最优捕鱼策略问题

合集下载

最优捕鱼策略问题

最优捕鱼策略问题

最优捕鱼策略问题摘要本文以最优捕鱼策略为主题,在logistic模型基础上建立了可持续发展捕鱼策略模型,并借助计算机Matlab,运用二分法近似求得了模型最优解。

在此基础上提出了灵敏度函数S,并由此判断死亡率w和捕捞强度E的变化对产量变化的影响。

最后根据实际生产需求,分析死亡率w对最大产量Qm的影响。

对于问题1,我们首先考虑不存在捕捞情况下的模型,再加入捕捞强度分析,最后根据问题1的条件(每年开始捕捞时渔场中各种年龄组鱼群条数不变)建立方程组,得到可持续发展捕鱼策略模型,解得方程组后在w=0.8时绘图得到最大产量Qm=3.8871*10^11。

对于问题2,我们引用了灵敏度函数S(ω,Q),起意义为ω变化率与Q变化率的比值,例如S=0.1,即表示当死亡率变化1%的时候,产量Q变化0.1%。

发现在问题1取得最大产量的情况下,死亡率每增加1%,最大产量减少1.743%。

并给出了不同死亡率w和产量下S的函数。

对于问题3,方法与问题2相似,灵敏度函数S(E,Q)在问题1的情况下,捕捞强度系数E每增加1%,产量Q减少0.0010%。

并给出了不同捕捞强度E和产量Q下S的函数。

对于问题4,我们取不同的死亡率w,得到不同的最大产量Q,利用MATLAB用函数拟合的方法得到了相似度很高的4阶拟合函数Qm(w)仿照问题2求解了灵敏度函数S(E,Qm),发现了在问题1求得最大产量的时候,死亡率的波动对最大产量的影响是相对较大的。

现实生产中可表现为一段时间内大量鱼群的死亡对渔民的收获量会造成比较大的损失。

为此我们找到了影响较小的点,当把死亡率控制在0.957附近时,鱼群的突然大数目死亡短时间内对渔民造成的损失最小。

对此我们提出了一些策略。

关键词:可持续发展捕鱼策略模型,灵敏度分析,函数拟合,微分方程。

一、问题重述以鳀鱼为例,制定一种最优的捕鱼策略,要求实现可持续捕捞,并且在此前提下得到最高的年收获量,并进一步考虑自然死亡率和捕捞强度系数,提出相关建议。

捕鱼最优化问题课程设计

捕鱼最优化问题课程设计

捕鱼最优化问题课程设计一、课程目标知识目标:1. 学生能理解捕鱼最优化问题,掌握线性规划的基本概念和原理;2. 学生能运用数学模型表达实际问题,理解捕鱼最优化问题的约束条件和目标函数;3. 学生了解捕鱼资源合理利用的重要性,认识到数学知识在解决实际问题中的应用。

技能目标:1. 学生能运用线性规划方法解决捕鱼最优化问题,提高数学建模和解决问题的能力;2. 学生通过小组讨论和合作,培养团队协作和沟通表达的能力;3. 学生能够运用计算工具,如计算器和电脑软件,进行数据处理和求解最优化问题。

情感态度价值观目标:1. 学生培养对数学学科的兴趣,认识到数学与实际生活的紧密联系;2. 学生在解决捕鱼最优化问题的过程中,增强环保意识,关注可持续发展;3. 学生通过自主探索和合作学习,培养自信心和自主学习的能力,形成积极向上的学习态度。

二、教学内容本章节教学内容以“捕鱼最优化问题”为主题,结合教材中线性规划的相关章节进行组织。

具体内容包括:1. 线性规划基本概念:定义、约束条件、目标函数、可行解、最优解等;2. 线性规划模型建立:以捕鱼最优化问题为例,引导学生建立数学模型,理解约束条件和目标函数的含义;3. 线性规划求解方法:介绍单纯形法、图形法等基本求解方法,以及运用计算工具进行求解;4. 捕鱼最优化问题案例分析:分析实际捕鱼案例,探讨线性规划在捕鱼资源合理利用中的应用;5. 小组讨论与协作:分组讨论捕鱼最优化问题,培养学生的团队协作能力和沟通表达能力;6. 数学软件应用:指导学生运用数学软件(如MATLAB、Excel等)进行数据处理和求解最优化问题。

教学内容按照以下进度安排:1. 第一节课:线性规划基本概念,建立捕鱼最优化问题的数学模型;2. 第二节课:线性规划求解方法,分析捕鱼最优化问题案例;3. 第三节课:小组讨论与协作,总结捕鱼最优化问题的解决方案;4. 第四节课:数学软件应用,巩固所学知识,拓展解决实际问题的能力。

