岩土工程中的动力荷载响应
地基动力特征参数的选用

地基动力特征参数的选用浙江国土工程勘察有限公司华维松浙江泛华工程有限公司勘察院汪永森一、概述动力机器基础设计与其它结构物基础设计有着明显不同,其主要区别在于动力机器基础上部作用有由机器传来的动力。
由于这种动力引起基础本身的振动,甚至影响到周围建筑物的振动。
国标《动力机器基础设计规范》(CTB50040-96)(以下简称《动规》)确定的机器基础设计要求是使基础由于动荷载而引起的振动幅值,不能超过某一限值。
这个限值的确定主要取决于:保证机器的正常运转以及由于基础振动所产生的振动波,通过土体的传播,对附近的人员、仪器设备及建筑物不产生有害的影响。
机器在运转过程中,必然会产生动力荷载,按其动力作用的时间形式不同,大致可以分为三类:一类是旋转式机器的动荷载;一类是往复式机器的动荷载;一类是瞬态脉冲动荷载(冲击荷载)。
动力机器基础设计的一般原则,除了要保证相邻基础不受其动力作用而产生过大的沉降(或不均匀沉降)外,还要求动力机器基础本身能满足下式要求:fP≤γf式中:P——基础底面地基的平均静压力设计值(KPa )——地基承载力的动力折减系数;γff——地基承载力设计值(KPa)动力基础设计时,应取得下列资料:1、机器的型号、转速、功率、规格及轮廓尺寸图等;2、机器自重及重心位置;3、机器底座外郭图、辅助设备、管道位置和坑、沟、孔洞尺寸及灌浆层厚度、地脚螺栓和预埋件的位置等;4、机器的扰力和扰力矩及其方向;5、基础的位置及其邻近建筑物的基础图;6、建筑场地的地质勘察资料及地基动力试验资料。
其中第6条就是地质勘察部门所要提供的资料。
动力机器基础勘察要求较高,除了需要提供一般建筑勘察所需的岩土试验成果外,还要提供地基动力特征参数,这些参数主要包括以下9项:①天然地基抗压刚度系数;②地基土动弹性模量;③地基土动剪变模量;④动泊松比;⑤天然地基地基土动沉陷影响系数⑥桩周土当量抗剪刚度系数;⑦桩尖土当量抗压刚度系数;⑧天然地基竖向阻尼比;⑨桩基竖向阻尼比。
岩土工程实践工作中土力学相关问题研究

岩土工程实践工作中土力学相关问题研究摘要:在社会经济发展速度不断加快的背景下,岩土工程建设规模日渐扩大,存在于岩土工程实践工作中的土力学问题更为突出。
为推动岩土工程有序开展,制定专项可行岩土工程实施方案,还需着重解决土力学各类问题。
针对此,本文提出现有岩土工程理论与方法,剖析岩土工程发展趋势,提出岩土工程实践期间的土力学问题。
关键词:岩土工程;土力学;问题前言:现阶段岩土工程面临的施工现场环境更为复杂,以岩土为基础建造的工程会受到岩土结构平衡度、稳定状态等因素影响。
因此为加强岩土工程实施管控效果,还需明确岩土工程设计施工期间应当重点关注的土力学问题。
结合工程具体施工要求,加强土力学方面管控力度。
着重构建起土力学模型,确保存在于岩土工程建设过程中的各类问题能够被及时发现与解决。
1.岩土工程理论与方法1.1不合格土力学理论在研究现代岩土工程变形、坍塌等安全事故过程中,应当重点关注工程实施期间存在的质量问题。
部分岩土工程所使用的经典力学理论与施工现场实际情况不符,仅关注了岩土受压减应力荷载,提出的设计方案多数围绕预测外部压减力以及孔隙缩减率、岩土结构强度、稳定性等内容开展,没有关注岩土工程实施过程中,由外部卸载而出现的土体张拉或者土体强度下降等问题。
在现阶段岩土工程设计环节应用压剪土力学基础,虽然能够使岩土工程设计方案中的安全性与现行规定基本相符,但后续运营时的滑塌问题发生几率无法得到严格管控。
举例而言,大型地震会引发滑坡及泥石流灾害。
由于坡体在雨水的强烈冲击下滑落,对周边建筑物会造成巨大损害。
在地下施工过程中,如果设计方案没有围绕地质条件进行优化处理,地上建筑物对地震等灾害的抵御能力将大幅度被削弱,容易出现较多质量问题。
1.2多场多相耦合理论原有岩土工程土地学主要研究对象为固体、气体、液体三方面之间的物质力学关系。
在岩土工程建设过程中,由于生化物质增加,还应当重点关注在土体介质活动的情况下,生化物质发生的变化。
岩土工程勘察考试复习重点全集(名词解释填空问答)

