x y 0+≥【答案】①③④⑤⑦⑧⑨【解析】【分析】根据不等式的概念即可解题. 解:∵不等式要求用不等号连接 ∴排除②⑥∴不等式的有①③④⑤⑦⑧⑨【点拨】本题考查了不等式的识别,属于简单题,熟悉不等式的概念是解题关键.【类型】二、不等式的解及解集例2.(2018·安徽全国·七年级单元测试)下列数值中哪些是不等式3x-1≥5的解?哪些不是? 100, 98, 51, 12, 2, 0, -1, -3, -5.【答案】100, 98, 51, 12, 2是不等式3x-1≥5的解;0,-1,-3,-5不是不等式3x-1≥5的解. 【解析】试题分析:把上述各数分别代入不等式315x -≥的左边计算出左边的值,看是否大于或等于5即可. 试题解析:∵在不等式315x -≥中,当100x =时,左边=312995x -=>; 当98x =时,左边=312935x -=>; 当51x =时,左边=311525x -=>; 当12x =时,左边=31355x -=>; 当2x =时,左边=315x -=;当0x =时,左边=3115x -=-<; 当1x =-时,左边=3145x -=-<; 当3x =-时,左边=31105x -=-<; 当5x =-时,左边=31165x -=-<;∴上述各数中,100,98,51,12,2是不等式315x -≥的解;0,-1,-3,-5不是不等式315x -≥的解. 例3. 把下列不等式的解集在数轴上表示出来. (1)x≥-3; (2)x >-1; (3)x≤3;(4)x<-32. 【答案】(1)(2) (3)(4)【解析】将上述不等式的解集规范的表示在数轴上即可. 试题解析:(1)将3x ≥-表示在数轴上为:(2)将1x >-表示在数轴上为:(3)将3x ≤表示在数轴上为:(4)将32x <-表示在数轴上为:点拨:将不等式的解集表示在数轴上时,需注意两点:(1)“大于(大于或等于)向右,小于(小于或等于)向左”;(2)“x a >或(x a <)时”,数轴上表示数“a ”的点用“空心圆圈”,“x a ≥(或x a ≤)时”,数轴上表示数“a ”的点用“实心圆点”. 【训练】在数轴上表示不等式﹣3≤x <6的解集和x 的下列值:﹣4,﹣2,0,142,7,并利用数轴说明x 的这些数值中,哪些满足不等式﹣3≤x <6,哪些不满足? 【答案】﹣2,0,142满足不等式;﹣4,7不满足不等式 【分析】根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则将不等式的解集和x 的下列值:﹣4,﹣2,0,142,7在数轴上表示出来,这些值如果在解集范围内则表示满足不等式,否则就是不满足不等式.解:根据图可知:x 的下列值:﹣2,0,142满足不等式;x 的下列值:﹣4,7不满足不等式.【点拨】不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.【类型】三、不等式的性质例4.根据不等式的基本性质,把下列不等式化成x a >或x a <的形式.(1)x 15-<. (2)4x 13-≥. (3)1x 142-+≥. (4)4x 10-<-. 【答案】(1)x 6<;(2)x 1≥;(3)x 6≤-;(4)5x 2>.【分析】(1)利用不等式的性质将两边加上1即可求解;(2)利用不等式的性质先将两边加上1,再两边同除以4即可求解; (3)利用不等式的性质先将两边减去1,再两边同除以12-即可求解; (3)利用不等式的性质将两边同除以-4即可求解; 解:(1)x 15-<,两边加上1得:x 1151-+<+, 解得:x 6<; (2)4x 13-≥,两边加上1得:4x 1131-+≥+,即4x 4≥, 两边除以4得:x 1≥; (3)1x 142-+≥, 两边减去1得:1x 11412-+-≥-,即1x 32-≥, 两边除以12-得:x 6≤-; (4)4x 10-<-, 两边除以4-得:5x 2>. 【点拨】本题考查不等式的性质,解题的关键是熟练掌握不等式的性质.【训练】根据不等式的基本性质,把下列不等式化成“x>a”或“x<a”的形式:(1)5x>4x+8 (2)x+2<-1 (3)-23x>-1(4)10-x>0 (5)-15x<-2 (6)3x+5<0【答案】(1)x>8;(2)x<-3;(3)x<32;(4)x<10;(5)x>10;(6)x<-53.【分析】根据不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变;依次分析各小题即可.解:(1)根据不等式性质1,不等式两边都减4x,不等号的方向不变,得5x-4x>4x+8-4x,即x>8;(2)根据不等式性质1,不等式两边都减去2,不等号的方向不变,得x+2-2<-1-2即x<-3;(3)根据不等式性质3,不等式两边同除以-23,不等号的方向改变,得-23x÷(-23)<-1÷(-23)即x<32;(4)根据不等式性质1,不等式两边同减10,不等号的方向不变,得10-x-10>0-10即-x>-10,再根据不等式性质3,不等式两边同除以-1,不等号的方向改变,得x<10;(5)根据不等式性质3,不等式两边同乘以-5,不等号的方向改变,得-15x·(-5)>-2×(-5)即x>10;(6)根据不等式性质1,不等式两边都减去5,不等号的方向不变得3x+5-5<0-5即3x<-5,再根据不等式性质2,不等式两边同除以3,不等号的方向不变,得3x÷3<-5÷3即x<-53.【点拨】本题主要考查了不等式的基本性质,本题重在考查不等式的三条基本性质,特别是性质3,两边同乘以(•或除以)同一个负数时,一定要改变不等号的方向!•这条性质是初学者最易出错也经常出错的地方.。
最新北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组同步练习试题(含详细解析)

第二章一元一次不等式和一元一次不等式组同步练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若m >n ,则下列不等式不成立的是( )A .m +4>n +4B .﹣4m <﹣4nC .44m n >D .m ﹣4<n ﹣42、下列选项正确的是( )A .a 不是负数,表示为0a >B .a 不大于3,表示为3a <C .x 与4的差是负数,表示为40x -<D .x 不等于34,表示为34x > 3、如图,一次函数y =kx +b (k ,b 为常数,k ≠0)经过点A (-3,2),则关于x 的不等式中k (x -1)+b <2的解集为( )A .x >-2B .x <-2C .x >-3D .x <-34、不等式3+2x ≥1的解在数轴上表示正确的是( )A .B .C .D .5、设m 为整数,若方程组3131x y m x y m +=-⎧⎨-=+⎩的解x 、y 满足175x y +>-,则m 的最大值是() A .4 B .5 C .6 D .76、若m <n ,则下列各式正确的是( )A .﹣2m <﹣2nB .33m n> C .1﹣m >1﹣n D .m 2<n 27、下列变形中,错误的是( )A .若3a +5>2,则3a >2-5B .若213x ->,则23x <-C .若115x -<,则x >﹣5 D .若1115x >,则511x >8、若a >b ,则下列不等式一定成立的是( )A .﹣2a <﹣2bB .am <bmC .a ﹣3<b ﹣3D .3a+1<3b+19、一次函数y =kx +b (k ≠0)的图象如图所示,当x >2时,y 的取值范围是( )A .y <0B .y >0C .y <3D .y >310、已知一次函数y 1=kx +1和y 2=x ﹣2.当x <1时,y 1>y 2,则k 的值可以是( )A .-3B .-1C .2D .4第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)14≥-的解集是_________.2、已知关于x 的一元一次不等式20212021x a x +>的解集为2021x <,那么关于y 的一元一次不等式12021(1)2021y y a -<-+的解集为___________. 3、如图直线y =x +b 和y =kx +4与x 轴分别相交于点A (﹣4,0),点B (2,0),则040x b kx +>⎧⎨+>⎩解集为_____________.4、若关于x 的不等式组9210x x a ->-⎧⎨-≥⎩的整数解共有5个,则a 的取值范围_________. 5、不等式组:3561162x x x x <+⎧⎪+-⎨≥⎪⎩,写出其整数解的和_____. 三、解答题(5小题,每小题10分,共计50分)1、解不等式(组)(1)3(1)5x x -≤+(2)4614312163x x x x +>-⎧⎪++⎨-≤⎪⎩2、解不等式3x﹣1≤x+3,并把解在数轴上表示出来.3、某校为了丰富学生的业余生活,组织了一次棋类的比赛,准备购买若干跳棋和军棋作为奖品,若购买2副跳棋和3副军棋共需42元,购买5副跳棋和一副军旗共需40元.(1)求购买一副跳棋和一副军棋各需要多少钱?(2)学校准备购买跳棋与军棋共80副作为奖品,根据规定购买的总费用不能超过600元,则学校最多可以购买多少副军棋?4、下列各式哪些是不等式2(2x+1)>25的解?哪些不是?(1)x=1.(2)x=3.(3)x=10.(4)x=12.5、某公司销售A、B两种型号教学设备,每台的销售成本和售价如表:已知每月销售两种型号设备共20台,设销售A种型号设备x台,A、B两种型号设备全部售完后获得毛利润y万元(毛利润=售价-成本)(1)求y关于x的函数关系式(不要求写自变量的取值范围);(2)若销售两种型号设备的总成本不超过80万元,那么公司如何安排销售A、B两种型号设备,售完后毛利润最大?并求出最大毛利润.-参考答案-一、单选题1、D【分析】根据不等式的基本性质对各选项进行逐一分析即可.【详解】解:A .∵m >n ,∴m +4>n +4,故该选项正确,不符合题意;B .∵m >n ,∴44m n -<-,故该选项正确,不符合题意;C .∵m >n , ∴44m n >,故该选项正确,不符合题意; D .∵m >n ,∴44m n ->-,故该选项错误,符合题意;故选:D .【点睛】本题考查不等式的基本性质.掌握不等式的基本性质“1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;2.不等式两边都乘(或除以)同一个正数,不等号的方向不变;3.不等式两边都乘(或除以)同一个负数,不等号的方向改变.”是解答本题的关键.2、C【分析】由题意先根据非负数、负数及各选项的语言表述列出不等式,再与选项中所表示的进行比较即可得出答案.【详解】解:A .a 不是负数,可表示成0a ,故本选项不符合题意;B .a 不大于3,可表示成3a ,故本选项不符合题意;C .x 与4的差是负数,可表示成40x -<,故本选项符合题意;D .x 不等于34,表示为34x ≠,故本选项不符合题意; 故选:C .【点睛】本题考查不等式的定义,解决本题的关键是理解负数是小于0的数,不大于用数学符号表示是“≤”.3、A【分析】根据一次函数图象平移规律可得函数y =kx +b 图像向右平移1个单位得到平移后的解析式为y =k (x -1)+b ,即可得出点A 平移后的对应点,根据图象找出一次函数y=k (x -1)+b 的值小于2的自变量x 的取值范围,据此即可得答案.【详解】解:∵函数y =kx +b 图像向右平移1个单位得到平移后的解析式为y =k (x -1)+b ,∴A (−3,2)向右平移1个单位得到对应点为(−2,2),由图象可知,y 随x 的增大而减小,∴关于x 的不等式(1)2k x b 的解集为2x >-,故选:A .【点睛】本题考查一次函数的性质、一次函数图象的平移及一次函数与不等式,正确理解函数的性质、会观察图象,熟练掌握平移规律是解题的关键.4、B【分析】不等式移项,合并同类项,把x 系数化为1求出解集,表示在数轴上即可.【详解】解:不等式3+2x ≥1,移项得:2x ≥1﹣3,合并同类项得:2x ≥﹣2,解得:x ≥﹣1,数轴表示如下:.故选:B .【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.不等式的解集在数轴上表示时,空心圈表示不包含该点,实心点表示包含该点.5、B【分析】先把m 当做常数,解一元二次方程,然后根据175x y +>-得到关于m 的不等式,由此求解即可 【详解】解:3131x y m x y m +=-⎧⎨-=+⎩①② 把①×3得:9333x y m +=-③,用③+①得:1042x m =-,解得25m x -=, 把25m x -=代入①得6315m y m -+=-,解得125m y --=, ∵175x y +>-, ∴21217555m m ---+>-,即131755m ->-, 解得6m <,∵m 为整数,∴m 的最大值为5,故选B .【点睛】本题主要考查了解二元一次方程组和解一元一次不等式和求不等式的整数解,解题的关键在于能够熟练掌握解二元一次方程组的方法.6、C【分析】根据不等式的基本性质逐项判断即可.【详解】解:A :∵m <n ,∴﹣2m >﹣2n ,∴不符合题意;B :∵m <n , ∴33m n <, ∴不符合题意;C :∵m <n ,∴﹣m >﹣n ,∴1﹣m >1﹣n ,∴符合题意;D : m <n ,当10m n =-=,时,m 2>n 2, ∴不符合题意;故选:C .【点睛】本题主要考查了不等式的基本性质,熟练掌握不等式的3条基本性质是解题关键.7、B【分析】根据不等式的两边都加(或减)同一个数(或同一个整式),不等号的方向不变;不等式的两边都乘以同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.【详解】解:A 、不等式的两边都减5,不等号的方向不变,故A 不符合题意;B 、不等式的两边都乘以32-,不等号的方向改变得到32x <-,故B 符合题意; C 、不等式的两边都乘以(﹣5),不等号的方向改变,故C 不符合题意;D 、不等式的两边都乘以同一个正数,不等号的方向不变,故D 不符合题意;故选:B .【点睛】本题考查了不等式的性质,熟记不等式的性质并根据不等式的性质计算式解题.8、A【分析】由题意直接依据不等式的基本性质对各个选项进行分析判断即可.【详解】解:A .∵a >b ,∴﹣2a <﹣2b ,故本选项符合题意;B .a >b ,当m >0时,am >bm ,故本选项不符合题意;C .∵a >b ,∴a ﹣3>b ﹣3,故本选项不符合题意;D .∵a >b , ∴33a b >, ∴1133ab +>+,故本选项不符合题意;故选:A .【点睛】本题考查不等式的基本性质,注意掌握不等式的基本性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.9、A【分析】观察图象得到直线与x 轴的交点坐标为(2,0),根据一次函数性质得到y 随x 的增大而减小,所以当x >2时,y <0.【详解】∵一次函数y =kx +b (k ≠0)与x 轴的交点坐标为(2,0),∴y 随x 的增大而减小,∴当x >2时,y <0.故选:A .【点睛】本题考查了一次函数的性质:一次函数y =kx +b (k 、b 为常数,k ≠0)的图象为直线,当k >0,图象经过第一、三象限,y 随x 的增大而增大;当k <0,图象经过第二、四象限,y 随x 的增大而减小;直线与x 轴的交点坐标为(,0)b k-.10、B【分析】先求出不等式的解集,结合x <1,即可得到k 的取值范围,即可得到答案.