算法设计与分析实验报告资料

算法设计与分析实验报告资料
算法设计与分析实验报告资料

算法设计与分析实验报告

学院:信息学院

专业:物联网1101

姓名:黄振亮

学号:20113379 2013年11月

目录

作业1 0-1背包问题的动态规划算法 (7)

1.1算法应用背景 (3)

1.2算法原理 (3)

1.3算法描述 (4)

1.4程序实现及程序截图 (4)

1.4.1程序源码 (4)

1.4.2程序截图 (5)

1.5学习或程序调试心得 (6)

作业2 0-1背包问题的回溯算法 (7)

2.1算法应用背景 (3)

2.2算法原理 (3)

2.3算法描述 (4)

2.4程序实现及程序截图 (4)

2.4.1程序源码 (4)

2.4.2程序截图 (5)

2.5学习或程序调试心得 (6)

作业3循环赛日程表的分治算法 (7)

3.1算法应用背景 (3)

3.2算法原理 (3)

3.3算法描述 (4)

3.4程序实现及程序截图 (4)

3.4.1程序源码 (4)

3.4.2程序截图 (5)

3.5学习或程序调试心得 (6)

作业4活动安排的贪心算法 (7)

4.1算法应用背景 (3)

4.2算法原理 (3)

4.3算法描述 (4)

4.4程序实现及程序截图 (4)

4.4.1程序源码 (4)

4.4.2程序截图 (5)

4.5学习或程序调试心得 (6)

作业1 0-1背包问题的动态规划算法

1.1算法应用背景

从计算复杂性来看,背包问题是一个NP难解问题。半个世纪以来,该问题一直是算法与复杂性研究的热点之一。另外,背包问题在信息加密、预算控制、项目选择、材料切割、货物装载、网络信息安全等应用中具有重要的价值。如果能够解决这个问题那么则具有很高的经济价值和决策价值,在上述领域可以获得最大的价值。本文从动态规划角度给出一种解决背包问题的算法。

1.2算法原理

1.2.1、问题描述:

给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为C。问:应如何选择装入背包的物品,使得装入背包中物品的总价值最大?

形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找一n元向量(x1,x2,…,xn,), xi ∈{0,1}, ?∑ wi xi≤c,且∑ vi xi达最大.即一个特殊的整数规划问题。

1.2.2、最优性原理:

设(y1,y2,…,yn)是 (3.4.1)的一个最优解.则(y2,…,yn)是下面相应子问题的一个最优解:

证明:使用反证法。若不然,设(z2,z3,…,zn)是上述子问题的一个最优解,而(y2,y3,…,yn)不是它的最优解。显然有

∑vizi > ∑viyi (i=2,…,n)

且 w1y1+ ∑wizi<= c

因此 v1y1+ ∑vizi (i=2,…,n) > ∑ viyi, (i=1,…,n)

说明(y1,z2, z3,…,zn)是(3.4.1)0-1背包问题的一个更优解,导出(y1,y2,…,yn)不是背包问题的最优解,矛盾。

1.2.3、递推关系:

设所给0-1背包问题的子问题

的最优值为m(i ,j),即m(i ,j)是背包容量为j ,可选择物品为i ,i+1,…,n 时0-1背包问题的最优值。由0-1背包问题的最优子结构性质,可以建立计算m(i ,j)的递归式:

注:(3.4.3)式此时背包容量为j ,可选择物品为i 。此时在对xi 作出决策之后,问题处于两种状态之一:

(1)背包剩余容量是j,没产生任何效益; (2)剩余容量j-wi,效益值增长了vi ;

1.3算法描述

int m[100][100];//前i 个物品装入容量为j 的背包中获得的最大价值 int s;//获得的最大价值 int w[15];//物品的重量 int v[15];//物品的价值

int x[15];//物品的选取状态,1表示被选中 0表示未选中 int n,i;

int c;//背包最大容量

int max(int a,int b)//获得最大值 int min(int a,int b)//获得最小值

void KnapSack(int n,int w[],int v[],int c)//背包问题主算法

先为m[n][j] 初始化初值然后根据递归方程式进行穷举递归直到 m[1][c], m[1][c] 即为所获得的最大价值。

void Traceback(int n,int w[],int x[],int c)//回溯算法,依次标注被选中的物品

通过一个循环过程检验装入第i 个物品与装入i+1个物品的价值如果相同,则x[i]=0。

1.4程序实现及程序截图 1.4.1程序源码

#include using namespace std;

int m[100][100];//前i 个物品装入容量为j 的背包中获得的最大价值 int max(int a,int b) {

if(a>=b) return a; else return b; }

int min(int a,int b)

{

if(a>=b)

return b;

else return a;

}

void KnapSack(int n,int w[],int v[],int c)

{

int i,j;

int jMax=min(w[n]-1,c);

for(j=0;j<=jMax;j++) m[n][j]=0;

for(j=w[n];j<=c;j++) m[n][j]=v[n];

for(i=n-1;i>1;i--)

{

jMax=min(w[i]-1,c);

for(j=0;j<=jMax;j++) m[i][j]=m[i+1][j];

for(j=w[i];j

m[i][j]=max(m[i+1][j],m[i+1][j-w[i]]+v[i]);

}

m[1][c]=m[2][c];

if(c>=w[1])

m[1][c]=max(m[1][c],m[2][c-w[1]]+v[1]);

}

void Traceback(int n,int w[],int x[],int c)

{

int i;

for(i=1;i

if(m[i][c]==m[i+1][c]) x[i]=0;

else{x[i]=1;c-=w[i];}

x[n]=(m[n][c])?1:0;

}

int main() {

int s;//获得的最大价值

int w[15];//物品的重量

int v[15];//物品的价值

int x[15];//物品的选取状态

int n,i;

int c;//背包最大容量

cout <<"请输入背包的最大容量:"<< endl;

cin>>c;

cout<<"输入物品数:\n"<

cin>>n;

cout<<"请分别输入物品的重量:"<

for(i=1;i<=n;i++)

cin>>w[i];

cout<<"请分别输入物品的价值:"<

for(i=1;i<=n;i++)

cin>>v[i];

KnapSack(n,w,v,c);

Traceback(n,w,x,c);

s=m[1][c];

cout<<"最大物品价值为:"<

cout<

cout<<"选中的物品为:"<

for(i=1;i<=n;i++)

cout<

return 0;

1.4.2程序截图

1.5学习或程序调试心得

利用动态规划求解0-1背包问题的复杂度为0(min{nc,2n}。动态规划主要是求解最优决策序列,当最优决策序列中包含最优决策子序列时,可建立动态规划递归方程,它可以帮助高效地解决问题。

作业2 0-1背包问题的回溯算法

1.1算法应用背景

背包问题是一个在运筹学领域里常见的典型NP-C 难题,也是算法设计分析中的经典问题,对该问题的求解方法的研究无论是在理论上,还是在实践中都具有重要意义。对这个问题的求解已经研究出了不少的经典方法,对该问题的探索和应用研究一直在进行。在先进理论指导下,求解0-1背包问题具有科学、高效、经济、灵活、方便等显著特点。

那么要解决背包问题,首要的前提就是设计出好的算法,想求得背包问题的解,就要先设计出算法,本文采用回溯法对背包问题给出具体算法设计和实现过程。如何将背包问题应用于实际问题中,有针对性地设计适合求解实际0-1背包问题的算法,并很好地解决实际问题,是计算机工作者不断思索、研究的一个领域。

2.2算法原理 2.2.1 问题描述

问题的一般描述是:旅行者背包登山,背包的最大承重为M ,现有n 个物品可供选择装入背包,第i 个物品莺量为wi ,价值为pi ,假定物品i 的一部分xi(0≤xi ≤1)放人背包,获得价值为xipi ,由于背包最大承重为M ,要求装入物品总质量不过超过M ,问旅行者应该如何选择物品装入背包,使得装入物品的价值总和达到最大值。

背包问题的数学描述如下:要求找到一个n 元向量(x1,x2…xn),在满足约束条件:

??

