问题是数学的灵魂

问题是数学的灵魂
问题是数学的灵魂

问题是数学的灵魂,没有问题就不会有较高质量的思维。问题意识是思维的动力,是创新精神的基石;是学生探求问题并解决问题的保证。培养学生的问题意识是培养学生探索创新精神的起点,在数学教学中注重培养学生的问题意识,养成良好的学习习惯,使学生敢问、想问、会问、善问,是我们数学教学成功的关键。

问题意识是指在人们的认识活动中,经常遇到一些难以解决的实际问题和理论问题,并由此产生一种怀疑、困惑的心理状态,这种心理状态促使人们积极思维、认真探索、不断地提出问题和解决问题。对于思维的这种心理品质,心理学上称为“问题意识”。在哈佛大学师生中流传着一句名言:教育的真正目的就是让人不断提出问题、思考问题。在小学数学教学中,要引导学生自主探究学习,必须培养学生的问题意识,因为问题是数学的心脏,是数学的灵魂。有了问题,思维才有方向;有了问题,思维才有动力;有了问题,才会有主动探究学习的愿望;有了问题,才会有创新。人的思维开始于问题,学生的思维也是伴随着层出不穷的问题而展开的。教学的最终目标就是教会学生学习,即“授之以渔”;教会学生自己提出问题、解决问题。因此,将问题贯串数学教育过程,让问题成为知识的纽带,培养学生的问题意识和问题能力,是我们数学教学成功的关键,是现代教育追求的理想。在教学中我是这样培养学生的问题意识。

营造民主氛围——敢问

小学生思想活跃、求知欲旺盛,对事物有着强烈的好奇心,这就是问题意识的种子。然而,这颗种子能否萌芽,取决于是否有一个适宜的环境和氛围。在现实课堂教学中,许多学生还存在无疑可问,即使有疑也不敢问,或者更本就没有机会问。造成这种现象的原因,很大程度上是教师没有真正转变教育观念,对问题的培养意识重视不够。要培养学生的问题意识,首先转变自己的教育教学观念,我认为作为一个小学教师除了应具有和蔼可亲的态度,大方的仪表,清晰而富有激情的言语等,还必须树立新的教师观,尊重每一个学生,倡导“思维无禁区”。同时还应该具有一份童真、童趣,从内心到外表与学生融为一体,神形合一,这样才能把握学生的心理。在教学中营造积极、宽松、自由、和谐的教学氛围,建立平等、民主的师生关系,消除学生的畏惧心理,鼓动学生大胆质疑、提问,鼓励学生求新求异,正确对待学生的提问,不讥讽、不嘲弄,挖掘其可贵之处。如:有学生提问时,立刻为他大声喝彩:“问得好!”或者说:“我怎么没想到这一点?”当学生自己发现问题、提出问题后。要笑容满面的向全体学生说:“这么好的问题,哪位同学有自己独特的想法?”同学们自然会争先恐后的发表意见。当学生充分发表了看法后,教师再作适当的评价。但要注意由于每个学生的认知特点,思想观念,生活经历和个体特征,不要因为他们不符合自己预设的答案或自己思考问题的方式,就轻易否定。一定要宽容学生的幼稚及胡思乱想,“海阔纵鱼跃,天空任鸟飞”,让学生在课堂上能够“自由地呼吸”,敢想、敢说、敢做,充分发表自己的见解。

对于这种敢问问题的精神要小心翼翼的加以保护。只有这样,才能为问题意识这颗种子的生长提供充足的阳光、水分、适宜的土壤,利于其生根、发芽、开花。

创设问题情景——想问

《新课标》指出:数学教学应该是从学生的生活经验和已有知识背景出发,向他们提供充分的从事数学活动和交流的机会。学生问题意识的培养依赖于教师的教学设计。因此,教师要善于联系学生的生活实际,找准学生的“最近发展区”。通过多种手段呈现问题情境,制造学生的认知冲突,诱发学生的问题意识,使学生确实感到有问题要问。

找准“最近发展区”

早在20世纪二、三十年代,前苏联著名的心理学家维果茨基就提出了“最近发展区”理论,他认为,只有当教学走在发展的前面,这才是好的教学,教育应当以儿童发展的明天作为方向。根据他的理论,我们在数学教学中,设置的问题应该尽量与学生的“最近发展区”相适应。准确定位于学生的“最近发展区”,并努力促使学生从“实际发展水平”向“潜在发展水平”不断转化,才能真正使教育走在发展的前面,做到发展有度,发展适度,也才能真正体现教育的价值——促进学生全面、持续、和谐地发展。

生活化导入

数学内容虽然是抽象的,然而大部分可以在生活中找到适合小学生接受的原型。生活是学习的大课堂,是探索问题的广阔空间。将问题创设在学生熟悉的现实情境中,特别是学生亲身经历的比较关注的生活原形中,能够极大的激发学生的探究欲望,提高他们的积极性和主动性。如:在教学《认识厘米,用厘米量》时,我就给学生创设了我们班开学布置教室展示台的情景,让同学们自己设计。看有什么困难。他们就用手比要多长的花边,要多大的装饰纸……可没办法用语言来表达。于是我就导入课题。这种生活化的导入,有利于调节学生的心理状态,让学生产生好奇心,跃跃欲试,急于探索;使学生体会到数学的价值与魅力。数学是生活的一部分,数学充满趣味,留给学生广阔的思维空间——问题自己提,规律自己找,结论自己总结。

制造认知冲突

学生学习数学的过程就是不断发现矛盾和解决矛盾的过程。一是利用数学知识发展过程中的矛盾导入,同样能满足儿童希望自己是研究者,探索者的学习本能。如:在教学《乘法的初步认识》时,我利用教材中主题图“游乐场”创设了很多相同加数求和的情景,使学生感受乘法的意义,同时也让学生感受到那么多相同加数连加很麻烦,也容易出错。这样制造了学生的认知冲突。激发他们想探索一种更为简便的方法来解决这个问题,从而培养学生的问题意识。二是老师用恰当的导语同样能培养学生的问题意识,制造学

生的认知冲突,为学生自主学习创造空间。如:你已经知道了关于今天话题的那些知识?你联想到什么?你还想知道些什么?这样的课堂用语,能激发学生的探究欲望,还有利于学生发散思维的发展。