【详解】解:根据题意,∵y 1>y 2,∴12kx x +>-,解得:(1)3k x ->-,∴10k -<,∴1k <;31x k <--, ∵当x <1时,y 1>y 2, ∴311k -<- ∴2k >-,∴21k -<<;∴k 的值可以是-1;故选:B .【点睛】本题考查了一次函数的图像和性质,解一元一次不等式,解题的关键是掌握一次函数的性质进行计算.二、填空题1、≤x 【分析】根据不等式的性质进行求解,根据二次根式的运算法则进行化简即可.【详解】4≥-4≥-,4x ≥-,x≤x故答案为:≤x【点睛】本题考查了解一元一次不等式,二次根式的混合运算,熟练掌握相关运算法则是解本题的关键. 2、2022y <【分析】设1,x y =-则20212021x a x +>化为:()120211,2021y a y -+->整理可得:12021(1)2021y y a -<-+,从而可得12021(1)2021y y a -<-+的解集是不等式12021y -<的解集,从而可得答案. 【详解】解: 关于x 的一元一次不等式20212021x a x +>的解集为2021x <, 设1,x y =- 则20212021x a x +>化为:()120211,2021y a y -+-> 两边都乘以1-得:()120211,2021y a y ---< 即12021(1)2021y y a -<-+ ∴ 12021(1)2021y y a -<-+的解集为:12021y -<的解集, 2022.y ∴<故答案为:2022.y <【点睛】本题考查的是求解一元一次不等式的解集,掌握“整体法求解不等式的解集”是解本题的关键. 3、42x -<<【分析】观察图象可得:当4x >- 时,y x b =+的图象位于x 轴的上方,从而得到0x b +> 的解集为4x >- ;当2x < 时,4y kx =+的图象位于x 轴的上方,从而得到40kx +> 的解集为2x <,即可求解.【详解】解:观察图象可得:当4x >- 时,y x b =+的图象位于x 轴的上方,∴0x b +> 的解集为4x >- ;当2x < 时,4y kx =+的图象位于x 轴的上方,∴40kx +> 的解集为2x <,∴040x b kx +>⎧⎨+>⎩解集为42x -<<. 故答案为:42x -<<【点睛】本题主要考查了一次函数与不等式的关系,观察图象得到当4x >- 时,y x b =+的图象位于x 轴的上方,当2x < 时,4y kx =+的图象位于x 轴的上方是解题的关键.4、﹣1<a ≤0【分析】先求出不等式组的解集,再根据已知条件得出−1<a ≤0即可.【详解】解:9210x x a --⎧⎨-≥⎩>①②, 解不等式①,得x <5,解不等式②,得x ≥a ,所以不等式组的解集是a ≤x <5,∵关于x 的不等式组9210x x a ->-⎧⎨-≥⎩的整数解共有5个, ∴−1<a ≤0,故答案为:−1<a ≤0.【点睛】本题考查了解一元一次不等式组的整数解和解一元一次不等式组,能根据不等式的解集找出不等式组的解集是解此题的关键.5、0【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,即可求出整数解,最后相加即可.【详解】解:3561162x x x x <+⎧⎪⎨+-≥⎪⎩①②,解不等式①,得3x >-;解不等式②,得2x ≤.∴不等式组的解集为32x -<≤,∴不等式组的整数解分别为-2、-1、0、1、2,∴不等式组的整数解的和为:210120--+++=.故答案为:0.【点睛】本题考查求不等式组的整数解.正确的求出不等式组中每一个不等式的解集是解答本题的关键.三、解答题1、(1)4x ≤;(2)1x >-【分析】(1)根据解不等式的基本步骤求解即可;(2)先求得每一个不等式的解集,后确定出解集即可.【详解】(1)∵3(1)5x x -≤+ ,∴335x x -≤+,∴28x ≤,∴4x ≤;(2)4614312163x x x x +>-⎧⎪⎨++-≤⎪⎩①②由①:1x >-,由②:4x ≥-,1x ∴>-.【点睛】本题考查了一元一次不等式和一元一次不等式组的解法,熟练掌握解题的基本步骤是解题的关键.2、x ≤2;数轴表示见解析.【分析】按移项、合并同类项、系数化为1的步骤求得不等式的解集,然后在数轴上表示出来即可.【详解】解:313x x -≤+,移项,得331x x -≤+,合并同类项,得24x ≤,系数化为1,得x ≤2,把解集在数轴上表示如图所示:【点睛】本题考查了解一元一次不等式,在数轴上表示不等式的解集,熟练掌握解一元一次不等式的基本步骤以及在数轴上表示解集的方法是解题的关键.3、(1)购买一副跳棋和一副军棋各需要6元、10元;(2)学校最多可以买30副军棋【分析】(1)设购买一副跳棋和一副军棋各需要x 元、y 元,然后根据购买2副跳棋和3副军棋共需42元,购买5副跳棋和一副军旗共需40元,列出方程求解即可;(2)设购买m 副军棋,则购买()80m -副跳棋,然后根据购买的总费用不能超过600元,列出不等式求解即可.【详解】解:(1)设购买一副跳棋和一副军棋各需要x 元、y 元,由题意得:2342540x y x y +=⎧⎨+=⎩, 解得610x y =⎧⎨=⎩, ∴购买一副跳棋和一副军棋各需要6元、10元,答:购买一副跳棋和一副军棋各需要6元、10元;(2)设购买m 副军棋,则购买()80m -副跳棋,由题意得:()68010600m m -+≤,即4480600m +≤,解得30m ≤,∴学校最多可以买30副军棋,答:学校最多可以买30副军棋.【点睛】本题主要考查了二元一次方程组和一元一次不等式的实际应用,解题的关键在于能够准确理解题意,列出式子求解.4、(1)不是(2)不是(3)是(4)是【分析】把未知数的值代入计算,比较后,判断即可(1)把x=1代入不等式2(2x+1)>25,因为:左边=2×(2×1+1)=6<25,所以x=1不是不等式2(2x+1)>25的解.(2)把x=3代入不等式2(2x+1)>25,因为:左边=2×(2×3+1)=14<25,所以x=3不是不等式2(2x+1)>25的解.(3)把x=10代入不等式2(2x+1)>25,因为:左边=2×(2×10+1)=42>25,所以x=10是不等式2(2x+1)>25的解.(4)把x=12代入不等式2(2x+1)>25,因为:左边=2×(2×12+1)=50>25,所以x=12是不等式2(2x+1)>25的解.【点睛】本题考查了不等式的解即使不等式左右两边成立的未知数的值,正确理解不等式的解是解题的关键.5、(1)y=-2x+60;(2)公司生产A,B两种品牌设备各10台,售完后获利最大,最大毛利润为40万元.【分析】(1)设销售A种品牌设备x台,B种品牌设备(20-x)台,算出每台的利润乘对应的台数,再合并在一起即可求出总利润;(2)由“生产两种品牌设备的总成本不超过80万元”,列出不等式,再由(1)中的函数的性质得出答案.【详解】解:(1)设销售A种型号设备x台,则销售B种型号设备(20-x)台,依题意得:y=(4-3)x+(8-5)×(20-x),即y=-2x+60;(2)3x+5×(20-x)≤80,解得x≥10.∵-2<0,∴当x=10时,y最大=40万元.故公司生产A,B两种品牌设备各10台,售完后获利最大,最大毛利润为40万元.【点睛】本题考查了一次函数的应用,一元一次不等式的应用,注意题目蕴含的数量关系,正确列式解决问题.。
北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组专项训练试题(含答案及详细解析)

第二章一元一次不等式和一元一次不等式组专项训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果a <b ,c <0,那么下列不等式成立的是( )A .a +c <bB .a ﹣c >b ﹣cC .ac +1<bc +1D .a (c ﹣2)<b (c ﹣2)2、不等式270x -<的最大整数解为( )A .2B .3C .4D .53、一次函数y =(m -2)x +m 2-3的图象与y 轴交于点M (0,6),且y 的值随着x 的值的增大而减小,则m 的值为( )A .6-B .C .3D .3-4、已知关于x 的不等式组3x x a≤⎧⎨>⎩有解,则a 的取值不可能是( ) A .0 B .1 C .2 D .35、若m <n ,则下列各式正确的是( )A .﹣2m <﹣2nB .33m n >C .1﹣m >1﹣nD .m 2<n 26、对有理数a ,b 定义运算:a ✬b =ma +nb ,其中m ,n 是常数,如果3✬4=2,5✬8>2,那么n 的取值范围是( )A .n >1-B .n <1-C .n >2D .n <27、若m >n ,则下列不等式不成立的是( )A .m +4>n +4B .﹣4m <﹣4nC .44m n >D .m ﹣4<n ﹣48、如果a >b ,下列各式中正确的是( )A .﹣2021a >﹣2021bB .2021a <2021bC .a ﹣2021>b ﹣2021D .2021﹣a >2021﹣b9、若整数a 使得关于x 的方程2(2)3x a -+=的解为非负数,且使得关于y 的一元一次不等式组322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有3个整数解.则所有符合条件的整数a 的和为( ) A .23 B .25 C .27 D .2810、若a >b ,则下列不等式一定成立的是( )A .﹣2a <﹣2bB .am <bmC .a ﹣3<b ﹣3D .3a +1<3b +1 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、任何一个以x 为未知数的一元一次不等式都可以变形为_____(a ≠0)的形式,所以解一元一次不等式相当于在某个一次函数_____的值大于0或小于0时,求_____的取值范围.2、从2-,1-,0,13,1,2这六个数字中,随机抽取一个数记为a ,则使得关于x 的不等式组102321x a x ⎧->⎪⎨⎪-+≤⎩只有三个整数解的概率是 __. 3、已知a >b ,且c ≠0,用“>”或“<”填空.(1)2a ________a +b(2)2ac _______2b c(3)c -a _______c -b(4)-a |c |_______-b |c |4、大学城熙街新开了一家大型进口超市,开业第一天,超市分别推出三款纸巾:洁柔体验装、洁柔超值装、妮飘进口装进行促销活动,纸巾只能按包装整袋出售,每款纸巾的单价为整数,其中妮飘进口装的促销单价是其余两款纸巾促销单价和的4倍,同时妮飘进口装的促销单价大于40元且不超过60元,当天三款纸巾的销售数量之比为3:1:1第二天,超市对三款纸巾恢复原价,洁柔体验装比其促销价上涨50%,洁柔超值装的价格是其促销价的53,而妮飘进口装的价格在其第一天的基础上增加了14,第二天洁柔体验装与妮飘进口装的销量之比为4:3,洁柔超值装的销量比第一天的销量减少了20%.超市结算发现,第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元,第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,这两天妮飘进口装的总销售额为_______元.5、不等式组:3561162x x x x <+⎧⎪+-⎨≥⎪⎩,写出其整数解的和_____. 三、解答题(5小题,每小题10分,共计50分)1、若(m -2)23m x --2≥7是关于x 的一元一次不等式,求m 的值. 2、(1)解方程组:2523517x y x y +=⎧⎨-=⎩ (2)解不等式组()20 2131x x x +>⎧⎨+≥-⎩ 3、关于x 的方程6422x a x a +-=+的解大于1,求a 的取值范围.4、解不等式3x ﹣1≤x +3,并把解在数轴上表示出来.5、某学校计划购买若干台电脑,现在从两家商场了解到同一型号的电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原报价收款,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.如果你是校长,你该怎么考虑,如何选择?-参考答案-一、单选题1、A【分析】根据不等式的性质,逐项判断即可求解.【详解】解:A、由a<b,c<0得到:a+c<b+0,即a+c<b,故本选项符合题意.B、当a=1,b=2,c=﹣3时,不等式a﹣c>b﹣c不成立,故本选项不符合题意.C、由a<b,c<0得到:ac+1>bc+1,故本选项不符合题意.D、由于c﹣2<﹣2,所以a(c﹣2)>b(c﹣2),故本选项不符合题意.故选:A【点睛】本题主要考查了不等式的性质,熟练掌握不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.2、B【分析】求出不等式的解集,然后找出其中最大的整数即可.【详解】x-<,解:270x<,277x<,2则符合条件的最大整数为:3,故选:B.【点睛】本题题考查了求不等式的整数解,能够正确得出不等式的解集是解本题的关键.3、D【分析】由一次函数y=(m-2)x+m2-3的图象与y轴交于点M(0,6),利用一次函数图象上点的坐标特征即可得出关于m的方程,解之即可得出m的值,由y的值随着x的值的增大而减小,利用一次函数的性质可得出m-2<0,解之即可得出m<2,进而可得出m=-3.【详解】解:∵一次函数y=(m-2)x+m2-3的图象与y轴交于点M(0,6),∴m2-3=6,即m2=9,解得:m=-3或m=3.又∵y的值随着x的值的增大而减小,∴m-2<0,∴m<2,∴m=-3.故选:D.【点睛】本题考查了一次函数图象上点的坐标特征以及一次函数的性质,利用一次函数图象上点的坐标特征及一次函数的性质,找出关于m的方程及一元一次不等式是解题的关键.4、D【分析】根据“同大取大,同小取小,大小小大取中间,大大小小无解”即可求出a 的取值范围,然后根据a 的取值范围解答即可.【详解】解:∵关于x 的不等式组3x x a ≤⎧⎨>⎩有解, ∴a <3,∴a 的取值可能是0、1或2,不可能是3.故选D .【点睛】本题考查了由不等式组的解集情况求参数,不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.5、C【分析】根据不等式的基本性质逐项判断即可.【详解】解:A :∵m <n ,∴﹣2m >﹣2n ,∴不符合题意;B :∵m <n , ∴33m n <, ∴不符合题意;C :∵m <n ,∴﹣m >﹣n ,∴1﹣m >1﹣n ,∴符合题意;D : m <n ,当10m n =-=,时,m 2>n 2, ∴不符合题意;故选:C .【点睛】本题主要考查了不等式的基本性质,熟练掌握不等式的3条基本性质是解题关键.6、A【分析】先根据新运算的定义和3✬4=2将m 用n 表示出来,再代入5✬8>2可得一个关于n 的一元一次不等式,解不等式即可得.【详解】解:由题意得:342m n +=, 解得243n m -=, 由5✬8>2得:582m n +>, 将243n m -=代入582m n +>得:5(24)823n n -+>, 解得1n >-,故选:A .