最优捕鱼策略问题

最优捕鱼策略问题

最优捕鱼策略问题为了保护人类赖以生存的自然环境,可再生资源(如渔业、林业资源)的开发必须适度。

一种合理、简化的策略是,在实现可持续收获的前提下,追求最大产量或最佳效益。

考虑对鳀鱼的最优捕捞策略:假设这种鱼分4个年龄组,称为1龄鱼,2龄鱼,3龄鱼,4龄鱼。

各年龄组每条鱼的平均质量分别为5.07、11.55、17.86、22.99(g),各年龄组的自然死亡率为0.8(1/年),这种鱼为季节性集中产卵繁殖,平均每条4龄鱼的产卵量为1.109×1011(个),3龄鱼的产卵量为这个数的一半,2龄鱼和1龄鱼不产卵,产卵和孵化期为每年的最后4个月,卵孵化并成活为1龄鱼,成活率(1龄鱼条数与产卵量n之比)为1.22×1011/(1.22×1011+n)。

渔业管理部门规定,每年只允许在产卵孵化期前的8个月进行捕捞作业。

如果每年投入的捕捞能力(如渔船数、下网次数等)固定不变,这时单位时间捕捞量将与各年龄组鱼群条数成正比,比例系数不妨设为捕捞强度系数。

通常使用13mm网眼的拉网,这种网只能捕捞3龄鱼和4龄鱼,其两个捕捞系数之比为0.42:1.渔业上称这种方式为固定努力量捕捞。

①建立数学模型分析如何实现可持续捕捞(即每年开始捕捞时渔场中各年龄组鱼群条数不变),并且在此前提下得到最高的年收获量(捕捞总质量)。

②某渔业公司承包这种鱼的捕捞业务5年,合同要求5年后鱼群的生产能力不能受到太大破坏。

已知承包时各年龄组鱼群的数量分别为:122,29.7,10.1,3.29(×109条),如果仍用固定努力量的捕捞方式,该公司应采取怎样的策略才能使总收获量最高。

(1)问题的分析与模型的建立问题假设①鱼群总量的增加虽然是离散的,但对于大规模的鱼群而言,可设鱼群总量的变化随时间是连续的。

②据题目给出的条件,可设鱼群每年在8月底瞬间产卵完毕,卵在12月底全部孵化完毕。

③i龄鱼到第二年分别长一岁成为i+1龄鱼,i=1,2,3。

最优捕鱼策略(1)

最优捕鱼策略(1)
第一步 得出基本模型 • 给出第k年底i 龄鱼的数量Ni1(k)与第k年初i 龄鱼的数量Ni0(k)之间的递推关系 • 给出年度捕鱼量 • 给出第k+1年初i 龄鱼的数量Ni0(k+1)与第k年初i 龄鱼的数量Ni0(k+1)的递推关系
第二步 得出最终模型 • 根据可持续捕捞的要求, 给出约束条件及其目标函数
最优捕鱼策略(1)
由于每年各龄鱼的演化规律相同,且捕捞模式相
同,综上可得:
第k年底i 龄鱼的数量Ni1(k)对第k年初i 龄鱼的数量Ni0(k) 的
递推关系
(4最优捕鱼策略(1)
由各龄鱼之间的年龄增长关系,并假定产卵在年底一次完成,利用关系 式(4)得
从而第k+1年初i 龄鱼的数量Ni0 (k+1)与第k年初i 龄鱼的数量Ni0 (k) 的递
最优捕鱼策略(1)
3rew
演讲完毕,谢谢听讲!
再见,see you again
2020/11/17
最优捕鱼策略(1)
最优捕鱼策略(1)
2020/11/17
最优捕鱼策略(1)
(1)建立数学模型分析如何实现可持续捕捞(即每年开始捕捞时渔场中
各年龄组鱼群条数不变),并且在此前提下得到最高年收获量(捕捞总重 量)。 (2)某渔业公司承包这种鱼的捕捞业务5年,合同要求5年后鱼群的生产 能力不能受到太大破坏。
已 知 承 包 时 各 年 龄 组 鱼 群 数 量 分 别 为 : 122 , 29.7 , 10.1 , 3.29 (×109条)。如果仍用固定努力量的捕捞方式,该公司采用怎样的策略才 能使总收获量最高。
Qk —k年度鱼产卵总量
p —鱼卵的成活率
Mi—第i 龄鱼的平均重量(i=1,2,3,4) Ei —第i 龄鱼的捕捞强度系数 ai —对i 龄鱼的年捕捞量(i=3,4) W—年总收获量,即W=M3a3+M4a4 WW — 5年的总收获量为,即

