高层建筑转换层结构设计的

高层建筑转换层结构设计的
高层建筑转换层结构设计的

城市建筑┃建筑结构┃U RBANISM A ND A RCHITECTURE ┃A RCHITECTURAL S TRUCTURE

53

高层建筑转换层结构设计的探讨

Discussion on the Structure Design of High-rise Building Conversion Layer

■ 蒋晓华 ■ Jiang Xiaohua

[摘 要] 随着我国建筑建设技术水平的不断提升,高层建筑成为了当前建筑建设的主要对象,而设计人员在当前对高层建筑进行设计的过程中,开始面临越来越多的转换层的问题。转换层的存在,加大了高层建筑空间结构设计的复杂性,设计人员必须立足于转换层的具体特点,实施针对性的结构设计,才能避免建筑建设问题。本文便是以高层建筑中的转换层为主题,通过探讨转换层的相关含义、类型、设计原则等,着重讨论了优化其结构设计的几点策略。

[关键词] 高层建筑 转换层 结构设计 优化策略

[Abstract] Along with the continuous improvement of China's construction technological level, high-rise buildings become the main target of the current building, and designers in the de- sign of high-rise buildings in the process, began to face increa- sing conversion layer problem. The conversion layer increased the complexity of space in high-rise building structure design, and design personnel must be based on its specific characterri- stics to design the structure, in order to avoid the construction problem. This paper taking the conversion layer of high-rise building as the theme, through the discussion of related meani- ng, conversion layer type, design principles, focuses on the op- timization of several strategies for its structure design.

[Keywords] high-rise buildings, the conversion layer, structure design, optimization strategy

近年来,高层建筑建设在城市中的发展势头日益强盛,人们对于高层建筑的功能要求也逐渐地趋于多样化,办公楼层、商店、居民区等混杂在统一栋楼上,这就为不同楼层的空间结构提出了不同的需求,设计人员必须为建筑加设转换层方能同时满足各部门使用群体的要求。而转换层的设计较为复杂,非常容易出现质量问题,因此,设计人员在进行设计的过程中,必须充分把握转换层的类型与特点,以采取适当的结构设计方式,充分注重设计工作的重点与难点,以推动其设计目标的达成。 一、 高层建筑中转换层结构相关问题概述

1. 含义

高层建筑结构具有上部楼层受力小而上部楼层受力大的特点,设计人员普遍会提高下部结构的刚度以及墙、梁、柱等的数量,并在楼层逐渐升高的过程中,减少设计中的墙、柱结构应用,继而使建筑形成稳固的结构支撑柱网,这就决定高层建筑的下部结构空间要大于上部结构的空间,此种设计与常规建筑结构设计方案恰好相反,设计人员必须在空间结构转变的楼层加设水平的转换构件,才能保证设计目标的达成,此种结构设计即为高层建筑的转换层。

2. 形式

目前,高层建筑中转换层的设计,主要采取箱、

梁、板、柱、桁架、框架这几种结构形式,各种结构形式在设计中存在着显著的差别,这些差别便是设计者在进行结构设计时,必须遵从的前提与依据。本文下面就对箱、梁、板以及框架几种结构加以分析。

(1)梁式转换结构(如图1)常用于垂直转换施工,它以上部墙到转换梁再到下部柱的途径传递受力,传递路径直接顺畅,便于进行受力计算以及工程分析,高度大致为0.8~6.0 m,造价比较低。箱式结构(如图2)是在单项和双向的托梁配合的基础上,再与上层和下层楼板共同浇筑而成结构,

具有较高的刚度。

1 托梁与双向梁

图2 箱式结构 (2)板式结构(如图3)应用于上层和下层之间的柱网过多错开,且不具有规则的结构布置,梁支托难以实施楼层转换,板的厚度约为2.0~2.8 m,需要能够满足抗剪与抗切的要求,且此种结构便于灵活布设,但是它具有较大的自重,需要耗费诸多

材料。

图3 板式结构

(3)框架结构是以巨型柱或者竖向的筒体为大梁而构成的转换结构,具有较高的抗震性能,其下层的柱体结构布设,必须考虑实际拉应力的状况来选择适当的构件,且要在施工之前加设稳固的临时支撑结构,为目前转换层结构主要发展的趋势。

3. 原则

高层建筑中转换层的存在,非常容易造成建筑物在竖向层面的刚度突变,而不利于建筑对震害进行抵抗,所以,设计人员必须充分考虑这一问题,做好对于转换层结构的布设,其布设的原则如下。

(1)尽量将竖向的构件适当的减少,以降低转换层的刚度突变频率,且尽量将转换层设置于较低的楼层位置,刚度应当适当控制于较小的范围。

(2)设计人员要充分考虑楼层的结构受力状况,根据其受力传递的途径,选择受力结构适当的形式作为其转换层主要结构,以保证设计人员对于结构的分析及质量的控制。

二、 高层建筑中转换层结构优化设计策略

(1)设计人员在对转换层进行设计时,必须结合该建筑的具体设计方案,来选择适当的梁式、箱式或桁架、框架式的结构,以保证其转换层结构和建筑整体结构之间在设计方面的协调性,尽可能使质量中心贴近于刚度中心。比如,建筑的上层结构与下层结构在柱网错开幅度过大或全部错开时,应当选择梁式的转换层结构,以使上部轴网和下部轴网之间尽可能多的对齐。

(2)设计人员还要认真地做好对于落地构件的对称、均匀设计,并适当提高其强度等级与截面尺寸,以钢筋、混凝土材质为材料,保证转换层以下

的抗侧力构件对于抗剪以及抗弯刚度需求的满足。同时,设计人员还要避免建筑竖向结构刚度的过大差异,保证上层与下层二者的转换层结构差值处于1左右,并适当地将落地墙的厚度增加,并缩小洞口的尺寸,或将补偿剪力墙设置在结构中,以使建筑具有适当的空间刚度。

(3)设计人员应当通过根据梁跨中部位支座的正弯矩与负弯矩二者减弱的速度规律(前者快后者慢),将下部的钢筋设计为全部深进锚固结构的形式,可以取消弯筋设置,腰筋的直径要保持在16以上,配置间距控制于200 mm 以内。且,高层建筑的结构转换层不同于其它普通的薄壁杆件,它具有复杂的形状及受力状况,且需要承担相对集中的应力,因此,设计人员必须以整体计算作为基础,认真做好对于各部位构件的局部应力计算,并按照实际的应力分布状况,为转换层结构适当的配筋。