鼓励质疑问难——会问

质疑问难是培养创新精神的一把金钥匙,是激发学生探索知识的兴趣和热情,是释放每一位学生的潜能和才干的好办法。因此教师要为学生创设良好的质疑问难的氛围,让学生警觉问题时时处处都存在,提倡鼓励学生质疑问难,使学生由不敢质疑到敢于质疑,通过引导使学生逐步做到会问。从而培养学生的问题意识。在教学中,敏锐地建立一些疑点,大胆放手,让学生积极思考,自主探索。真正成为知识的发现者、研究者和探索者。例如:我在教学义务教育课程标准实验教课书数学二年级上册《估算》时,我出示的探究例子中,故意没出现个位数字是5的数,当学生通过探究,知道了接近整十数的数就估成整十数计算。我故意问:“你们还有什么问题要问吗?”于是就有一个学生提出:如果这个数是45是估成40呢?还是50?我大声说:“这个问题问得好啊!怎么老师没想的呀!”同学们开始有点困惑了。但看得出,个个都在动脑筋。一个怀疑的学生说:“我想是看成40算!”又有一个学生充满信心地站起来说:“我认为可以当40,也可以当50。”还有一个学生说:“我觉得看50比较合理。因为我们买东西时经常就是那样算的。”这时有更多的学生就小声议论了。我妈妈说过的,我哪次买东西……后来又有一位学生说:“我妈妈教过我要看成50算!因为要4舍5入!”最后我说:同学们说得对,按照人们的习惯是“四舍五入”,一般就看成50来计算。学生们自己提出问题,通过学生自己质疑,互相启发与争辩,最后成功释疑,这样既使学生对问题有了清晰的认识,又保护了学生的积极性。增强了学生的问题意识。

适时评价------善问

要使学生逐步提高提问的质量,善于提出问题。教师还要注意适时总结,引导学生评价。正确的评价,有助于学生获得最充分的,最合理的教育和发展,使每个学生都能主动地,积极地表现自己,使他们各自的潜能得到相应的发挥。由于学生的个别差异性,有的学生比较善于提问,有的却会提一些没有意义的问题。首先,教师要对学生的提问表现出极大热情,不能置之不理或做简单的结论性回答。要帮助学生建立起自信心,渗透给学生问就比不问强,要经常表扬敢于提问的学生。提供机会让不同的学生都有机会得到展示,在原有基础上有不同程度的发展,让学生意识到自己质疑水平的提高。其次,让学生评价,如学生在评价时可根据前面同学不同的说法作不同的评价:前面同学说得好,学生就说:“我非常赞成(欣赏)他的想法!”说得不完整的,学生会说:“我可以给他补充吗?”或者说:“我给他提个建议!……”如果前面学生说错了,就说:“我对他的说法有意见……"这样学生在评价其他同学时,也学会善于发现问

题,并提出问题。最后,还要建立学生提问记录册,在学生小组中进行评价,组长专门有一项是记录组员的提问情况,每个学生记录自己提问的问题与次数,与学期总结评价挂钩。

学生带着问题——走出课堂。

长期以来,人们倡导“堂堂清”、“把问题解决在课堂上”等理念,期望将复杂的数学问题简单化,事实上这是人为将学习过程支解成一个个机械的学习环节,并未把学习看作一个系统连续的过程。这种观念一定要改变,数学课堂教学应该是既要切断“尾巴”——不能课内损失课外补,又要留有“尾巴”——让学生携问号离开数学课堂。如:我在教学《直角的初步认识》后,有学生提出:比直角小的角叫什么角?比直角大的叫什么角?还有两个边平了,还是角吗?由于下课铃已经响了。我就说:“同学们,关于角的知识还有很多很多,下课后我们再继续研究,好吗?”我就让学生带着这些问题走出了课堂。学生带着问题走出课堂,可以让学生将课内的兴趣延伸到课外,探索更多的未知的问题,从而产生自主学习的需要,真正达到“教是为了不教”的境界。

总之,“学问学问,要学就要问。”“学起于思,思起于疑。”陶行知也言:“发明千千,起点一问。”培养学生的问题意识由为重要,并非一朝一夕的功夫,就让我们从每一个四十分钟做起吧!只有这样,才能有效地培养学生问题意识,为学生主动创新打下坚实的基础。

《小学数学与数学思想方法》读后感

《小学数学与数学思想方法》读后感 读完《小学数学与数学思想方法》这本书,对数学思想方法有了更系统和更全面的认识。知道了什么是数学思想,什么是数学方法,知道了数学思想与数学方法的内在联系与区别。知道数学思想是数学方法进一步提炼和概括,数学思想的抽象概括程度要高一些,而数学方法的操作性更强一些。人们实现数学思想往往要靠一定的数学方法,而人们选择的数学方法,又要以一定的数学思想为依据。由此可见,数学思想方法是数学的灵魂,那么,要想学好数学,用好数学,就要深入到数学的“灵魂深处”。 数学思想方法如此严重,从这本书中还知道了教师如何进行数学思想方法的教学: 重视思想方法目标的落实。 教师在备课撰写教学设计时,把数学思想方法作为与知识技能同等地位的目标呈现出来。而不是可有可无或者总是进行渗透,并利用动词进行描述和评价,使数学思想方法的教学目标落到实处。 2.在知识形成过程中体现数学思想方法。 现在的数学课堂教学中,很多教师精讲多练,急于把概念、公式、法则等知识传授给学生,然后按照考试的要 求进行训练,轻视了知识的形成过程。这样,既浪费了时间,又没有真正培养学生的思维能力、思想方法和学习兴趣,导致很多学生害怕数学。我曾经在讲《除法的初步认识—平均分》时,通过让学生动手操作引导他们经历知识的形成过程。读过这本书才知道自己忽略了数学思想方法的渗透,在这个教学过程中,教师可以引导学生感受从直观操作的详尽情境中抽象出除法概念的抽象思想,认识用除法符号表达的具有简洁性的符号化思想,体会用实物、图形帮助理解除法的具有直观性的数形结合思想,知道除法是一种严重的模型思想,体会在除法中商随着被除数、除数的变化而变化的函数思想。

数学猜想在数学教学中的作用

浅谈中学教学中的数学猜想 摘要:通过史实的种种证明,猜想在整个数学教学过程中都起到非常重要的作用。本文从“数学猜想”的定义入手,到它的方法意义,然后到它在中学教学的指导作用,最后,深入分析它的四种分类。重在讨论如何运用数学猜想解决数学问题。 关键词:猜想,创新,中学教学,推理 一、数学猜想的定义及其特征 数学猜想是根据已经存在的数学知识和数学事实,对未知量及其关系作出的似真判断,具有科学假说性。任何数学定理或结论的形成都人模糊到确立,也就是从猜想(假说)到结论。科学家牛顿曾说:“没有大胆的猜想就做不出伟大的发现。”数学教育家波利亚也认为一个好的数学家,首先必须是一个好的猜想家,并提出:“在数学教学中必须有猜想的地位。” 数学猜想既有逻辑的成份又含有非逻辑的成份,因此,它具有科学性的同时也有很大程度的假定性,我们需要推理和论证才能最好终确立这样的猜想是否正确,而这样的推理和论证过程刚是一种创造性的思维活动,是科学发现的一种重要手段。 数学猜想具有科学性,假定性和创新性三个基本特征。 (1)、科学性数学猜想并不是凭空想像,而是以数学经验事实为基础,对未知量和相互关系作出的推测和判断。因此,数学猜想具有一定的科学性。 (2)、假定性任何猜想都需要以真实依据为先导,合情推理为手段进行论证或推翻,只要这个猜想还没被证实,那么它就是假定的,似真的。 其实,数学猜想就是科学性和假定性的统一体。 (3)、创新性创新是数学猜想的灵魂,没有创新就无所谓数学猜想。有了猜想就要去推出它,证明你的猜想是个事实,而这个证明或推理的过程就是一个思维碰撞的过程,通过这样的过程,产生了新的见解,事实或规律等。所以每个数学猜想的论证都有创新性。