苦三1、岩土工程:以土力学、岩体力学及工程地质学为理论基础,运用各种勘察探测技术对岩土体进行综合整治、改造和利用而进行的系统性工作。
2、岩土工程问题:指的是工程建筑物与岩土体之间存在的矛盾或问题。
是岩土工程勘察的核心任务。
3、岩土工程勘察:根据建设工程的要求,查明、分析、评价建设场地的地质、环境特征和岩土工程条件,编制勘察文件的活动。
4、地质环境:指自然环境的一个重要组成部分,与人类生存和发展有紧密联系的岩石圈的一部分,这部分积极地与水、气和生物圈相互作用着。
上限为岩石圈表面,下限为人类技术。
地质环境是多因子系统:大气、水、生物、岩石。
5、工程地质条件:客观存在的地质环境中与工程建筑有关的地质要素之综合。
6、工程地质测绘:运用地质、工程地质理论和技术方法,对与工程建设有关的各种地质现象进行观察和描述,初步查明拟建场地或各建筑地段的工程地质条件,并绘制相应的工程地质图件。
7、工程地质测绘的精度:包含两层意思,即对野外各种地质现象观察描述的详细程度,以及各种地质现象在工程地质图上表示的详细程度和准确程度。
8、地形地貌条件:地形起伏和地貌单元(尤其是微地貌单元)的变化情况。
9、强烈发育:是指由于不良地质现象发育招致建筑场地极不稳定,直接威胁工程设施的安全。
10、强烈破坏:是指由于地质环境的破坏,已对工程安全构成直接威胁。
11、一般发育:是指虽有不良地质现象分布,但并不十分强烈,对工程设施安全的影响不严重;或者说对工程安全可能有潜在的威胁。
12、一般破坏:是指已有或将有地质环境的干扰破坏,但并不强烈,对工程安全的影响不严重。
13、岩心采取率:所取岩心的总长度与本回次进尺的百分比。
总长度包括比较完整的岩心和破碎的碎块、碎屑和碎粉物质。
14、岩心获得率:指比较完整的岩心长度与本回次进尺的百分比。
它不计入不成形的破碎物质。
15、岩石质量指标RQD:大于10cm的岩心总长度占钻探总进尺长度的比例。
16、钻探:利用专门的钻探机具钻入岩土层中,以揭露地下岩土体的岩性特征、空间分布与变化的一种勘探方法。
岩土工程地质勘察中的原位测试技术分析

岩土工程地质勘察中的原位测试技术分析摘要:传统岩土工程地质勘察工作中,一般采用现场取样然后送至试验室进行检验的方式,相比之下,原位测试方式更加便捷,可以在岩土原本的位置进行相应的检验工作,相应的检测效率更高,且能够有效避免环境因素对检测结果的影响。
当前,岩土工程地质勘察中原位测试技术水平不断提升,在相应的测试工作中的应用也更加广泛,有效促进了岩土工程事业的进一步发展。
本文对原位测试在岩土工程地质勘察中的应用进行了分析,以供参考。
关键词:岩土工程;地质勘察;原位测试技术1岩土工程地质勘察中原位测试技术应用的重要性原位测试技术是指在岩土工程领域中,通过对现场土体或岩体性质进行直接观测和测试的一种技术手段。
能够提供实际场地情况下的岩土参数和性质的数据,为工程设计和施工提供准确的基础数据和依据。
岩土工程地质勘察中,原位测试技术是一项非常重要的工作内容。
其应用的重要性主要体现在以下几个方面:(1)提供实地工程材料特性。
原位测试技术可以直接在现场对地层进行测试,获取实地土体和岩体的工程性质参数。
例如,通过钻孔轻型动力触探、静力触探等测试,可以获得土壤的质地、密实度、压缩模量、抗剪强度等信息,岩石的强度、岩性等信息。
这些参数对地质勘察、土石方工程设计、基础工程设计等具有重要指导意义。
(2)评估地下水情况。
原位测试技术可以评估地下水位和水文地质特征。
例如,通过水位测量、渗透性试验等原位测试技术,可以确定地下水位的高程、水位变化规律以及周边地下水的渗流特性,从而为排水设计、土石方工程设计等提供依据。
(3)判定地质灾害风险。
原位测试技术可以预测岩土工程中的地质灾害风险,如滑坡、地震液化等。
例如,通过钻孔回弹仪测试、地震剪切波传播速度测试等技术,可以估测土壤和岩石的抗震性能,为地震设计和地质灾害防治提供依据。
(4)监测工程变形和稳定性。
原位测试技术可以实时监测岩土工程的变形和稳定性。
例如,通过沉降仪、应变计等原位测试技术,可以实时、连续地监测土体和岩体的变形和变形速度,及时发现并采取相应措施,保证工程的稳定性和安全性。
动力荷载作用下土质边坡加速度响应规律分析

