数学建模——最优捕鱼模型
数学建模实验报告最优捕鱼策略

最优捕鱼策略一.实验目的:1、了解与熟练掌握常系数线性差分方程的解法;2、通过最优捕鱼策略建模案例,使用MATLAB软件认识与掌握差分方程模型在实际生活方面的重要作用。
二.实验内容:(最优捕鱼策略)生态学表明,对可再生资源的开发策略应在事先可持续收获的前提下追求最大经济效益。
考虑具有4个年龄鱼:1龄鱼,…,4龄鱼的某种鱼。
该鱼类在每年后4个月季节性集中产卵繁殖。
而据规定,捕捞作业只允许在前8个月进行,每年投入的捕捞能力固定不变,单位时间捕捞量与个年龄鱼群条数的比例称为捕捞强度系数。
使用只能捕捞3、4龄鱼的13mm网眼的拉网,其两个捕捞强度系数比为:1.渔业上称这种方式为固定力量捕捞。
该鱼群本身有如下数据:1.各年龄组鱼的自然死亡率为(1/年),其平均质量分别为,,,(单位:g);2.1龄鱼和2龄鱼不产卵,产卵期间,平均每条4龄鱼产卵量为ⅹ105(个),3龄鱼为其一半;3.卵孵化的成活率为ⅹ1011/(ⅹ1011 + n)(n为产卵总量);有如下问题需要解决:1)分析如何实现可持续捕获(即每年开始捕捞时各年龄组鱼群不变),并在此前提下得到最高收获量;2)合同要求某渔业公司在5年合同期满后鱼群的生产能力不能受到太大的破坏,承包时各年龄组鱼群数量为122,,,(ⅹ109条),在固定努力量的捕捞方式下,问该公司应采取怎样的捕捞策略,才能使总收获量最高。
三. 模型建立假设a、鱼群总量的增加虽然是离散的,但对大规模鱼群而言,我们可以假设鱼群总量的变化随时间是连续的;b、龄鱼到来年分别长一岁成为i + 1龄鱼,i = 1,2,3;c、4龄鱼在年末留存的数量占全部数量的比例相对很小,可假设全部死亡。
d 、连续捕获使各年龄组的鱼群数量呈周期性变化,周期为1年,可以只考虑鱼群数量在1年内的变化情况。
(且可设x i (t ):在t 时刻i 龄鱼的条数,i = 1,2,3,4;n :每年的产卵量;k :4龄鱼捕捞强度系数;2a i0:每年初i 龄鱼的数量,i = 1,2,3,4;)进而可建立模型如下:max (total (k ))=⎰⎰+3/203/2043)(99.22)(42.0dt t kx dt t kx)(8.0)(11t x dtt dx -= t ∈[0,1],x1(0)= n ×n +⨯⨯11111022.11022.1 )(8.0)(22t x dt t dx -= t ∈[0,1],x2(0)= x1(1))()42.08.0()(33t x k dt t dx +-= t ∈[0,2/3],x3(0)= x2(1) . )(8.0)(33t x dt t dx -= t ∈[2/3,1],x3(32-)= x3(32+))()8.0()(44t x k dt t dx +-= t ∈[0,2/3],x4(0)= x3(1))(8.0)(44t x dt t dx -= t ∈[2/3,1],x4(32-)= x4(32+))]32()32(5.0[10109.1435++⨯=x x n四. 模型求解(含经调试后正确的源程序)1. 先建立一个的M 文件:function y=buyu(x);global a10 a20 a30 a40 total k;syms k a10;x1=dsolve('Dx1=*x1','x1(0)=a10');t=1;a20=subs(x1);x2=dsolve('Dx2=*x2','x2(0)=a20');t=1;a30=subs(x2);x31=dsolve('Dx31=-+*k)*x31','x31(0)=a30');t=2/3;a31=subs(x31);x32=dsolve('Dx32=*x32','x32(2/3)=a31');t=1;a40=subs(x32);x41=dsolve('Dx41=-+k)*x41','x41(0)=a40');t=2/3;a41=subs(x41);x42=dsolve('Dx42=*x42','x42(2/3)=a41');t=2/3;a31=subs(x31);nn=*10^5**a31+a41);Equ=a10-nn**10^11/*10^11+nn);S=solve(Equ,a10);a10=S(2,1);syms