??

?

≤≤≤∑1

0i i i x M

w x 情况下,使得目标函数p x i

i ∑max ,其中,1≤i ≤n ;M>0;wi>0;pi>0。

满足约束条件的任何向量都是一个可行解,而使得目标函数达到最大的那个可行解则为最优

解。

给定n 种物品和1个背包。物品i 的重量是wi ,其价值为pi ,背包的容量为M 。问应如何装入背包中的物品,使得装人背包中物品的总价值最大?在选择装人背包的物品时,对每种物品i 只有两种选择,即装入背包、不装入背包。不能将物品i 装人背包多次,也不能只装入部分的物品i 。该问题称为0-1背包问题。

0-1背包问题的符号化表示是,给定M>0, w i >0, pi >0,1≤i ≤n ,要求找到一个n 元0-1向量向量(x1,x2…xn), X i =0 或1 , 1≤i ≤n, 使得

M w

x i

i

≤∑ ,而且p x i

i

∑达到最大。

2.2.2算法分析

1、问题的解空间:应用回溯法解问题时,首先应明确定义问题的解空间。问题的解空间应

到少包含问题的一个(最优)解。

2、回溯法的基本思想:确定了解空间的组织结构后,回溯法就从开始结点(根结点)出发,以深度优先的方式搜索整个解空间。这个开始结点就成为一个活结点,同时也成为当前的扩展结点。在当前的扩展结点处,搜索向纵深方向移至一个新结点。这个新结点就成为一个新的活结点,并成为当前扩展结点。如果在当前的扩展结点处不能再向纵深方向移动,则当前扩展结点就成为死结点。换句话说,这个结点不再是一个活结点。此时,应往回移动(回溯)至最近的一个活结点处,并使这个活结点成为当前的扩展结点。回溯法即以这种工作方式递归地在解空间中搜索,直至找到所要求的解或解空间中已没有活结点时为止。 运用回溯法解题通常包含以下三个步骤: (1)针对所给问题,定义问题的解空间; (2)确定易于搜索的解空间结构;

(3)以深度优先的方式搜索解空间,并且在搜索过程中用剪枝函数避免无效搜索;

3、递归回溯:由于回溯法是对解空间的深度优先搜索,因此在一般情况下可用递归函数来实现回溯法。问题的一般描述是:旅行者背包登山,背包的最大承重为M ,现有n 个物品可供选择装入背包,第i 个物品莺量为wi ,价值为pi ,假定物品i 的一部分xi(0≤xi ≤1)放人背包,获得价值为xipi ,由于背包最大承重为M ,要求装入物品总质量不过超过M ,问旅行者应该如何选择物品装入背包,使得装入物品的价值总和达到最大值。

背包问题的数学描述如下:要求找到一个n 元向量(x1,x2…xn),在满足约束条件:

??

??

?

≤≤≤∑1

0i i i x M

w x 情况下,使得目标函数p x i

i ∑max ,其中,1≤i ≤n ;M>0;wi>0;pi>0。

满足约束条件的任何向量都是一个可行解,而使得目标函数达到最大的那个可行解则为最优

解。

给定n 种物品和1个背包。物品i 的重量是wi ,其价值为pi ,背包的容量为M 。问应如何装入背包中的物品,使得装人背包中物品的总价值最大?在选择装人背包的物品时,对每种物品i 只有两种选择,即装入背包、不装入背包。不能将物品i 装人背包多次,也不能只装入部分的物品i 。该问题称为0-1背包问题。

0-1背包问题的符号化表示是,给定M>0, w i >0, pi >0,1≤i ≤n ,要求找到一个n 元0-1向量向量(x1,x2…xn), X i =0 或1 , 1≤i ≤n, 使得

M w

x i

i

≤∑ ,而且p x i

i

∑达到最大。

1、问题的解空间:应用回溯法解问题时,首先应明确定义问题的解空间。问题的解空间应到少包含问题的一个(最优)解。

2、回溯法的基本思想:确定了解空间的组织结构后,回溯法就从开始结点(根结点)出发,以深度优先的方式搜索整个解空间。这个开始结点就成为一个活结点,同时也成为当前的扩展结点。在当前的扩展结点处,搜索向纵深方向移至一个新结点。这个新结点就成为一个新的活结点,并成为当前扩展结点。如果在当前的扩展结点处不能再向纵深方向移动,则当前扩展结点就成为死结点。换句话说,这个结点不再是一个活结点。此时,应往回移动(回溯)至最近的一个活结点处,并使这个活结点成为当前的扩展结点。回溯法即以这种工作方式递

归地在解空间中搜索,直至找到所要求的解或解空间中已没有活结点时为止。

运用回溯法解题通常包含以下三个步骤:

(1)针对所给问题,定义问题的解空间;

(2)确定易于搜索的解空间结构;

(3)以深度优先的方式搜索解空间,并且在搜索过程中用剪枝函数避免无效搜索;

3、递归回溯:由于回溯法是对解空间的深度优先搜索,因此在一般情况下可用递归函数来

实现回溯法。

回溯法是一种系统地搜索问题解答的方法。为了实现回溯,首先需要为问题定义一个解空间,这个解空间必须至少包含问题的一个解(可能是最优的)。一旦定义了解空间的组织方要选择一个对象的子集,将它们装人背包,以便获得的收益最大,则解空间应组织成子集树的形状。首先形成一个递归算法,去找到可获得的最大收益。然后,对该算法加以改进,形成代码。改进后的代码可找到获得最大收益时包含在背包中的对象的集合。

左子树表示一个可行的结点,无论何时都要移动到它,当右子树可能含有比当前最优解还优的解时,移动到它。一种决定是否要移动到右子树的简单方法是r为还未遍历的对象的收益之和,将r加到cp (当前节点所获收益)之上,若( r+cp) bestp(目前最优解的收益),则不需搜索右子树。一种更有效的方法是按收益密度vi/wi对剩余对象排序,将对象按密度递减的顺序去填充背包的剩余容量,当遇到第一个不能全部放人背包的对象时,就使用它的一部分。

2.3算法描述

概要设计

0—1背包问题是一个子集选取问题,适合于用子集树表示0—1背包问题的解空间。在搜索解空间树是,只要其左儿子节点是一个可行结点,搜索就进入左子树,在右子树中有可能包含最优解是才进入右子树搜索。否则将右子树剪去。

int c;//背包容量

int n; //物品数

int *w;//物品重量数组

int *p;//物品价值数组

int cw;//当前重量

int cp;//当前价值

int bestp;//当前最优值

int *bestx;//当前最优解

int *x;//当前解

int Knap::Bound(int i)//计算上界

void Knap::Backtrack(int i)//回溯

int Knapsack(int p[],int w[],int c,int n) //为Knap::Backtrack初始化

2.4程序实现及程序截图2.4.1程序源码

#include

using namespace std;

class Knap

{

friend int Knapsack(int p[],int w[],int c,int n ); public:

void print()

{

for(int m=1;m<=n;m++)

{

cout<

}

cout<

};

private:

int Bound(int i);

void Backtrack(int i);

int c;//背包容量

int n; //物品数

int *w;//物品重量数组

int *p;//物品价值数组

int cw;//当前重量

int cp;//当前价值

int bestp;//当前最优值

int *bestx;//当前最优解

int *x;//当前解

};

int Knap::Bound(int i)