初二数学好题难题集锦含答案

八年级下册数学难题精选 分式: 一:如果abc=1,求证 11++a ab +11++b bc +11 ++c ac =1 二:已知a 1+b 1=)(29b a +,则a b +b a 等于多少? 三:一个圆柱形容器的容积为V 立方米,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水。向容器中注满水的全过程共用时间t 分。求两根水管各自注水的速度。

四:联系实际编拟一道关于分式方程228 8 +=x x 的应用题。要求表述完整,条件充分并写出解答过程。 五:已知M =222y x xy -、N =2 22 2y x y x -+,用“+”或“-”连结M 、N,有三种不同的形 式,M+N 、M-N 、N-M ,请你任取其中一种进行计算,并简求值,其中x :y=5:2。 反比例函数: 一:一张边长为16cm 正方形的纸片,剪去两个面积一定且一样的小矩形得到一个“E ”图案如图1所示.小矩形的长x (cm )与宽y (cm )之间的函数关系如图2所示: (1)求y 与x 之间的函数关系式; (2)“E ”图案的面积是多少? (3)如果小矩形的长是6≤x ≤12cm ,求小矩形宽的范围.

二:是一个反比例函数图象的一部分,点(110) A,,(101) B,是它的两个端点.(1)求此函数的解析式,并写出自变量x的取值范围; (2)请你举出一个能用本题的函数关系描述的生活实例. 三:如图,⊙A和⊙B都与x轴和y轴相切,圆心A和圆心B都在反比例函数1 y x 的图象上,则图中阴影部分的面积等于 . 四:如图11,已知正比例函数和反比例函数的图像都经过点M(-2,1 -),且 P(1 -,-2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴, QB垂直于y轴,垂足分别是A、B. (1)写出正比例函数和反比例函数的关系式; (2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ 与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由; (3)如图12,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的 OPCQ周长的最小值.

数学史上著名猜想

数学史上的三个著名猜想 湖北舒云水 在问题探索中,为了寻求一般规律,往往先考察一些特例,通过对这些特例的不完全归纳形成猜想,然后再试图去证明或否定这种猜想,这是发现数学规律的一种重要手段﹒我们要学会归纳猜想,去发现一些新的数学结论﹒下面介绍数学史上三个有代表性的著名猜想. 1.费马素数猜想——一个错误的猜想 一种有趣且有很长历史的数叫费马素数,这些数是由法国数学家费马引进的. 费马在研究数列F n =2n2+1(n=0,1,2,…)前五项: F 0=3,F 1 =5,F 2 =17,F 3 =257,F 4 =65537. 发现它们都是素数,他没有做进一步的计算,就猜想:形如F n =2n2+1(n=0,1,2,…) 的整数都是素数,这就是费马素数猜想﹒瑞士数学家欧拉再往前走了一步,这个猜想就推 翻了,他证明了F 5 不是素数: F 5 =4294967297=641×6700417. 否定一个猜想,只需举一个反例即可. 费马是一个著名的数学家,但他的职业是一个法官,数学只是他的业余爱好,凭兴趣研究数学,取得了丰硕的成果. 2.费马大定理——一个已经被证明的著名猜想 我们知道方程x2+y2=z2有无数多个正整数解,如: 32+42=52,52+122=132,…… 费马作了进一步的探索:x3+y3=z3,x4+y4=z4,…有没有正整数解呢﹖他没能找出满足条件的正整数解,于是作出了一个重要猜想: 方程x n+y n=z n(n>2,n∈N)没有正整数解﹒ 自费马之后许多数学家花费巨大的劳动去解决这一问题,经过350多年的努力,到1995年这个问题终于由英国数学家维尔斯解决﹒维尔斯在继承前人成果的基础上,整整花了七年时间刻苦攻关,证明费马的猜想是成立的,一个猜想被证明是成立后,就成为一个定理,这就是著名的费马大定理﹒维尔斯因证明费马大定理,1996年荣获国际数学大奖——沃尔夫奖﹒ 3.哥德巴赫猜想——一个未被否定或证明的猜想 17世纪,德国数学家哥德巴赫发现每一个大偶数都可以写成两个素数的和﹒例如:6=3+3,8=3+5,10=3+7=5+5,12=5+7,14=3+11=7+7,…… 他对许多偶数进行了检验,都说明这是确定的﹒但是,这需要给予证明,他算来算去,没有办法证出来﹒于是,他写信向著名的大数学家欧拉求教,欧拉到死也没有证明它﹒因为哥德巴赫的发现尚未经过证明,所以只能称之为猜想,200多年来,世界上成千上万的数学

数学史上的著名猜想之被否定的数学猜想

数学史上的著名猜想之被否定的数学猜想 过伯祥 数学史上,长时期未能解决的数学猜想特别多!并且很多都是世界级的难题,其中数论方面的问题又占多数.它们表面上是那么的浅显,好像不难解决似的,其实,若无深厚的数学功底,即使想接近它也十分困难。本章特作较多的介绍,使数学爱好者有一个初步了解.如果你有志要攻克这些猜想,就必须作好长期艰苦跋涉的思想准备. 1.被否定的数学猜想 (1)试证第五公设的漫长历程 几何是从制造器皿、测量容器、丈量土地等实际问题中产生和发展起来的. 几何学的发展历程中,有两个重大的历史性转折.其一是,大约从公元前7世纪到公元前3世纪,希腊数学从素材到框架,已经为几何学的理论大厦的建造准备了足够的条件.欧几里得在前人毕达哥拉斯、希波克拉底和欧多克斯等人的工作基础上,一举完成了统治几何学近2000年的极其伟大的经典著作《几何原本》.它使几何学发展成为一门独立的理论学科,是几何学史上的一个里程碑. 其二,也正是由于《几何原本》的问世,才带来了一个使无数人困惑和兴奋的著名问题--欧几里得第五公设问题. 在《几何原本》的第一卷中,规定了五条公设和五条公理.著名的欧几里得第五公设:“若两条直线被第三条直线所截,如有两个同侧内角之和小于两直角,则将这两直线向该侧适当延长后必定相交.”就是这五条公设中的最后一条.由于它在《几何原本》中引用得很少(直到证明关键性的第29个定理时才用到它);而且,它的辞句冗长,远不如前四条公设那样简单明了.于是给后人的印象是:似乎欧几里得本人也想尽量避免应用第五公设. 于是,一代又一代的数学家猜测:大概不用花费很多力气就能证明欧几里得第五公设.就这样,数学家们开始了试证第五公设的历程. 这是个始料未及的漫长历程!真正是前赴后继,几乎每个时代的大数学家都做过这一件工作. 然而,满以为非常简单,只不过是举手之劳的一件事,谁料历时两千年仍未解决. 第五公设问题几乎成了“几何原理中的家丑”(达朗贝尔).