(4)设计人员还要尽量做好对于建筑的空间布设,高层建筑中的结构与设备的转换层一般位于同一楼层,若楼层高度为2.9 m,势必会造成楼层空间的浪费,若楼层高度小于2.2 m,又会造成建筑扭转

刚度与侧移刚度二者的增加,所以,为了应对建筑竖向刚度的突变,设计者还要尽可能地避免其转换层的过高设置(一般位于6层以下),并且可以适当地将结构与设备的转换层分开设置,前者设置于2~3层,而后者设置于4~5层。

(5)设计人员在设计转换层结构时,必须要使剪力墙某部分处于直接接地的布设状况,且框架支柱必须均匀疏密,剪力墙与支柱二者时间的距离适合控制于12 m 以内。同时,剪力墙应当优先选择大开间的布置形式,并适当地将下部结构的强度提升。在对转换大梁进行设计时,设计人员还要保证梁体在承受框架柱的应力的基础上,必须能够全面地承担短肢墙诱发的内力,为了达到这一目标,以加腋法为转换梁的两端进行处理,以提升其结构的抗剪力性能。

浅析高层建筑桁架转换层结构设计

浅析高层建筑桁架转换层结构设计 发表时间:2019-07-30T11:57:40.153Z 来源:《基层建设》2019年第14期作者:黄桂生 [导读] 摘要:复杂的建筑结构常常需要采用结构转换层来完成上、下层建筑物结构的转换,一般结构层相比,转换层结构具有结构重量大、结构层刚度大、几何尺寸超大、受力复杂等特点。 身份证:45252819750527XXXX 摘要:复杂的建筑结构常常需要采用结构转换层来完成上、下层建筑物结构的转换,一般结构层相比,转换层结构具有结构重量大、结构层刚度大、几何尺寸超大、受力复杂等特点。这意味着转换结构组成了建筑物的主要构件,它们的设计是否合理、安全、经济对整个结构的安全性、结构造价、施工费用等有着重要的影响。通过时钢桁架转换层高层建设结构体系的工程实例的分析,从结构选型的确定等方面进行系统的研究。以得到一些对设计有实际指导意义的结论。 关键词:建筑工程;结构设计;转换层构造 在当前建筑结构设计过程中,为了更好的适合建筑物的各部楼层所体现的安全使用功能的需求,往往需要在各楼层之间布置转换层以消除楼层中间的较大差异。转换层的设置起到传承上部结构荷载,保持结构稳定的作用,是建筑结构中的重要部位,也是建筑结构设计的重点和难点。因此,深入探讨高层建筑转换层结构设计问题,对于促进我国民用高层建筑的发展具有一定的现实意义。 1.转换层高层建筑结构的构造要求 结构设计不仅是对建筑物本身功能的设计,还关系到建筑物的建设成本,这就需要设计人员优化结构设计,降低建设成本。其优化目标就是实现建筑的本体功能性、安全性、经济性与环保性。为了实现这一目标,未来的从事结构设计者将遵循功能性、安全性、经济性、环保性四位一体的设计思路,真正实现未来建筑结构的优化升级,为人类提供一个更好的物质生存与发展环境。 转换层的结构应按“强化转换层及其下部、弱化转换层上部”的原则,使转换层上下主体结构的侧向刚度尽量接近,平滑过渡。抗震设计时。控制转换层上下主体的结构侧向刚度,当转换层设置在3层及3层以上时。其楼层侧向刚度尚不应小于相邻上部楼层侧向刚度的60%。将转换桁架置于整体空间结构中进行整体分析。此时,腹杆作为柱单元。上、下弦杆作为梁单元,按空间协同工作玻三维空间分析程序计算整体的内力和位移。计算时,转换桁架按实际杆件布置参与整体分析,但上、下弦杆的轴向刚度、弯曲刚度中应计入楼板的作用。整体结构计算需采用两个以上不同力学模型的程序进行抗震计算。还应进行弹性时程分析并宜采用弹塑性时程分析校核。转换层的结构设计中应按转换层“强斜腹杆,强节点”。桁架转换层上部框架结构接“强柱弱梁、强边柱弱中柱”的原则,以保证转换层的结构具有较好的延性,确保塑性饺在梁端出现,能够满足工程抗震的要求。转换桁架的相邻层楼板宜双向双层配筋,每个方向贯通钢筋的配筋率不宜小于0.25%,且在楼板边缘、孔洞边缘应结合边粱设置予以加强。转换桁架上、下弦杆的配筋应加上楼板平面内弯曲计算引起的附加钢筋。 2.转换层商层建筑结构实例分析 对于大跨度的钢桁架转换层结构的受力。各方面的影响因素较多,导致结构受力情况比较复杂,对它的受力影响因素进行探讨具有实际意义,可为实际工程的设计与施工提供理论依据。因此,通过对大跨度钢桁架转换层的受力影响因素进行分析,认识钢桁架转换层的受力特点。以期充分利用钢结构构件受力性能好的特点,使其承担较多的荷载作用。以调整端部混凝土结构的受力,减少混凝土结构的荷载作用,使整个结构体系的受力更为合理。下面结合工程实例分析高层转换桁架的受力影响因素及其受力特点,某高层建筑为地上24层,地下2层,总建筑面积72788m2,其中地上58300m2,地下14488m2。平面长92.1M,宽49M。结构檐口标高为108.80m,中间有电梯、楼梯、机房等的高层建筑。 2.1梁式转换与精架转换的比较确定 与最为常见的转换结构形式粱式转换相比,本例中转换粱的跨度很大而且上部荷载较大,采用梁式的转换结构,转换梁的截面必然很大,一方面导致转换梁下部空间无法再利用、自重大、配筋多、不经济等缺点;另一方面导致沿竖向结构质量和刚度分布在转换层的变化不连续。发生突变,对结构的整体抗震性能不利。因此,需要另一种形式的转换构件来解决这个问题,而转换桁架具有传力明确,传力途径清楚,虽构造和施工复杂,但转换桁架不仅为开洞和设置管道创造了条件,而且它们的位置与大小都有很大的灵活性,可以充分利用该转换层的建筑空间,而且桁架转换层的节间采用轻质建筑材料填充甚至可以外露不填充,有利于减轻结构的自重;转换桁架的抗侧力刚度比转换粱要小,也就是说。具有桁架转换层的高层建筑其质量和刚度的突变要比带转换粱的高层建筑缓和。因此带转换桁架的高层建筑其地震反应要比带转换梁的高层建筑小得多,由此可见,在本例工程的三层转换构件采用转换大粱的结构形式是不合适的,而采用转换桁架的结构形式将很好的避免了上述的多个问题且将节约混凝土用量近30%。将是一个较为合理正确的选择。 2.2转换桁架的具体形式的确定 在本例工程的三层转换构件采用确定桁架结构后,设计人员则需要进一步确定桁架的结构形式。根据前面的论述,转换桁架的结构形式有多种,但是根据本例工程的三层转换构件的具体情况,采用何种最合理的结构形式,则必须加以比较分析后方可确定。 2.2.1单层转换桁架与双层转换桁架的确定 采用精架结构作为高层建筑的转换构件时,一般情况是取出一层层高的高度作为转换桁架的高度。对于本项目,转换桁架位于结构的边缘,建筑师为了使转换桁架对于立面的影响降至最小,希望桁架仅在中庭设置,即取一层高度(4.00m)作为转换桁架的高度。在本例中各层的层高情况分别是:底层:6.44ml,二层:4.80m,三层以上:4.00mt,而结构的柱距为9.0m,若仅取4.00m为桁架高度时,在柱与柱之间必须另设一个桁架节点以保证桁架斜腹杆与水平弦杆的角度在合理的450~550之间。若取建筑的两层层高即8.00m为转换桁架的高度,则在柱与柱之间可以不必设置多余的桁架节点,使桁架的结构形式趋于简单。 2.2.2空腹桁架、斜杆桁架、无竖杆桁架的比较确定 作为高层建筑中的转换结构一桁架结构有如下的主要结构形式:空腹桁架、交叉斜杆桁架、无竖杆的交叉斜杆桁架。作为一种相对独立的结构形式,无论采用何种结构形式。应该说都是可以实现的。对于建筑师来说,空腹桁架如果在构件尺寸可以接受的条件下。当然是首选,当然,采用无竖杆的交叉斜杆桁架形式,结构上可以使桁架的构造节点趋于简单,在建筑师看来,也可以接受。 2.2.3单跨桁架与多跨桁架的确定 在确定了以交叉斜杆桁架作为本次项目的转换结构的结构形式后,结构工程师尚发现在这个计算模型中的框架柱的内力较大。作为抗震设计“强柱弱梁”的一般设计原则,框架柱中的内力相对越大,则在柱中率先出现塑性铰的可能性将越大。而在模型计算中同样可以发