{

int cleft=c-cw;//剩余容量

int b=cp;

while(i<=n&&w[i]<=cleft)

{

cleft-=w[i];

b+=p[i];

i++; }

if(i<=n)

b+=p[i]/w[i]*cleft;

return b;

}

void Knap::Backtrack(int i)

{

if(i>n)

{

if(bestp

{

for(int j=1;j<=n;j++)

bestx[j]=x[j];

bestp=cp;

}

return;

}

if(cw+w[i]<=c) //搜索左子树

{

x[i]=1;

cw+=w[i];

cp+=p[i];

Backtrack(i+1);

cw-=w[i];

cp-=p[i];

}

if(Bound(i+1)>bestp)//搜索右子树

{

x[i]=0;

Backtrack(i+1);

}

}

class Object

{

friend int Knapsack(int p[],int w[],int c,int n); public:

int operator<=(Object a)const

{

return (d>=a.d);

}

private:

int ID;

float d;

};

int Knapsack(int p[],int w[],int c,int n) {

//为Knap::Backtrack初始化

int W=0;

int P=0;

int i=1;

Object *Q=new Object[n];

for(i=1;i<=n;i++)

{

Q[i-1].ID=i;

Q[i-1].d=1.0*p[i]/w[i];

P+=p[i];

W+=w[i];

}

if(W<=c)

return P;//装入所有物品

float f;

for( i=0;i

for(int j=i;j

{

if(Q[i].d

{

f=Q[i].d;

Q[i].d=Q[j].d;

Q[j].d=f;

}

}

Knap K;

K.p = new int[n+1];

K.w = new int[n+1];

K.x = new int[n+1];

K.bestx = new int[n+1];

K.x[0]=0;

K.bestx[0]=0;

for( i=1;i<=n;i++)

{ K.p[i]=p[Q[i-1].ID];

K.w[i]=w[Q[i-1].ID];

}

K.cp=0;

K.cw=0;

K.c=c;

K.n=n;

K.bestp=0;

//回溯搜索

K.Backtrack(1);

K.print();

delete [] Q;

delete [] K.w;

delete [] K.p;

return K.bestp;

}

void main()

{

int *p;

int *w;

int c=0;

int n=0;

int i=0;

char k;

while(k)

{

cout<<"请输入背包容量(c):"<>c;

cout<<"请输入物品的个数(n):"<

cin>>n;

p=new int[n+1];

w=new int[n+1];

p[0]=0;

w[0]=0;

cout<<"请输入物品的价值(p):"<

cin>>p[i];

cout<<"请输入物品的重量(w):"<

cin>>w[i];

cout<<"最优解为(bestx):"<

cout<<"[s] 重新开始"<>k;

}

2.4.2程序截图

2.5学习或程序调试心得

回溯算法的运行时间取决于它在搜索过程中所生成的结点数,而限界函数可以大量减少所生成的结点个数,省去许多无谓的搜索, 使得搜索速度更快 ,其调用限界函数计算上

界需花费O(n)时间 ,最坏情况下有O(n2错误!未找到引用源。)个结点需调用限界函数 ,需花费O(n)时间,所以该算法的时间复杂度为O(n n2错误!未找到引用源。)。

回溯法的另一个重要特性就是在搜索执行的同时产生解空间在搜索期间的任何时刻仅保留从开始结点到当前可扩展结点的路径其空间需求为O(从开始结点起最长路径的长度),所以 ,此处该算法的空间复杂度为O(n),回溯法是算法设计的基本方法之一 ,它适用于解一些涉及到寻找一组解的问题或者求满足某些约束条件的最优解的问题,且适用于求解组合数量较大的问题。

作业3 循环赛日程表的分治算法

3.1算法应用背景

分治法是一个比较典型也很常见的计算机算法,它不仅可以用来设计各种算法,而且在其他方面也有广泛应用。例如可以用分治思想来构造电路进行数学证明等。设计循环赛日程表即是分治策略的一个具体应用。

3.2算法原理

3.2.1问题描述:

设有n=2^k个运动员要进行网球循环赛。现要设计一个满足以下要求的比赛日程表:

(1)每个选手必须与其他n-1个选手各赛一次;

(2)每个选手一天只能参赛一次;

(3)循环赛在n-1天内结束。

请按此要求将比赛日程表设计成有n行和n-1列的一个表。在表中的第i行,第j列处填入第i个选手在第j天所遇到的选手。其中1≤i≤n,1≤j≤n-1。8个选手的比赛日程表如下图:

3.2.2算法思路:

按分治策略,我们可以将所有的选手分为两半,则n个选手的比赛日程表可以通过n/2个选手的比赛日程表来决定。递归地用这种一分为二的策略对选手进行划分,直到只剩下两个选手时,比赛日程表的制定就变得很简单。这时只要让这两个选手进行比赛就可以了。如上图,所列出的正方形表是8个选手的比赛日程表。其中左上角与左下角的两小块分别为选手1至选手4和选手5至选手8前3天的比赛日程。据此,将左上角小块中的所有数字按其相对位置抄到右下角,又将左下角小块中的所有数字按其相对位置抄到右上角,这样我们就分别安排好了选手1至选手4和选手5至选手8在后4天的比赛日程。依此思想容易将这个比赛程

表推广到具有任意多个选手的情形。

3.3算法描述

(1)用一个for循环输出日程表的第一行 for(int i=1;i<=N;i++) a[1][i] = i

(2)然后定义一个m值,m初始化为1,m用来控制每一次填充表格时i(i表示行)和j(j 表示列)的起始填充位置。

(3)用一个for循环将问题分成几部分,对于k=3,n=8,将问题分成3大部分,第一部分为,根据已经填充的第一行,填写第二行,第二部分为,根据已经填充好的第一部分,填写第三四行,第三部分为,根据已经填充好的前四行,填写最后四行。for (ints=1;s<=k;s++) N/=2;

(4)用一个for循环对③中提到的每一部分进行划分for(intt=1;t<=N;t++)对于第一部分,将其划分为四个小的单元,即对第二行进行如下划分

同理,对第二部分(即三四行),划分为两部分,第三部分同理。

(5)最后,根据以上for循环对整体的划分和分治法的思想,进行每一个单元格的填充。填充原则是:对角线填充for(int i=m+1;i<=2*m;i++) //i控制行

for(int j=m+1;j<=2*m;j++) //j控制列

{

a[i][j+(t-1)*m*2]= a[i-m][j+(t-1)*m*2-m];/*右下角的值等于左上角的值 */

a[i][j+(t-1)*m*2-m] =a[i-m][j+(t-1)*m*2];/*左下角的值等于右上角的值 */

}

运行过程:

(1)由初始化的第一行填充第二行

(2)由s控制的第一部分填完。然后是s++,进行第二部分的填充

(3)最后是第三部分的填充

3.4程序实现及程序截图3.