算分析 . 计算模型及单元 网格划分如 图 1 所示 表 1 土体 物理力学参数
馏 墨
地震波选用 19 9 5年 日本 kb oe地震水平 向加速度时程 曲 线 , 地震 震级为 7 2级 , 取其 中具 有代 表性 的 2 s 的地 该 . 截 5长 震波 , 加速度峰值为 0 8 m s, 间步 长为 0 0 s假定 该边 .3 / 时 .2. 坡所处地区地震基本烈度为Ⅷ度 , 计算 中输 入的地震 波峰值 加速度应为 2 / 因此 , m s, 应对 k b 按 比例进行 缩放 , P l oe l  ̄ 速 l l 度放大 24 倍 , 进行地震波基线校正 和滤波处 理 , 得地 .1 并 获 震波加速度 时程 曲线如 图 2所示. 为 了验证计算模型动力边界条件 的合理性 , 计算模 型在
坡 高增加 呈现“ 增加 一衰减 一增加 ” 三段 形态 , 衰减现 象主要 由于坡脚 潜在受拉 剪滑带的形成所致 ; 其 地震边坡 潜在滑移 面下 部 土体单元加速度响应 小, 而上部土体 单元加速度响应大.
关 键 词 : 质 边 坡 ; 力响 应 ; 速 度 土 动 加
中图分类号 :6 2 2 P 4 .
力学参数如表 1 所示 , 算时土体材料 采用理想弹 塑性本构 计 模型 , 屈服准则则 采用 Mor ol h —C u mb强 度准 则. 了避免 o 为 数值模拟动力计算过程 中模 型边界 波反射 问题 , 型底部采 模
用静态边界条件 , 四周则采 用 自由场边 界 , 阻尼 选用局 部 阻 尼, 阻尼系数取 0 17 先进行静 力平衡 计算 , .5 , 后进 行动 力计
第2 5卷
第 5期
长
沙
大
学
学
第六章 离散单元法20131017修正

中国地质大学(武汉)工程学院工岩系 2013年5月
1.离散单元法介绍
岩土工程数值计算总体上可以分为两大类:一类是 基于连续介质力学理论的方法,如有限元法(FEM)和快 速拉格朗日法 (FLAC(1tasea,2002))等;另一类是不连 续介质力学的方法,如离散元法 UDEC(1tasca,2000)、 3DEC(Itasea,1998)、PFC(Itasea,2002)和块体理论 DDA(石根华,1988)等。 所谓离散,并不是主观上要求把连续材料离散化, 成为散体集合体。而是在连续介质力学方法基础上, 引入接触(contact)的概念,把接触作为连续体(完 整岩块block)之间的边界,采用连续力学方法描述连 续体、采用非连续力学方法描述接触的力学行为。简 单的说,即是认为介质是由连续的块体和非连续的结 构面组成的集合体,它们各自服从不同的连续与不连 续力学理论,共同控制岩体的基本特性。
UDEC块体本构模型
模 型 代表性材料 空 洞 应用实例 钻 孔、开 挖、待回填的空区等 荷载低于极限强度的人造材料(即钢铁),安全 系数计算 开挖模型 弹性模型
均质、各向同性、连续、线性
D-P塑性模型 M-C塑性模型
低摩擦角软粘土,应用范围有限
与有限元程序比较的通用模型
松散和粘结颗粒材料,土、岩石和 一般土或岩石力学问题(即边坡稳定性和地下 混凝土 开挖)
4 . UDEC基本运动方程解法
UDEC solves the full dynamic equations of motion even for quasi-static problems. This has advantages for problems that involve physical instability, such as collapse. To model the “static” response of a system, a relaxation scheme is used in which damping absorbs kinetic energy. This approach can model collapse problems in a more realistic and efficient manner than other schemes, e.g., matrix-solution methods.