t;k=x;t3=subs(subs(int*k*x31,t,0,2/3)));t4=subs(subs(int(k*x41,t,0,2/3)));total=*t3+*t4;y=subs((-1)*total)2.再建立一个的M文件:global a10 a20 a30 a40 total;[k,mtotal]=fminbnd('buyu',0,20);ezplot(total,0,25);xlabel('');ylabel('');title('');format long;ktotal=-mtotal;a10=eval(a10)a20=eval(a20)a30=eval(a30)a40=eval(a40)format shortclear五.结果分析1.鱼总量与时间图:x 10405101520252.可以看出捕捞强度对收获量的影响:实验输出数据:y =+011y =+011y =+011y =+011y =+011y =+011y =+011y =+011y =+011y =+011y =+011y =y =+011k =total =+011a10 =+011a20 =+010a30 =+010a40 =+007则k=时,最高年收获量为total=×1011(克),此时每年年初1,2,3,4年龄组鱼的数量分别为:×1011×1010×1010×107六.实验总结本次实验的目的是了解差分方程(递推关系)的建立及求解,以及掌握用差分方程(递推关系)来求解现实问题的方法。
数学建模论文捕鱼效益最大化模型(论文资料)

北京理工大学数学学院《常微分方程》小论文捕鱼业效益最大化的微分方程模型2012/12/18捕鱼业效益最大化常微分方程模型摘要在将可持续发展作为基本国策的大背景下,像渔业这样的再生资源应该在持续稳产的前提下追求效益的最大化。
本文考察一个渔场,首先建立在捕捞情况下渔场鱼量遵从的方程,分析鱼量稳定的条件,并且在稳定的前提下讨论渔场的效益最大化问题,最后提出相应的优化方案及建议。
关键字:渔场鱼量捕捞强度平衡点稳定条件效益一、问题分析如今人们大范围过度捕捞导致了渔业的日渐枯竭,近海资源已经被严重透支,到远洋争议海域捕鱼又充满了危险,近年不断有渔船被日韩海监船扣压,更有甚者,去年3月份与韩国海警爆发冲突,导致一人死亡,引发各种问题。
然而怎样才能实现捕鱼业效益的最大化呢?应该如何控制捕捞强度才能实现效益的最大化?本文就这些问题进行了以下分析:①建立渔场鱼量x,捕捞强度E关于t的微分方程;②由上述微分方程组求出平衡点并分析其稳定性;③在稳定条件下求出渔场效益;④对其效益进行分析提出优化方案.二、模型假设:(1)在无捕捞条件下,渔场中的余量x(t)的增长服从logistic规律(即阻滞增长模型);(2)单位时间的捕捞量(即产量)与渔场鱼量x(t)成正比,比例系数为E;(3)捕捞强度E(t)的变化率与利润成正比;(4)鱼的销售单价为常数p,单位捕捞率的费用为常数c;三、模型建立与求解1.在无捕捞条件下x(t)关于时间的微分方程) (1)ẋ(t)=f(x)=rx(1−xNr为固有增长率,N是环境容许的最大鱼量,用f(x)表示单位时间的增长量.2.捕捞情况下渔场鱼量满足的方程单位时间的捕捞量(即产量)与渔场鱼量x(t)成正比,比例系数为捕捞强度,于是单位时间的捕捞量为:h(x)=Ex (2)根据以上假设并记F(x)=f(x)-h(x)得到捕捞情况下渔场鱼量满足的方程为:)−Ex (3)x(t)=F(x)=rx(1−xN3.