高层建筑结构转换层的施工工艺

檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪项目指标 含固量/%S>25%时,应控制在0.95S 1.05S;S≤25%时,应控制在0.90S 1.10S 含水率/%W>5%时,应控制在0.95S 1.10W;W≤5%时,应控制在0.80S 1.20W 密度/(g/cm3)D>1.1%时,应控制在D?0.03;D≤1.1%时,应控制在D?0.02 细度应在生产厂控制范围内 PH值应在生产厂控制范围内 硫酸钠含量/%不超过生产厂控制值 注1:生产厂应在相关技术资料中明示产品均匀性指标的控制值; 注2:对相同和不同批次之间的均质性等效性的其他要求由供需双方商定; 注3:表中的S、W、和D分别为含固量含水量和密度的生产厂控制值。4结语 外加剂对混凝土的质量起着重要的作用,进而也会间接影响建筑工程的整体质量,因此,在应用混凝土外加剂的过程中一定要注意正确选择混凝土外加剂的种类、合理确定混凝土外加剂的最佳掺量并且充分考虑混凝土外加剂与水泥双向适应性这一问题,以使建筑工程的质量得到有效保障。 高层建筑结构转换层的施工工艺 汪礼良 (合肥建工集团有限公司,安徽合肥230000) 摘要:高层建筑的结构转换层,是对于建筑上下层之间不同结构和承重情况而选择的转换方式,对于高层建筑的安全性和质量标准起到关键性的作用。文章分析结构转换层施工工艺探讨,以确保工程质量。 关键词:高层建筑结构转换层功能形式施工技术 1结构转换层的功能 从结构功能的角度看,转换层所实现的结构转换可以归纳为以下三类:结构型式的转换。结构转换层将上部剪力墙转换为下部框架,给下部楼层创造了较大的内部空间;柱网、轴线的转换。通过结构转换层,使下层形成大柱网,满足外框筒的下层形成较大的出口和较大空间的需要;结构型式和轴线布置同时转换。 2转换层结构的主要形式 2.1梁式转换层 梁式转换层是指在现浇钢筋混凝土楼板上布置单向托梁(纵向或横向)或双向托梁(纵、横向)或斜向托梁,以承托在本层落空的上面各层的承重柱或剪力墙。该种转换形式一般用于底部大空间剪力墙结构,当需要纵横向同时转换时,采用双向梁的布置。对于框筒或简中简结构,可以根据需要在相应楼层下做一圈转换大梁,把上部柱的荷载通过转换大梁传到下层两边的柱上。梁式转换层结构的传力途径为墙一梁一柱(墙),传力途径清楚,转换梁具有受力性能好、工作可靠、构造简单和施工方便等优点。结构分析计算也较容易,一般用于上层为剪力墙结构,下层为框架结构的转换。 2.2板式转换层 当上下柱网轴线有较大错位不便用梁式转换层时可以采用板式转换方式板的厚度一般很大以形成厚板式承台转换层它的下层柱网可以灵活布置不必严格与上层结构对齐,但板很厚,自重很大,材料用量很多。厚板转换层适用于上下柱网极不规则的结构,它的结构布置方便,从而更好地实现对高层建筑多功能的要求,但缺点也很明显。由于板式转换层一般很厚,有时可以达到3.Om,自重很大,在地震作用下,这样大的质量必将引起很大的水平地震作用。因此对于地震区的高层建筑,转换层要慎用厚板楼盖。 2.3桁架转换层 在托柱形式的梁式转换层中,当很大跨度的转换梁承托较多的层数,由转换梁承托上部框架传递下来的竖向荷载很大而致使截面很大时,可采用桁架转换层,能较好地布置大型管道等设备,并充分利用建筑空间。转换桁架主要承受竖向荷载,在满足建筑功能的前提下,通过增大中间节间的跨度或减小端节间的跨度来增大中间弦杆的内力,减小端节间的内力,使弦杆内力分布均匀。带桁架转换层的结构设计原则为:(1)整体 · 101 · 2013年第1期(总124期)江西建材施工技术