岩土工程中的弹塑性理论与分析技术

岩土工程中的弹塑性理论与分析技术岩土工程中的弹塑性理论与分析技术是研究岩土材料在受力作用下的弹性和塑性变形特性的理论和方法。
这些理论和技术在岩土工程设计、施工和监测中具有重要的应用价值。
本文将从弹塑性理论的基本概念、应用范围以及分析技术的具体方法等方面进行阐述。
弹塑性理论是研究岩土材料在受力作用下的弹性和塑性变形特性的理论。
弹性是指岩土材料在受力作用下能够恢复原状的能力,而塑性是指岩土材料在受力作用下会发生不可逆的变形。
弹塑性理论的基本假设是岩土材料在受力作用下是具有弹塑性的,并且可以通过一定的数学模型来描述其力学行为。
岩土工程中的弹塑性理论主要包括弹性理论、弹塑性理论和塑性理论。
弹性理论是最基本的弹塑性理论,它假设岩土材料在受力作用下只发生弹性变形,而不发生塑性变形。
弹塑性理论则是在弹性理论的基础上引入了塑性变形的概念,它假设岩土材料在受力作用下既可以发生弹性变形,也可以发生塑性变形。
塑性理论则是假设岩土材料在受力作用下只发生塑性变形,而不发生弹性变形。
在岩土工程中,弹塑性理论的应用范围非常广泛。
首先,弹塑性理论可以用于岩土工程设计中的荷载和变形计算。
通过建立合适的弹塑性模型,可以对岩土体在受力作用下的变形和破坏进行合理预测,从而指导工程设计和施工。
其次,弹塑性理论可以用于岩土体力学性质的试验研究。
通过对岩土体在不同应力状态下的弹塑性行为进行试验研究,可以获取岩土材料的力学参数,为岩土工程的设计和施工提供可靠的依据。
此外,弹塑性理论还可以用于岩土体的动力响应分析、岩土体的稳定性分析等方面。
在岩土工程中,弹塑性分析技术是基于弹塑性理论的具体计算方法。
弹塑性分析技术主要包括弹塑性有限元分析、弹塑性强度折减法、弹塑性反分析等方法。
弹塑性有限元分析是一种基于有限元法的弹塑性分析方法,通过建立合适的有限元模型和弹塑性本构关系,可以对岩土体在受力作用下的变形和破坏进行数值模拟。
弹塑性强度折减法是一种基于强度折减原理的弹塑性分析方法,通过将岩土体的强度参数按照一定的折减系数进行计算,可以对岩土体在受力作用下的变形和破坏进行估计。
abaqus在岩土工程中的应用 案例文件

abaqus在岩土工程中的应用案例文件abaqus是一款常用的有限元分析软件,广泛应用于岩土工程中。
下面列举了岩土工程中abaqus的应用案例,包括地基工程、边坡稳定性分析、挡土墙设计等方面。
1. 地基工程地基工程是岩土工程的核心内容之一,abaqus可以用于地基的承载力和沉降分析。
通过建立地基模型,考虑不同荷载情况下的土体性质,可以计算地基的承载力和变形情况,进而指导实际工程设计。
例如,可以通过abaqus模拟地基基坑开挖对周围土体的影响,预测地基下沉的情况,为地下结构的设计提供依据。
2. 边坡稳定性分析边坡稳定性是岩土工程中的重要问题,abaqus可以用于边坡的稳定性分析。
通过建立边坡模型,考虑不同荷载、土体参数和边坡几何形状等因素,可以计算边坡的稳定性指标(如安全系数)和发生滑移的位置。
例如,可以通过abaqus模拟陡坡下雨后的渗流和剪切破坏,评估边坡稳定性,并提出相应的加固措施。
3. 挡土墙设计挡土墙是岩土工程中常见的结构,abaqus可以用于挡土墙的设计和分析。