捕捞强度E(t)关于时间的微分方程E(t)=k(T−S) (4)k为比例常数,T为单位时间的收入,S为单位时间的支出.其中T=ph(x)=pEx, S=cE (5)4.求平衡点并分析其稳定性我们并不需要解方程(3)和(4)以得到x(t),E(t)的动态变化过程,只希望知道渔场的稳定鱼量和保持稳定的条件,即时间t足够长以后渔场鱼量x(t)的趋向,并由此确定此时的效益.接下来我们将求解方程(3)和(4)的平衡点并分析其稳定性.{ẋ(t )=u (x,E )=rx (1−x N )−Ex E (t )=v (x,E )=k (T −S )……(6) 将(5)式带入下面的代数方程组,{u (x,E )=0v(x,E)=0, 解出平衡点为,(0,0),(N ,0),(c p ,r(1−c Np )).稳定性分析:当x=0,E=0时,即渔场鱼量为0且捕捞强度为0,此种情况不具有分析意义;当x=N ,E=0时,即渔场鱼量为环境最大容纳量,没有捕捞,同样,这种情况也不具有分析意义;当x=c p ,E=r(1−c Np )时,由于(6)为非线性方程组,所以我们将采用线性近似的方法讨论此时的稳定性。
数学建模—最佳捕鱼方案

三、 符号说明
;当k 1 x :表示 i 龄鱼第 j 年的年初(或年末)的鱼量( k 0或1, 当k 0时, 表示年初 时表示年末。 i 1,2,3,4; j 1,2, ) 条 ; r :表示各年龄组鱼群的死亡率: 0.8(1 年) ; :表示 4 龄鱼的捕捞强度系数,则 3 龄鱼的捕捞强度系数为 0.42 ; n :产卵总量 个 ; Z:捕鱼总重量 g ; xij t :表示第 j 年 t 时刻 i 龄鱼的数量 条 ; j :表示第 j 年的捕鱼总量;
4
年 收 获 总 量 ( g)
4.2 4.15 4.1 4.05 4 3.95 3.9 3.85
x 10
11
3.8 0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
死 亡 率 ( 1/ 年 )
由上图可直观地看出:死亡率与年收获总量成正比例关系,即当死亡率增加时, 年收获总量则减少;反之,增加。由此可知,死亡率对年收获总量有显著的影响。 2.对模型中捕捞强度系数 的灵敏度分析 模型中其它因素不变, 只考虑 从 10 变到 19 时最大的年收获总量的变化情况, 分析 的变化对模型的影响(见下图)
年 收 获 总 量 ( g)
3.95 x 10
11
3.9
3.85
3.8
3.75
3.7
3.65
3.6
3.55
3.5 10
11பைடு நூலகம்
12
13
14
15
16
17
18
19
4龄 鱼 的 捕 捞 强 度 系 数
由上图可直观地看出:捕捞强度系数也是影响年收获总量的重要因素,年收获总量 随捕捞强度系数的增加而增加。只是增长速率逐渐减慢。 七、 模型评价与推广 模型的评价: 优点:1. 本文建立的模型与实际相联系,考虑到一些实际情况,从而使模型较贴近实 际;通用性.,推广性较强。 2.模型方便、直观,可以实现计算机模拟。 缺点: 1.模型虽然考虑到了很多因素,但为了建立模型,忽略了一些影响因素,具有 一定的局限性。 2.在建模过程中,简化了一些因素,得到了最优方案可能与实际有一定的出入。 模型的推广: 模型建立思想不但适合捕鱼方面,而且适合其它相关方面,只需稍加改动即可。
数学建模课程设计_最佳捕鱼方案

数学建模论文姓名: 文勇学号:201315020220论文标题:最佳捕鱼方案1.问题的提出一个水库,由个人承包,为了提高经济效益,保证优质鱼类有良好的生活环境,必须对水库的杂鱼做一次彻底清理,因此放水清库。