有关建筑转换层结构设计中的关键性问题综述

有关建筑转换层结构设计中的关键性问题综述 本文首先介绍了建筑转换层的概念与特点,然后探讨了建筑转换层结构设计的原则和分类,最后提出了建筑转换层结构设计中的注意事项,本文提出了自己的一些观点和看法,望能为建筑转换层的结构设计提供参考。 标签建筑设计;转换层;结构设计;注意事项; 一、概念与特点分析研究 转换层是建筑施工领域常见的一种建筑结构,由于建筑物不同层面之间的使用功能和结构存在差异,因此需要通过设置转换层的方式作为过渡,对楼层的上下部的结构与设施进行转换。当前,我国的建筑设计、特别是高层建筑的设计,常常会采用商业功能与住宅功能结合的设计模式,在建筑物下部构建举架较高的大跨度商用建筑空间,而上层则采用更加紧密的设计,体现建筑的居住功能。为了对不同的实用功能和建筑结构进行划分,便需要在建筑内部设置转换层,以调整不同结构之间的受力情况,确保建筑物的使用安全。转换层主要功能包括:对建筑物内部的剪力墙结构或框架—剪力墙体系进行转换,实现剪力墙与框架之间的变换;改变建筑物上下受力柱的分布情况和分布密度;同时转变建筑层的结构形式和结构轴网,形成上下结构的不对齐布置三种。根据建筑物自身的特点和使用功能的需要,合理的选择转换层的设计模式,充分发挥出转换层在建筑领域所发挥的作用,能够进一步提高建筑物的稳定性,延长建筑物的使用寿命,对我国建筑行业的发展有着积极的促进作用。由于转换层的结构需要同时承受上部构造在重力的作用下产生的垂直荷载,以及悬挂下部结构产生的多层荷载,导致转换层结构内部长期存在有较大的内应力。此外,转换层的存在会对建筑物整体的受力状况造成较大的影响,在一程度上降低了建筑物的整体性,这就要求转换层的结构设计不能单纯遵循传统的建筑设计原则,而是要根据建筑物自身的特点进行灵活的设计,以满足转换层对刚度和强度的需求,确保建筑物的使用安全。 二、原则及分类分析研究 1、转换层的设计原则。首先,由于转换层的设置会造成建筑物纵向刚度的突变,使其成为建筑物的薄弱环节,因此,在进行转换层的结构设计时,应当尽可能减少需要结构转换的纵向构件,并相应的增加直接落地的纵向构件数量,从而降低建筑刚性突变的程度,提高结构的抗震能力。其次,当转换层高度较低时,对建筑物重心与受力状况的影响相对较小,建筑物也因此更加稳固。所以,在进行转换层结构设计时,应当尽量降低转换层所处的位置,保证建筑物结构的稳固。最后,转换层的结构设计应当采取强化下部结构,弱化上部结构的设计思路,并选择具有明确传力路径的设计模式,在保证工程质量的前提下,降低转成的施工难度,控制转换成的施工成本,更好的实现建筑物的经济效益社会效益。 2、转换层的结构设计的分类。一是梁式转换结构。梁式转换结构采用剪力墙、框支梁与框支柱相结合的结构布置方式来提高转换层的强度与刚度,具有结

试论高层建筑工程的转换层结构设计

试论高层建筑工程的转换层结构设计 先进科技在建筑领域的应用为现代建筑行业的发展带来了强大的动力,在现代建筑技术的支持下,高层建筑工程的大量建设与实施得以实现,现代高层建筑不仅在高度上较以往有了很大的增加,同时在建筑外观及结构的复杂性上也与以往有了很大的不同,要充分保障高层建筑工程的结构受力的稳定性,保障高层建筑在建设与使用过程中的安全性,加强对转换层设计的研究是十分必要的,本文就将对此展开探讨。 标签:高层建筑工程;转换层;结构设计 现代城市人口增加以及城市功能的日益丰富和完善,对于城市建筑工程的建设也有着更高的需求,一方面,要求城市建筑工程要在有限的开发土地面积上,创造更多的居住、办公、休闲等功能空间,这可以通过高层建筑工程的建设予以满足,同时还要保障建筑工程的质量与可靠性,这就要求针对高层建筑的结构受力特性进行深入研究,并通过对转换层机构的优化设计予以保证。 一、高层建筑工程转换层结构的主要类型 1.梁式转换层 梁式转换层是现代高层建筑中应用非常广泛的一种转换层结构形式,尤其适用于底部大空间的框支剪力墙结构体系的高层建筑结构转换中,此类转换层结构形式的作用原理主要是通过将转换层上部的剪力墙落在框支梁上,而框支梁则是通过稳定的框支柱进行支撑,从而保证整体建筑结构的稳定性,形成较为稳固的转换结构体系,其在实际应用中的主要优势在于设计简单,便于施工操作,结构传力十分明确,且施工成本较低,具有着良好的经济性优势,因而受到许多建筑企业的青睐。 2.箱式转换层 箱式转换层结构形式相对适用范围要小于梁式转换层,其主要应用于转换梁截面超出一定范围,不能够通过一层楼板的设置来满足其需要的刚度要求情况下的转换层构建。为充分保证建筑结构的稳定性,箱式转换层结构形式通常是在转换梁的顶与底分别设置一层楼板,两层楼板和四周围护的墙壁结构之间形成一个箱式的空间,从而使转换层结构的形式整体呈现为箱式结构。这种结构形式在应用中能够有效的保障对转换梁的较强约束力,同时转换梁的刚度也相对较大,从上到下整体结构在传力效果方面相对更为均匀,同时箱式结构中间所形成的空间也可以满足建筑设备层设置的功能需求,具有着良好的应用效果。但相对的,此类转换层结构形式在建设过程中需要在转换梁中进行较多的开洞处理,相对施工操作的复杂性更高,其施工成本也相对较高,经济效益一般。 3.厚板式转换层

高层建筑结构设计复习试题(含答案)