【点睛】本题考查了一元一次不等式的应用,理解新运算的定义是解题关键.7、D【分析】根据不等式的基本性质对各选项进行逐一分析即可.【详解】解:A .∵m >n ,∴m +4>n +4,故该选项正确,不符合题意;B .∵m >n ,∴44m n -<-,故该选项正确,不符合题意;C .∵m >n , ∴44m n >,故该选项正确,不符合题意; D .∵m >n ,∴44m n ->-,故该选项错误,符合题意;故选:D .【点睛】本题考查不等式的基本性质.掌握不等式的基本性质“1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;2.不等式两边都乘(或除以)同一个正数,不等号的方向不变;3.不等式两边都乘(或除以)同一个负数,不等号的方向改变.”是解答本题的关键.8、C【分析】根据不等式的性质即可求出答案.【详解】解:A 、∵a >b ,∴−2021a <−2021b ,故A 错误;B、∵a>b,∴2021a>2021b,故B错误;C、∵a>b,∴a﹣2021>b﹣2021,故C正确;D、∵a>b,∴2021﹣a<2021﹣b,故D错误;故选:D.【点睛】本题考查不等式,解题的关键是熟练运用不等式的性质,本题属于基础题型.9、B【分析】表示出不等式组的解集,由不等式至少有四个整数解确定出a的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a的值,进而求出之和.【详解】解:32222210y yy a--⎧+>⎪⎪⎨-⎪≤⎪⎩①②,解不等式①得:2y>-,解不等式②得:y a≤∴不等式组的解集为:1yy a>-⎧⎨≤⎩,∵由不等式组至少有3个整数解,∴2a≥,即整数a=2,3,4,5,…,∵()223x a -+=,∴243x a -+= 解得:72a x , ∵方程()223x a -+=的解为非负数,∴702a -≥, ∴7a ≤∴得到符合条件的整数a 为3,4,5,6,7,之和为25.故选B .【点睛】此题考查了解一元一次方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.10、A【分析】由题意直接依据不等式的基本性质对各个选项进行分析判断即可.【详解】解:A .∵a >b ,∴﹣2a <﹣2b ,故本选项符合题意;B .a >b ,当m >0时,am >bm ,故本选项不符合题意;C .∵a >b ,∴a ﹣3>b ﹣3,故本选项不符合题意;D .∵a >b ,∴33a b >, ∴1133ab +>+,故本选项不符合题意;故选:A .【点睛】本题考查不等式的基本性质,注意掌握不等式的基本性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.二、填空题1、ax +b >0或ax +b <0 y =ax +b 自变量【分析】根据一次函数图象与一元一次不等式的关系解答.【详解】解:任何一个以x 为未知数的一元一次不等式都可以变形为ax +b >0或ax +b <0 (a ≠0)的形式,所以解一元一次不等式相当于在某个一次函数y =ax +b 的值大于0或小于0时,求自变量的取值范围. 故答案为:ax +b >0或ax +b <0;y =ax +b ;自变量.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y =kx +b (k ≠0)的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y =kx +b (k ≠0)在x 轴上(或下)方部分所有的点的横坐标所构成的集合.2、13【分析】解关于x 的不等式组,由不等式组整数解的个数求出a 的范围,再从6个数中找到同时满足以上两个条件的情况,从而利用概率公式求解可得.【详解】解:解不等式组12321x ax⎧->⎪⎨⎪-+≤⎩,得:12a<x≤2,∵不等式组只有3个整数解,∴不等式组的整数解为2、1、0,则-1≤12a<0,即-2≤a<0∴在所列的六个数字中,同时满足以上两个条件的只有-2,-1,∴只有三个整数解的概率是21 = 63故答案为:13.【点睛】题主要考查的是解一元一次不等式组的解集和概率的知识,解题的关键是熟练掌握解一元一次不等式组的能力及概率公式的应用.3、>><<【分析】(1)根据不等式的性质:不等式两边同时加上一个数,不等号不变号,即可得;(2)根据不等式的性质:不等式两边同时除以一个正数,不等号不变号,即可得;(3)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时加上一个数,不等号不变号,即可得;(4)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时乘以一个正数,不等号不变号,即可得.【详解】解:(1)∵a b>,∴a a b a +>+,即:2a b a >+;(2)∵a b >,20c >, ∴22a b c c >; (3)∵a b >,∴a b -<-,∴c a c b -<-;(4)∵a b >,∴a b -<-,0c >, ∴a c b c -<-;故答案为:(1)>;(2)>;(3)<;(4)<.【点睛】题目主要考查不等式的基本性质,熟练掌握不等式的性质并综合运用是解题关键.4、14960【分析】设洁柔体验装的促销价为x 元,销售量为a 包,洁柔超值装的促销价为y 元,销售量为b 包,妮飘进口装的促销价为z 元,销售量为c 包,第二天,洁柔体验装的原价为: (150%)x +,销售量为1a 包,洁柔超值装的原价为: 53y ,销售量为1b 包,妮飘进口装的原价为: 1(1)4z +,销售量为 1c 包,根据第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元,可得()()175767x y c c +-=,进而可得 1755913x y c c +=⎧⎨-=⎩,x y 为整数,即可求得x y +,根据第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,解得 5135482828c <<,由 121753c c ,都是整数,则 5135482828c <<能被 3和5整除的数即能被15整除,即可求得c ,则这两天妮飘进口装的总销售额为11(1)4zc z c ++,即 ()()965x y c +-,代入数值求解即可. 【详解】解:设洁柔体验装的促销价为x 元,销售量为a 包,洁柔超值装的促销价为y 元,销售量为b 包,妮飘进口装的促销价为z 元,销售量为c 包,()44060::3:1:1z x y z a b c ⎧=+⎪<≤⎨⎪=⎩1015x y ∴<+≤,33a b c ==, 则35a b c c c c c ++=++=第二天,洁柔体验装的原价为:(150%)x +,销售量为1a 包,洁柔超值装的原价为:53y ,销售量为1b 包,妮飘进口装的原价为:1(1)4z +,销售量为1c 包, 11:=4:3a c ,即1143a c = ()1120%b b =-4=5b 4=5c 则11111144743535a b c c c c c c ++=++=+ 第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元∴()111150%17674ax by cz x a z c ⎡⎤⎛⎫++-+++= ⎪⎢⎥⎝⎭⎣⎦()()3(344)75ax by cz c x y z c x y x y c x y ++=++=+++=+()111150%14x a z c ⎛⎫+++ ⎪⎝⎭ 1151.54()4xa x y c =+⨯+1111.555xa xc yc =++111345523x c xc yc =⨯++ 1175xc yc =+()175x y c =+∴()111150%17674ax by cz x a z c ⎡⎤⎛⎫++-+++= ⎪⎢⎥⎝⎭⎣⎦即1(75)(75)c x y c x y +-+767=即()()175767x y c c +-=7671359=⨯1755913x y c c +=⎧∴⎨-=⎩或 1751359x y c c +=⎧⎨-=⎩ 1015x y <+≤505575x y ∴<+≤7550x y ∴+>1755913x y c c +=⎧∴⎨-=⎩ 5975x y -∴=,x y 为整数,解得29x y =⎧⎨=⎩或 72x y =⎧⎨=⎩洁柔体验装的原价为:(150%)x + 1.5x =是整数,则7x ≠,洁柔超值装的原价为:53y 是整数则2y ≠ ∴ 29x y =⎧⎨=⎩4()44z x y ∴=+=第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,∴()()11196120a b c a b c ≤++-++≤113c c -=1c c ∴>()()111a b c a b c ++-++=117421753553c c c c c ⎛⎫-+=-⎪⎝⎭ ∴217633591(13)5315153c c c ⎛⎫--=-+ ⎪⎝⎭2891153c =+ 即289196120153c <+< 解得5135482828c <<121753c c ,都是整数,则5135482828c <<能被3和5整除的数即能被15整除 ∴45c =11(1)4zc z c ++=()()11554444zc zc x y c x y c +=+++ ()()145x y c c =++()()4513x y c c =++-⎡⎤⎣⎦()()965x y c =+-44=⨯()94565⨯-14960=故答案为:14960【点睛】本题考查了二元一次方程,一元一次不等式组求整数解,理清题中数据关系是解题的关键. 5、0【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,即可求出整数解,最后相加即可.【详解】 解:3561162x x x x <+⎧⎪⎨+-≥⎪⎩①②,解不等式①,得3x >-;解不等式②,得2x ≤.∴不等式组的解集为32x -<≤,∴不等式组的整数解分别为-2、-1、0、1、2,∴不等式组的整数解的和为:210120--+++=.故答案为:0.【点睛】本题考查求不等式组的整数解.正确的求出不等式组中每一个不等式的解集是解答本题的关键.三、解答题1、m =-2【分析】由题意可知:m2-3=1,m-2≠0,即可解答.【详解】解∵不等式(m-2) 23mx- -2≥7是关于x的一元一次不等式,∴m2-3=1,m-2≠0,解得m=-2当m=-2时,不等式是关于x的一元一次不等式【点睛】此题考查了一元一次不等式的定义,熟练掌握一元一次不等式的定义是解本题的关键.2、(1)43xy=⎧⎨=⎩;(2)﹣2﹤x≤3.【分析】(1)方程运用加减消元法求解即可;(2)分别求出每个不等式的解集,再取它们的公共部分即可【详解】解:(1)2523 517x yx y+=⎧⎨-=⎩①②①+②×5得:27x=23+17×5,解得:x=4,将x=4代入②中,得:20﹣y=17,解得:y=3,∴原方程组的解为43xy=⎧⎨=⎩.(2)202(1)31xx x+>⎧⎨+≥-⎩①②,解:解①得:x﹥﹣2,解②得:x≤3,∴不等式组的解集为:﹣2﹤x≤3【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3、a>0【分析】先解方程得出x=44a+,根据方程的解大于1得出关于a的不等式,解之即可.【详解】解:解不等式6x+a−4=2x+2a,得x=44a+,根据题意,得:44a+>1,解得a>0.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.4、x≤2;数轴表示见解析.【分析】按移项、合并同类项、系数化为1的步骤求得不等式的解集,然后在数轴上表示出来即可.【详解】解:313x x -≤+,移项,得331x x -≤+,合并同类项,得24x ≤,系数化为1,得x ≤2,把解集在数轴上表示如图所示:【点睛】本题考查了解一元一次不等式,在数轴上表示不等式的解集,熟练掌握解一元一次不等式的基本步骤以及在数轴上表示解集的方法是解题的关键.5、当购买少于5台电脑时,学校选择乙商场购买更优惠;当购买5台电脑时,学校选择甲、乙两商场购买一样优惠;当购买多于5台电脑时,学校选择甲商场购买更优惠.【分析】设学校购买x 台电脑,在甲商场购买花费为1y ,在乙商场购买花费为2y ,根据题意可得甲乙两种购买方式得函数解析式,分三种情况讨论:当12y y >时;当12y y =时;当12y y <时;分别进行计算得出自变量的取值范围即可得出在什么情况下选择哪种方案更优惠.【详解】解:设学校购买x 台电脑,在甲商场购买花费为1y ,在乙商场购买花费为2y ,则根据题意可得:()()1600016000125%45001500y x x =+⨯⨯=+--(x 为正整数);()2·6000120%4800y x x =⨯=-(x 为正整数);当12y y >时,学校选择乙商场购买更优惠,即450015004800x x +>,解得5x <,即15x <<;当12y y =时,学校选择甲、乙两商场购买一样优惠,即450015004800x x +=,解得5x =;当12y y <时,学校选择甲商场购买更优惠,即450015004800x x +<,解得5x >.∴当购买数量少于5台电脑时,学校选择乙商场购买更优惠;当购买5台电脑时,学校选择甲、乙两商场购买一样优惠;当购买数量多于5台电脑时,学校选择甲商场购买更优惠.【点睛】题目主要考查一次函数应用中的方案选择,理解题意,列出相应函数解析式,求解不等式是解题关键.。
最新精品解析北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组定向练习试题(含详解)