水库现有水位平均为15米,自然放水每天水位降低0.5米,经与当地协商,水库水位最低降至5米,这样预计需要二十天时间,水位可达到目标。
据估计水库内尚有草鱼25000余公斤,鲜活草鱼在当地市场上,若日供应量在500公斤以下,其价格为30元/公斤;日供应量在500—1000公斤,其价格降至25元/公斤,日供应量超过1000公斤时,价格降至20元/公斤以下,日供应量到1500公斤,已处于饱和,捕捞草鱼的成本水位于15米时,每公斤6元;当水位降至5米时,为3元/公斤。
同时随着水位的下降草鱼死亡和捕捞造成损失增加,至最低水位5米时损失率为10%。
承包人提出了这样一个问题:如何捕捞鲜活草鱼投放市场,效益最佳?2.问题分析通过简单的分析和思考,该问题可以归为一个数学规划问题。
条件(1)(2)是针对目前状况的约束,条件(3)是通过卖鱼可以获得的利润,条件(4)是对成本的约束。
在四个条件约束的情况下,我们可以建立模型。
由于对损失率的理解不同,我们进行了不同的假设,并在这些假设下建立了模型一和模型二、三。
模型一中,损失率是基于水库草鱼的总量,草鱼的损失是一些定值的累加。
而在模型二、三中,为了更接近现实生活中的情况及人们的认知观,我们对第n天草鱼的损失率的理解是基于第n-1天剩下的草鱼而言。
模型二将不考虑日供应量超过1500kg的情况,而模型三考虑。
模型三的建立采用多目标的规划方法进行求解。
3.条件假设1、日供应量不受外界条件的变化而变化,是一定的。
2、当天售出的草鱼数量等于当天捕捞的草鱼。
3、水位的变化除了每天的自然放水,不考虑蒸发等其他的情况。
4、假设在放水清库的过程中,随着水位的下降,捕捞成本成呈递减等差数列,而草鱼的损失成递增等差数列。
全国数模竞赛题选讲1-最优捕鱼策略(96A)

Jingsaitixuanjiang
Jingsaitixuanjiang
假设这种鱼分 4 个年龄组,称 1 龄鱼,…,4 龄
0.8 3
k
2 3
s 40 ) e
2 3
0.8
1.22 10
k
2 3
11
10
11
a (1 e
)( e
0.42 k
s 30 2 e
s 40 ) e
0.8
]
F 3 s 30 F 4 s 40
F3
1 .6 [ 1 .2 2 1 0
3 a (1
重复 ⑵ ,根据递推关系算出下一年的
s 12 , s 22 , s 32 , s 42 ;
⑷ 再重复 ⑵、⑶ 当计算到年初与年末的各龄鱼 的数量一致时,即鱼群稳定为止,根据
G P 3 m 3 P4 m 4 算出年捕获量;
⑸ 另定 k 值,重复 ⑴ ~ ⑷; ⑹ 根据年捕获量最大原则,最后确定最佳的 k 值。
s 21 s 1 s 10 e
3)3 龄鱼即上一年末 2 龄鱼
0.8
s 31 s 2 s 20 e
4)4 龄鱼即上一年末 3 龄鱼
0.8
s 41 s 3 s 30 e
0.8
e
0.24 k
2 3
Jingsaitixuanjiang
3 、鱼群持续变化的递推关系
捞方式,该公司应采取怎样的策略才能使总收获量
数学建模——最优捕鱼模型

最优捕鱼模型一.问题的重述捕鱼业在当今社会中十分重要的行业,捕鱼量的大小决定着捕鱼的经济效益,其中捕鱼量与捕鱼时间有着密切关联. 所以如何利用数学模型了解捕鱼量与捕鱼时间之间的关系,是一个具有现实意义的问题.现假设在一个鱼塘中投放若干鱼苗,鱼苗尾数随着时间的增长而减少,且相对减少率为常数;每尾鱼的重量随着时间增长而增加,且由于喂养引起的每尾鱼重量增加率与鱼的表面积成正比,由于消耗引起的减少率与其重量本身成正比. 分析如下问题:问题一:建立尾数和时间的微分方程并求解;问题二:建立每尾鱼重量和时间的微分方程并求解;问题三:用控制网眼的方法不捕小鱼,从一定时刻开始捕捞,用尾数的相对减少率表示捕捞能力,分析开始捕鱼的最佳时刻,使得捕获量最大,并建立相关模型.