高层建筑结构设计 名词解释 1. 高层建筑:10层及10层以上或房屋高度大于28m 的建筑物。 2. 房屋高度:自室外地面至房屋主要屋面的高度。 3. 框架结构:由梁和柱为主要构件组成的承受竖向和水平作用的结构。 4. 剪力墙结构:由剪力墙组成的承受竖向和水平作用的结构。 5. 框架—剪力墙结构:由框架和剪力墙共同承受竖向和水平作用的结构。 6. 转换结构构件:完成上部楼层到下部楼层的结构型式转变或上部楼层到下部楼层结构布置改变而设置的结构构 件,包括转换梁、转换桁架、转换板等。 7. 结构转换层:不同功能的楼层需要不同的空间划分,因而上下层之间就需要结构形式和结构布置轴线的改变, 这就需要在上下层之间设置一种结构楼层,以完成结构布置密集、墙柱较多的上层向结构布置较稀疏、墙术较少的下层转换,这种结构层就称为结构转换层。(或说转换结构构件所在的楼层) 8. 剪重比:楼层地震剪力系数,即某层地震剪力与该层以上各层重力荷载代表值之和的比值。 9. 刚重比:结构的刚度和重力荷载之比。是影响重力?-P 效应的主要参数。 10. 抗推刚度(D ):是使柱子产生单位水平位移所施加的水平力。 11. 结构刚度中心:各抗侧力结构刚度的中心。 12. 主轴:抗侧力结构在平面内为斜向布置时,设层间剪力通过刚度中心作用于某个方向,若结构产生的层间位移 与层间剪力作用的方向一致,则这个方向称为主轴方向。 13. 剪切变形:下部层间变形(侧移)大,上部层间变形小,是由梁柱弯曲变形产生的。框架结构的变形特征是呈 剪切型的。 14. 剪力滞后:在水平力作用下,框筒结构中除腹板框架抵抗倾复力矩外,翼缘框架主要是通过承受轴力抵抗倾复 力矩,同时梁柱都有在翼缘框架平面内的弯矩和剪力。由于翼缘框架中横梁的弯曲和剪切变形,使翼缘框架中各柱轴力向中心逐渐递减,这种现象称为剪力滞后。 15. 延性结构:在中等地震作用下,允许结构某些部位进入屈服状态,形成塑性铰,这时结构进入弹塑性状态。在 这个阶段结构刚度降低,地震惯性力不会很大,但结构变形加大,结构是通过塑性变形来耗散地震能量的。具有上述性能的结构,称为延性结构。 16. 弯矩二次分配法:就是将各节点的不平衡弯矩,同时作分配和传递,第一次按梁柱线刚度分配固端弯矩,将分 配弯矩传递一次(传递系数C=1/2),再作一次分配即结束。

桁架结构分析

2013-2014年度学生研究计划(SRP)“桁架结构模型结构优化及试验” 结题论文 姓名骆辉军 学院土木与交通学院 专业土木工程(卓越全英班) 学号 201230221450 指导老师范学明 时间 2014年10月

一.实验背景 随着科学技术的发展和计算机软件技术的应用,应用相关的软件来进行桁架结构模型的优化已经可以成为现实。桁架结构中的桁架指的是桁架梁,是格构化的一种梁式结构。桁架结构常用于大跨度的厂房、展览馆、体育馆和桥梁等公共建筑中。由于大多用于建筑的屋盖结构,桁架通常也被称作屋架。在桥梁结构中,桁架结构也应用广泛。只受结点荷载作用的等直杆的理想铰结体系称桁架结构。它是由一些杆轴交于一点的工程结构抽象简化而成的。合理地设计桁架结构,就能够最大限度地利用材料的强度,起到减轻桁架重量,节省材料的目的,从而也能为工程实际应用提供相关的依据和参考。 但桁架的结构模型形式千变万化,仅仅从理论上分析桁架的受力特征和破坏特征,而不进行相应的试验研究是无法取得实质性的进展的。正是基于这样一个原则,我们需要在理论研究的基础上通过试验来优化桁架的结构模型,在各式各样的桁架结构中挑选出受力合理的结构,最大限度地使材料的强度得以利用。 研究桁架结构模型优化的意义 桁架结构中,各杆件受力均以单向拉、压为主,通过对上下弦杆和腹杆的合理布置,可适应结构内部的弯矩和剪力分布。由于水平方向的拉、压内力实现了自身平衡,整个结构不对支座产生水平推力。结构布置灵活,应用范围非常广。桁架梁和实腹梁(即我们一般所见的梁)相比,在抗弯方面,由于将受拉与受压的截面集中布置在上下两端,增大了内力臂,使得以同样的材料用量,实现了更大的抗弯强度。在抗剪方面,通过合理布置腹杆,能够将剪力逐步传递给支座。这样无论是抗弯还是抗剪,桁架结构都能够使材料强度得到充分发挥,从而适用于各种跨度的建筑屋盖结构。更重要的意义还在于,它将横弯作用下的实腹梁内部复杂的应力状态转化为桁架杆件内简单的拉压应力状态,使我们能够直观地了解力的分布和传递,便于结构的变化和组合。 由于杆件之间的互相支撑作用,且刚度大,整体性好,抗震能力强,所以能够承受来自多个方向的荷载。而且具有结构简单,运输方便等优点,其应用于各个工程领域。古代木构建筑,而今的2008北京奥运会的主体育馆鸟巢;太空中的大型可展天线,地面上的跨海大桥,随处都可见到桁架的身影。由于桁架的结构模型千变万化,不同的桁架结构形式对桥梁或者屋架的受力特征有很大的影响,因而,研究桁架结构模型的优化具有重大的意义。 二.实验的相关资料 1.桁架结构的常见构造方式 桁架指的是桁架梁,是格构化的一种梁式结构,即一种由杆件彼此在两端用铰链连接而成的结构。桁架由直杆组成的一般具有三角形单元的平面或空间结构,桁架杆件主要承受轴向拉力或压力,从而能充分利用材料的强度,在跨度较大时可比实腹梁节省材料,减轻自重和增大刚度。由于大多用于建筑的屋盖结构,桁架通常也被称作屋架。 桁架结构常用于大跨度的厂房、展览馆、体育馆和桥梁等公共建筑中。其主要结构特点在于,各杆件受力均以单向拉、压为主,通过对上下弦杆和腹杆的合理布置,可适应结构内部的弯矩和剪力分布。由于水平方向的拉、压内力实现了自身平衡,整个结构不对支座产生水平推力。结构布置灵活,应用范围非常广。桁架梁和实腹梁(即我们一般所见的梁)相