最优捕鱼策略(A题)

最优捕鱼策略(A题)

最优捕鱼策略(A题)摘要当今世界,可持续地与自然和谐相处已成为了人们的共同意识。

本文主要寻求一种以针对实现鳀鱼种群的可持续收获为前提的最佳捕捞方案,达到最佳效益,同时为渔业部门制定相关规定提出建议。

对于问题一,运用合理的假设将影响鳀鱼种群数量的因素抽象为自然死亡和捕捞两种,并将自然死亡和捕捞过程理解为瞬时影响,由此建立出微分方程,进而得到各年龄组的鳀鱼数量与时间的关系式。

接着,以题干所述“各种年龄组鱼群条数不变”为约束条件,求捕捞总重量的最大值,即建立一非线性规划模型。

最后,利用Matlab软件求得:鳀鱼捕捞总重量的最大值为11,并且3.865510g求得在取得最大值时,3龄鱼、4龄鱼的捕捞强度分别为7.0021和16.6718。

对于问题二和问题三,在假定自然死亡率和捕捞强度系数变化很小的情况下,先运用微分思想和一定的等式变换,再利用捕捞总重量这一多元函数的一阶偏导函数,分别得出年捕鱼总重量对自然死亡率和对捕捞强度系数的灵敏性函数。

通过分析灵敏度函数的函数值大小,得出自然死亡率对模型的灵敏度不高,捕捞强度系数对模型的灵敏度不太高的结论。

同时,还发现了3、4龄鱼的捕捞强度系数对年收获量的影响程度相同的结论。

对于问题四,在充分分析了影响鳀鱼开发利用经济效益的因素的基础上,通过查阅相关学术文献资料,给出了综合开发利用鳀鱼资源的策略。

关键词:微分方程;非线性规划模型;灵敏度分析;多元函数的偏导数;Matlab 软件;Mathematica软件目录一问题重述 (2)二问题分析 (2)三模型假设与符号说明 (3)3.1 模型假设 (3)3.2 符号说明 (3)四模型建立与求解 (4)4.1 问题一的模型建立与求解 (4)4.1.1 模型的推导 (4)4.1.2 运用Matlab求解模型 (7)4.2问题二的模型建立与求解 (9)4.2.1 模型的推导 (9)4.2.2 对模型输出结果的分析 (9)4.3问题三的模型建立与求解 (10)4.3.1 模型的推导 (10)4.3.2 对模型输出结果的分析 (11)4.4问题四的解答 (12)五模型的优缺点 (13)5.1 模型的优点 (13)5.2 模型的缺点 (13)六参考文献 (13)七附录 (14)7.1 求解第一问模型的Matlab源代码 (14)一 问题重述假设鳀鱼分四种年龄组,称为1龄鱼,2龄鱼,3龄鱼,4龄鱼。

最优捕鱼策略

最优捕鱼策略

(8)
由于捕捞被看成连续的作业,因此捕捞总收获量即年
收获量可以用t 时刻的捕捞量s(t)关于t 在捕捞期内的积分,
H s( t )dt
0
2 3
(9)
要求最高的年收获量,即求H的最大值。
6) 四龄鱼在年末进行的两个假设
(1)4龄鱼在年末与鱼群总数量相比十分微小,它们既
不产卵,又不会被捕捞。可以将它们忽略不计,令其退出 系统。 (2)未死亡的4龄鱼在年末的各个特征(重量、产卵个 数等)均不发生改变,即仍会到4龄鱼组中。
捕捞时渔场中各年龄组鱼群条
数不变),并在此前提下得到
最高的年收获量(捕捞总量)。 2.某渔业公司承包这种鱼的捕捞业务5年,合同要求5 年后鱼群的生产能力不能受到太大的破坏。已知承包时各
年龄组鱼群数量分别为:122,29.7,10.1,3.29(109条),
如果固定努力量的捕捞方式,该公司应采取怎样的策略才
t [0,1], t [0,1], t [0, 2 ], 3 t [ 2 ,1], 3 t [0, 2 ], 3 t [ 2 ,1]. 3
xi , j 1 (1) xi 1, j (0)
j 2, 3,4.
模型一:令每一年的捕捞强度系数为一固定值,即 k=ki;这样与问题一相似,利用一元函数求最值得方法,可 得到Hmax=1.605×106(吨),捕捞强度系数k=17.58。
题目已假定捕捞强度系数k一定,且只在捕捞期内(即
每年的前八个月)捕捞3、4龄鱼,因此只会影响3、4龄鱼
鱼群的数量,而不会影响其它的鱼群数量。我们可以看到
3、4 龄鱼鱼群的数量在捕捞期内不仅与k有关,而且还与 死亡率a有关,类似于1)的分析,可以得到3龄鱼鱼群(前 8个月)的数量变化规律