第二章一元一次不等式和一元一次不等式组定向练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若不等式组4101x m x x m -+<+⎧⎨+>⎩解集是4x >,则( ) A .92m ≤ B .5m ≤ C .92m = D .5m =2、若m >n ,则下列选项中不成立的是( )A .m +4>n +4B .m ﹣4>n ﹣4C .44m n >D .﹣4m >﹣4n3、已知关于x 的不等式组0521x a x -≥⎧⎨->⎩只有四个整数解,则实数a 的取值范围( ) A .﹣3≤a <﹣2 B .﹣3≤a ≤﹣2 C .﹣3<a ≤﹣2 D .﹣3<a <﹣24、若m >n ,则下列不等式不成立的是( )A .m +4>n +4B .﹣4m <﹣4nC .44m n >D .m ﹣4<n ﹣45、下列不等式是一元一次不等式的是( )A .23459x x >-B .324x -<C .12x < D .4327x y -<-6、关于x 的方程3﹣2x =3(k ﹣2)的解为非负整数,且关于x 的不等式组()21323x x k x x ⎧--≥⎪⎨+≤⎪⎩无解,则符合条件的整数k 的值的和为( )A .5B .2C .4D .67、海曙区禁毒知识竞赛共有20道题,每一题答对得5分,答错或不答都扣2分,小明得分要超过80分,他至少要答对多少道题?如果设小明答对x 道题,则他答错或不答的题数为20﹣x ,根据题意得( )A .5x ﹣2(20﹣x )≥80B .5x ﹣2(20﹣x )≤80C .5x ﹣2(20﹣x )>80D .5x ﹣2(20﹣x )<808、如图,l 1反映了某公司产品的销售收入与销售量的关系;l 2反映了该公司产品的销售成本与销售量的关系. 根据图象判断,该公司盈利时,销售量( )A .小于12件B .等于12件C .大于12件D .不低于12件9、如果x >y ,则下列不等式正确的是( )A .x ﹣1<y ﹣1B .5x <5yC .33xy > D .﹣2x >﹣2y10、若一次函数y =kx +b (k ,b 为常数,且k ≠0)的图象经过A (0,﹣1),B (1,1),则不等式kx +b ﹣1<0的解集为( )A .x <0B .x >0C .x >1D .x <1第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若x <y ,且(6﹣a )x >(6﹣a )y ,则a 的取值范围是 ______.2、若不等式(m ﹣3)x >m ﹣3,两边同除以(m ﹣3),得x <1,则m 的取值范围为_____.3、若不等式组12324x x x m--⎧<⎪⎨⎪<⎩无解,则m 的取值范围为__. 4、关于x 的不等式()250a b x a b -+->的解集是1x <,则关于x 的不等式20ax b ->的解集是___ .5、不等式组121a a a -<⎧⎨>-⎩的解集为____________. 三、解答题(5小题,每小题10分,共计50分)1、某校为了丰富学生的业余生活,组织了一次棋类的比赛,准备购买若干跳棋和军棋作为奖品,若购买2副跳棋和3副军棋共需42元,购买5副跳棋和一副军旗共需40元.(1)求购买一副跳棋和一副军棋各需要多少钱?(2)学校准备购买跳棋与军棋共80副作为奖品,根据规定购买的总费用不能超过600元,则学校最多可以购买多少副军棋?2、春节将至,小明家亲友团准备去某地旅游,甲旅行社的优惠办法是:买4张全票其余人按半价优惠;乙旅行社的优惠办法是:一律按原价的七五折优惠;已知这两家旅行社的原价均为4000元每人.(1)若亲友团有6人,甲、乙旅行社各需多少费用?(2)亲友团为多少人时,甲、乙旅行社的费用相同?(3)当亲友团人数满足什么条件时,甲旅行社的收费更优惠?当亲友团人数满足什么条件时,乙旅行社的收费更优惠?(直接写出结果,不需说明理由)3、解不等式组:(1)3(2)8131322x x x x --<⎧⎪⎨-<-⎪⎩ (2)2361452x x x x -<-⎧⎨-≤-⎩4、计算下列各题:(12 1)(2)解方程组:438x yx y+=⎧⎨-=⎩.(3)解不等式组:2(1)31134x xx x-+⎧⎪+⎨<⎪⎩,并把解集在数轴上表示出来.5、解不等式1226123x x++≥-,并将解集在数轴上表示;-参考答案-一、单选题1、C【分析】首先解出不等式组的解集,然后与x>4比较,即可求出实数m的取值范围.【详解】解:由①得2x>4m-10,即x>2m-5;由②得x>m-1;∵不等式组4101x m xx m-+<+⎧⎨+>⎩的解集是x>4,若2m-5=4,则m=92,此时,两个不等式解集为x>4,x>72,不等式组解集为x>4,符合题意;若m -1=4,则m =5,此时,两个不等式解集为x >5,x >4,不等式组解集为x >5,不符合题意,舍去;故选:C .【点睛】本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知数处理,将求出的解集与已知解集比较,进而求得另一个未知数.求不等式组的公共解,要遵循以下原则:同大取较大,同小取较小,大小小大中间找,大大小小解不了.2、D【分析】根据不等式的基本性质进行解答即可.【详解】解:∵m >n ,A 、m +4>n +4,成立,不符合题意;B 、m ﹣4>n ﹣4,成立,不符合题意;C 、44m n >,成立,不符合题意; D 、﹣4m <﹣4n ,原式不成立,符合题意;故选:D .【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解本题的关键.3、C【分析】先求出不等式解组的解集为2a x ≤<,即可得到不等式组的4个整数解是:1、0、-1、-2,由此即可得到答案.【详解】解:0521x a x -≥⎧⎨->⎩①②解不等式①得x a ≥;解不等式②得2x <;∵不等式组有解,∴不等式组的解集是2a x ≤<,∴不等式组只有4个整数解,∴不等式组的4个整数解是:1、0、-1、-2,∴32a -<≤-故选C .【点睛】本题主要考查了解一元一次不等式组,根据不等式组的整数解情况求参数,解题的关键在于能够熟练掌握解不等式组的方法.4、D【分析】根据不等式的基本性质对各选项进行逐一分析即可.【详解】解:A .∵m >n ,∴m +4>n +4,故该选项正确,不符合题意;B .∵m >n ,∴44m n -<-,故该选项正确,不符合题意;C .∵m >n ,∴44m n >,故该选项正确,不符合题意; D .∵m >n ,∴44m n ->-,故该选项错误,符合题意;故选:D .【点睛】本题考查不等式的基本性质.掌握不等式的基本性质“1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;2.不等式两边都乘(或除以)同一个正数,不等号的方向不变;3.不等式两边都乘(或除以)同一个负数,不等号的方向改变.”是解答本题的关键.5、B【分析】根据含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式进行分析即可.【详解】解:A 、未知数的次数含有2次,不是一元一次不等式,故此选项不合题意;B 、是一元一次不等式,故此选项符合题意;C 、1x是分式,故该不等式不是一元一次不等式,故此选项不合题意;D 、含有两个未知数,不是一元一次不等式,故此选项不合题意;故选:B .【点睛】此题主要考查了一元一次不等式定义,关键是掌握一元一次不等式的定义.6、C【分析】先求出3﹣2x=3(k﹣2)的解为x932k-=,从而推出3k≤,整理不等式组可得整理得:1xx k≤-⎧⎨≥⎩,根据不等式组无解得到k>﹣1,则﹣1<k≤3,再由整数k和932kx-=是整数进行求解即可.【详解】解:解方程3﹣2x=3(k﹣2)得x932k-=,∵方程的解为非负整数,∴932k-≥0,∴3k≤,把()213x xx k⎧--≥⎨≥⎩整理得:1xx k≤-⎧⎨≥⎩,由不等式组无解,得到k>﹣1,∴﹣1<k≤3,即整数k=0,1,2,3,∵932kx-=是整数,∴k=1,3,综上,k=1,3,则符合条件的整数k的值的和为4.故选C.【点睛】本题主要考查了解一元一次方程,根据一元一次不等式组的解集情况求参数,解题的关键在于能够熟练掌握相关知识进行求解.7、C【分析】设小明答对x 道题,则答错或不答(20﹣x )道题,根据小明的得分=5×答对的题目数﹣2×答错或不答的题目数结合小明得分要超过80分,即可得出关于x 的一元一次不等式.【详解】解:设小明答对x 道题,则他答错或不答的题数为20﹣x ,依题意,得:5x ﹣2(20﹣x )>80.故选:C .【点睛】此题主要考查了一元一次不等式的应用,根据实际问题中的条件列不等式时,要注意抓住题目中的一些关键性词语,找出不等关系,列出不等式式是解题关键.8、C【分析】根据图象找出1l 在2l 的上方即收入大于成本时,x 的取值范围即可.【详解】解:根据函数图象可知,当12x >时,12l l >,即产品的销售收入大于销售成本,该公司盈利. 故选:C .【点睛】本题考查函数的图象,正确理解函数图象横纵坐标表示的意义,能够通过图象得到该公司盈利时x 的取值范围是本题的关键.9、C【分析】根据不等式的性质解答.①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.【详解】解:A .∵x >y ,∴x ﹣1>y ﹣1,故本选项不符合题意;B .∵x >y ,∴5x >5y ,故本选项不符合题意;C .∵x >y , ∴33xy ,故本选项符合题意; D .∵x >y ,∴﹣2x <﹣2y ,故本选项不符合题意;故选:C .【点睛】此题考查了不等式的性质,熟记不等式的性质并正确应用是解题的关键.10、D【分析】利用函数的增减性和x =1时的函数图像上点的位置来判断即可.【详解】解:如图所示:k >0,函数y = kx +b 随x 的增大而增大,直线过点B (1,1), ∵当x =1时,kx +b =1,即kx +b -1=0,∴不等式kx +b ﹣1<0的解集为:x <1.故选择:D .【点睛】此题主要考查了一次函数与一元一次不等式,正确数形结合分析是解题关键.二、填空题1、a>6【分析】根据不等式的基本性质,发现不等式的两边都乘(6﹣a)后,不等号的方向改变了,说明(6﹣a)是负数,从而得出答案.【详解】解:根据题意得:6﹣a<0,∴a>6,故答案为:a>6.【点睛】本题考查了不等式的基本性质,掌握①不等式的两边同时加上(或减去)同一个数或代数式,不等号的方向不变;②不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘(或除以)同一个负数,不等号的方向改变是解题的关键.m2、3【分析】根据不等式的性质可知30m -<,求解即可.【详解】解:∵不等式(m ﹣3)x >m ﹣3,两边同除以(m ﹣3),得x <1,∴30m -<,解得:3m <,故答案为:3m <.【点睛】本题考查了不等式的基本性质,熟知不等式两边同时乘或除一个负数,不等式的符号要改变,是解本题的关键.3、1m ≤【分析】 先求出不等式1232x x --<的解集为4x >,再由不等式组无解,得到44m ≤,由此即可得到答案. 【详解】 解:12324x x x m --⎧<⎪⎨⎪<⎩ 解不等式1232x x --<,得:4x >, ∵不等式组无解,∴44m ≤,解得1m ,故答案为:1m .【点睛】本题主要考查了根据不等式组的解集情况求参数,解题的关键在于能够熟练掌握不等式组的解集的情况:大小小大中间找,大大小小找不到.4、x【分析】根据不等(2a −b )x +a −5b >0的解集是x <1,可得a 与b 的关系,根据解不等式的步骤,可得答案.【详解】解;不等式(2a −b )x +a −5b >0的解集是x <1,∴2a −b <0,2a −b =5b −a ,a =2b ,b <0,2ax −b >04bx −b >04bx >bx <14,故答案为:x <14. 【点睛】本题考查了不等式的解集,注意不等式的两边都乘以或除以同一个负数,不等号的方向改变. 5、132a <<【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:解不等式12a -<得: 3a <解不等式1a a 得:12a > ∴原不等式组的解集为132a << 故答案为:132a <<【点睛】本题考查了解一元一次不等式组,掌握求不等式组的解集是解题的关键.三、解答题1、(1)购买一副跳棋和一副军棋各需要6元、10元;(2)学校最多可以买30副军棋【分析】(1)设购买一副跳棋和一副军棋各需要x 元、y 元,然后根据购买2副跳棋和3副军棋共需42元,购买5副跳棋和一副军旗共需40元,列出方程求解即可;(2)设购买m 副军棋,则购买()80m -副跳棋,然后根据购买的总费用不能超过600元,列出不等式求解即可.【详解】解:(1)设购买一副跳棋和一副军棋各需要x 元、y 元,由题意得:2342540x y x y +=⎧⎨+=⎩, 解得610x y =⎧⎨=⎩, ∴购买一副跳棋和一副军棋各需要6元、10元,答:购买一副跳棋和一副军棋各需要6元、10元;(2)设购买m 副军棋,则购买()80m -副跳棋,由题意得:()68010600m m -+≤,即4480600m +≤,解得30m ≤,∴学校最多可以买30副军棋,答:学校最多可以买30副军棋.【点睛】本题主要考查了二元一次方程组和一元一次不等式的实际应用,解题的关键在于能够准确理解题意,列出式子求解.2、(1)甲旅行社费用20000元,乙旅行社费用18000元;(2)8人;(3)亲友团人数超过8人时,甲旅行社的收费更优惠,亲友团人数少于8人时,乙旅行社的收费更优惠.【分析】(1)由题意直接根据甲、乙旅行社的优惠办法列式进行计算即可;(2)根据题意设亲友团有x 人,进而依据甲、乙旅行社的费用相同建立方程求解即可;(3)由题意直接根据(2)的结论可知当亲友团人数满足什么条件时,甲、乙旅行社的收费更优惠.【详解】解:(1)甲旅行社费用=1400044000(64)200002⨯+⨯⨯-=元, 乙旅行社费用=0.754000618000⨯⨯=元;(2)设亲友团有x 人,甲旅行社费用=1400044000(4)200080002x x ⨯+⨯⨯-=+ 乙旅行社费用=0.7540003000x x ⨯=由20008000x +=3000x解得:x =8∴亲友团有8人,甲、乙旅行社的费用相同(3)由(2)可知当亲友团有8人,甲、乙旅行社的费用相同,则8x >,有200080003000x x +<,即亲友团人数超过8人时,甲旅行社的收费更优惠;则8x <,有200080003000x x +>,亲友团人数少于8人时,乙旅行社的收费更优惠.【点睛】本题考查一元一次方程的运用以及一元一次不等式的运用,读懂题意并根据题意列出方程和不等式求解是解题的关键.3、(1)-1<x <2;(2)13≤x <3.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:(1)解不等式x -3(x -2)<8,得:x >-1, 解不等式12x -1<3-32x ,得:x <2,则不等式组的解集为-1<x <2;(2)解不等式2x -3<6-x ,得:x <3,解不等式1-4x ≤5x -2,得:x ≥13, 则不等式组的解集为13≤x <3.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4、(1)-4;(2)31x y =⎧⎨=⎩;(3)33x -<, 把解集在数轴上表示见解析. 【分析】(1)根据实数的运算法则进行运算,即可得出结论;(2)原方程组运用加减消元法求解即可得出结论;(3)分别解不等式①②,取其解集的并集,由此即可得出不等式组的解集,再将其表示在数轴上即可.【详解】解:(121)4-4-=4-=-4(2)解:438x y x y +=⎧⎨-=⎩①②, ①+②,得412x =,解得:3x =,把3x =代入①,得34y +=,解得:1y =,所以方程组的解是31x y =⎧⎨=⎩(3)解:()2131134x x x x ⎧-+⎪⎨+<⎪⎩①②, 由①得到,2231x x -+,解得,3x -,由②得到,433x x <+,解得,3x <,33x ∴-<,在数轴上表示如下:.【点睛】本题考查了实数的运算、解一元一次不等式组、解二元一次方程组以及在数轴上表示不等式的解集,解题的关键是:(1)根据实数的运算法则进行运算;(2)熟练掌握方程组的解法;(3)熟练掌握不等式组的解法.本题属于基础题,难度不大,解决该题型题目时,熟练掌握不等式(不等式组以及方程组)的解法是关键.5、7x ≥-,数轴表示见解析【分析】先去分母,然后再求解一元一次不等式即可.【详解】 解:1226123x x ++≥- 去分母得:()()3162226x x +≥-+,去括号得:336452x x +≥--,移项、合并同类项得:749x ≥-,x≥-;系数化为1得:7数轴表示如下:【点睛】本题主要考查一元一次不等式的解法,熟练掌握一元一次不等式的解法是解题的关键.。