型钢混凝土桁架转换层的应用分析

型钢混凝土桁架转换层的应用分析 发表时间:2018-07-02T11:30:53.457Z 来源:《建筑学研究前沿》2018年第5期作者:林南蓝 [导读] 同时能够为建筑争取面积和空间,桁架中间的空间可以摆放设备或者管线,形成较好的空间效果和经济效益。广东省建筑设计研究院广东深圳 518000 摘要:随着建筑市场的蓬勃发展,建筑方案品质的追求提升,同一栋楼兼备多样功能,例如五星级酒店,下部是大堂餐饮等大空间,上部是客房。为了兼顾上下功能,结构需要做转换层,设备专业也需要做转换层,此时常规的梁式转换截面相对较大,再加上设备管线,会影响建筑面积和空间感受,若能结构转换和设备转换层结合起来设计,利用设备转换层作为结构转换层(采用空腹桁架转换),即能满足结构受力需求,又能满足建筑和设备专业的需求。 关键词:桁架转换;整体有限元;性能目标 1、项目概况 项目位于深圳前海,功能为五星级酒店,转换层位于7M层,转换层下部是商业裙房,上部有18层客房,抗震设防烈度为7(0.10g),设计地震分组一组,场地类别Ⅱ类,由于项目特点和建筑功能需求,转换层梁高受限制,利用设备转换层形成空腹桁架转换。 2、整体有限元分析 空腹桁架转换构件节点受力较为复杂,采取ABAQUS 进行整体有限元分析,能够真实的模拟大震下桁架的应力损伤情况,分析其抗震性能。 2.1几何模型的确定 整体模型 2.2计算模型的确定 各组件约束关系 墙柱及桁架内的钢骨、纵筋、箍筋,均以嵌入方式约束于混凝土中; 边界条件、荷载、加载方式 利用ABAQUS建立实体模型,混凝土部分采用实体单元,型钢采用壳单元,钢筋采用truss单元,节点分析模型的边界综合采用位移边界与力边界。 a.位移边界:框支柱底部施加三向位移约束; b.力边界:提取YJK大震等效弹性分析结果,在转换桁架上侧剪力墙或柱构件施加对应内力,并在模型切分边界处的水平构件上施加对应内力。参照《省高规》(DBJ15-92-2013)3.11.3第4性能水准进行组合。 c.加载点:加载均以截面耦合参考点进行加载,各加载点名称、加载点(RP1,RP2,…)如下表所示。加载参考点、边界条件

高层建筑结构转换层

高层建筑结构转换层 层建筑的发展趋势,既集吃、住、办公、娱乐、购物、停车为一体的综合建筑。由于空间功能的复杂化,使得建筑结构也随之变化。为了适应上部小空间下部大空间的功能需要,需在两种结构的交接部位设置过渡结构,也就是转换层。因高层建筑结构的多样性,转换层也呈现多种形式。 关键词:高层结构转换层多样 在我国高层建筑发展的早期阶段,所设计建造的高层建筑大都为单一用途,例如高层住宅、高层旅馆、高层办公楼等。近年来高层建筑发展迅速,建筑朝体型复杂、功能多样的综合性方向发展,因而相应的结构形式也复杂多样。后来陆续开始在高层住宅底层设置生活福利设施,并且开始大量兴建集吃、住、办公、购物、停车等为一体的多功能综合性高层建筑,尤其是在城市主干道两侧,并已成为现代高层建筑的一大趋势。 高层建筑功能综合化的优点: (1)将各种使用功能的建筑单元集中布置并上下组合在一起,使用上更方便省时,为人们提供良好的生活环境和工作条件,适应现代社会高效率、快节奏生活的需要; (2)集中紧凑的建筑布置,达到建筑面积最高利用率,相应集中紧凑的管道线路,有利于节约建设投资及减少能源消耗,也有利于物业管理,

节约管理经费; (3)可减少建筑占地面积,节约土地费用,增加城市的绿化面积。一、多功能综合性高层建筑结构体系的特点 从建筑使用功能而言,在设计中,通常将大柱网的购物商场、餐厅、娱乐设施设于多功能综合性高层建筑的下层部分,而将较小柱网、较小开间的住宅、公寓、旅馆、办公功能的建筑设于中、上层部分。这种建筑使用功能的特点相应决定了多功能综合性高层建筑结构体系的特点。由于不同建筑使用功能要求不同的空间划分布置,相应地,要求不同的结构形式,如何将他们之间通过合理地转换过渡,沿竖向组合在一起,就成为多功能综合性高层建筑结构体系的关键技术。这对高层建筑结构设计提出了新的问题,需要设置一种称为转换层的结构形式,来完成上下不同柱网、不同开间、不同结构形式的转换,简单地说,就是上下两层的结构不一样,必需设置一个转换层来承上启下。结构上的转换层概念,主要是指在整个建筑结构体系中,合理解决竖向结构的突变性转化和平面的连续性变化的结构单元体系。它在主要满足结构安全功能要求的同时,多数情况下解决一些特殊技术性建筑功能要求。比如在结构转换层空间内布置管道、设备等等。这种转换层广泛应用于剪力墙结构及框架剪力墙等结构体系中。 二、转换层的类型及其工程实例 按照不同的结构转换功能,转换层可分为三种类型: 1、高层建筑上层与下层的结构形式不同,通过转换层完成其从上层至下层不同结构形式的变化。

桁架结构优化设计

桁架结构优化设计 一般所谓的优化,是指从完成某一任务所有可能方案中按某种标准寻找最佳方案。结构优化设计的基本思想是,使所设计的结构或构件不仅满足强度、刚度与稳定性等方面的要求,同时又在追求某种或某些目标方面(质量最轻,承载最高,价格最低,体积最小)达到最佳程度。 对于图1-1的结构,已知L=2m,x b=1m,载荷P=100kN,桁架材料的密度r=7.7x10-5N/mm3,[δt]=150Mpa,[δc]=100Mpa,y b的范围:0.5m≦y b≦1.5m。 图1-1 桁架结构 设计变量与目标函数(质量最小)

预定参数(设计中已确定,设计者不能任意修改的量):L , x b ,P ,r ,[δt ] ,[δc ] 设计变量(可由设计者调整的量)y b ,A 1,A 2 约束条件(对设计变量的约束条件) (1) 强度条件约束(截面、杆件的强度) (2) 几何条件约束(B 点的高度范围) 目标函数:桁架的质量W (最小) 解:1. 应力分析 0sin sin 02112=--=∑θθN N F x 0cos cos 02112=---=∑P N N F y θθ 由此得: )sin(sin 2111θθθ+= p N ) sin(sin 212 2θθθ+- =p N 由正弦定理得: l y l x p N B B 2 1) (2 -+=

l y x p N B B 2 22 += 由此得杆1和2横截面上的正应力 1 2 1) (2 lA y l x p B B -+= σ 2 2 22 lA y x p B B += σ 2.最轻质量设计 目标函数(桁架的质量) ))((2 2 2 1 2 2 B B y x A y l x A W B B ++-+=γ (1-1) 约束条件 [][]? ? ? ?? ????? ????≤+≤-+c B t B lA y x p lA y l x p B B σσ2 2 1 2 22 ) ( (1-2) 0.5≦y b ≦1.5(m ) (1-3) (于是问题归结为:在满足上述约束条件下,确定设计变量y b ,A 1,A 2,使目标函数W 最小。) 3.最优解搜索 采用直接实验法搜索。首先在条件(1-3)所述范围内选取一系列y b 值,由强度条件(1-2)确定A 1与A 2,最后根据式(1-2)计算相应W ,在y b -W 曲线中选取使W 最小的y b 与相应的A 1与A 2,即为本问题的最优解。 4.利用MA TLAB 编程 (1)分析目标函数和约束条件