最优捕鱼问题

最优捕鱼问题

最优捕鱼策略优化模型摘要“最优捕鱼策略” 的数学模型通过鱼在单位时间内的死亡率来年调整捕鱼强度系数对现有的鱼进行捕捞并获取最大的产量。

由于鱼的生长具有周期性,每一种鱼的数量的改变对整个循环都有影响,因此必须综合考虑,以使每个种年龄段的鱼的数量不破坏的情况下的到最大产量,利用数学知识联系实际问题,作出相应的解答和处理。

问题一:根据已经掌握的人口模型,将鱼的死亡同人口增长联系起来,每种鱼的死亡也有相应的关系,从开始到一个循环的结束,死亡量由大到小,而死亡率保持不变。

通过对死亡率的分析讨论发现)()(t x k r dtdx+-= 经过不定积分可知tk r t e x x )()0()(+-=在此基础上对死亡和捕获量进行综合分析,从而避开了考虑具体的谁先谁后的问题。

通过使用了非线性等式的约束来实现可持续收获,采用了微分方程和非线性规划方法来解决该优化问题。

利用了MATLAB 软件工具求的每年年初的各年龄组鱼的量、最大捕捞量和捕捞强度系数。

得到了各年龄组鱼群的年初的量分别为111019599.1⨯,1110537395.0⨯,,102414672.011⨯7103959.8⨯(单位为条)。

最优的捕捞强度系数为四龄鱼的捕捞强度系数:()年/136279.174=k ,最大量为111088708.3max ⨯=(克)。

在第二问中,模型中通过对鱼群的循环周期考虑可知四年一个循环但模型中将5年作为一个周期来建立模型,这样可以得到最大捕捞量,综合题目一中的模型最终捕在保证破坏最少的情况下的最大产量,由于捞强度系数为未知量,在实现5年后鱼群的生产能力不受到太大破坏的前提下,通过最后一年的量与初始量相等建立模型并利用MATLAB 软件进行求解,求出最大捕捞量,收获的最大量。

求得的捕捞强度系数分别为18.217266(1/年),总收获量为1210604751.1⨯ 克,即160.4751万吨。

关键词:微分方程. 最大捕捞量. 捕捞强度系数. 死亡率. 非线性规划一.问题的提出(略)二.问题分析该问题是一个涉及到微分方程的优化问题,初步分析为非线性规划问题。