二.问题分析1.针对问题一,根据相对减少率的数学定义,可以建立鱼尾数和时间的微分方程;2.针对问题二,将鱼体假设为球体,得出鱼的表面积与它重量的关系,使得鱼的重量完全成为一个关于时间的函数,进一步建立出鱼重量与时间的微分方程;3.针对问题三,将捕捞行为看作连续的过程,瞬时捕捞量与瞬时捕鱼尾数、每尾鱼瞬时重量呈正相关关系,瞬时捕鱼尾数与捕捞能力有关,每尾鱼瞬时重量可由对问题二的解答得出,总捕捞量即为瞬时捕捞量关于时间的积分.三.基本假设1.假设自然因素不会对鱼的尾数产生影响;2.假设在整个捕捞过程中鱼没有繁衍行为;3.假设每尾鱼都均衡生长;4.假设在捕捞过程中鱼的条数连续;5.假设鱼为球体.四.符号表示五.模型建立与求解模型一. 鱼苗尾数的相对减少率为常数r . 由相对减少率的定义得()()()t t t t n n rn t +∆-=-∆ 即()()()00lim lim t t t t t t n n rn t +∆∆→∆→-=-∆ 即()t dn rn dt=- 解得0rt n n e -=模型二. 假设鱼为球体,体积为V ,表面积为S ,半径为R ,重量为G ,初始重量为0G ,鱼的密度为ρ;且每尾鱼的重量随着时间增长而增加,其中由于喂养引起的每尾鱼重量增加率与鱼表面积成正比(比例系数为1k ),由于消耗引起的减少率与其重量本身成正比(比例系数为2k ). 由343V R π=,2=4S R π,G V ρ=得2233S G ρ⎛⎫= ⎝⎭令23=b ρ⎛⎫ ⎝⎭又由于12=-dG k S k G dt,=0t ,0G G =所以231-11322+k t k b k b G e k k ⎡⎤⎫=⎢⎥⎪⎭⎣⎦模型三. 控制网眼不捕小鱼,鱼塘中瞬时鱼尾数用(t)n 表示,捕捞能力(E )可以用尾数的相对减少率1dn n dt表示,从T 时刻开始捕捞,使得捕捞量W 能够最大.其中减少量包括自然减少量(即第一模型中的减少量)和捕捞量.此时,-(t)0(t)=-at n n e En-0-0(e )11=-=-=a e at at d n dn E n dt n dt所以,--00(t)==1+(1+)at aT T Tan e an W En dt dt e a a a ∞∞=⎰⎰ 则,在此模型下,捕捞时间越早,捕捞量越大.模型四. 建立在模型三的基础上,捕捞量的大小不仅取决于鱼尾数(t)n ,还取决于鱼的重量G .即(t)TW En Gdt ∞=⎰所以,231--0113(t)22=+1+at k t T T an e k b k b W En Gdt e dt a k k ∞∞⎡⎤⎫=⎢⎥⎪⎭⎣⎦⎰⎰ 可根据此函数求得最大捕捞量所对应的时刻T .感谢下载!欢迎您的下载,资料仅供参考。
数学建模案例——最佳捕鱼方案

最佳捕鱼方案摘要:本文解决的是一个最佳捕鱼方案设计的单目标线性规划问题,目的是制定每天的捕鱼策略,使得总收益最大。
根据题设条件,结合实际情况,我们设计了成本与损失率随天数的增加成反比变化的函数曲线(见图三所示),并导出总收益的表达式: 212121111i i i i i i i i W w p s q m =====⨯-⨯∑∑∑。
由于价格是关于供应量的分段函数(见图一所示),我们引入“0-1”变量法编写程序(程序见附录一),并用数学软件LINGO 求解,得到最大收益(W)为441291.4元,分21天捕捞完毕。
其中第1~16天,日捕捞量在1030~1070公斤之间,第17~21天的日捕捞量为1610~1670公斤之间(具体数值见正文)。
由结果分析,我们对模型提出了优化方向,例如人工放水来降低成本。
关键词:“0-1”整数规划,单目标线性规划,离散型分布。
一. 问题重述一个水库,由个人承包,为了提高经济效益,保证优质鱼类有良好的生活环境,必须对水库里的杂鱼做一次彻底清理,因此放水清库。