钢架转换层

(一)、转换层反支撑施工工艺 本工程公区部分层高较高,天棚有钢架转换层,就造成吊杆长度普遍大于1.5 米,由于其长细比过大,很容易导致吊顶龙骨系统失衡、造成吊顶表面凸凹不平、甚至安全隐患等问题。本工法介绍了通过钢骨架网格与原结构连接,在指定高度位置形成可以供吊顶系统安装龙骨的次结构层,从而形成安装转换支撑系统。 1、工法特点 解决了大空间吊杆长度大于 1.5 米时其"长细比"过大,而导致受到水平向力或轴向压力时容易失衡的问题。吊顶内的灯具、管线等静态轻量设备(如:吊顶内管线等可以固定,但空调风管不可以)可以直接固定到此转换支撑系统结构上,无需单独设吊装支架,节约材料。常规吊顶反支撑的做法容易被吊顶内较大的设备管路等阻挡,支撑只能倾斜一定角度安装,但容易导致龙骨受力不均匀,在吊顶完成后影响平整度,本吊顶转换支撑在同一空间内是一个整体系统,有效与吊顶内设备结合避免冲突,形成的网格受力均匀,给轻钢龙骨吊顶的安装提供了一个良好的基层结构。 2、工艺原理 根据吊顶龙骨的安装规律,本工程钢架设计图纸经设计师批准后进行施工,在适当标高形成可以供龙骨生根的钢骨架网,将吊顶龙骨的生根点由原结构转换至设计标高处。转换支撑钢结构网格的设计尺寸可以根据实际吊顶龙骨的排布确定,一般横向角钢用于安装吊筋,间距在 900~1200mm,纵向角钢支撑只起到系统稳定作用间距在1500~3000mm 之间,竖向角钢间距 1000~1500mm,竖向角钢通过角钢角码、膨胀螺栓与结构顶连接。 3、工艺流程及操作要点

(1)工艺流程 转换支撑设计→钢骨架加工→测量放线→与结构连接→钢骨架网格焊接→防锈处理→吊顶施工 (2)施工方案 1)测量放线 首先严格审核原始依据包括各类设计图纸,现场测量起始点位,数据等的正确性,坚持测量作业与图纸数据步步有校核。一切定位放线工作要经自检,实测时要当场做好原始记录,测后要及时做好记号,并要保护好。现场测量放线实施的首要工作是熟悉施工现场并对原建筑的施工现场进行测量,并弹出基准线,并逐步核实图纸尺寸数据,发现误差及时调整修正施工图纸。 放线结束后应及时组织建设单位和监理方技术人员进行复查,达到要求后方可作为指导施工的依据,并绘制吊顶排版图。 根据吊顶排版图和龙骨的安装工艺,布置龙骨安装方向和排版,以此为依据,结合原结构顶可利用固定点的位置,进一步对钢骨架转换支撑进行排版设计并编制方案。 2)钢骨架焊接安装 根据现场编制焊接方案下料,并按照尺寸分类堆放。 骨架焊接安装流程及施工要点:角码固定(网架结构底座固定)→竖向角钢焊接→平面钢骨架网格焊接→焊点防锈。用角钢做角码,膨胀螺栓固定于原混凝土结构顶面。如果原结构层为钢架结构,可以结合钢架可利用的固定点位置调整转换支撑的固定点,采用钢板焊接等方式固定。 竖向角钢焊接:按图纸设计要求,用镀锌角钢焊接在安装好的角码或底座上,焊接点采用满焊。竖向角钢焊接完成后,应在横向

高层建筑中的转换层

高层建筑中的转换层 随着城市建设发展的需要,很多高层建筑向多功能、多用途方向发展,一批集商业、娱乐、办公和公寓为一体的高层建筑拔地而起。由于建筑物的各部分使用功能和要求的不同,对建筑物结构形式、柱网布置等也就提出丁不同的要求。如商业用房、娱乐用房等大多布置在建筑物的下部,往往需要大跨度、大柱网以相适应。而办公、公寓等用房常常布置在建筑物的上部,他们的跨度、柱网又不宜过大。为了实现和适应这种结构形式的变化过渡,很多高层建筑中都设置了转换层。 1 转换层上下结构的转换类型转换层实现上下结构的转化大致有以下三种类型。 1.1 上下层结构类型的改变,如转换层以下为框架、框架-剪力墙或框架-筒体等结构形式,转换层以上为剪力墙、剪力墙-筒体等结构形式。 1. 2 上下层柱网、轴线的改变,转换层的上下层结构形式不变,仅柱网、轴线有所变化,常用于筒体结构建筑中。 1. 3 上下层不仅结构类型有所改变,而且柱网、轴线也有所改变,常用于上下层功能变化较大或较复杂的建筑物。 2 转换层的结构形式由于转换层上下结构转换有多种类型,所以转换层本身的结构形式也有不同,常用的有以下几种。 2.1 梁式结构的转化层。梁式结构的转化层一般在转换层的楼面设置纵横交错的钢筋砼承重大梁。为适应上部荷载的需要,梁的截面尺寸比较大,常用的尺寸有1000mm×2000mm,1200mm×250 0mm,1500mm×3000mm等。 2.2 桁架式结构的转换层。桁架式结构的转换层是有梁式结构的转化层

变化而来的,整个转换层由多榀钢筋混凝土桁架组成承重结构,桁架的上下弦杆分别设在转换层的上下楼面的结构层内,层间设有腹杆。由于桁架高度较高,所以上下弦的截面尺寸相对较小。 2.3 箱式结构的转换层。箱式结构的转换层实际上也是有梁式结构的转化层变化而来的。有纵横交错的双向主次梁连同上下层楼面的楼板结构以及四周墙壁构成全封闭的箱式结构转换层,整个转换层就像一只大箱子,当然四周也可以适当开洞。 2.4 板式结构(厚板)的转换层。板式结构的转换层通常适用于上下层既有结构类型的改变,又有柱网、轴线的变化整个转换层是一块厚达2.0~3.0m的实心钢筋混凝土承重板。有的板式转换层中在一定的部位也设置暗梁,以满足上部结构的变化要求。 3 转换层的施工特点 3.1 模板支撑系统。转换层结构的体量大、自重大,对模板支撑系统的承载能力、刚度和稳定性都有严格的要求,必须进行详细的计算,切不可凭经验办事。以梁式结构转换层为例,梁本身的线荷载通常在60~100KN/m,加上施工荷载就更大,对于板式结构,每平方米的荷载(楼板荷载施工荷载)也在100~150KN,因此,往往需要搭设满堂红支撑系统,其立柱一直搭至地下室,使荷载直接传值房屋基础。当作为多层支撑荷载传递时,上下立柱的位置应对齐,防止上下楼面因受力不匀而造成的局部损伤。在梁式结构转化层施工中,由于梁的侧向高度较大,厚度较薄,所以尚应验算模版系统侧向稳定性和侧向强度,防止整体跑位和胀模。3.2 钢筋绑扎。转换层中的钢筋,其特点一是数量多,而是直径大。对