新北师大版八年级数学下册第2章《一元一次不等式与一元一次不等式组 》综合练习题含答案解析 (24)
(共25题)一、选择题(共10题)1. 若关于 x 的不等式组 {2x −6+m <0,4x −m >0 有解,则在其解集中,整数的个数不可能是 ( )A . 1B . 2C . 3D . 42. 如图表示下列四个不等式组中其中一个的解集,这个不等式组是 ( )A . {x ≥2,x >−3B . {x ≤2,x <−3C . {x ≥2,x <−3D . {x ≤2,x >−33. 把不等式组 {2x +3>1,3x +4≥5x的解集表示在数轴上如图,正确的是 ( )A .B .C .D .4. 若 a >b ,则下列不等式成立的是 ( ) A . a −1<b −1 B . −8a <−8b C . 4a <4bD . ac >bc5. 若 x <y 成立,则下列不等式成立的是 ( ) A . x −2<y −2 B . −x <−y C . x +1>y +1D . −3x <−3y6. 不等式 x −1>0 的解集是 ( ) A . x >1B . x <1C . x >−1D . x <−17. 不等式组{5x +2>3(x −1)12x −1≤7−32x的所有非负整数解的和是( ) A .10 B .7 C .6 D .08. 已知 a >b ,则下列不等关系中正确的是 ( ) A . ac >bcB . a +c >b +cC . a −1>b +1D . ac 2>bc 29. 不等式组 {x +9<5x +1,x ≥2x −3 的解集是 ( )A .x >2B .x ≤3C .2<x ≤3D .x ≥310. 不等式 2x ≥x −1 的解集在数轴上表示正确的是 ( )A .B .C .D .二、填空题(共7题)11. 在平面直角坐标系中,点 P (m,m −2) 在第一象限内,则 m 的取值范围是12. 已知关于 x 的不等式组 {x −a <0,9−2x ≤3 有且只有 2 个整数解,且 a 为整数,则 a 的值为 .13. 定义新运算:对于任意实数 a ,b 都有:a ⊕b =a (a −b )+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2−5)+1=2×(−3)+1=−5,那么不等式 3⊕x <13 的解集为 .14. 当 x 满足条件 时,代数式 6−3x 5的值不大于零.15. 对于有理数 m ,我们规定 [m ] 表示不大于 m 的最大整数,例如 [1.2]=1,[3]=3,[−2.5]=−3,若 [x+23]=−5,则整数 x 的取值是 .16. 一元一次不等式需满足的三个条件是:① ,② ,③ ,这样的不等式叫做一元一次不等式.17. 如图,周长为 a 的圆上仅有一点 A 在数轴上,点 A 所表示的数为 1.该圆沿着数轴向右滚动一周后点 A 对应的点为点 B ,且滚动中恰好经过 3 个整数点(不包括 A ,B 两点),则 a 的取值范围为 .三、解答题(共8题)18. 已知不等式 18x −2>x 与 ax −3>2x 的解集相同,求 a 的值.19. 解不等式组 {2x−13−5x+12≤1,5x −1<3(x +1), 并写出该不等式组的整数解.20. 列方程解应用题.(1) 某车间 32 名工人生产螺母和螺钉,每人每天平均生产螺钉 1500 个或螺母 5000 个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉?(2) 一家游泳馆每年 6∼8 月份出售夏季会员证,每张会员证 80 元,只限本人使用凭证购入场券每张 1 元,不凭证购入场卷每张 3 元,请用所学数学知识分析,什么情况下购会员证更合算?21. 解不等式组 {3x ≥4x −4, ⋯⋯①5x −11≥−1. ⋯⋯②请结合题意填空,完成本题的解答. (1) 解不等式 ①,得 . (2) 解不等式 ②,得 .(3) 把不等式 ① 和 ② 的解集在数轴上表示出来:(4) 原不等式组的解集为 .22. 已知两个语句:①式子 2x −1 的值比 1 大; ②式子 2x −1 的值不小于 1. 请回答下列问题:(1) 两个语句表达的意思是否一样?(不用说明理由)(2) 把两个语句分别用数学式子表示出来,并选择一个求其解集.23. 解方程组:{x +3>5 ⋯⋯①2x −3<x +2 ⋯⋯②24. 解不等式组:{4x >2x −6,x−13≤x+19, 并把解集在数轴上表示出来.25. 解不等式:x−52+1>x −3.答案一、选择题(共10题)1. 【答案】C【解析】解不等式2x−6+m<0,得x<6−m2,解不等式4x−m>0,得x>m4,∵不等式组有解,∴m4<6−m2,解得m<4,如果m=2,则不等式组的解集为12<x<2,整数解为x=1,有1个;如果m=0,则不等式组的解集为0<x<3,整数解为x=1,2,有2个;如果m=−1,则不等式组的解集为−14<x<72,整数解为x=0,1,2,3,有4个.故选C.【知识点】含参一元一次不等式组2. 【答案】D【知识点】常规一元一次不等式组的解法3. 【答案】B【解析】解不等式2x+3>1,得:x>−1,解不等式3x+4≥5x,得:x≤2,则不等式组的解集为−1<x≤2,故选:B.【知识点】常规一元一次不等式组的解法4. 【答案】B【知识点】不等式的性质5. 【答案】A【解析】A、不等式的两边都减去2,不等号的方向不变,故本选项正确;B、不等式的两边都乘以−1,不等号的方向改变,故本选项错误;C、不等式的两边都加上1,不等号的方向不变,故本选项错误;D、不等式的两边都乘以−3,不等号的方向改变,故本选项错误.【知识点】不等式的性质6. 【答案】A【知识点】常规一元一次不等式的解法7. 【答案】A【解析】【分析】分别求出每一个不等式的解集,即可确定不等式组的解集,继而可得知不等式组的非负整数解.【解析】解:{5x +2>3(x −1)①12x −1≤7−32x②, 解不等式①得:x >−2.5, 解不等式②得:x ≤4,∴不等式组的解集为:−2.5<x ≤4,∴不等式组的所有非负整数解是:0,1,2,3,4,∴不等式组的所有非负整数解的和是0+1+2+3+4=10, 故选:A .【点评】本题主要考查解一元一次不等式组的基本技能,准确求出每个不等式的解集是解题的根本,确定不等式组得解集及其非负整数解是关键. 【知识点】常规一元一次不等式组的解法8. 【答案】B【解析】A .不等式两边都乘以 c ,当 c <0 时,不等号的方向改变,原变形错误,故此选项不符合题意;B .不等式两边都加上 c ,不等号的方向不变,原变形正确,故此选项符合题意;C .不等式的两边一边加 1 一边减 1,不等号的方向不确定,原变形错误,故此选项不符合题意;D .不等式的两边都乘以 c 2,当 c =0 时,变为等式,原变形错误,故此选项不符合题意. 【知识点】不等式的性质9. 【答案】C【解析】{x +9<5x +1, ⋯⋯①x ≥2x −3, ⋯⋯②解不等式 ①,得 x >2, 解不等式 ②,得 x ≤3, ∴ 不等式组的解集为 2<x ≤3. 【知识点】常规一元一次不等式组的解法10. 【答案】C【知识点】常规一元一次不等式的解法二、填空题(共7题) 11. 【答案】 m >2【知识点】常规一元一次不等式组的解法12. 【答案】 5【解析】 {x −a <0,9−2x ≤3解得:{x <a,x ≥3,∴3≤x <a ,∵ 有且只有 2 个整数解, ∴4<a ≤5, ∵a 为整数, ∴a =5.【知识点】含参一元一次不等式组13. 【答案】 x >−1【解析】 ∵a ⊕b =a (a −b )+1,∴3⊕x =3(3−x )+1<13,解得 x >−1. 【知识点】常规一元一次不等式的解法14. 【答案】 x ≥2【知识点】常规一元一次不等式的解法15. 【答案】 −17 或 −16 或 −15【解析】 ∵[x+23]=−5,∴−5≤x+23<−4,∴−15≤x +2<−12, ∴−17≤x <−14,∴ 整数 x 的取值为 −17 或 −16 或 −15. 【知识点】常规一元一次不等式组的解法16. 【答案】只含有一个未知数;未知数的最高次数是 1 ;系数不等于 0【知识点】一元一次不等式的概念17. 【答案】 3<a ≤4【解析】根据题意可知,三个整数点表示的数为 2,3,4,所以 4<a +1≤5,所以 a 的取值范围为3<a≤4.【知识点】不等式的概念三、解答题(共8题)18. 【答案】解不等式18x−2>x得,x<−167;由不等式ax−3>2x得,(a−2)x>3,∵两不等式的解集相同,∴a−2<0,∴x<3a−2,∴3a−2=−167,解得:a=1116.故a的值为:1116.【知识点】含参一元一次方程的解法、常规一元一次不等式的解法19. 【答案】{2x−13−5x+12≤1, ⋯⋯①5x−1<3(x+1), ⋯⋯②解不等式①,得x≥−1,解不等式②,得x<2,∴不等式组的解集为−1≤x<2,∴不等式组的整数解为−1,0,1.【知识点】常规一元一次不等式组的解法20. 【答案】(1) 设为了使每天的产品刚好配套,应该分配x名工人生产螺钉,则(32−x)名工人生产螺母,根据题意得:1500x×2=5000(32−x),解得:x=20.则为了使每天的产品刚好配套,应该分配20名工人生产螺钉.(2) 假设游泳x次,则购证后花费为(80+x)元,不购证花费3x元,根据题意得:80+x<3x,解得:x>40.答:6∼8月游泳次数大于40的话,购证更划算.【知识点】和差倍分、一元一次不等式的应用21. 【答案】(1) x≤4(2) x≥2(3) 如图所示:(4) 2≤x≤4【解析】(1) 解不等式 ① 得 x ≤4. (2) 解不等式 ② 得 x ≥2.【知识点】常规一元一次不等式组的解法、常规一元一次不等式的解法、数轴的概念22. 【答案】(1) 两个语句表达的意思不一样.(2) ① 2x −1>1; 两边同加上 1,得 2x >2, 两边再同除以 2,得 x >1. ② 2x −1≥1;两边同加上 1,得 2x ≥2, 两边再同除以 2,得 x ≥1.【知识点】常规一元一次不等式的解法、一元一次不等式的概念、不等式的概念23. 【答案】解不等式①,得 x >2.解不等式②,得 x <5.所以,这个不等式组的解集是 2<x <5. 【知识点】常规一元一次不等式组的解法24. 【答案】{4x >2x −6, ⋯⋯①x−13≤x+19. ⋯⋯②解不等式①得:x >−3,解不等式②得:x ≤2.∴ 不等式组的解集为−3<x ≤2.在数轴上表示不等式组的解集为:【知识点】常规一元一次不等式组的解法25. 【答案】(x −5)+2>2(x −3),x −5+2>2x −6,x −2x >5−2−6,−x >−3,x <3.【知识点】常规一元一次不等式的解法。
难点解析北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组专题攻克练习题(含详解)
第二章一元一次不等式和一元一次不等式组专题攻克考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列变形中,错误的是()A.若3a+5>2,则3a>2-5 B.若213x->,则23x<-C.若115x-<,则x>﹣5 D.若1115x>,则511x>2、下列不等式组,无解的是()A.1030xx->⎧⎨->⎩B.1030xx-<⎧⎨-<⎩C.1030xx->⎧⎨-<⎩D.1030xx-<⎧⎨->⎩3、对于不等式4x+7(x-2)>8不是它的解的是()A.5 B.4 C.3 D.24、把某个关于x的不等式的解集表示在数轴上如图所示,则该不等式的解集是()A.x≥﹣2 B.x>﹣2 C.x<﹣2 D.x≤﹣25、若m>n,则下列选项中不成立的是()A .m +4>n +4B .m ﹣4>n ﹣4C .44m n >D .﹣4m >﹣4n6、下列说法中,正确的是( )A .x =3是不等式2x >1的解B .x =3是不等式2x >1的唯一解C .x =3不是不等式2x >1的解D .x =3是不等式2x >1的解集7、已知一次函数y 1=kx +1和y 2=x ﹣2.当x <1时,y 1>y 2,则k 的值可以是( )A .-3B .-1C .2D .48、若整数a 使得关于x 的方程2(2)3x a -+=的解为非负数,且使得关于y 的一元一次不等式组322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有3个整数解.则所有符合条件的整数a 的和为( ) A .23 B .25 C .27 D .289、下列选项正确的是( )A .a 不是负数,表示为0a >B .a 不大于3,表示为3a <C .x 与4的差是负数,表示为40x -<D .x 不等于34,表示为34x > 10、若m <n ,则下列各式正确的是( )A .﹣2m <﹣2nB .33m n >C .1﹣m >1﹣nD .m 2<n 2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、 “a 与b 的2倍大于1”用不等式可表示为________.2、关于x 的正比例函数y =(m +2)x ,若y 随x 的增大而增大,则m 的取值范围是________.3、不等式3141x+>-的解集是______.4、“x的2倍比y小”用不等式表示为 _______.5、某自动贩卖机售卖A、B两种盲盒,B种盲盒的价格比A种盲盒价格的6倍少60元,该贩卖机存储的A种盲盒不低于22个,B种盲盒的数量不少于A种的2倍,且最多可存储两种盲盒100个,某天上午售卖后,工作人员及时补货,将售卖机装满,该天下午,由于系统bug,B种盲盒的价格变为原来A种的价格,而A种的价格变为原来价格的5倍少50元后再打了个六折,下午A种盲盒的销量变为上午的2倍,而B种盲盒的销量不变,结果上午的销售额比下午多390元,其中两种盲盒的价格均为整数,则下午贩卖的盲盒的销售额最多可为____________元.三、解答题(5小题,每小题10分,共计50分)1、求不等式组3(2)421152x xx x-->⎧⎪-+⎨≤⎪⎩的解集.2、如图,已知一次函数y1=k1x+b1的图象与一次函数y2=k2x+b2的图象交于点A,根据图象回答下列问题.(1)求关于x的方程k1x+b1=k2x+b2的解;(2)求出关于x的不等式k1x+b1>k2x+b2的解集;(3)当满足什么条件时,直线y1=k1x+b1与直线为y2=k2x+b2没有公共点?3、解不等式组:(1)3(2)8 131322 x xx x--<⎧⎪⎨-<-⎪⎩(2)2361452x x x x -<-⎧⎨-≤-⎩ 4、解不等式组()24018202x x +≤⎧⎪⎨+->⎪⎩,并把解集在数轴上表示出来. 5、解下列不等式,并将其解集表示在数轴上.(1)23x <x +1. (2)x -1>3x +5.-参考答案-一、单选题1、B【分析】根据不等式的两边都加(或减)同一个数(或同一个整式),不等号的方向不变;不等式的两边都乘以同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.【详解】解:A 、不等式的两边都减5,不等号的方向不变,故A 不符合题意;B 、不等式的两边都乘以32-,不等号的方向改变得到32x <-,故B 符合题意; C 、不等式的两边都乘以(﹣5),不等号的方向改变,故C 不符合题意;D 、不等式的两边都乘以同一个正数,不等号的方向不变,故D 不符合题意;故选:B .