4.1程序源码

#include

#include

using namespace std;

void Table(int k,int n,int **a);

void input(int &k);

void output(int **a,int n);

int main()

{

int k;

input(k);

int n=1;

//n=2k(k>=1)个选手参加比赛

for(int i=1; i<=k; i++)

n *= 2;

//根据n动态分配二维数组a

int **a = new int *[n+1];

for(int i=0;i<=n;i++)

{

a[i] = new int[n+1];

}

Table(k,n,a);

cout<<"循环赛事日程表为:"<

output(a,n);

//释放空间

for(int i=0;i<=n;i++)

{

delete[] a[i];

}

delete[] a;

return 0;

}

void input(int &k)

{

cout<<"请输入k值:"<

cin>>k;

}

void output(int **a,int n)

{

for(int i=1; i<=n; i++)

{

for(int j=1; j<=n; j++)

{

cout<

}

cout<

}

}

void Table(int k,int n,int **a)

{

for(int i=1; i<=n; i++)

a[1][i]=i;//设置日程表第一行

int m = 1;//每次填充时,起始填充位置

for(int s=1; s<=k; s++)

{

n /= 2;

for(int t=1; t<=n; t++)

{

for(int i=m+1; i<=2*m; i++)//控制行

{

for(int j=m+1; j<=2*m; j++)//控制列

{

a[i][j+(t-1)*m*2] = a[i-m][j+(t-1)*m*2-m];//右下角等于左上角的值

a[i][j+(t-1)*m*2-m] = a[i-m][j+(t-1)*m*2];//左下角等于右上角的值

}

}

}

m *= 2;

}

}

3.4.2程序截图

3.5学习或程序调试心得

按分治策略,我们可以将所有的选手分为两半,则n个选手的比赛日程表可以通过n/2个选手的比赛日程表来决定。递归地用这种一分为二的策略对选手进行划分,直到只剩下两个选手时,比赛日程表的制定就变得很简单。这时只要让这两个选手进行比赛就可以了。分治法解决问题的关键在于将大的问题转化为小的问题,是分而治之的思想。而且分成的小问题往往与原问题相同,用递归的方法解决子问题。用递归方法编写的问题解决程序具有结构清晰,可读性强等优点,且递归算法的设计比非递归算法的设计往往要容易一些,所以当问题本身是递归定义的,或者问题所涉及到的数据结构是递归定义的,或者是问题的解决方法是递归形式的时候,往往采用递归算法来解决。递归可以说是一种通用之法。

作业4 活动安排的贪心算法

4.1算法应用背景

在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。贪心算法不是对所有问题都能得到整体最优解,但对范围相当广泛的许多问题他能产生整体最优解或者是整体最优解的近似解。活动安排是可以用贪心算法求解的很好例子。该问题要求高效的安排一系列争用某一公共资源的活动。贪心算法提供了一个简单、漂亮的方法,是尽可能多的活动能兼容地使用同一公共资源。

4.2算法原理

4.2.1 问题描述:

设有n个活动的集合E={1,2,…,n},其中每个活动都要求使用同一资源,如演讲会场等,而在同一时间内只有一个活动能使用这一资源。每个活动i都有一个要求使用该资源的起始时间si和一个结束时间fi,且si

4.2.2算法思路:

贪心算法采用自顶向下,以迭代的方法做出相继的贪心选择,每做一次贪心选择就将所求问题简化为一个规模更小的子问题,通过每一步贪心选择,可得到问题的一个最优解,虽然每一步上都要保证能获得局部最优解,但由此产生的全局解有时不一定是最优的,所以贪婪法不要回溯。所谓贪心选择性质是指所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到。这是贪心算法可行的第一个基本要素。贪心算法则通常以自顶向下的方式进行,以迭代的方式作出相继的贪心选择,每作一次贪心选择就将所求问题简化为规模更小的子问题。

4.3算法描述

将活动按照结束时间进行从小到大排序。然后用i代表第i个活动,s[i]代表第i个活动开始时间,f[i]代表第i个活动的结束时间。按照从小到大排序,挑选出结束时间尽量早的活动,并且满足后一个活动的起始时间晚于前一个活动的结束时间,全部找出这些活动就是最大的相容活动子集合。事实上系统一次检查活动i是否与当前已选择的所有活动相容。若相容活动i加入已选择活动的集合中,否则,不选择活动i,而继续下一活动与集合A中活动的相容性。若活动i与之相容,则i成为最近加入集合A的活动,并取代活动j的

数值分析实验报告1

实验一误差分析 实验1.1(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 其中ε(1.1)和(1.221,,,a a 的输出b ”和“poly ε。 (1(2 (3)写成展 关于α solve 来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考Matlab 的帮助。 实验过程: 程序: a=poly(1:20); rr=roots(a); forn=2:21 n form=1:9 ess=10^(-6-m);

ve=zeros(1,21); ve(n)=ess; r=roots(a+ve); -6-m s=max(abs(r-rr)) end end 利用符号函数:(思考题一)a=poly(1:20); y=poly2sym(a); rr=solve(y) n

很容易的得出对一个多次的代数多项式的其中某一项进行很小的扰动,对其多项式的根会有一定的扰动的,所以对于这类病态问题可以借助于MATLAB来进行问题的分析。 学号:06450210 姓名:万轩 实验二插值法

排序操作实验报告

数据结构与算法设计 实验报告 (2016 — 2017 学年第1 学期) 实验名称: 年级: 专业: 班级: 学号: 姓名: 指导教师: 成都信息工程大学通信工程学院

一、实验目的 验证各种简单的排序算法。在调试中体会排序过程。 二、实验要求 (1)从键盘读入一组无序数据,按输入顺序先创建一个线性表。 (2)用带菜单的主函数任意选择一种排序算法将该表进行递增排序,并显示出每一趟排序过程。 三、实验步骤 1、创建工程(附带截图说明) 2、根据算法编写程序(参见第六部分源代码) 3、编译 4、调试 四、实验结果图 图1-直接输入排序

图2-冒泡排序 图3-直接选择排序 五、心得体会 与哈希表的操作实验相比,本次实验遇到的问题较大。由于此次实验中设计了三种排序方法导致我在设计算法时混淆了一些概念,设计思路特别混乱。虽然在理清思路后成功解决了直接输入和直接选择两种算法,但冒泡

排序的算法仍未设计成功。虽然在老师和同学的帮助下完成了冒泡排序的算法,但还需要多练习这方面的习题,平时也应多思考这方面的问题。而且,在直接输入和直接选择的算法设计上也有较为复杂的地方,对照书本做了精简纠正。 本次实验让我发现自己在算法设计上存在一些思虑不周的地方,思考问题过于片面,逻辑思维能力太过单薄,还需要继续练习。 六、源代码 要求:粘贴个人代码,以便检查。 #include #define MAXSIZE 100 typedef int KeyType; typedef int DataType; typedef struct{ KeyType key; DataType data; }SortItem,SqList[MAXSIZE]; /*******直接插入顺序表*******/ void InsertSort(SqList L,int n) { int i,j,x; SortItem p; for(i=1;i

算法设计与分析实验三

实验三分治算法(2) 一、实验目的与要求 1、熟悉合并排序算法(掌握分治算法) 二、实验题 1、问题陈述: 对所给元素存储于数组中和存储于链表中两中情况,写出自然合并排序算法. 2、解题思路: 将待排序元素分成大小大相同的两个集合,分别对两个集合进行排序,最终将排好序的子集合合并成为所要求的排好序的集合.自然排序是通过一次扫描待排元素中自然排好序的子数组,再进行子数组的合并排序. 三、实验步骤 程序代码: #include const int N=100;//定义不可变常量N //各个函数的声明 void ScanTarget(int target[], int n, int head[], int tail[]); int CountHead(int head[]); void MergeSort(int a[], int head[], int tail[], int m); void MergePass(int x[], int y[], int s, int a[], int b[], int m); void Merge(int c[], int d[], int l, int m, int r); //主函数的定义 void main() { char a; do {

int target[N],head[N],tail[N]; int i=0,n,m; for(; i>n; cout<<"请输入需要排序的数列:" <>target[i]; ScanTarget(target,n,head,tail); m=CountHead(head);//调用求长度的函数 MergeSort(target,head,tail,m);//调用归并排序函数 cout<<"排序后:"<>a; } while(a!='n' && a!='N'); } void ScanTarget(int target[], int n, int head[], int tail[])//定义扫描待排数组的函数;{ int i,j=0,k=0; head[k]=0;