最新初中数学猜想规律题

专题:猜想、探索规律型 一、选择题 1.(2009年四川省内江市)如图,小陈从O 点出发,前进5米后向右转20O , 再前进5米后又向右转20O ,……,这样一直走下去, 他第一次回到出发点O 时一共走了( ) A .60米 B .100米 C .90米 D .120米 2.(2009年贵州黔东南州)某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验;第1组取3粒,第2组取5粒,第3组取7粒……即每组所取种子数目比该组前一组增加2粒,按此规律,那么请你推测第n 组应该有种子数( )粒。A 、12+n B 、12-n C 、n 2 D 、2+n 3.(2009年江苏省)下面是按一定规律排列的一列数: 第1个数:11122-?? -+ ??? ; 第2个数: 23 11(1)(1)1113234????---??-+++ ??? ??????? ; 第3个数:234511(1)(1)(1)(1)11111423456???????? -----??-++ +++ ??????? ??????????? ; …… 第n 个数:232111(1)(1)(1)111112342n n n -???? ?? ----??-++++ ??? ? ?+?????? ?? . 那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是( ) A .第10个数 B .第11个数 C .第12个数 D .第13个数 4.(2009年孝感)对于每个非零自然数n ,抛物线2 211(1) (1) n n n n n y x x +++=-+ 与x 轴交于A n 、B n 两点,以n n A B 表示这两点间的距离,则112220092009A B A B A B ++ +的值是 A . 20092008 B . 20082009 C . 20102009 D . 20092010 5.(2009年重庆)观察下列图形,则第n 个图形中三角形的个数是( ) A .22n + B .44n + C .44n - D .4n 6.(2009年河北)古希腊著名的毕达哥拉斯学派把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正方形数”. 从图7中可以发现,任何一个大于1 ) A .13 = 3+10 B .25 = 9+16 C .36 = 15+21 D .49 = 18+31 二、填空题 1.(2009年四川省内江市)把一张纸片剪成4块,再从所得的纸片中任取若干块,每块又剪成4块,像这样依次地进行下去,到剪完某一次为止。那么2007,2008,2009,2010这四个数中______________可能是剪出的纸片数 2.(2009仙桃)如图所示,直线y =x +1与y 轴相交于点A 1,以OA 1为边作正方形OA 1B 1C 1,记作第一个正方形;然后延长C 1B 1与直线y =x +1相交于点A 2,再以C 1A 2为边作正方形C 1A 2B 2C 2,记作第二个正方形;同样延长C 2B 2与直线y =x +1相交于点A 3,再以C 2A 3为边作正方形C 2A 3B 3C 3,记作第三个正方形;…依此类推,则第n 个正方形的边长为________________. 3.(2009年泸州)如图1,已知Rt △ABC 中,AC=3,BC= 4,过直角顶点C 作CA 1⊥A B ,垂足为A 1,再过A 1作A 1C 1⊥BC ,垂足为C 1,过C 1作C 1A 2⊥AB ,垂足为A 2,再过A 2作A 2C 2⊥BC ,垂足为C 2,…,这样一直做下去,得到了一组线段CA 1,A 1C 1,12C A ,…,则CA 1= , =5 55 4C A A C …… 第1个 第2个 第3个 4=1+3 9=3+6 16=6+10 图7 … O 20o 20o

盘点数学史上24道智力经典名题

盘点数学史上24道智力经典名题同学们,你们知道数学史上有哪些经典名题吗?查字典数学网为大家推荐的数学史上24道智力经典名题,小朋友们不妨开动脑筋,动手做一做吧! 1.遗嘱传说,有一个古罗马人临死时,给怀孕的妻子写了一份遗嘱:生下来的如果是儿子,就把遗产的2/3给儿子,母亲拿1/3;生下来的如果是女儿,就把遗产的1/3给女儿,母亲拿2/3。结果这位妻子生了一男一女,怎样分配,才能接近遗嘱的要求呢? 2.公主出题古时候,传说捷克的公主柳布莎出过这样一道有趣的题:“一只篮子中有若干李子,取它的一半又一个给第一个人,再取其余一半又一个给第二人,又取最后所余的一半又三个给第三个人,那么篮内的李子就没有剩余,篮中原有李子多少个?” 3.王子的数学题传说从前有一位王子,有一天,他把几位妹妹召集起来,出了一道数学题考她们。题目是:我有金、银两个手饰箱,箱内分别装自若干件手饰,如果把金箱中25%的手饰送给第一个算对这个题目的人,把银箱中20%的手饰送给第二个算对这个题目的人。然后我再从金箱中拿出5件送给第三个算对这个题目的人,再从银箱中拿出4件送给第四个算对这个题目的人,最后我金箱中剩下的比分掉的多10件手饰,银箱中剩下的与分掉的比是2∶1,请问谁能算出我

的金箱、银箱中原来各有多少件手饰? 4.国王的重赏传说,印度的舍罕国王打算重赏国际象棋的发明人——大臣西萨班达依尔。这位聪明的大臣跪在国王面敢说:“陛下,请你在这张棋盘的第一个小格内,赏给我一粒麦子,在第二个小格内给两粒,在第三个小格内给四粒,照这样下去,每一小格内都比前一小格加一倍。陛下啊,把这样摆满棋盘上所有64格的麦粒,都赏给您的仆人吧?”国王说:“你的要求不高,会如愿以偿的”。说着,他下令把一袋麦子拿到宝座前,计算麦粒的工作开始了。……还没到第二十小格,袋子已经空了,一袋又一袋的麦子被扛到国王面前来。但是,麦粒数一格接一格地增长得那样迅速,很快看出,即使拿出来全印度的粮食,国王也兑现不了他对象棋发明人许下的语言。算算看,国王应给象棋发明人多少粒麦子? 5.哥德巴赫猜想哥德巴赫是二百多年前德国的数学家。他发现:每一个大于或等于6的偶数,都可以写成两个素数的和(简称“1+1”)。如:10=3+7,16=5+11等等。他检验了很多偶数,都表明这个结论是正确的。但他无法从理论上证明这个结论是对的。1748年他写信给当时很有名望的大数学家欧拉,请他指导,欧拉回信说,他相信这个结论是正确的,但也无法证明。因为没有从理论上得到证明只是一种猜想,所以就把哥德巴赫提出的这个问题称为哥德巴赫猜想。世界上许多数学家为证明这个猜想作了很大努力,他们由