【点睛】本题考查了不等式的性质,熟记不等式的性质并根据不等式的性质计算式解题.2、D【分析】根据不等式组的解集的求解方法进行求解即可.【详解】解:A、1030xx->⎧⎨->⎩,解得13xx>⎧⎨>⎩,解集为:3x>,故不符合题意;B、1030xx-<⎧⎨-<⎩,解得13xx<⎧⎨<⎩,解集为:1x<,故不符合题意;C、1030xx->⎧⎨-<⎩,解得13xx>⎧⎨<⎩,解集为:13x<<,故不符合题意;D、1030xx-<⎧⎨->⎩,解得13xx<⎧⎨>⎩,无解,符合题意;故选:D.【点睛】本题考查了求不等式组的解集,熟知“同大取大,同小取小,大小小大中间找,大大小小找不到”取不等式组的解集是关键.3、D【分析】根据不等式的解的含义把每个选项的数值代入不等式的左边进行计算,满足左边大于右边的是不等式的解,不满足左边大于右边的就不是不等式的解,从而可得答案.【详解】解:当x=5时,4x+7(x-2)=41>8,当x=4时,4x+7(x-2)=30>8,当x=3时,4x+7(x-2)=19>8,当x =2时,4x +7(x -2)=8.故知x =2不是原不等式的解.故A ,B ,C 不符合题意,D 符合题意,故选D【点睛】本题考查的是不等式的解的含义,理解不等式的解的含义并进行判断是解本题的关键.4、B【分析】观察数轴上x 的范围即可得到答案.【详解】解:观察数轴可发现表示的是从-2(空心)开始向右,故该不等式的解集是2x >-,故选B .【点睛】本题主要考查对在数轴上表示不等式的解集的理解和掌握,能根据数轴上不等式的解集得出答案是解此题的关键.5、D【分析】根据不等式的基本性质进行解答即可.【详解】解:∵m >n ,A 、m +4>n +4,成立,不符合题意;B 、m ﹣4>n ﹣4,成立,不符合题意;C 、44m n >,成立,不符合题意;D 、﹣4m <﹣4n ,原式不成立,符合题意;故选:D .【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解本题的关键.6、A【分析】对A 、B 、C 、D 选项进行一一验证,把已知解代入不等式看不等式两边是否成立.【详解】解:A 、当x =3时,2×3>1,成立,故A 符合题意;B 、当x =3时,2×3>1成立,但不是唯一解,例如x =4也是不等式的解,故B 不符合题意;C 、当x =3时,2×3>1成立,是不等式的解,故C 不符合题意;D 、当x =3时,2×3>1成立,是不等式的解,但不是不等式的解集,其解集为:x >12,故D 不符合题意;故选:A .【点睛】此题着重考查不等式中不等式的解、唯一解、解集概念之间的区别和联系,是一道非常好的基础题.7、B【分析】先求出不等式的解集,结合x <1,即可得到k 的取值范围,即可得到答案.【详解】解:根据题意,∵y 1>y 2,∴12kx x +>-,解得:(1)3k x ->-,∴10k -<,∴1k <;31x k <--, ∵当x <1时,y 1>y 2, ∴311k -<- ∴2k >-,∴21k -<<;∴k 的值可以是-1;故选:B .【点睛】本题考查了一次函数的图像和性质,解一元一次不等式,解题的关键是掌握一次函数的性质进行计算.8、B【分析】表示出不等式组的解集,由不等式至少有四个整数解确定出a 的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a 的值,进而求出之和.【详解】 解:322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩①②, 解不等式①得:2y >-,解不等式②得:y a ≤∴不等式组的解集为:1y y a >-⎧⎨≤⎩,∵由不等式组至少有3个整数解,∴2a ≥,即整数a =2,3,4,5,…,∵()223x a -+=,∴243x a -+= 解得:72a x , ∵方程()223x a -+=的解为非负数,∴702a -≥, ∴7a ≤∴得到符合条件的整数a 为3,4,5,6,7,之和为25.故选B .【点睛】此题考查了解一元一次方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.9、C【分析】由题意先根据非负数、负数及各选项的语言表述列出不等式,再与选项中所表示的进行比较即可得出答案.【详解】解:A .a 不是负数,可表示成0a ,故本选项不符合题意;B .a 不大于3,可表示成3a ,故本选项不符合题意;C .x 与4的差是负数,可表示成40x -<,故本选项符合题意;D .x 不等于34,表示为34x ≠,故本选项不符合题意;故选:C .【点睛】本题考查不等式的定义,解决本题的关键是理解负数是小于0的数,不大于用数学符号表示是“≤”.10、C【分析】根据不等式的基本性质逐项判断即可.【详解】解:A :∵m <n ,∴﹣2m >﹣2n ,∴不符合题意;B :∵m <n , ∴33m n <, ∴不符合题意;C :∵m <n ,∴﹣m >﹣n ,∴1﹣m >1﹣n ,∴符合题意;D : m <n ,当10m n =-=,时,m 2>n 2, ∴不符合题意;故选:C .【点睛】本题主要考查了不等式的基本性质,熟练掌握不等式的3条基本性质是解题关键.二、填空题1、a +2b >1【分析】a 与b 的2倍即为2+a b ,再用不等号连接即得答案.【详解】解:由题意得:“a 与b 的2倍大于1”用不等式表示为21a b +>.故答案为:21a b +>.【点睛】本题考查了根据不等关系列出不等式,属于应知应会题型,正确理解题意是关键.2、m >-2【分析】先根据正比例函数的性质列出关于m 的不等式,求出m 的取值范围即可.【详解】解:∵正比例函数()2y m x =+中,y 随x 的增大而增大,∴2m +>0,解得-2m >.故答案为;-2m >.【点睛】本题考查的是正比例函数的性质,即正比例函数y =kx (k ≠0)中,当k >0时,y 随x 的增大而增大.3、x >-5【分析】根据不等式的性质求解即可.【详解】解:3141x +>-,3x>-15,解得x >-5,故答案为:x >-5.【点睛】此题考查求不等式的解集,正确掌握解不等式的步骤及方法是解题的关键.4、2x <y【分析】x 的2倍即为2x ,小即“<”,据此列不等式.【详解】解:由题意得,2x <y .故答案为:2x <y .【点睛】本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系是关键.5、8080【分析】设A 种盲盒的价格为x 元,则B 种盲盒的价格为()660x -元,A 种盲盒的数量为a 个,则22a ≥,B 种盲盒的数量为b ,设上午A 种盲盒售出m 个,B 种盲盒售出n 个,则上午的销售额为(660)mx n x +-该天下午, A 种盲盒的价格为()5500.6x -⨯即()330x -元,B 种盲盒的价格为x 元,A 种盲盒售出2m个,B 种盲盒售出n 个,A 种盲盒售出2m 个,B 种盲盒售出n 个,进而求得下午的销售额,根据题意列出关系式,根据不等式确定m 的范围,进而根据一次函数的性质,确定m 的值,根据78的因数为2,3,13,进而求得,x n 的值,根据一次函数的性质确定x 取最大值时,下午的销售额y 取得最大值即可求解.【详解】解:设A 种盲盒的价格为x 元,则B 种盲盒的价格为()660x -元,A 种盲盒的数量为a 个,则22a ≥,B 种盲盒的数量为b ,根据题意可得,222100a b a a b ≥⎧⎪≥⎨⎪+≤⎩, 22334478a b ≤≤⎧∴⎨≤≤⎩660x -0>,则10x >设上午A 种盲盒售出m 个,B 种盲盒售出n 个,则上午的销售额为(660)mx n x +-该天下午, A 种盲盒的价格为()5500.6x -⨯即()330x -元,B 种盲盒的价格为x 元,A 种盲盒售出2m 个,B 种盲盒售出n 个,则下午的销售额为()2330nx m x +-660nx mx m =+-由上午的销售额比下午多390元,可得()(660)2330mx n x nx m x +----390=且2m a ≤2233a ≤≤,2m a ≤,m 为整数n b ≤∴016m <≤,78n ≤即556096)300(n m x n m --+=且016m <≤()()1278n m x --=且016m <≤由于下午的销售额为:设y =660nx mx m +-6(10)nx m x =+-,100x ->则当m 取最大值时候,销售额取得最大值,016m <≤16m ∴=()6(10)616(10)9696096960nx m x nx x nx x n x ∴+-=+⨯⨯-=+-=+-设(96)960y n x =+-,960n +>则当x 取得最大值,y 取得最大值,()(16)1278n x --=782313=⨯⨯613=⨯或326⨯或239⨯或178⨯, 78n ≤1661213n x -=⎧∴⎨-=⎩或1613126n x -=⎧⎨-=⎩,1631226n x -=⎧⎨-=⎩或1626123n x -=⎧⎨-=⎩ 1621239n x -=⎧⎨-=⎩或1639122n x -=⎧⎨-=⎩,1611278n x -=⎧⎨-=⎩或1678121n x -=⎧⎨-=⎩ 解得2225n x =⎧⎨=⎩或2918n x =⎧⎨=⎩,1938n x =⎧⎨=⎩或4215n x =⎧⎨=⎩, 1851n x =⎧⎨=⎩或5514n x =⎧⎨=⎩,1780n x =⎧⎨=⎩或9313n x =⎧⎨=⎩(舍去), ∴当1780n x =⎧⎨=⎩时,(96)960y n x =+-(1796)809608080=+⨯-= 故答案为:8080【点睛】本题考查了一次函数的性质,不等式组的应用,掌握一次函数的性质是解题的关键.三、解答题1、-7≤x<1【分析】先求出每个一元一次不等式的解集,再求出它们公共部分的解集即可.【详解】解:3(2)4? 21152x xx x-->⎧⎪⎨-+≤⎪⎩①②解①,得x<1,解②,得x≥-7,所以不等式组的解集为-7≤x<1.【点睛】本题考查解一元一次不等式组,熟练掌握一元一次不等式组的解法,正确得出公共部分的解集是解答的关键.2、(1)x=3;(2)x<3;(3)k1=k2,b1≠b2【分析】(1)由题意根据两一次函数图象的交点横坐标即可得出方程的解即可求得;(2)根据题意可将两函数交点坐标左边的图象所对应的自变量的取值即可;(3)根据题意可知当两函数图象平行时,直线y1=k1x+b1与直线为y2=k2x+b2没有公共点.【详解】解:(1)∵一次函数y1=k1x+b1和y2=k2x+b2的图象交于点A(3,5),∴关于x的方程k1x+b1=k2x+b2的解为x=3.(2)一次函数y1=k1x+b1与一次函数y2=k2x+b2的图象相交于点A(3,5),所以不等式k 1x +b 1>k 2x +b 2的解集是x <3.(3)∵两直线平行,则k 1=k 2,b 1≠b 2,∴当k 1=k 2,b 1≠b 2时,直线y 1=k 1x +b 1与直线为y 2=k 2x +b 2没有公共点.【点睛】本题考查两条直线相交或平行问题,熟练掌握两函数图象与方程解之间,函数图象与不等式之间的关系是解题的关键.3、(1)-1<x <2;(2)13≤x <3.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:(1)解不等式x -3(x -2)<8,得:x >-1, 解不等式12x -1<3-32x ,得:x <2,则不等式组的解集为-1<x <2;(2)解不等式2x -3<6-x ,得:x <3,解不等式1-4x ≤5x -2,得:x ≥13, 则不等式组的解集为13≤x <3.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4、42x -<≤-,作图见解析【分析】结合题意,根据一元一次不等式组的性质,求解得不等式组公共解,结合数轴的性质作图,即可得到答案.【详解】 解:()24018202x x +≤⎧⎪⎨+->⎪⎩ 解不等式240x +≤,得2x -≤ 不等式()18202x +->, 去括号,得:840x +->移项、合并同类项,得:4x >-∴不等式组的解为:42x -<≤-数轴如下:.【点睛】本题考查了数轴、一元一次不等式组的知识;解题的关键是熟练掌握一元一次不等式组的性质,从而完成求解.5、(1)x >-3,数轴表示见解析(2)x <-3,数轴表示见解析【分析】(1)按照去分母、移项、合并同类项、系数化为1的步骤求出不等式的解集,然后画出数轴,并在数轴上表示出不等式的解集;(2)按照移项、合并同类项、系数化为1的步骤求出不等式的解集,然后画出数轴,并在数轴上表示出不等式的解集.(1)解:23x<x+1,去分母,得2x<3x+3移项,得2x-3x<3合并同类项,得-x<3系数化为1,得x>-3,解集在数轴上表示为:(2)解:x-1>3x+5,移项,得x-3x>5+1,合并同类项,得-2x>6,系数化为1,得x<-3,解集在数轴上表示为:【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.按照去分母、去括号、移项、合并同类项、系数化为1的步骤求解即可.。
北师大版初中数学八年级下册《第2章 一元一次不等式与一元一次不等式组》单元测试卷(含答案解析