通过建立挡土墙模型,考虑土体参数、结构形式和荷载情况等因素,可以计算挡土墙的稳定性和变形情况,指导挡土墙结构的设计。
例如,可以通过abaqus模拟挡土墙的荷载响应和土体变形,评估挡土墙的稳定性,并确定合适的尺寸和材料。
4. 地铁隧道分析地铁隧道是岩土工程中的典型工程,abaqus可以用于地铁隧道的分析。
通过建立隧道模型,考虑地下水、土体参数和开挖方式等因素,可以计算隧道的稳定性和变形情况,指导隧道的设计和施工。
例如,可以通过abaqus模拟隧道开挖对周围土体的影响,评估隧道的稳定性和地表沉降情况,并提出相应的支护措施。
5. 岩石力学分析岩石力学是岩土工程中的重要分支,abaqus可以用于岩石的力学分析。
通过建立岩石模型,考虑岩石的本构关系和荷载情况,可以计算岩石的应力分布、变形情况和破坏机制,指导岩石工程的设计和施工。
例如,可以通过abaqus模拟岩石的加载过程和破坏模式,评估岩石的强度和变形特性,为岩石工程提供依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
岩土工程中的动力荷载响应
岩土工程是一门研究土体和岩石在工程结构作用下的行为特性的学科。
在岩土工程中,动力荷载响应是一项重要的研究内容,它直接关
系到工程结构的稳定性和安全性。
本文将从动力荷载的概念及分类、
岩土动力响应机理、动力荷载分析方法以及岩土工程中的动力荷载设
计等方面进行探讨。
1. 动力荷载的概念及分类
动力荷载是指土体或岩石受到来自工程结构或外界作用的振动载荷。
按照产生动力荷载的原因,可以将其分为内源动力荷载和外源动力荷载。
内源动力荷载是由工程结构本身所产生的振动载荷,如机械设备
振动、地铁列车行驶等。
外源动力荷载是由外界环境引起的振动载荷,如地震、强风、交通震动等。
2. 岩土动力响应机理
岩土体在受到动力荷载作用下,会发生一系列的变形和应力响应。
主要有振动传递、应力传递和动力特性三个方面。
振动传递是指动力
荷载在岩土体内传递的过程,具体包括波阻抗匹配、波反射和传播等。
应力传递是指动力荷载对岩土体产生的应力响应,包括孔隙水压力变化、应力增幅等。
动力特性是指岩土动力响应的特征,如振动频率、
振动幅值等。
3. 动力荷载分析方法
岩土工程中常用的动力荷载分析方法包括频域分析和时域分析。
频域分析是将动力荷载和岩土响应转换到频率域中进行研究,主要应用于振动台试验等实验研究。
时域分析是将动力荷载和岩土响应直接转换到时间域中进行分析,主要应用于实际工程设计中。
时域分析方法包括有限元方法、边界元方法、模型试验等。
4. 岩土工程中的动力荷载设计
在岩土工程设计中,动力荷载设计是确保工程结构满足安全性和稳定性要求的重要一环。
根据不同的设计要求和工程类型,动力荷载设计可以采用不同的方法和标准。
在地震工程中,可以采用地震动力学方法进行设计,包括初始地震动、地震时程分析等。
对于其他动力荷载,如交通震动、机械振动等,可以参考相关规范和标准进行设计。
总结:
岩土工程中的动力荷载响应是一门复杂的学科,研究内容涉及动力荷载的概念及分类、岩土动力响应机理、动力荷载分析方法以及岩土工程中的动力荷载设计等方面。
正确理解和分析动力荷载对岩土体的响应有助于确保工程结构的安全和稳定。
在实际工程设计中,应根据不同的设计要求和工程类型选择合适的分析方法和标准,进行科学有效的动力荷载设计。