算法设计与分析实验报告

本科实验报告 课程名称:算法设计与分析 实验项目:递归与分治算法 实验地点:计算机系实验楼110 专业班级:物联网1601 学号: 05 学生姓名:俞梦真 指导教师:郝晓丽 2018年 05月 04 日 实验一递归与分治算法 实验目的与要求

1.进一步熟悉C/C++语言的集成开发环境; 2.通过本实验加深对递归与分治策略的理解和运用。 实验课时 2学时 实验原理 分治(Divide-and-Conquer)的思想:一个规模为n的复杂问题的求解,可以划分成若干个规模小于n的子问题,再将子问题的解合并成原问题的解。 需要注意的是,分治法使用递归的思想。划分后的每一个子问题与原问题的性质相同,可用相同的求解方法。最后,当子问题规模足够小时,可以直接求解,然后逆求原问题的解。 实验题目 1.上机题目:格雷码构造问题 Gray码是一个长度为2n的序列。序列无相同元素,每个元素都是长度为n的串,相邻元素恰好只有一位不同。试设计一个算法对任意n构造相应的Gray码(分治、减治、变治皆可)。 对于给定的正整数n,格雷码为满足如下条件的一个编码序列。 (1)序列由2n个编码组成,每个编码都是长度为n的二进制位串。 (2)序列中无相同的编码。 (3)序列中位置相邻的两个编码恰有一位不同。 2.设计思想: 根据格雷码的性质,找到他的规律,可发现,1位是0 1。两位是00 01 11 10。三位是000 001 011 010 110 111 101 100。n位是前n-1位的2倍个。N-1个位前面加0,N-2为倒转再前面再加1。 3.代码设计: 归式,就是如何将原问题划分成子问题。 2.递归出口,递归终止的条件,即最小子问题的求解,可以允许多个出口。 3.界函数,问题规模变化的函数,它保证递归的规模向出口条件靠拢(2)递归与非递归之间如何实现程序的转换? (3)分析二分查找和快速排序中使用的分治思想。 答: 1.一般根据是否需要回朔可以把递归分成简单递归和复杂递归,简单递归一般就是根据递归式来找出递推公式(这也就引申出分治思想和动态规划)。 2.复杂递归一般就是模拟系统处理递归的机制,使用栈或队列等数据结构保存回朔点来求解。 (4)分析二次取中法和锦标赛算法中的分治思想。 二次取中法:使用快速排序法中所采用的分划方法,以主元为基准,将一个表划分为左右两个子表,左子表中的元素均小于主元,右子表中的元素均大于主元。主元的选择是将表划分为r

数值分析实验报告

数值分析实验报告 姓名:周茹 学号: 912113850115 专业:数学与应用数学 指导老师:李建良

线性方程组的数值实验 一、课题名字:求解双对角线性方程组 二、问题描述 考虑一种特殊的对角线元素不为零的双对角线性方程组(以n=7为例) ?????????? ?????? ? ???? ?d a d a d a d a d a d a d 766 55 44 3 32 211??????????????????????x x x x x x x 7654321=?????????? ? ???????????b b b b b b b 7654321 写出一般的n (奇数)阶方程组程序(不要用消元法,因为不用它可以十分方便的解出这个方程组) 。 三、摘要 本文提出解三对角矩阵的一种十分简便的方法——追赶法,该算法适用于任意三对角方程组的求解。 四、引言 对于一般给定的d Ax =,我们可以用高斯消去法求解。但是高斯消去法过程复杂繁琐。对于特殊的三对角矩阵,如果A 是不可约的弱对角占优矩阵,可以将A 分解为UL ,再运用追赶法求解。

五、计算公式(数学模型) 对于形如????? ?? ????? ??? ?---b a c b a c b a c b n n n n n 111 2 2 2 11... ... ...的三对角矩阵UL A =,容易验证U 、L 具有如下形式: ??????? ????? ??? ?=u a u a u a u n n U ...... 3 3 22 1 , ?? ????? ? ?? ??????=1 (1) 1132 1l l l L 比较UL A =两边元素,可以得到 ? ?? ??-== = l a b u u c l b u i i i i i i 111 i=2, 3, ... ,n 考虑三对角线系数矩阵的线性方程组 f Ax = 这里()T n x x x x ... 2 1 = ,()T n f f f f ... 2 1 = 令y Lx =,则有 f Uy = 于是有 ()?????-== --u y a f y u f y i i i i i 1 1 11 1 * i=2, 3, ... ,n 再根据y Lx =可得到

数值计算实验报告

(此文档为word格式,下载后您可任意编辑修改!) 2012级6班###(学号)计算机数值方法 实验报告成绩册 姓名:宋元台 学号: 成绩:

数值计算方法与算法实验报告 学期: 2014 至 2015 第 1 学期 2014年 12月1日课程名称: 数值计算方法与算法专业:信息与计算科学班级 12级5班 实验编号: 1实验项目Neton插值多项式指导教师:孙峪怀 姓名:宋元台学号:实验成绩: 一、实验目的及要求 实验目的: 掌握Newton插值多项式的算法,理解Newton插值多项式构造过程中基函数的继承特点,掌握差商表的计算特点。 实验要求: 1. 给出Newton插值算法 2. 用C语言实现算法 二、实验内容 三、实验步骤(该部分不够填写.请填写附页)

1.算法分析: 下面用伪码描述Newton插值多项式的算法: Step1 输入插值节点数n,插值点序列{x(i),f(i)},i=1,2,……,n,要计算的插值点x. Step2 形成差商表 for i=0 to n for j=n to i f(j)=((f(j)-f(j-1)(x(j)-x(j-1-i)); Step3 置初始值temp=1,newton=f(0) Step4 for i=1 to n temp=(x-x(i-1))*temp*由temp(k)=(x-x(k-1))*temp(k-1)形成 (x-x(0).....(x-x(i-1)* Newton=newton+temp*f(i); Step5 输出f(x)的近似数值newton(x)=newton. 2.用C语言实现算法的程序代码 #includeMAX_N) { printf("the input n is larger than MAX_N,please redefine the MAX_N.\n"); return 1; } if(n<=0) { printf("please input a number between 1 and %d.\n",MAX_N); return 1; } printf("now input the (x_i,y_i)i=0,...%d\n",n); for(i=0;i<=n;i++) { printf("please input x(%d) y(%d)\n",i,i);

排序问题实验报告

2010级数据结构实验报告 实验名称:排序 姓名:袁彬 班级: 2009211120 班内序号: 09 学号: 09210552 日期: 2010 年12 月19 日 1.实验要求 试验目的: 通过选择试验内容中的两个题目之一,学习、实现、对比各种排序的算法,掌握各种排序算法的优缺点,以及各种算法使用的情况。 试验内容: 题目一: 使用简单数组实现下面各种排序算法,并进行比较。 排序算法如下: ①插入排序; ②希尔排序 ③冒泡排序; ④快速排序; ⑤简单选择排序; ⑥堆排序 ⑦归并排序 ⑧基数排序 ⑨其他。 具体要求如下: ①测试数据分为三类:正序,逆序,随机数据。 ②对于这三类数据,比较上述排序算法中关键字的比较次数和移动次数(其中关键字交换记为三次移动)。 ③对于这三类数据,比较上述排序算法中不同算法的执行时间,精确到微妙。 ④对②和③的结果进行分析,验证上述各种算法的时间复杂度。 ⑤编写main()函数测试各种排序算法的正确性。 题目二: 使用链表实现下面各种排序算法,并进行比较。 排序算法如下: ①插入排序; ②冒泡排序; ③快速排序;