北师大新版八年级下学期《第2章一元一次不等式与一元一次不等式组》单元测试卷一.选择题(共5小题)1.据天气预报2018年4月12日大田县的最高气温是32℃,最低气温是21℃,则当天大田县气温t(℃)的变化范围是()A.t>21B.t<32C.21<t<32D.21≤t≤32 2.下列各式中,不是不等式的是()A.2x≠1B.3x2﹣2x+1C.﹣3<0D.3x﹣2≥1 3.在数轴上与原点的距离小于8的点对应的x满足()A.﹣8<x<8B.x<﹣8或x>8C.x<8D.x>84.已知m>n,则下列不等式中不正确的是()A.5m>5n B.m+7>n+7C.﹣4m<﹣4n D.m﹣6<n﹣6 5.若a<b,则下列不等式中,成立的是()A.a2<ab B.<1C.ac2<bc2D.2a<a+b二.填空题(共25小题)6.若a<b,那么﹣2a+9﹣2b+9(填“>”“<”或“=”).7.若不等式组没有解,则m的取值范围是.8.不等式组的解集是3<x<a+2,若a是整数,则a等于.9.如图,小雨把不等式3x+1>2(x﹣1)的解集表示在数轴上,则阴影部分盖住的数字是.10.已知关于x的不等式3x+mx>﹣8的解集如图所示,则m的值为.11.若(m+1)x|m|+2>0是关于x的一元一次不等式,则m=.12.若(m﹣2)x2m+1﹣1>5是关于x的一元一次不等式,则该不等式的解集为.13.若点(﹣1,﹣3a+1)在第二象限,则a的取值范围是.14.不等式2(x+1)<6的解集为.15.关于x的不等式3x﹣2m<x﹣m的正整数解为1、2、3,则m取值范围是.16.若关于x的不等式2x﹣3a+2≥0的最小整数解为5,则实数a的值为17.x与3的和的一半是负数,用不等式表示为18.x的与8的和不大于﹣2,用不等式表示为.19.商家花费380元购进某种水果40千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为元/千克.20.一次知识竞赛共有22道题,答对一题的5分,不答题得0分,答错一题扣2分,小明有两题没答,成绩超过75分,则小明至多答错了道题.21.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为.22.在平面直角坐标系中,将直线y=kx+1绕(0,1)逆时针旋转90度后刚好经过点(﹣1,2),则不等式0<kx+1<﹣2x的解集为.23.写出一个解集在数轴上如图所示的不等式组:.24.不等式组的解集为.25.若不等式组解为﹣3<x<1,则(a+1)(b﹣1)值为.26.在平面直角坐标系中,已知点A(m﹣1,m+4)在第二象限,则m的取值范围是.27.不等式﹣3≤5﹣2x≤3的正整数解是.28.关于x的不等式组有且仅有4个整数解,则a的整数值是.29.一个等腰三角形的底边长为7cm,周长小于20cm,若它的腰长为x cm,则x必须满足的不等式组为.30.某数学兴趣小组在研究下列运算流程图时发现,取某个实数范围内的x作为输入值,则永远不会有输出值,这个数学兴趣小组所发现的实数x的取值范围是.三.解答题(共3小题)31.如图,直线l1:y1=﹣x+b分别与x轴、y轴交于点A、点B,与直线l2:y2=x交于点C(2,2).(1)若y1<y2,请直接写出x的取值范围;(2)点P在直线l1:y1=﹣x+b上,且△OPC的面积为3,求点P的坐标?32.某市环保局决定购买A、B两种型号的扫地车共40辆,对城区所有公路地面进行清扫.已知1辆A型扫地车和2辆B型扫地车每周可以处理地面垃圾100吨,2辆A型扫地车和1辆B型扫地车每周可以处理垃圾110吨.(1)求A、B两种型号的扫地车每辆每周分别可以处理垃圾多少吨?(2)已知A型扫地车每辆价格为25万元,B型扫地车每辆价格为20万元,要想使环保局购买扫地车的资金不超过910万元,但每周处理垃圾的量又不低于1400吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少资金是多少?33.随着人们生活水平的不断提高,人们对生活饮用水质量要求也越来越高,更多的居民选择购买家用净水器.一商家抓住商机,从生产厂家购进了A,B两种型号家用净水器.已知购进2台A型号家用净水器比1台B型号家用净水器多用200元;购进3台A型号净水器和2台B型号家用净水器共用6600元,(1)求A,B两种型号家用净水器每台进价各为多少元?(2)该商家用不超过26400元共购进A,B两种型号家用净水器20台,再将购进的两种型号家用净水器分别加价50%后出售,若两种型号家用净水器全部售出后毛利润不低于12000元,求商家购进A,B两种型号家用净水器各多少台?(注:毛利润=售价﹣进价)北师大新版八年级下学期《第2章一元一次不等式与一元一次不等式组》单元测试卷参考答案与试题解析一.选择题(共5小题)1.据天气预报2018年4月12日大田县的最高气温是32℃,最低气温是21℃,则当天大田县气温t(℃)的变化范围是()A.t>21B.t<32C.21<t<32D.21≤t≤32【分析】直接利用不等式的定义分析得出答案.【解答】解:∵据天气预报2018年4月12日大田县的最高气温是32℃,最低气温是21℃,∴当天大田县气温t(℃)的变化范围是:21≤t≤32.故选:D.【点评】此题主要考查了不等式的定义,正确理解不等式的意义是解题关键.2.下列各式中,不是不等式的是()A.2x≠1B.3x2﹣2x+1C.﹣3<0D.3x﹣2≥1【分析】主要依据不等式的定义﹣﹣﹣﹣﹣用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式来判断.【解答】解:A、2x≠1是不等式,故A不符合题意;B、3x2﹣2x+1是代数式,不是不等式,故B符合题意;C、﹣3<0是不等式,故C不符合题意;D、3x﹣2≥1是不等式,故D不符合题意;故选:B.【点评】本题考查不等式的识别,一般地,用不等号表示不相等关系的式子叫做不等式.解答此类题关键是要识别常见不等号:><≤≥≠.3.在数轴上与原点的距离小于8的点对应的x满足()A.﹣8<x<8B.x<﹣8或x>8C.x<8D.x>8【分析】根据到原点的距离小于8,即绝对值小于8.显然是介于﹣8和8之间.【解答】解:依题意得:|x|<8∴﹣8<x<8故选:A.【点评】本题考查的是数轴的对称性,在数轴上以原点为中心,两边关于原点对称.4.已知m>n,则下列不等式中不正确的是()A.5m>5n B.m+7>n+7C.﹣4m<﹣4n D.m﹣6<n﹣6【分析】根据不等式的性质解答.【解答】解:A、在不等式m>n的两边同时乘以5,不等式仍成立,即5m>5n,故本选项不符合题意;B、在不等式m>n的两边同时加7,不等式仍成立,即m+7>n+7,故本选项不符合题意;C、在不等式m>n的两边同时乘以﹣4,不等号方向改变,即﹣4m<﹣4n,故本选项不符合题意;D、在不等式m>n的两边同时减去6,不等式仍成立,即m﹣6>n﹣6,故本选项符合题意;故选:D.【点评】考查了不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.5.若a<b,则下列不等式中,成立的是()A.a2<ab B.<1C.ac2<bc2D.2a<a+b【分析】根据不等式的性质解答.【解答】解:A、当a=0时,该不等式不成立,故本选项错误;B、当b<0时,该不等式不成立,故本选项错误;C、当c=0时,该不等式不成立,故本选项错误;D、不等式a<b的两边同时加上a,不等式仍成立,故本选项正确.故选:D.【点评】考查了不等式的性质.做这类题时应注意:不等式的基本性质是有条件的,如果不符合其中的条件,那么运用此性质得出的结论是不对的.不等式的基本性质是解不等式的主要依据,必须熟练地掌握.要认真弄清不等式的基本性质与等式的基本性质的异同,特别是在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.二.填空题(共25小题)6.若a<b,那么﹣2a+9>﹣2b+9(填“>”“<”或“=”).【分析】不等式两边加或减某个数或式子,乘或除以同一个正数,不等号的方向不变;不等式两边乘或除以一个负数,不等号的方向改变.【解答】解:∵a<b,∴﹣2a>﹣2b,∴﹣2a+9>﹣2b+9【点评】能够通过观察理解由已知变化到所要比较的式子,是如何的得到的是解题的关键.7.若不等式组没有解,则m的取值范围是m≥2.【分析】利用不等式组取解集的方法判断即可求出m的范围.【解答】解:∵不等式组没有解,∴m﹣1≥1,解得m≥2.故答案为:m≥2.【点评】此题考查了不等式的解集,熟练掌握不等式取解集的方法是解本题的关键.8.不等式组的解集是3<x<a+2,若a是整数,则a等于2或3.【分析】根据已知不等式组和不等式组的解集得出关于a的不等式组,求出不等式组的解集即可.【解答】解:∵不等式组的解集是3<x<a+2,∴,解得:1<a≤3,∵a为整数,∴a=2或3,故答案为:2或3.【点评】本题考查了解一元一次不等式组和不等式组的解集,能根据题意得出关于a的不等式组是解此题的关键.9.如图,小雨把不等式3x+1>2(x﹣1)的解集表示在数轴上,则阴影部分盖住的数字是﹣3.【分析】根据去括号、移项、合并同类项,可得不等式的解集,根据不等式解集的表示方法,可得答案.【解答】解:去括号,得3x+1>2x﹣2,移项、合并同类项,得x>﹣3,故答案为:﹣3.【点评】本题考查了在数轴上表示不等式的解集,不等式的解集在数轴上表示出来>或≥,向右画;<或≤,向左画,注意在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.10.已知关于x的不等式3x+mx>﹣8的解集如图所示,则m的值为1.【分析】根据不等式的解集,可得关于m的方程,根据解方程,可得答案.【解答】解:由题意,得﹣2(3+m)=﹣8,解得m=1,故答案为:1.【点评】本题考查了不等式的解集,利用不等式的解集得出关于m的方程是解题关键.11.若(m+1)x|m|+2>0是关于x的一元一次不等式,则m=1.【分析】根据一元一次不等式的定义可知m+1≠0,|m|=1,从而可求得m的值.【解答】解:∵(m+1)x|m|+2>0是关于x的一元一次不等式,∴m+1≠0,|m|=1.解得:m=1.故答案为:1.【点评】本题主要考查的是一元一次不等式的定义,掌握一元一次不等式的特点是解题的关键.12.若(m﹣2)x2m+1﹣1>5是关于x的一元一次不等式,则该不等式的解集为x<﹣3.【分析】先根据一元一次不等式的定义,2m+1=1且m﹣2≠0,先求出m的值是0;再把m=0代入不等式,整理得:﹣2x﹣1>5,然后利用不等式的基本性质将不等式两边同时加上1,再同时除以﹣2,不等号方向发生改变,求解即可.【解答】解:根据不等式是一元一次不等式可得:2m+1=1且m﹣2≠0,∴m=0∴原不等式化为:﹣2x﹣1>5解得x<﹣3.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.本题主要考查:一元一次不等式的定义和其解法.“不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变”是所本题考查的解不等式的两个依据.13.若点(﹣1,﹣3a+1)在第二象限,则a的取值范围是a.【分析】根据点的位置得出不等式,求出不等式的解集即可.【解答】解:∵点(﹣1,﹣3a+1)在第二象限,∴﹣3a+1>0,解得:a<,故答案为:a.【点评】本题考查了解一元一次不等式和点的坐标,能根据题意得出不等式是解此题的关键.14.不等式2(x+1)<6的解集为x<2.【分析】解这个不等式首先要去括号、移项,再合并同类项得即可解得不等式的解集.【解答】解:2(x+1)<6,2x+2<6,2x<6﹣2,2x<4,x<2.故答案为:x<2.【点评】考查解一元一次不等式基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.15.关于x的不等式3x﹣2m<x﹣m的正整数解为1、2、3,则m取值范围是6<m≤8.【分析】先表示出不等式3x﹣2m<x﹣m的解集,再由正整数解为1、2、3,可得出3<≤4,解出即可.【解答】解:解不等式得:x<,∵不等式的正整数解为1、2、3,∴3<≤4解得:6<m≤8,故答案为6<m≤8.【点评】本题考查了一元一次不等式的整数解,解答本题的关键是得出关于m 的不等式.16.若关于x的不等式2x﹣3a+2≥0的最小整数解为5,则实数a的值为<a≤4【分析】先将a看作常数解不等式,根据最小整数解为5,得4≤5,解出即可.【解答】解:解不等式2x﹣3a+2≥0得x≥,∵不等式的最小整数解为5,∴4≤5,∴<a≤4,故答案为:<a≤4.【点评】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.17.x与3的和的一半是负数,用不等式表示为(x+3)<0【分析】理解:和的一半,应先和,再一半;负数,即小于0.【解答】解:根据题意,得(x+3)<0.故答案为:(x+3)<0.【点评】考查了由实际问题抽象出一元一次不等式,找准关键字,把文字语言转换为数学语言.18.x的与8的和不大于﹣2,用不等式表示为x+8≤﹣2.【分析】x的与8的和表示为:x+8,“不大于”用数学符号表示为“≤”,由此可得不等式x+8≤﹣2.【解答】解:x的与8的和表示为:x+8,由题意可列不等式为:x+8≤﹣2.故答案为:x+8≤﹣2.【点评】此题主要考查了由实际问题抽象出一元一次不等式,用不等式表示不等关系时,要抓住题目中的关键词,如“大于(小于)、不超过(不低于)、是正数(负数)”“至少”、“最多”等等,正确选择不等号.19.商家花费380元购进某种水果40千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为10元/千克.【分析】设商家把售价应该定为每千克x元,因为销售中有5%的水果正常损耗,故每千克水果损耗后的价格为x(1﹣5%),根据题意列出不等式即可.【解答】解:设商家把售价应该定为每千克x元,根据题意得:x(1﹣5%)≥,解得,x≥10,故为避免亏本,商家把售价应该至少定为每千克10元.故答案为:10.【点评】本题考查一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题意,根据“去掉损耗后的售价≥进价”列出不等式即可求解.20.一次知识竞赛共有22道题,答对一题的5分,不答题得0分,答错一题扣2分,小明有两题没答,成绩超过75分,则小明至多答错了3道题.【分析】设小明答错了x题,则答对(22﹣2﹣x)题,根据“竞赛成绩要超过75分”列不等式求解可得.【解答】解:设小明答错了x道题,则答对(22﹣2﹣x)道题,根据题意,得:5(22﹣2﹣x)﹣2x>75,解得:x<,故小明至多答错了3道题.故答案为:3.【点评】本题主要考查一元一次不等式的应用,列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.21.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为x≥1.5.【分析】首先利用待定系数法求出A点坐标,再以交点为分界,结合图象写出不等式2x≥ax+4的解集即可.【解答】解:∵函数y=2x过点A(m,3),∴2m=3,解得:m=1.5,∴A(1.5,3),∴不等式2x≥ax+4的解集为x≥1.5.故答案为:x≥1.5【点评】此题主要考查了一次函数与一元一次不等式,关键是求出A点坐标.22.在平面直角坐标系中,将直线y=kx+1绕(0,1)逆时针旋转90度后刚好经过点(﹣1,2),则不等式0<kx+1<﹣2x的解集为﹣1<x<﹣.【分析】由题意可知直线y=kx+1过点(1,2),将点(1,2)代入y=kx+1,求出k的值,再解不等式组0<kx+1<﹣2x即可.【解答】解:∵将直线y=kx+1绕(0,1)逆时针旋转90°后,刚好经过点(﹣1,2),∴直线y=kx+1过点(1,2),∴k+1=2,∴k=1.解不等式组0<x+1<﹣2x,得﹣1<x<﹣.故答案为:﹣1<x<﹣.【点评】此题考查旋转的性质及待定系数法求直线的解析式,还考查一元一次不等式组的解法.23.写出一个解集在数轴上如图所示的不等式组:.【分析】由图示可看出,从﹣1出发向右画出的折线且表示﹣1的点是空心圆,表示x>﹣1;从2出发向左画出的折线且表示2的点是空心圆,表示x<2,所以这个不等式组的解集为﹣1<x<2,只要解集为﹣1<x<2的不等式组皆可.【解答】解:.答案不唯一【点评】本题考查了不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.24.不等式组的解集为﹣2<x<3.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:由①得x>﹣2,由②得x<3,故此不等式组的解集为﹣2<x<3.故答案为﹣2<x<3.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.25.若不等式组解为﹣3<x<1,则(a+1)(b﹣1)值为﹣8.【分析】根据不等式的性质求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据不等式组的解集得出3+2b=﹣3,且=1,求出即可.【解答】解:,∵解不等式①得:x<,解不等式②得:x>3+2b,∴不等式组的解集为3+2b<x<,∵若不等式组解为﹣3<x<1,∴3+2b=﹣3,且=1,解得:a=1,b=﹣3,∴(a+1)(b﹣1)=(1+1)×(﹣3﹣1)=﹣8,故答案为:﹣8.