水库现有水位平均为15米,自然放水每天水位降低0.5米,经与当地协商水库水位最低降至5米,这样预计需要二十天时间,水位可达到目标。
据估计水库内尚有草鱼二万五千余公斤,鲜活草鱼在当地市场上,若日供应量在500公斤以下,其价格为30元/公斤;日供应量在500—1000公斤,其价格降至25元/公斤,日供应量超过1000公斤时,价格降至20元/公斤以下,日供应量到1500公斤处于饱和。
捕捞草鱼的成本水位于15米时,每公斤6元;当水位降至5米时,为3元/公斤。
同时随着水位的下降草鱼死亡和捕捞造成损失增加,至最低水位5米时损失率为10%。
承包人提出了这样一个问题:如何捕捞鲜活草鱼投放市场,效益最佳?二. 模型假设1.池塘中草鱼的生长处于稳定状态,不考虑种群繁殖以及其体重增减,即在捕捞过程中草鱼总量保持在25,000公斤不变。
2.第一天捕捞时水位为15m ,每天都在当天的初始水位捕捞草鱼,水库水位每天按自然放水0.5m 逐渐降低,20天后刚好达到最低要求水位5m 。
最优捕鱼策略_数学建模

精心整理西安邮电大学(理学院)数学建模报告摘要为了保护人类赖以生存的自然环境,可再生资源(如渔业、林业资源)的开发必须适度。
本文实际上就是为了解决渔业上最优捕鱼策略问题,即在可持续捕捞的前提下,追求捕捞量的最大化。
问题一采用条件极值列方程组的方法求解,即1龄鱼的数量由3龄鱼和4龄鱼的产卵孵化而来;2,3龄鱼的数量分别由上一年1龄鱼,2龄鱼生长而来;4龄鱼由上一年的3龄鱼和上一年末存活的4龄鱼组成。
最后得到:只要每年1-8月份3、4龄鱼捕捞总量小于、,就可以实现总捕捞量最大为;对结果分析得到捕捞的对象主要是3龄鱼,当3龄与4龄鱼的捕捞系数发生变化时,总的捕捞量变化不大。
???问题二给出年初各龄鱼的数量,要求在5年后鱼群的生产能力没有受到太大条),如果仍用固定努力量的捕捞方式,该公司采取怎样的策略才能使总收获量最高。
二、模型假设1、这种鱼分为四个年龄组:1龄鱼,2龄鱼,3龄鱼,4龄鱼;2、各年龄组每条鱼的平均重量分别为5.07克,11.55克,17.86克,22.99克;3、各年龄组鱼的自然死亡率均为0.8(1/年);m……i龄鱼每条鱼的平均重量in……9月底该种鱼总共产卵数量*n……卵孵化成幼鱼进入1龄鱼阶段的数量k……对i龄鱼活鱼的捕捞强度系数i四、问题分析针对问题一:如何在满足可持续捕捞的前提下,实现每一年捕鱼的最大量(重量),文中给出各龄鱼在年底转化的具体情况:1龄鱼数量由3龄鱼和4龄鱼的产卵孵化而来;2,3龄鱼的数量分别由上一年龄段的鱼经自然死亡以及捕捞生长而来;4龄鱼是由上一年段3龄鱼经自然死亡以及捕捞后生长的和原有的4龄鱼组成的,并且规定只在每年的前八个月出船捕捞。
那么根据以上信息我们可以建立动态整型规划模型,即以每年的前八个月作为动态规划中的8种状态,在满足文中的可持续捕捞的约束条件下,先确定这前八个月中,每个月的捕捞量,最后求得这八个月总捕捞量的最大值;当然我们还可以建立微分方程模型,把每一龄鱼的数量变化看成是随时间连续变化的,将每一龄鱼的初始数量减去第八个月末的数量⎪⎩⎪⎨≤≤-=---129,1,1,1,,j c x x i j i j i i i j i j i 这个等式说明了该模型中我们把每一个月看做一个时间单位,鱼的数量随时间的变化是离散的,当每个月月初各龄鱼的数量固定时,该月要捕捞的总的活鱼数量也就固定了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最优捕鱼模型
一.问题的重述
捕鱼业在当今社会中十分重要的行业,捕鱼量的大小决定着捕鱼的经济效益,其中捕鱼量与捕鱼时间有着密切关联. 所以如何利用数学模型了解捕鱼量与捕鱼时间之间的关系,是一个具有现实意义的问题.