④简单选择排序; ⑤其他。 具体要求如下: ①测试数据分为三类:正序,逆序,随机数据。 ②对于这三类数据,比较上述排序算法中关键字的比较次数和移动次数(其中关键字交换记为三次移动)。 ③对于这三类数据,比较上述排序算法中不同算法的执行时间,精确到微妙(选作) ④对②和③的结果进行分析,验证上述各种算法的时间复杂度。 ⑤编写main()函数测试各种排序算法的正确性。 2. 程序分析 2.1 存储结构 程序中每一个算法均是用一个类来表示的,类中有自己的构造函数、排序函数。 程序的储存结构采用数组。数组的第一个位置不存储数据。数据从第二个位置开始。数组中的相对位置为数组的下标。 2.2 关键算法分析 ㈠、关键算法: 1、插入排序函数:Insert s ort(int n) ①、从2开始做循环,依次和前面的数进行比较:for(int i=2;i<=n;i++) ②、如果后面的比前面的小,则进行前移:if(number[i]=1;d=d/2) ②、在自己的间隔中进行简单插入排序,进行循环:for(int i=d+1;i<=n;i++) ③、如果后面的数据比前面的小,进行前移:if(number[i]0;j=j-d) ⑥、大的数据后移:number[j+d]=number[j]; ⑦、哨兵归位:number[j+d]=number[0]; 3、冒泡排序函数:Bubble s ort(int n) ①、设置有序无序的边界点:int pos=n; ②、当边界点不为空进行循环:while(pos!=0) ③、边界点传递给bound:int bound=pos; ④、从开始到边界点进行循环:for(int i=1;inumber[i+1]) ⑥、交换:number[0]=number[i];number[i]=number[i+1];number[i+1]=number[0]; ⑦、从小设置边界点:pos=i; 4、一趟快速排序函数:partion(int first,int end) ①、传递设置整个数据的起点和终点:int i=first;int j=end; ②、设置中轴:number[0]=number[i]; ③、当end大于first进行循环:while(i

《算法设计与分析》实验一

学号1607070212 《算法设计与分析》 实验报告一 学生姓名张曾然 专业、班级16软件二班 指导教师唐国峰 成绩 计算机与信息工程学院软件工程系 2018 年9 月19 日

实验一:递归策略运用练习 一、实验目的 本次实验是针对递归算法的算法设计及应用练习,旨在加深学生对该算法原理的理解,提高学生运用该算法解决问题的能力。 二、实验步骤与要求 1.实验前复习课程所学知识以及阅读和理解指定的课外阅读材料; 2.学生独自完成实验指定内容; 3.实验结束后,用统一的实验报告模板编写实验报告。 4.提交说明: (1)电子版提交说明: a 需要提交Winrar压缩包,文件名为“《算法设计与分析》实验一_学号_姓名”, 如“《算法设计与分析》实验一_09290101_张三”。 b 压缩包内为一个“《算法设计与分析》实验一_学号_姓名”命名的顶层文件夹, 其下为两个文件夹,一个文件夹命名为“源程序”,另一个文件夹命名为“实验 报告电子版”。其下分别放置对应实验成果物。 (2)打印版提交说明: a 不可随意更改模板样式。 b 字体:中文为宋体,大小为10号字,英文为Time New Roman,大小为10号 字。 c 行间距:单倍行距。 (3)提交截止时间:2018年10月10日16:00。 三、实验项目 1.运用递归策略设计算法实现下述题目的求解过程。 题目列表如下: 【必做题】 (1)运动会开了N天,一共发出金牌M枚。第一天发金牌1枚加剩下的七分之一枚,第二天发金牌2枚加剩下的七分之一枚,第3天发金牌3枚加剩下的七分之一枚,以后每天都照此办理。到了第N天刚好还有金牌N枚,到此金牌全部发完。编程求N和M。 (2)国王分财产。某国王临终前给儿子们分财产。他把财产分为若干份,然后给第一个儿子一份,再加上剩余财产的1/10;给第二个儿子两份,再加上剩余财产的1/10;……;给第i 个儿子i份,再加上剩余财产的1/10。每个儿子都窃窃自喜。以为得到了父王的偏爱,孰不知国王是“一碗水端平”的。请用程序回答,老国王共有几个儿子?财产共分成了多少份?

数值分析实验报告1

实验一 误差分析 实验(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 )1.1() ()20()2)(1()(20 1∏=-=---=k k x x x x x p 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 )2.1(0 )(19=+x x p ε 其中ε是一个非常小的数。这相当于是对()中19x 的系数作一个小的扰动。我们希望比较()和()根的差别,从而分析方程()的解对扰动的敏感性。 实验内容:为了实现方便,我们先介绍两个Matlab 函数:“roots ”和“poly ”。 roots(a)u = 其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。设a 的元素依次为121,,,+n a a a ,则输出u 的各分量是多项式方程 01121=+++++-n n n n a x a x a x a 的全部根;而函数 poly(v)b =

的输出b 是一个n+1维变量,它是以n 维变量v 的各分量为根的多项式的系数。可见“roots ”和“poly ”是两个互逆的运算函数。 ;000000001.0=ess );21,1(zeros ve = ;)2(ess ve = ))20:1((ve poly roots + 上述简单的Matlab 程序便得到()的全部根,程序中的“ess ”即是()中的ε。 实验要求: (1)选择充分小的ess ,反复进行上述实验,记录结果的变化并分析它们。 如果扰动项的系数ε很小,我们自然感觉()和()的解应当相差很小。计算中你有什么出乎意料的发现表明有些解关于如此的扰动敏感性如何 (2)将方程()中的扰动项改成18x ε或其它形式,实验中又有怎样的现象 出现 (3)(选作部分)请从理论上分析产生这一问题的根源。注意我们可以将 方程()写成展开的形式, ) 3.1(0 ),(1920=+-= x x x p αα 同时将方程的解x 看成是系数α的函数,考察方程的某个解关于α的扰动是否敏感,与研究它关于α的导数的大小有何关系为什么你发现了什么现象,哪些根关于α的变化更敏感 思考题一:(上述实验的改进) 在上述实验中我们会发现用roots 函数求解多项式方程的精度不高,为此你可以考虑用符号函数solve 来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考Matlab 的帮助。

各种排序实验报告

【一】需求分析 课程题目是排序算法的实现,课程设计一共要设计八种排序算法。这八种算法共包括:堆排序,归并排序,希尔排序,冒泡排序,快速排序,基数排序,折半插入排序,直接插入排序。 为了运行时的方便,将八种排序方法进行编号,其中1为堆排序,2为归并排序,3为希尔排序,4为冒泡排序,5为快速排序,6为基数排序,7为折半插入排序8为直接插入排序。 【二】概要设计 1.堆排序 ⑴算法思想:堆排序只需要一个记录大小的辅助空间,每个待排序的记录仅占有一个存储空间。将序列所存储的元素A[N]看做是一棵完全二叉树的存储结构,则堆实质上是满足如下性质的完全二叉树:树中任一非叶结点的元素均不大于(或不小于)其左右孩子(若存在)结点的元素。算法的平均时间复杂度为O(N log N)。 ⑵程序实现及核心代码的注释: for(j=2*i+1; j<=m; j=j*2+1) { if(j=su[j]) break; su[i]=su[j]; i=j; } su[i]=temp; } void dpx() //堆排序 { int i,temp; cout<<"排序之前的数组为:"<=0; i--) { head(i,N); } for(i=N-1; i>0; i--) {