数学猜想一览表

数学猜想一览表 数学猜想一览表 提出状况研究进展备 注名称内容意义国姓名时间方法国别姓名时间途径结果别 德国高斯 19否定公元使几何学发欧氏第五公直观俄国罗巴切夫世纪反证欧氏第五公设可证前三生了一次革设猜想推断斯基 20法创立非欧世纪命匈牙利亚?鲍耶年代几何理论 当n为大于2的正数试证中创立 费尔马大定法费尔不完全安德鲁了:理想数时,方程 1637 英国 1994 转化 肯定理国马归纳法 (维尔斯论:等新分没有正整数解支 未定 发现27个 这样的素 当p为素数时,形如数. 1979 pM(p)=2-1 默森不完全年,电子计默森尼猜想 1644 1979 的数中有无限多个尼归纳法算机算出 素数 是素数,有 一万三千多 位 当n为自然数时,形

如法费尔不完全举反费尔马猜想 1664 欧拉 1732 否定国马归纳法例 的数 均为素数 证 明 偶 数 = 每个大于4的整数未定 (哥德巴赫猜德歌德巴不完全逐次均可表示为两个素1742 中国陈景润 1973 证明偶数 1+想国赫归纳法趋近数之和 =(1+2) 1) 为 最 后 解 决 此任一正整数必为4个证明一般猜平方数,9个立方数,1934年,苏1909 形式的,想19个四次方数之和。希尔伯特,联维诺格拉即括号内发(对任意给定的正朵夫创造了华林猜想华林 1770 德国的。表整数n,是否存在一使给出数r 于个=(n),使得对哈代 r rG(n)估值急1919 =r(n) 的《任意正整数N,不定速下降法渐近公式代方程数 沉恒思 录有解,x?0为整i》数。)

半偶数的方阵是不瑞不完全玻色史里举反欧拉方阵猜想欧拉 1782 印度 1959 否定存在的士归纳法克汗德例 提出瑞欧拉猜想欧拉类比瑞士欧拉十年肯定士后 未定 已发现最 大孪生素 孪生素数猜孪生素数(p,p+2)变换条数 12想有无穷多件法 (10+964 9, 1210+9651 ) 三生素数猜变换条三生素数有无穷多想件法 逐级猜n生素数猜想 n生素数有无穷多想 仅当D=1,2,3,7, 11,19,43,67和163 时“唯一分解”猜德德国采格尔 (a,b与D为高斯 1797 1983 肯定想国 美国格罗斯整数,D>0)可唯一 分解为一些素数的 乘积 复杂 阿达马普函数高斯一比x小的素数个数逼高斯 1896 肯定德辛论获得重要的勒让德近于x/logx, 即π勒让1800 观察法国国塞尔贝尔素数定理猜想(x)?x/logx 德 1949 肯定爱多士初等 方法 高斯引进了一类数

小学数学常见数学思想方法归纳与整理

小学数学常见数学思想方法归纳与整理 1、对应思想方法 对应是人们对两个集合元素之间的联系的一种思想方法。小学数学一般是一一对应的直观图表,并以此孕伏函数思想。如直线(数轴)上的点与表示具体大小的数的一一对应,又如分数应用题中一个具体数量与一个抽象分数(分率)的对应等。对应思想也是解答一般应用题的常见方法。 2、转化思想方法: 这是解决数学问题的重要策略。是由一种形式变换成另一种形式的思想方法。如几何形体的等积变换、解方程的同解变换、公式的变形等。在计算中也常常用到转化,如甲÷乙(零除外)=甲×,又如除数是小数的除法可以转化成除数是整数的除法来计算。在解应用题时,常常对条件或问题进行转化。通过转化达到化难为易、化新为旧、化繁为简、化整为零、化曲为直等。 3.符号化思想方法: 数学的思维离不开符号的形式(图、表),这样可大大地简化和加速思维的进程。符号化语言是数学高度抽象的要求。如定律a.b=b.a,公式S=vt等都是用字母表示数和量的一般规律,而运算的本身就是符号化的语言。所以说,符号化思想方法是数学信息的载体,也是人们进行定量分析和系统分析的一种载体。 4、分类思想方法: 分类的思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。如对自然数的分类,若按能否被2整除可分为奇数和偶数,若按约数的个数分则可分为质数、合数和1。又如三角形既可按角分,也可按边分。不同的分类标准就会有不同的分类结果,从而产生新的概念。对数学对象的正确、合理分类取决于分类标准的正确、合理性。数学知识的分类有助于学生对知识的梳理和建构。 5、比较思想方法 比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。 6、类比思想方法

理科数学2010-2019高考真题分类训练排列与组合

专题十 计数原理 第三十讲 排列与组合 一、选择题 1.(2018全国卷Ⅱ)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥 德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A .112 B .114 C .115 D .118 2.(2017新课标Ⅱ)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人 完成,则不同的安排方式共有 A .12种 B .18种 C .24种 D .36种 3.(2017山东)从分别标有1,2,???,9的9张卡片中不放回地随机抽取2次,每次抽取 1张.则抽到的2张卡片上的数奇偶性不同的概率是 A .518 B .49 C .59 D .79 4.(2016年全国II)如图,小明从街道的 E 处出发,先到 F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为 A .24 B .18 C .12 D .9 5.(2016四川)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为 A .24 B .48 C .60 D .72 6.(2015四川)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的 偶数共有 A .144个 B .120个 C .96个 D .72个 7.(2014新课标1)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为 A . 18 B .38 C .58 D .78 8.(2014广东)设集合(){}12345=,,,,{1,0,1},1,2,3,4,5i A x x x x x x i ∈-=,那么集合A 中

谈中学数学中的猜想方法及其作用.