最优捕鱼策略原稿

最优捕鱼策略原稿

最优捕鱼策略原稿捕鱼作为一项常见的娱乐活动,已经成为许多人闲暇时消遣的选择。

然而,对于那些希望在捕鱼中获得最佳结果的人来说,制定一种最优捕鱼策略是非常重要的。

以下为一些关键的策略,可以帮助提高捕鱼的成功率。

1.了解目标鱼种:不同的鱼类有着不同的特点和习性。

因此,在捕鱼之前,首先要了解目标鱼种的喜好、聚集地以及食物偏好。

这将有助于找到更多的目标鱼,并提高捕获的概率。

2.选择合适的钓具:根据目标鱼种的大小和习性,选择合适的钓具对成功捕鱼至关重要。

如果目标鱼种较大而有力,选择一根更坚固的渔杆和更强大的渔线是必要的。

另外,鱼饵的选择也是一项关键决策,只有符合目标鱼种的偏好,才能吸引它们上钩。

4.运用适当的技巧:在捕鱼过程中运用适当的技巧是非常重要的。

例如,使用正确的投掷技巧可以使鱼饵更加准确地落入目标位置。

此外,在操作钓杆和渔线时要注意技巧,保持稳定和平稳的动作,以提高捕鱼的概率。

5.尊重渔业法规:为了保护渔业资源和环境,许多地区都设有相关的渔业法规和限制。

在进行捕鱼活动时,要了解和遵守当地的渔业法规,遵循合理的捕鱼限额和尺寸限制。

只有通过遵守法规,才能保护渔业资源的可持续性并促进保护生态平衡。

6.保持耐心和冷静:捕鱼是需要耐心和冷静的活动。

有时鱼儿不一定会立刻上钩,这时候保持耐心是非常重要的。

遇到挫折时,要保持冷静,分析原因并尝试调整策略,而不是仓促行事。

最后,捕鱼策略的最重要的一点是享受过程。

不论是单独垂钓还是与朋友家人一起垂钓,都要专注于过程的乐趣和享受,而不仅仅局限于对捕鱼结果的追求。

总之,最优捕鱼策略需要综合考虑多种因素,包括了解目标鱼种、选择合适的钓具、确定合适的时间和地点、运用适当的技巧、遵守渔业法规以及保持耐心和冷静。

通过制定最优的捕鱼策略,我们可以提高捕获的概率并获得更好的捕鱼体验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最优捕鱼策略问题摘要问题一,我们考虑渔场生产过程中的各年龄组鱼群数量的制约因素,将其分为两大类,第1,2龄鱼群为一类,该鱼群数量变化只受自然死亡率制约;第3,4龄鱼群为一类,其数量变化在前8个月受捕捞强度和自然死亡率影响,后4个月只受自然死亡率的制约;可写出在某时刻各鱼群的数量表达式.捕捞只在前8个月进行,则年捕捞量为前8个月各时刻鱼群数量的积分。

最后建立年总捕捞量的函数与生产过程中满足的关系式,转化为非线性规划模型,利用matlab 软件求解。

问题二,我们利用问题一中所得到的迭代方程,可迭代地求出第i 年初各年龄组鱼群的数量;再根据问题一中的捕捞量表达式,可写出5年的捕捞总量表达式,以5年捕捞总量最大为前提,利用matlab 软件求解出此时的捕捞强度,然后再验证在此捕捞强度下会不会使5年后鱼群的生产能力有太大的破坏.最后得出以下结论:可持续捕获条件下,捕捞强度为17。

36时,达到最大捕捞总质量g 1088.311⨯; 5年后鱼群的生产能力不会有太大的破坏条件下,捕捞强度为()17.5,17.8k ∈,达到最大最大捕捞总质量g 1064.112⨯。

关键词:渔业;最大收益;捕捞策略;生产能力;生长率;matlabOptimal Fishing StrategyABSTRACTOne problem,meet the function of integral quantity expressions; we consider fisheries production process in the age group of fish number of constraints,it is divided into two major categories,on the 1st and 2nd instar fish as a class, the number of fish change only by natural mortality rate control; the 3,4 years old fish as a class,the number of changes in the first eight months of fishing intensity and natural mortality, after 4 months only by natural mortality constraints can be written in a moment the fish. Fishing only in the first eight months, then the annual catches in the first eight months each time stocks。

Finally a total fishing volume and production process, is transformed into a nonlinear programming model by MATLAB software solution.Two problem,we exploit the problem in the iterative equation that can be iterated to calculate the number of fish in each age group at the beginning of the i-th;according to the problems in catches of expression,can write with 5 years of fishing aggregate expressions, in 5 years of total fishing maximum as the premise, at this time the fishing intensity was obtained by using MATLAB software, which are then validated in this fishing intensity does not make 5 years after fish production capacity has too much damage。

Finally draws the following conclusion: Sustainable capture conditions,fishing intensity of 17。

36 to achieve maximum catch total quality ;5 years after fish production capacity will not have too much damage conditions,the fishing intensity ,achieve the maximum total fishing quality。

Key word:Fisheries;Maximum benefit; Fishing strategy; Throughput;Growth rate; Matlab目录1 绪论 (6)1。

1 研究背景及目的 (6)1。

2 研究方法 (6)2 最优捕鱼策略问题分析求解 ......................................................................................... - 1 -2.1 问题的提出................................................................................................................... - 1 -2.2 问题假设....................................................................................................................... - 1 -2。

3 符号说明..................................................................................................................... - 2 - 2。

4题中术语理解.............................................................................................................. - 2 -2.4.1自然死亡率........................................................................................................ - 2 -2.4。

2 捕捞强度系数................................................................................................. - 3 -2.4.3 成活率............................................................................................................... - 3 -2。

5 问题分析..................................................................................................................... - 4 - 2。

5.1 问题一分析..................................................................................................... - 4 -2。

5.2 问题二分析..................................................................................................... - 4 -2.6 模型建立....................................................................................................................... - 5 -2。

6。

1问题一模型.................................................................................................... - 5 -2.6.2 问题二模型....................................................................................................... - 7 -2。

7模型求解...................................................................................................................... - 8 - 2。

7.1问题一求解...................................................................................................... - 8 -2。

7。

2 问题二求解................................................................................................. - 10 -2.8 模型评价..................................................................................................................... - 12 - 参考文献 .................................................................................................................................. - 13 - 附录源程序清单 .................................................................................................................. - 13 -1 绪论1。

相关文档
最新文档