temp=su[i]; su[i]=su[0]; su[0]=temp; head(0,i-1); } cout<<"排序之后的数组为:"<

《算法设计与分析》递归算法典型例题

算法递归典型例题 实验一:递归策略运用练习 三、实验项目 1.运用递归策略设计算法实现下述题目的求解过程。 题目列表如下: (1)运动会开了N天,一共发出金牌M枚。第一天发金牌1枚加剩下的七分之一枚,第二天发金牌2枚加剩下的七分之一枚,第3天发金牌3枚加剩下的七分之一枚,以后每天都照此办理。到了第N天刚好还有金牌N枚,到此金牌全部发完。编程求N和M。 (2)国王分财产。某国王临终前给儿子们分财产。他把财产分为若干份,然后给第一个儿子一份,再加上剩余财产的1/10;给第二个儿子两份,再加上剩余财产的1/10;……;给第i 个儿子i份,再加上剩余财产的1/10。每个儿子都窃窃自喜。以为得到了父王的偏爱,孰不知国王是“一碗水端平”的。请用程序回答,老国王共有几个儿子?财产共分成了多少份? 源程序: (3)出售金鱼问题:第一次卖出全部金鱼的一半加二分之一条金鱼;第二次卖出乘余金鱼的三分之一加三分之一条金鱼;第三次卖出剩余金鱼的四分之一加四分之一条金鱼;第四次卖出剩余金鱼的五分之一加五分之一条金鱼;现在还剩下11条金鱼,在出售金鱼时不能把金鱼切开或者有任何破损的。问这鱼缸里原有多少条金鱼? (4)某路公共汽车,总共有八站,从一号站发轩时车上已有n位乘客,到了第二站先下一半乘客,再上来了六位乘客;到了第三站也先下一半乘客,再上来了五位乘客,以后每到一站都先下车上已有的一半乘客,再上来了乘客比前一站少一个……,到了终点站车上还有乘客六人,问发车时车上的乘客有多少? (5)猴子吃桃。有一群猴子摘来了一批桃子,猴王规定每天只准吃一半加一只(即第二天吃剩下的一半加一只,以此类推),第九天正好吃完,问猴子们摘来了多少桃子? (6)小华读书。第一天读了全书的一半加二页,第二天读了剩下的一半加二页,以后天天如此……,第六天读完了最后的三页,问全书有多少页? (7)日本著名数学游戏专家中村义作教授提出这样一个问题:父亲将2520个桔子分给六个儿子。分完后父亲说:“老大将分给你的桔子的1/8给老二;老二拿到后连同原先的桔子分1/7给老三;老三拿到后连同原先的桔子分1/6给老四;老四拿到后连同原先的桔子分1/5给老五;老五拿到后连同原先的桔子分1/4给老六;老六拿到后连同原先的桔子分1/3给老大”。结果大家手中的桔子正好一样多。问六兄弟原来手中各有多少桔子? 四、实验过程 (一)题目一:…… 1.题目分析 由已知可得,运动会最后一天剩余的金牌数gold等于运动会举行的天数由此可倒推每一 天的金牌剩余数,且每天的金牌数应为6的倍数。 2.算法构造 设运动会举行了N天, If(i==N)Gold[i]=N; Else gold[i]=gold[i+1]*7/6+i;

数值分析实验报告模板

数值分析实验报告模板 篇一:数值分析实验报告(一)(完整) 数值分析实验报告 1 2 3 4 5 篇二:数值分析实验报告 实验报告一 题目:非线性方程求解 摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。利用二分法求解给定非线性方程的根,在给定的范围内,假设f(x,y)在[a,b]上连续,f(a)xf(b) 直接影响迭代的次数甚至迭代的收敛与发散。即若x0 偏离所求根较远,Newton法可能发散的结论。并且本实验中还利用利用改进的Newton法求解同样的方程,且将结果与Newton法的结果比较分析。 前言:(目的和意义) 掌握二分法与Newton法的基本原理和应用。掌握二分法的原理,验证二分法,在选对有根区间的前提下,必是收

敛,但精度不够。熟悉Matlab语言编程,学习编程要点。体会Newton使用时的优点,和局部收敛性,而在初值选取不当时,会发散。 数学原理: 对于一个非线性方程的数值解法很多。在此介绍两种最常见的方法:二分法和Newton法。 对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b) Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式xk?1?xk?f(xk) f'(xk) 产生逼近解x*的迭代数列{xk},这就是Newton法的思想。当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。另外,若将该迭代公式改进为 xk?1?xk?rf(xk) 'f(xk) 其中r为要求的方程的根的重数,这就是改进的Newton 法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。 程序设计: 本实验采用Matlab的M文件编写。其中待求解的方程写成function的方式,如下 function y=f(x);

数据结构内排序实验报告

一、实验目的 1、了解内排序都是在内存中进行的。 2、为了提高数据的查找速度,需要对数据进行排序。 3、掌握内排序的方法。 二、实验内容 1、设计一个程序e xp10—1.cpp实现直接插入排序算法,并输出{9,8,7,6,5,4,3,2,1,0}的排序 过程。 (1)源程序如下所示: //文件名:exp10-1.cpp #include #define MAXE 20 //线性表中最多元素个数 typedef int KeyType; typedef char InfoType[10]; typedef struct //记录类型 { KeyType key; //关键字项 InfoType data; //其他数据项,类型为InfoType } RecType; void InsertSort(RecType R[],int n) //对R[0..n-1]按递增有序进行直接插入排序 { int i,j,k; RecType temp; for (i=1;i=0 && temp.key

《算法设计与分析》实验报告

算法设计与分析课程实验项目目录 学生:学号: *实验项目类型:演示性、验证性、综合性、设计性实验。 *此表由学生按顺序填写。

本科实验报告专用纸 课程名称算法设计与分析成绩评定 实验项目名称蛮力法指导教师 实验项目编号实验项目类型设计实验地点机房 学生学号 学院信息科学技术学院数学系信息与计算科学专业级 实验时间2012年3月1 日~6月30日温度24℃ 1.实验目的和要求: 熟悉蛮力法的设计思想。 2.实验原理和主要容: 实验原理:蛮力法常直接基于问题的描述和所涉及的概念解决问题。 实验容:以下题目任选其一 1).为蛮力字符串匹配写一段可视化程序。 2).写一个程序,实现凸包问题的蛮力算法。 3).最著名的算式谜题是由大名鼎鼎的英国谜人 H.E.Dudeney(1857-1930)给出的: S END +MORE MONEY . 这里有两个前提假设: 第一,字母和十进制数字之间一一对应,也就是每个字母只代表一个数字,而且不同的字母代表不同的数字;第二,数字0不出现在任何数的最左边。求解一个字母算术意味着找到每个字母代表的是哪个数字。请注意,解可能并不是唯一的,不同人的解可能并不相同。3.实验结果及分析: (将程序和实验结果粘贴,程序能够注释清楚更好。)

该算法程序代码如下: #include "stdafx.h" #include "time.h" int main(int argc, char* argv[]) { int x[100],y[100]; int a,b,c,i,j,k,l,m,n=0,p,t1[100],num; int xsat[100],ysat[100]; printf("请输入点的个数:\n"); scanf("%d",&num); getchar(); clock_t start,end; start=clock(); printf("请输入各点坐标:\n"); for(l=0;l

(完整版)哈工大-数值分析上机实验报告

实验报告一 题目:非线性方程求解 摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。 前言:(目的和意义) 掌握二分法与Newton法的基本原理和应用。 数学原理: 对于一个非线性方程的数值解法很多。在此介绍两种最常见的方法:二分法和Newton法。 对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b)<0,且f(x)在[a,b]内仅有一个实根x*,取区间中点c,若,则c恰为其根,否则根据f(a)f(c)<0是否成立判断根在区间[a,c]和[c,b]中的哪一个,从而得出新区间,仍称为[a,b]。重复运行计算,直至满足精度为止。这就是二分法的计算思想。

Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式 产生逼近解x*的迭代数列{x k},这就是Newton法的思想。当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。另外,若将该迭代公式改进为 其中r为要求的方程的根的重数,这就是改进的Newton法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。 程序设计: 本实验采用Matlab的M文件编写。其中待求解的方程写成function的方式,如下 function y=f(x); y=-x*x-sin(x); 写成如上形式即可,下面给出主程序。 二分法源程序: clear %%%给定求解区间 b=1.5; a=0;

%%%误差 R=1; k=0;%迭代次数初值 while (R>5e-6) ; c=(a+b)/2; if f12(a)*f12(c)>0; a=c; else b=c; end R=b-a;%求出误差 k=k+1; end x=c%给出解 Newton法及改进的Newton法源程序:clear %%%% 输入函数 f=input('请输入需要求解函数>>','s') %%%求解f(x)的导数 df=diff(f);

内部排序比较 (实验报告+源程序)C++

实验报告3 实验名称:数据结构与软件设计实习 题目:内部排序算法比较 专业:生物信息学班级:01 姓名:学号:实验日期:2010.07.24 一、实验目的: 比较冒泡排序、直接插入排序、简单选择排序、快速排序、希尔排序; 二、实验要求: 待排序长度不小于100,数据可有随机函数产生,用五组不同输入数据做比较,比较的指标为关键字参加比较的次数和关键字移动的次数; 对结果做简单的分析,包括各组数据得出结果的解释; 设计程序用顺序存储。 三、实验内容 对各种内部排序算法的时间复杂度有一个比较直观的感受,包括关键字比较次数和关键字移动次数。 将排序算法进行合编在一起,可考虑用顺序执行各种排序算法来执行,最后输出所有结果。 四、实验编程结果或过程: 1. 数据定义 typedef struct { KeyType key; }RedType; typedef struct { RedType r[MAXSIZE+1]; int length; }SqList; 2. 函数如下,代码详见文件“排序比较.cpp”int Create_Sq(SqList &L) void Bubble_sort(SqList &L)//冒泡排序void InsertSort(SqList &L)//插入排序 void SelectSort(SqList &L) //简单选择排序int Partition(SqList &L,int low,int high) void QSort(SqList &L,int low,int high)//递归形式的快速排序算法 void QuickSort(SqList &L) void ShellInsert(SqList &L,int dk)//希尔排序 void ShellSort(SqList &L,int dlta[ ]) 3. 运行测试结果,运行结果无误,如下图语速个数为20

算法设计与分析实验报告 统计数字问题

算法设计与分析实验报告 实验名称统计数字问题评分 实验日期年月日指导教师 姓名专业班级学号 一.实验要求 1、掌握算法的计算复杂性概念。 2、掌握算法渐近复杂性的数学表述。 3、掌握用C++语言描述算法的方法。 4.实现具体的编程与上机实验,验证算法的时间复杂性函数。 二.实验内容 统计数字问题 1、问题描述 一本书的页码从自然数1 开始顺序编码直到自然数n。书的页码按照通常的习惯编排,每个页码都不含多余的前导数字0。例如,第6 页用数字6 表示,而不是06 或006 等。数字计数问题要求对给定书的总页码n,计算出书的全部页码中分别用到多少次数字0,1,2, (9) 2、编程任务 给定表示书的总页码的10 进制整数n (1≤n≤109) 。编程计算书的全部页码中分别用到多少次数字0,1,2, (9) 三.程序算法 将页码数除以10,得到一个整数商和余数,商就代表页码数减余数外有多少个1—9作为个位数,余数代表有1—余数本身这么多个数作为剩余的个位数,此外,商还代表1—商本身这些数出现了10次,余数还代表剩余的没有计算的商的大小的数的个数。把这些结果统计起来即可。 四.程序代码 #include int s[10]; //记录0~9出现的次数 int a[10]; //a[i]记录n位数的规律 void sum(int n,int l,int m) { if(m==1) {

int zero=1; for(int i=0;i<=l;i++) //去除前缀0 { s[0]-=zero; zero*=10; } } if(n<10) { for(int i=0;i<=n;i++) { s[i]+=1; } return; }//位数为1位时,出现次数加1 //位数大于1时的出现次数 for(int t=1;t<=l;t++)//计算规律f(n)=n*10^(n-1) { m=1;int i; for(i=1;i

南京邮电大学算法设计实验报告——动态规划法

实验报告 (2009/2010学年第一学期) 课程名称算法分析与设计A 实验名称动态规划法 实验时间2009 年11 月20 日指导单位计算机学院软件工程系 指导教师张怡婷 学生姓名丁力琪班级学号B07030907 学院(系) 计算机学院专业软件工程

实验报告 实验名称动态规划法指导教师张怡婷实验类型验证实验学时2×2实验时间2009-11-20一、实验目的和任务 目的:加深对动态规划法的算法原理及实现过程的理解,学习用动态规划法解决实际应用中的最长公共子序列问题。 任务:用动态规划法实现求两序列的最长公共子序列,其比较结果可用于基因比较、文章比较等多个领域。 要求:掌握动态规划法的思想,及动态规划法在实际中的应用;分析最长公共子序列的问题特征,选择算法策略并设计具体算法,编程实现两输入序列的比较,并输出它们的最长公共子序列。 二、实验环境(实验设备) 硬件:计算机 软件:Visual C++

三、实验原理及内容(包括操作过程、结果分析等) 1、最长公共子序列(LCS)问题是:给定两个字符序列X={x1,x2,……,x m}和Y={y1,y2,……,y n},要求找出X和Y的一个最长公共子序列。 例如:X={a,b,c,b,d,a,b},Y={b,d,c,a,b,a}。它们的最长公共子序列LSC={b,c,d,a}。 通过“穷举法”列出所有X的所有子序列,检查其是否为Y的子序列并记录最长公共子序列并记录最长公共子序列的长度这种方法,求解时间为指数级别的,因此不可取。 2、分析LCS问题特征可知,如果Z={z1,z2,……,z k}为它们的最长公共子序列,则它们一定具有以下性质: (1)若x m=y n,则z k=x m=y n,且Z k-1是X m-1和Y n-1的最长公共子序列; (2)若x m≠y n且x m≠z k,则Z是X m-1和Y的最长公共子序列; (3)若x m≠y n且z k≠y n,则Z是X和Y的最长公共子序列。 这样就将求X和Y的最长公共子序列问题,分解为求解较小规模的问题: 若x m=y m,则进一步分解为求解两个(前缀)子字符序列X m-1和Y n-1的最长公共子序列问题; 如果x m≠y n,则原问题转化为求解两个子问题,即找出X m-1和Y的最长公共子序列与找出X 和Y n-1的最长公共子序列,取两者中较长者作为X和Y的最长公共子序列。 由此可见,两个序列的最长公共子序列包含了这两个序列的前缀的最长公共子序列,具有最优子结构性质。 3、令c[i][j]保存字符序列X i={x1,x2,……,x i}和Y j={y1,y2,……,y j}的最长公共子序列的长度,由上述分析可得如下递推式: 0 i=0或j=0 c[i][j]= c[i-1][j-1]+1 i,j>0且x i=y j max{c[i][j-1],c[i-1][j]} i,j>0且x i≠y j 由此可见,最长公共子序列的求解具有重叠子问题性质,如果采用递归算法实现,会得到一个指数时间算法,因此需要采用动态规划法自底向上求解,并保存子问题的解,这样可以避免重复计算子问题,在多项式时间内完成计算。 4、为了能由最优解值进一步得到最优解(即最长公共子序列),还需要一个二维数组s[][],数组中的元素s[i][j]记录c[i][j]的值是由三个子问题c[i-1][j-1]+1,c[i][j-1]和c[i-1][j]中的哪一个计算得到,从而可以得到最优解的当前解分量(即最长公共子序列中的当前字符),最终构造出最长公共子序列自身。

相关文档
最新文档