谈中学数学中的猜想方法及其作用 天津市塘沽六中 高宝红 数学

谈中学数学中的猜想方法及其作用 内容摘要数学猜想是人的思维在探索数学规律、本质时的一种方法.它是建立在已有的事实经验基础上,运用非逻辑手段而得到的一种假定,是一种合理推理.在数学领域中,猜想是合理的,是值得尊重的,是负责任的态度.数学猜想能缩短解决问题的时间;能锻炼数学思维,激发学生的学习兴趣;能更快捷地寻找解题思路,更为透彻地理解和掌握数学知识;还能培养学生的创造性思维和创新意识,掌握研究数学的一般方法. 关键词数学猜想;操作方法;教学作用 科学的发展离不开创新,高素质人才最重要的是要有丰富的想像力,有善于提出问题、解决问题的能力,有发现和创新新东西的能力.引导学生进行猜想是发展学生个体、培养学生创新精神的一种有效方法,是培养创造性人才的重要手段. 所谓数学猜想,是指根据某些已知的事实、材料和数学知识,以已有的数学理论和方法为指导,对未知的量及其关系所作的一种预测性的推断.它是数学研究常用的一种科学方法,又是数学发展的一种重要形式.猜想作为一种手段,目的是为了验证猜想的正确性.对于未给出结论的数学问题,猜想的形成有利于解题思路的正确诱导;对于已有结论的问题,猜想也是寻求解题思维策略的重要手段.可见探讨数学猜想及其在中学数学学习中的作用具有重要作用.本文拟对此做一探讨. 一、数学中的猜想方法 1、探索性方法猜想

探索性猜想指的是根据教材的特点组织一些有趣的实验,让学生在实验中探索事物表面的、外部联系的知识,取得感性材料,在对这些材料加工整理,使知识结构发现变化,从中发现新知识,作出猜想,然后再从理论上予以证明,使学生较好的掌握新知识. 例1 平面上的n 条直线最多可以把平面分成几部分? 分析:我们可从同学感兴趣的意大利馅饼(pizza )谈起:Primo’s pizzeria 的职员喜欢将pizza 饼切成形状各异的一块块.他们发现每切一定数量的刀数,就可产生一个最多的块数,讲到这里,教师提问:同学们,你们是否也想操刀一试身手?是否也想知道其中奥妙?在教师的煽情、鼓动下,学生已显得有些按捺不住、跃跃欲试,探索的欲望非常迫切.这时,教师要求学生每6人为一个小组,以合作探究的形式进行“切饼”的实验探索. 每个学生小组基本上都是按照切1刀、2刀、3刀、4刀、5刀来进行观察的,具体的结果如图1所示. 图1 在这切的过程中,学生感知最多块数与切口直线的位置关系有关,要想块数最多,切口直线的位置关系应满足条件:其中任何两条不平行,任何三条不过同一点。再注意到 1221112+?=+=,1232134+?=+=,1243167+?=+=,12 5411011+?=+=, 126511516+?= +=,……,学生运用不完全归纳法,就会发现规律.于是学生提出了下面的猜想:平面上有n 条直线,其中任何两条都不平行,并

读小学数学与数学思想方法心得体会

读《小学数学与数学思想方法》心得 体会 读《小学数学与数学思想方法》心得体会 一、教学进一步的升华 读《小学数学与数学思想方法》,对数学老师是一次思想和教学的提升,让我们能够明白数学的本质是什么?做为一名小学数学老师,我们究竟该进行怎样的教学?王教授告诉我们当面对新一轮课程改革,我们需要转变观念,逐步培养重视数学思想的意识,同时又需要在数学的专业素养上的提高自己,这样才能更好地落实“四基”目标。这也让我们明白不能纯粹地教会学生一些知识,一些解决问题的技巧,更重要的是关注学生的思维,帮助学生初步地学会数学思想。 全书分为上篇和下篇两部分,上篇主要阐述与小学数学有关的数学思想方法,下篇是义务教育人教版小学数学中的数学思想方法案例解读。本书思想脉络清晰,上篇主要帮助教师认识数学思想方法,具有理论指导意义,下篇旨在通过生动形象的案例,

让教师感悟如何传授数学思想,具有实践指导意义。 二、我和大家一起分享我学习第二节“数学思想方法的教学”的心得 此书读过之后,我发现王教授阐述二年级下册《表内除法(一)》的教学过程,回想起自己所教的还是发现自己有很多不足,我只顾教学生数学方法,忽略传授数学思想,例如从文中了解到除法在教学的过程中分五个模块让学生经历除法概念的形成过程做了很多铺垫,如设计参观科技园准备分食物的大情境,如图1-3,通过例1把6块糖果分成3份理解平均分,通过例2和例3体验平均分有两种实际情况及平均分的过程、方法与结果,再通过例4把12个竹笋平均分成4盘引出除法、除号的概念,最后通过例5把20个竹笋每4个放一盘引出被除数、除数和商的概念。整个教学过程非常丰富,有观察、操作、演示、语言表达、画图、书写、符号特征、思考等多种活动,学生在已有的生活经验和积累的活动经验的基础上,逐步抽象出除法,初步理解除法的概念。再通过适当的练习和利用乘法口诀求商,进一步理解除法的概念。 在这教学过程中,只有引导学生感受从直观操

专题复习中考数学归纳与猜想(含答案)

①1×12=1-12 ②2×23=2-2 3 ③3×34=3-3 4 ④4×45=4-45 …… 专题复习 归纳与猜想 归纳与猜想问题指的是给出一定条件(可以是有规律的算式、图形或图表),让学生认真分析,仔细观察,综合归纳,大胆猜想,得出结论,进而加以验证的数学探索题。其解题思维过程是:从特殊情况入手→探索发现规律→综合归纳→猜想得出结论→验证结论,这类问题有利于培养学生思维的深刻性和创造性。 一、知识网络图 二、基础知识整理 猜想规律型的问题难度相对较小,经常以填空等形式出现,解题时要善于从所提供的数字或图形信息中,寻找其共同之处,这个存在于个例中的共性,就是规律。其中蕴含着“特殊——一般——特殊”的常用模式,体现了总结归纳的数学思想,这也正是人类认识新生事物的一般过程。 相对而言,猜想结论型问题的难度较大些,具体题目往往是直观猜想与科学论证、具体应用的结合,解题的方法也更为灵活多样:计算、验证、类比、比较、测量、绘图、移动等等,都能用到。由于猜想本身就是一种重要的数学方法,也是人们探索发现新知的重要手段,非常有利于培养创造性思维能力,所以备受命题专家的青睐,逐步成为中考的又一热点。 ★ 范例精讲【归纳与猜想】 例1观察右面的图形(每个正方形的边长均为1)和相应等式,探究其中的规律: ⑴写出第五个等式,并在右边给出的五个正方形上画出与之对应的图示:

⑵猜想并写出与第n 个图形相对应的等式。 解:⑴5×56=5-5 6 ⑵1 1+-=+? n n n n n n 。 例2〖归纳猜想型〗将一张正方形纸片剪成四个大小形状一样的小正方形,然后将其中的 一片又按同样的方法剪成四小片,再将其中的一小片正方形纸片剪成四片,如此循环进行下去,将结果填在下表中,并解答所提出的问题: ⑴如果能剪100次,共有多少个正方形?据上表分析,你能发现什么规律? ⑵如果剪n 次共有A n 个正方形,试用含n 、A n 的等式表示这个规律; ⑶利用上面得到的规律,要剪得22个正方形,共需剪几次? ⑷能否将正方形剪成2004个小正方形?为什么? ⑸若原正方形的边长为1,设a n 表示第n 次所剪的正方形的边长,试用含n 的式子表示a n ; ⑹试猜想a 1+a 2+a 3+…+a n 与原正方形边长的关系,并画图示意这种关系. 解:⑴100×3+1=301,规律是:本次剪完后得到的小正方形的个数比上次剪完后得到的小正方形的个数多3个; ⑵A n =3n +1; ⑶若A n =22,则3n +1=22,∴n =7,故需剪7次; ⑷若A n =2004,则3n +1=2004,此方程无自然数解, ∴不能将原正方形剪成2004个小正方形; ⑸a n =12 n ; ⑹a 1=12<1,a 1+a 2=12+14=34<1,a 1+a 2+a 3=12+14+18 =7 8<1,……从而猜想到: a 1+a 2+a 3+…+a n <1.直观的几何意义如图所示。 例3下图中,图⑴是一个扇形AOB ,将其作如下划分: 第一次划分:如图⑵所示,以OA 的一半OA 1为半径画弧,再作∠AOB 的平分线,得到扇形的总数为6个,分别为:扇形AOB 、扇形AOC 、扇形COB 、扇形A 1OB 1、扇形A 1OC 1、扇形C 1OB 1; 1 a 1 a 2 a 3

数学名题

哥德巴赫猜想 二百多年前,有一位德国数学家名叫哥德巴赫。他发现,每一个不小于 6的偶数,都可以写成两个素数(也叫质数)的和,简称“1+1”。例如: 6=3+3 100=3+97 1000=3+997 8=3+5 102=5+97 1002=5+997…… 12=5+7 104=7+97 1004=7+997 哥德巴赫对许多偶数进行了检验,都说明这个推断是正确的。以后有人对偶数进行了大量的验算,从6开始一个一个地一直验算到三亿三千万个数,都表明哥德巴赫的发现是正确的。 但是,自然数是无限的,是不是这个论断对所有的自然数都正确呢?还必须从理论上加以证明,哥德巴赫自己无法证明。 1742年,他写信给当时有名的数学家欧拉,请他帮忙作出证明。后来欧拉回信说:“他认为哥德巴赫提出的问题是对的,不过他没有办法证明。因为没能证明,不能成为一条规律,所以只能说是一个猜想,人们就把哥德巴赫提出的那个问题称为“哥德巴赫猜想”。 从此,哥德巴赫猜想成了一道世界有名的难题。有人称它为“皇冠上的明珠”,它好比是数学上的一座高峰。谁能攀登上这座高峰呢?二百多年来,许许多多数学家都企图给这个猜想作出证明。 我国数学家陈景润在对“哥德巴赫猜想”的研究上取得突破性进展,居于世界领先地位。他的著名论文《大素数表为一个素数及不超过两个素数乘积之和》中的成果被国际数学界称为“陈氏定理”。

费马大定理 300多年以前,法国数学家费马在一本书的空白处写下了一个定理:“设n是大于2的正整数,则不定方程xn+yn=zn没有非零整数解”。 费马宣称他发现了这个定理的一个真正奇妙的证明,但因书上空白太小,他写不下他的证明。300多年过去了,不知有多少专业数学家和业余数学爱好者绞尽脑汁企图证明它,但不是无功而返就是进展甚微。这就是纯数学中最著名的定理—费马大定理。 费马(1601年~1665年)是一位具有传奇色彩的数学家,他最初学习法律并以当律师谋生,后来成为议会议员,数学只不过是他的业余爱好,只能利用闲暇来研究。虽然年近30才认真注意数学,但费马对数论和微积分做出了第一流的贡献。他与笛卡儿几乎同时创立了解析几何,同时又是17世纪兴起的概率论的探索者之一。费马特别爱好数论,提出了许多定理,但费马只对其中一个定理给出了证明要点,其他定理除一个被证明是错的,一个未被证明外,其余的陆续被后来的数学家所证实。这唯一未被证明的定理就是上面所说的费马大定理,因为是最后一个未被证明对或错的定理,所以又称为费马最后定理。 费马大定理虽然至今仍没有完全被证明,但已经有了很大进展,特别是最近几十年,进展更快。1976年瓦格斯塔夫证明了对小于105的素数费马大定理都成立。1983年一位年轻的德国数学家法尔廷斯证明了不定方程xn+yn=z只能有有限多组解,他的突出贡献使他在1986年获得了数学界的最高奖之一费尔兹奖。1993年英国数学家威尔斯宣布证明了

小学数学思想方法

小学数学思想方法 教育 2009-12-16 23:07 阅读32 评论0 字号:大中小 1、对应思想方法 对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。如直线上的点(数轴)与表示具体的数是一一对应。 2、假设思想方法 假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。 3、比较思想方法 比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。 4、符号化思想方法 用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。如定律、公式、等。 5、类比思想方法 类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟的自然和简洁。 6、转化思想方法 转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。 7、分类思想方法 分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。又如三角形可以按边分,也可以按角分。不同的分类标准就会有不同的分类结果,从而产生新的概念。对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。 8、集合思想方法 集合思想就是运用集合的概念、逻辑语言、运算、图形等来解决数学问题或非纯数学问题的思想方法。小学采用直观手段,利用图形和实物渗透集合思想。在讲述公约数和公倍数时采用了交集的思想方法。 9、数形结合思想方法 数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。另一方面复杂的形体可以用简单的数量关系表示。在解应用题中常常借助线段图的直观帮助分析数量关系。 10、统计思想方法: 小学数学中的统计图表是一些基本的统计方法,求平均数应用题是体现出数据处理的思想方法。 11、极限思想方法: 事物是从量变到质变的,极限方法的实质正是通过量变的无限过程达到质变。在讲“圆的面积和周长”时,“化圆为方”“化曲为直”的极限分割思路,在观察有限分割的基础上想象它们的极限状态,这样不仅使学生掌握公式还能从曲与直的矛盾转化中萌发了无限逼近的极限思想。 12、代换思想方法: 它是方程解法的重要原理,解题时可将某个条件用别的条件进行代换。如学校买了4张桌子和9把椅子,共用去504元,一张桌子和3把椅子的价钱正好相等,桌子和椅子的单价各是多少? 13、可逆思想方法: 它是逻辑思维中的基本思想,当顺向思维难于解答时,可以从条件或问题思维寻求解题思路的方法,有时可以借线段图逆推。如一辆汽车从甲地开往乙地,第一小时行了全程的1/7,第二小时比第一小时多行了16千米,还有94千米,求甲乙之距。