现假设在一个鱼塘中投放若干鱼苗,鱼苗尾数随着时间的增长而减少,且相对减少率为常数;每尾鱼的重量随着时间增长而增加,且由于喂养引起的每尾鱼重量增加率与鱼的表面积成正比,由于消耗引起的减少率与其重量本身成正比. 分析如下问题:
问题一:建立尾数和时间的微分方程并求解;
问题二:建立每尾鱼重量和时间的微分方程并求解;
问题三:用控制网眼的方法不捕小鱼,从一定时刻开始捕捞,用尾数的相对减少率表示捕捞能力,分析开始捕鱼的最佳时刻,使得捕获量最大,并建立相关模型.
二.问题分析
1.针对问题一,根据相对减少率的数学定义,可以建立鱼尾数和时间的微分方程;
2.针对问题二,将鱼体假设为球体,得出鱼的表面积与它重量的关系,使得鱼的重量完全成为一个关于时间的函数,进一步建立出鱼重量与时间的微分方程;
3.针对问题三,将捕捞行为看作连续的过程,瞬时捕捞量与瞬时捕鱼尾数、每尾鱼瞬时重量呈正相关关系,瞬时捕鱼尾数与捕捞能力有关,每尾鱼瞬时重量可由对问题二的解答得出,总捕捞量即为瞬时捕捞量关于时间的积分.
三.基本假设
1.假设自然因素不会对鱼的尾数产生影响;
2.假设在整个捕捞过程中鱼没有繁衍行为;
3.假设每尾鱼都均衡生长;
4.假设在捕捞过程中鱼的条数连续;
5.假设鱼为球体.
五.模型建立与求解
模型一. 鱼苗尾数的相对减少率为常数r .
由相对减少率的定义得
()()()t t t t n n rn t +∆-=-∆ 即()()
()0
0lim lim t t t t t t n n rn t +∆∆→∆→-=-∆ 即()t
dn rn dt =- 解得0rt n n e -=
模型二. 假设鱼为球体,体积为V ,表面积为S ,半径为R ,重量为G ,初始重量为0G ,鱼的密度为ρ;且每尾鱼的重量随着时间增长而增加,其中由于喂养引起的每尾鱼重量增加率与鱼表面积成正比(比例系数为1k ),由于消耗引起的减少率与其重量本身成正比(比例系数为2k ). 由343
V R π=,2=4S R π,G V ρ=得
22
33S G ⎫=⎝⎭
令23
=b ρ⎛⎫ ⎝⎭
又由于12=-dG k S k G dt
,=0t ,0G G = 所以231-11322+k t k b k b G e k k ⎡⎤⎫=⎢⎥⎪⎭⎣⎦
模型三. 控制网眼不捕小鱼,鱼塘中瞬时鱼尾数用(t)n 表示,捕捞能力(E )可以用尾数的相对减少率1dn n dt
表示,从T 时刻开始捕捞,使得捕捞量W 能够最大.其中减少量包括自然减少量(即第一模型中的减少量)和捕捞量.
此时,-(t)0(t)=-at n n e En
-0-0(e )11=-=-=a e at at d n dn E n dt n dt
所以,--00(t)==1+(1+)at aT T T
an e an W En dt dt e a a a ∞∞
=⎰⎰ 则,在此模型下,捕捞时间越早,捕捞量越大.
模型四. 建立在模型三的基础上,捕捞量的大小不仅取决于鱼尾数(t)n ,还取决于鱼的重量G .
即(t)T
W En Gdt ∞=⎰
所以,23
1
--0113(t)22=+1+at k t T T an e k b k b W En Gdt e dt a k k ∞∞⎡⎤⎫=⎢⎥⎪⎭⎣⎦⎰⎰ 可根据此函数求得最大捕捞量所对应的时刻T .。