【点评】本题考查了不等式的性质,解一元一次不等式(组),解一元一次方程等知识点,解此题的关键是求出关于a和b的方程,题目比较好,综合性比较强.26.在平面直角坐标系中,已知点A(m﹣1,m+4)在第二象限,则m的取值范围是﹣4<m<1.【分析】根据点的位置得出不等式组,求出不等式组的解集即可.【解答】解:∵点A(m﹣1,m+4)在第二象限,∴,解得:﹣4<m<1,故答案为:﹣4<m<1.【点评】本题考查了解一元一次不等式组和点的坐标,能得出关于x的不等式组是解此题的关键.27.不等式﹣3≤5﹣2x≤3的正整数解是1、2、3、4.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式5﹣2x≥﹣3,得:x≤4,解不等式5﹣2x≤3,得:x≥1,则不等式组的解集为1≤x≤4,所以不等式组的正整数解为1、2、3、4,故答案为:1、2、3、4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.28.关于x的不等式组有且仅有4个整数解,则a的整数值是1≤a<3.【分析】求出每个不等式的解集,根据已知得出不等式组的解集,根据不等式组的整数解即可得出关于a的不等式组,求出即可.【解答】解:解不等式3x﹣5≤2x﹣2,得:x≤3,解不能等式2x+3>a,得:x>,∵不等式组有且仅有4个整数解,∴﹣1≤<0,解得:1≤a<3,故答案为:1≤a<3.【点评】本题考查了一元一次不等式组的整数解,解答本题的关键应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.29.一个等腰三角形的底边长为7cm,周长小于20cm,若它的腰长为x cm,则x必须满足的不等式组为.【分析】此题中的不等关系有:周长小于20cm;任意两边之和大于第三边,即不等关系为两腰之和大于底边长.【解答】解:由题意得,.故答案为:.【点评】此题考查一元一次不等式组的应用;注意题中隐含的不等关系:根据三角形的三边关系,则两腰之和应大于底边.30.某数学兴趣小组在研究下列运算流程图时发现,取某个实数范围内的x作为输入值,则永远不会有输出值,这个数学兴趣小组所发现的实数x的取值范围是x≤.【分析】通过找到临界值解决问题.【解答】解:由题意知,令3x﹣1=x,x=,此时无输出值当x>时,数值越来越大,会有输出值;当x<时,数值越来越小,不可能大于10,永远不会有输出值故x≤,故答案为x≤.【点评】本题考查不等式的性质,解题的关键是理解题意,学会找到临界值解决问题.三.解答题(共3小题)31.如图,直线l1:y1=﹣x+b分别与x轴、y轴交于点A、点B,与直线l2:y2=x 交于点C(2,2).(1)若y1<y2,请直接写出x的取值范围;(2)点P在直线l1:y1=﹣x+b上,且△OPC的面积为3,求点P的坐标?【分析】(1)依据直线l1:y1=﹣x+b与直线l2:y2=x交于点C(2,2),即可得到当y1<y2时,x>2;(2)分两种情况讨论,依据△OPC的面积为3,即可得到点P的坐标.【解答】解:(1)∵直线l1:y1=﹣x+b与直线l2:y2=x交于点C(2,2),∴当y1<y2时,x>2;(2)将(2,2)代入y1=﹣x+b,得b=3,∴y1=﹣x+3,∴A(6,0),B(0,3),设P(x,﹣x+3),则当x<2时,由×3×2﹣×3×x=3,解得x=0,∴P(0,3);当x>2时,由×6×2﹣×6×(﹣x+3)=3,解得x=4,∴﹣x+3=1,∴P(4,1),综上所述,点P的坐标为(0,3)或(4,1).【点评】本题主要考查了一次函数图象上点的坐标特征以及一次函数的性质,设P(x,﹣x+3),利用三角形的面积的和差关系列方程是解题的关键.32.某市环保局决定购买A、B两种型号的扫地车共40辆,对城区所有公路地面进行清扫.已知1辆A型扫地车和2辆B型扫地车每周可以处理地面垃圾100吨,2辆A型扫地车和1辆B型扫地车每周可以处理垃圾110吨.(1)求A、B两种型号的扫地车每辆每周分别可以处理垃圾多少吨?(2)已知A型扫地车每辆价格为25万元,B型扫地车每辆价格为20万元,要想使环保局购买扫地车的资金不超过910万元,但每周处理垃圾的量又不低于1400吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少资金是多少?【分析】(1)根据题意可以列出相应的不等式组,从而可以解答本题;(2)根据题意可以列出不等式组,从而可以求得购买方案,并求出哪种方案所需资金最少,最少资金是多少.【解答】解:(1)设A、B两种型号的扫地车每辆每周分别可以处理垃圾a吨、b吨,,解得,,答:(1)求A、B两种型号的扫地车每辆每周分别可以处理垃圾40吨,30吨;(2)设购买A型扫地车m辆,B型扫地车(40﹣m)辆,所需资金为y元,,解得,20≤m≤22,∵m为整数,∴m=20,21,22,∴共有三种购买方案,方案一:购买A型扫地车20辆,B型扫地车20辆;方案二:购买A型扫地车21辆,B型扫地车19辆;方案三:购买A型扫地车22辆,B型扫地车18辆;∵y=25m+20(40﹣m)=5m+800,∴当m=20时,y取得最小值,此时y=900,答:方案一:购买A型扫地车20辆,B型扫地车20辆所需资金最少,最少资金是900万元.【点评】本题考查一元一次不等式组的应用、二元一次方程组的应用,解答本题的关键是明确题意,列出相应的不等式组和方程组,利用方程和不等式的性质解答.33.随着人们生活水平的不断提高,人们对生活饮用水质量要求也越来越高,更多的居民选择购买家用净水器.一商家抓住商机,从生产厂家购进了A,B两种型号家用净水器.已知购进2台A型号家用净水器比1台B型号家用净水器多用200元;购进3台A型号净水器和2台B型号家用净水器共用6600元,(1)求A,B两种型号家用净水器每台进价各为多少元?(2)该商家用不超过26400元共购进A,B两种型号家用净水器20台,再将购进的两种型号家用净水器分别加价50%后出售,若两种型号家用净水器全部售出后毛利润不低于12000元,求商家购进A,B两种型号家用净水器各多少台?(注:毛利润=售价﹣进价)【分析】(1)设A型号家用净水器每台进价为x元,B型号家用净水器每台进价为y元,根据“购进2台A型号家用净水器比1台B型号家用净水器多用200元;购进3台A型号净水器和2台B型号家用净水器共用6600元”列二元一次方程组求解可得;(2)设商家购进A型号家用净水器m台,则购进B型号家用净水器(20﹣m)台,根据“购进总费用不超过26400元、毛利润不低于12000元”列不等式组,解之可得.【解答】解:(1)设A型号家用净水器每台进价为x元,B型号家用净水器每台进价为y元,根据题意知,解得:,答:A型号家用净水器每台进价为1000元,B型号家用净水器每台进价为1800元;(2)设商家购进A型号家用净水器m台,则购进B型号家用净水器(20﹣m)台,根据题意,得:,解得:12≤m≤15,因为m为整数,所以m=12或13或14或15,则商家购进A型号家用净水器12台,购进B型号家用净水器8台;购进A型号家用净水器13台,购进B型号家用净水器7台;购进A型号家用净水器14台,购进B型号家用净水器6台;购进A型号家用净水器15台,购进B型号家用净水器5台.【点评】此题考查一元一次不等式组的实际运用,二元一次方程组的实际运用,找出题目蕴含的数量关系与不等关系是解决问题的关键.。
(完整版)北师大版八年级下册数学复习知识点及例题相结合
一. 不等关系第一章一元一次不等式和一元一次不等式组1. 一般地,用符号“<”(或“ ≥”), “>”(或“ ≤”)连接的式子叫做不等式.2.区别方程与不等式:方程表示是相等的关系,不等式表示是不相等的关系。
3.准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数⇔ 非正数⇔ 大于等于0( ≥ 0) ⇔小于等于0( ≤ 0) ⇔0 和正数0 和负数⇔不小于0⇔不大于0二. 不等式的基本性质1.掌握不等式的基本性质,并会灵活运用:(1)不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c, a-c>b-c.(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即如果a>b,并且c>0,那么ac>bc, a >b .c c(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c<0,那么ac<bc, a <bc c2.比较大小:(a、b 分别表示两个实数或整式) 一般地:如果a>b,那么a-b 是正数;反过来,如果a-b 是正数,那么a>b;如果a=b,那么a-b 等于0;反过来,如果a-b 等于0,那么a=b;如果a<b,那么a-b 是负数;反过来,如果a-b 是正数,那么a<b;即:a>b ⇔ a-b>0 a=b ⇔ a-b=0 a<b ⇔ a-b<0(由此可见,要比较两个实数的大小,只要作差即可)例下列各式一定成立的是( )A.7a﹥4a B. a﹥-a C. a+1﹥a-1 D. a≤a2例若a﹥b,且a、b 同号,以下不等式中一定成立的有①a2﹥b2 ②a3<b3 ③1/a<1/b ④a/b﹥1A. 0B. 1C. 2D. 3三. 不等式的解集:1.能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.2.不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同.3.不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:①边界:有等号的是实心点,无等号的是空心圆圈;②方向:大向右,小向左四. 一元一次不等式:1.只含有一个未知数,且含未知数的式子是整式,未知数的次数是1. 像这样的不等式叫做一元一次不等式.2.解一元一次不等式的过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向.3.解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1(不等号的改变问题)4.一元一次不等式基本情形为ax>b(或ax<b)①当a>0 时,解为x >b;②当a=0 时,且b<0,则x 取一切实数;当a=0 时,且b≥0,则a无解;③当a<0 时, 解为x <b ;a5.不等式应用的探索(利用不等式解决实际问题)列不等式解应用题基本步骤与列方程解应用题相类似,即:①审: 认真审题,找出题中的不等关系,要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“不小于”等含义;②设: 设出适当的未知数;③列: 根据题中的不等关系,列出不等式;④解: 解出所列的不等式的解集;⑤答: 写出答案,并检验答案是否符合题意.例不等式mx﹥n(m≠0)的解集是( )A.x﹥n/m B.当m﹥0 时,x﹥n/m,当m<0 时,x<-n/mC.x<n/m D.当m﹥0 时,x﹥n/m,当m<0 时,x<n/m例如果不等式(a+1) x﹥(a+1)的解集为x<1,则a 必须满足的的条件是:A. a<0B. a≤-1C. a﹥-1D. a<-1例已知关于x 的不等式(2a-b)x+a-5b ﹥0 的解集为x<10/7,则ax+b﹥0 的解集为例若不等式组x﹥a 无解,则不等式组x﹥2-a 的解集是例水果店进了某中水果1t,进价是7 元/kg。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2不等式的基本性质练习题
一、选择题
1.若m>n,则下列不等式变形错误的是()
A. m−2>n−2
B. −3m<−3n
C. m2>mn
D. m
x+1>n
x+1
2.若a<c<0<b,则abc与0的大小关系是().
A. abc<0
B. abc=0
C. abc>0
D. 无法确定
3.关于代数式x+2的结果,下列说法一定正确的是()
A. 比2大
B. 比2小
C. 比x大
D. 比x小
4.若x+3>0,则()
A. x+1<0
B. x−1<0
C. −1
3
x<1 D. 2x<−6 5.如果a>b,c<0,那么下列不等式成立的是().
A. a+c>b+c
B. c−a>c−b
C. ac>bc
D. a
c >b
c
6.如果b>a>0,那么()
A. −1
a >−1
b
B. 1
a
<1
b
C. −1
a
<−1
b
D. −b>−a
7.已知x>y,则下列不等式成立的是()
A. −2x>−2y
B. 4x>3y
C. 5−x>5−y
D. x−2>y−3
8.下列四个不等式:(1)ac>bc;(2)−ma<mb;(3)ac2>bc2;(4)a
b
>1,一定能推出
a>b的有( )
A. 1个
B. 2个
C. 3个
D. 4个
9.现有三种不同的物体:“甲、乙、丙”,用天平称了两次,情况如图所示,那么“甲、
乙、丙”这三种物体按质量从大到小的顺序排列为()
A. 丙甲乙
B. 丙乙甲
C. 乙甲丙
D. 乙丙甲
10.用三个不等式a>b,ab>0,1
a >1
b
中的两不等式作为题设,余下的一个不等式作为结
论组成一个命题,组成真命题的个数为()
A. 0
B. 1
C. 2
D. 3
二、填空题
11.由a>b得到ac2>bc2的条件是:c______0.
12.将9m
7>4n
3
两边都乘21,得_______.
13.若a<b,则−5a______−5b(填“>”“<”或“=”).
14.若a>b,则−1
2a+c______−1
2
b+c.
15.若m>n,则m−n______0(填“>”或“=”或“<”).
16.用不等式表示,比x的5倍大1的数不小于x的1
2
与4的差______ .
17.当a满足条件________时,由ax>4可得x<4
a
.
18.根据不等式的基本性质,可将“mx<2”化为“x>2
m
”,则m的取值范围是______.19.已知实数a,b的对应点在数轴上的位置如图所示,则a+5__________b+5(填“>”
“<”或“=”).
20.非负数a,b,c满足a+b=9,c−a=3,设y=a+b+c的最大值为m,最小值为n,
则m−n=_________.
三、解答题
21.设x>y,试比较−(8−10x)与−(8−10y)的大小.
22.有一个两位数,个位上的数字是a,十位上的数字是b,如果把这个两位数的个位与十
位上的数字对调,试比较新得到的两位数与原来的两位数的大小.
【答案】
1. C
2. C
3. C
4. C
5. A
6. C
7. D
8. A 9. B 10. A
11. ≠
12. 27m>28n
13. >
14. <
15. >
x−4
16. 5x+1≥1
2
17. a<0
18. m<0
19. <
20. 9
21. 解:−(8−10x)−[−(8−10y)]=−8+10x+8−10y=10x−10y.
∵x>y,
∴10x>10y,
∴10x−10y>0,即:−(8−10x)−[−(8−10y)]>0,
∴−(8−10x)>−(8−10y).
22. 解:∵原来的两位数为10b+a,新得到的两位数为10a+b
∴10a+b−(10b+a)=10a+b−10b−a
=9(a−b)
∴当a>b时,a−b>0,则9(a−b)>0,则新得到的两位数大于原来的两位数;当a=b时,a−b=0,则9(a−b)=0,则新得到的两位数等于原来的两位数;当a<b时,a−b<0,则9(a−b)<0,则新得到的两位数小于原来的两位数.。