《小学数学思想与方法》读书心得

读《小学数学思想方法》心得 虹桥一小:吴宝全 第一,通过阅读,我知道了什么是数学的思想方法。 《义务教育数学课程标准(2011年版)》中提到四基,即基础知识、基本技能、基本思想、基本活动经验。数学思想和数学方法既有区别又有密切联系。数学思想的理论和抽象程度要高一些,而数学方法的实践性更强一些。人们实现数学思想往往要靠一定的数学方法;而人们选择数学方法,又要以一定的数学思想为依据。因此,二者密切联系。合称为数学思想方法。数学思想方法是数学的灵魂,那么,要想学好数学、用好数学,就要深入到数学的“灵魂深处”。在小学阶段,数学思想方法主要有符号化思想、化归思想、类比思想、归纳思想、分类思想、方程思想、集合思想、函数思想、对应思想、模型思想、数形结合思想、演绎推理思想、变换思想、统计与概率思想等等。数学思想方法不同于一般的概念和技能,后者一般通过短期的训练便能掌握,数学思想方法的教学更应该是一个通过长期的渗透和影响才能够形成的过程。作为数学老师,自己应该了解熟悉数学的思想方法,在教学中潜移默化的渗透,滋润学生的心田,才能使学生真正提高数学素养。 第二,我和大家一起分享我学习第一节“抽象思想”的心得。 数学抽象思想是一般化的思想方法,对于培养人的抽象思维能力和理性精神具有重要的意义。 1.数学抽象在数学中及教学中无处不在,任何一个数学概念、法则、公式、规律、性质、定理等的概括和推导,都要用到抽象概括;用任何数学知识解决纯数学问题或联系实际的问题,都需要计算、推理、构建模型,都离不开抽象。 2.数学是研究数量关系和空间形式的科学,这种数量关系和空间形式是脱离了具体的事物的,是抽象的,因此,抽象思想在数学中无处不在。只要有数学课堂教学,就应该有抽象思想的存在,只不过是呈现方式(目标达成的层次)不同而已。 3.就计算而言,最简单的计算也是抽象的,如1+1=2,多数小学生需要借助各种实物或直观图来理解一加一等于二。尽管很多一年级学生甚至部分学前儿童对20以内的加减法能够脱口而出,但是多数是先借助操作或直观的手段计算,再孰能生巧地记忆,有的甚至是死记硬背,并不一定理解抽象的原理。 4.小学教学往往重视操作和直观,这样学生容易理解抽象的数学知识,但是教师需要注意的是,操作和直观是教学的手段而非目的,要在适当的时机进行适度的数学抽象,这对发展学生的抽象思维能力和认识数学的本质有益处。

《数学与猜想》读书报告

深圳大学考试答题纸 (以论文、报告等形式考核专用) 二○一一~二○一二学年度第二学期 课程名称主讲教师评分 姓名专业年级教育硕士(数学)2010级 《数学与猜想》读书报告 题目:

《数学与猜想》读书报告 最近我阅读了波利亚著《数学与猜想》第一卷数学中的归纳与类比。这是一本谈古论今,内容丰富多彩,启发读者去提炼问题,研究问题,讨论问题,直至检验问题的书。本书通过许多古代著名的猜想,讨论了论证方法,读起来感到妙趣横生,引人入胜,能使人看到数学中真正的内在美。 在数学与猜想这本书里,有三章讨论了归纳法的相关内容。第一章探讨了归纳方法,归纳法常常从观察开始,一个生物学家会观察鸟类的生活,一个晶体学家会观察晶体的形状,一个对数论感兴趣的数学家会观察整数1,2,3,4,5…的性质。我们应该考察所收集到的观察结果,对它们加以比较和综合,在证明一个数学定理之前,先得猜测这个定理的内容,在完全作出了详细证明之前,你先得推测证明的思路,你先得把观察到的结果加以综合然后加以类比,你得一次又一次地进行尝试,数学家的创造性工作成果是论证推理即证明,但是这个证明是通过合情推理,通过猜想而发现的。考察一个猜想的结论并根据这种考察的结果来判断猜想是否可靠,是一种典型的归纳方法,归纳法能导致错误这个道理太明显了,但是值得注意的是,尽管出现错误的机会占据绝大多数,归纳法有时却能导出真理,我们应当从归纳失败的明显例子开始研究。 归纳法能说明所得的结果可靠,但决没有证明它一定可靠,可以看到用归纳法考察的结果,在数学的其它方法注意特殊情形的观察,能够导致一般性的数学结果,也可以启发一般性的证明方法。 第四章探讨了数论中的归纳方法,讨论了边长为整数的直角三角形(在什么情况下一个奇素数才是边长为整数的直角三角形的斜边长?在什么条件下不是?两种情形有何区别?最后得出猜想4N+1形式的素数可以是边长为整数的直角三角形的斜边长,4N+3的形式不是)。在数论的历史中它起过重要作用,它使人引出许多别的问题。例如,哪些数(不管本身是不是平方数)能表成平方和?不能表成平方和的数有什么性质?是否还能表成三个平方数之和?还有,不能表成三个平方和的数又有哪些数?要用多少个平方数来表示所有的自然数?最后得出了四方定理即方程n=x2+y2+z2+w2最后讨论了关于四奇数平方和问题,对于任何自然数,或者本身是平方数,或者总是两个,三个或四个平方数之和,关于四奇数平方和问题。 第七章通过对数学归纳法的了解我知道了数学归纳与通常的归纳有什么关系?在检验一个猜想时,我们研究猜想适合的不同情形,希望知道猜想所主张的关系是否在任何情形下都是稳定的,也就是说不依赖于各种不同的情形,即不受各种情形的干扰,自然而然地我们注意到从这种情形到另一种情形的飞跃。物理学家牛顿具体化了一个从抛射体运动到行星动的连续飞跃,他着手去证明万有引力定律,而先考虑应该同样适用万有引力定律的两种情形之间的飞跃。在证明某个初等定定理时要用数学归纳法,考虑从n到n+1的飞跃,也就是两种情形之间的飞跃。同时数学归纳法是一种论证的方法,通常用在证明数学上的猜想,而这种猜想是我们用某种归纳方法所获得的。 本书第二章讲的是一般化、特殊化、类比。在数学解题中强调“类比”并非波利严的奇思异想。“类比”原本是人类日常的思维方式。人类在日常生活中大量地以“类比”(广义上的“类比”包括“比喻”,尤其是“隐喻”、“比拟”,甚至包括“象征”)的方式说话。“类比渗透于我们所有的思想、我们每天讲的话和我们作出的琐碎的结论乃至艺术的表达方式和最高的科学成就。类比在各种

相关文档
最新文档