钢结构桁架设计计算书

renchunmin 一、设计计算资料 1. 办公室平面尺寸为18m ×66m ,柱距8m ,跨度为32m ,柱网采用封闭结合。火灾危险性:戊类,火灾等级:二级,设计使用年限:50年。 2. 屋面采用长尺复合屋面板,板厚50mm ,檩距不大于1800mm 。檩条采用冷弯薄壁卷边槽钢C200×70×20×2.5,屋面坡度i =l/20~l/8。 3. 钢屋架简支在钢筋混凝土柱顶上,柱顶标高9.800m ,柱上端设有钢筋混凝土连系梁。上柱截面为600mm ×600mm ,所用混凝土强度等级为C30,轴心抗压强度设计值f c =1 4.3N/mm 2 。 抗风柱的柱距为6m ,上端与屋架上弦用板铰连接。 4. 钢材用 Q235-B ,焊条用 E43系列型。 5. 屋架采用平坡梯形屋架,无天窗,外形尺寸如下图所示。 6. 该办公楼建于苏州大生公司所 属区内。 7. 屋盖荷载标准值: (l) 屋面活荷载 0.50 kN/m 2 (2) 基本雪压 s 0 0.40 kN/m 2(3) 基本风压 w 0 0.45 kN/m 2(4) 复合屋面板自重 0.15 kN/m 2(5) 檩条自重 查型钢表 (6) 屋架及支撑自重 0.12+0. 01l kN/m 28. 运输单元最大尺寸长度为9m ,高度为0.55m 。 二、屋架几何尺寸的确定 1.屋架杆件几何长度 屋架的计算跨度mm L l 17700300180003000=-=-=,端部高度取mm H 15000=跨中高度为mm 1943H ,5.194220 217700 150020==?+ =+=取mm L i H H 。跨中起拱高度为60mm (L/500)。梯形钢屋架形式和几何尺寸如图1所示。

带结构转换层的高层建筑结构设计_熊进刚

收稿日期:2002-04-15 基金项目:南昌大学基础理论基金项目 作者简介:熊进刚,男,1970年生,博士. 文章编号:1006-0456(2002)04-0015-04 带结构转换层的高层建筑结构设计 熊进刚,李艳 (南昌大学土木工程学院,江西南昌330029) 摘要:本文简要介绍了高层建筑中结构转换层的功能、主要型式、特点及工程应用,并结合厦门市某带梁式转 换层的高层建筑,介绍了其结构转换层的方案选择、结构布置、结构整体分析与计算、转换梁的设计及有关构造要 求,供设计和研究人员参考. 关键词:结构转换层;转换梁;高层建筑 中图法分类号:TU 973+.12 文献标识码:A 1 概述 近二、三十年来,国内外高层建筑发展迅速,上部是住宅、旅馆,中部为办公用房,下部用作商场、餐馆等,多功能及综合性用途的高层建筑已经愈来愈多.楼层建筑功能的改变,往往需要改变竖向结构型式或改变柱网、轴线,甚至两者都改变.这样,在竖向结构体系发生变化的楼层就要设置转换层(transfer floor ),转换层也称为过渡层. 2 结构转换层的功能和主要型式 2.1 结构转换层的功能 从结构功能的角度看,转换层所实现的结构转换可以归纳为以下三类. 1)结构型式的转换.这种功能被广泛应用于框—剪结构和剪力墙结构,结构转换层将上部剪力墙转换为下部框架,如图1所示,给下部楼层创造一个较大的内部空间. 2)柱网、轴线的转换.转换层的上、下部结构型式没有改变,但通过结构转换层,使下层形成大柱网,如图2所示,以满足外框筒的下层形成较大入口和较大空间的需要. 图1 结构型式的转换 图2 柱网、轴线的转换 图3 梁式转换层 3)结构型式和轴线布置同时转换.上部楼层剪力墙通过结构转换层改变为框架,同时,下部楼层柱网轴线与上部楼层的轴线错开,形成上、下部结构不对齐的布置. 2.2 结构转换层的主要型式 第24卷第4期 2002年12月南昌大学学报(工科版)Journal of Nanchang University (Engineering &Technology )Vol .24No .4Dec .2002

空间桁架结构程序设计(Fortran)

空间桁架静力分析程序及算例1、变量及数组说明 输入数据 控制数据NF 单个节点的自由度数 NP 结构离散节点的总数 NE 结构离散单元的总数 NM 结构中单元不同的特征数类的总数NR 结构受约束节点的总数 NCF 结构受外荷载作用的节点总数 ND 一个单元的节点总数 几何数据X(NP) 节点X坐标数组 Y(NP) 节点Y坐标数组 Z(NP) 节点Z坐标数组 ME(ND,NE) 单元节点信息存储矩阵 ME(1,NE)存储杆件始端节点号 ME(2,NE)储存杆件末端节点号RR(2,NR) 结构约束信息矩阵 RR(1,NR)存放受有约束的节点号 RR(2,NR)存放节点位移约束情况 单元特征数据AE(2,IN) 单元特征数类数组 AE(1,IN)单元的弹性模量 AE(2,IN)单元的横截面面积NAE(NE) 单元特征类信息存储数组 荷载数据PF(4,NCF) 外荷载信息数组 PF(1,NCF)存放外荷载作用的节点号 PF(2,NCF)存放X方向的外荷载 PF(3,NCF)存放Y方向的外荷载 PF(4,NCF)存放Z方向的外荷载 输出数据 位移DIST(NPF) 节点位移数组 DIST(NF*I-2)存放I节点X方向的位移DIST(NF*I-1)存放I节点Y方向的位移DIST(NF*I) 存放I节点Z方向的位移 力SG(NE) 单元内力数组 SM(NE) 单元截面应力数组 FL(NF*NR) 支座反力数组 FL(NF*I-2)存放受约束的I节点X方向的反力 FL(NF*I-1)存放受约束的I节点Y方向的反力 FL(NF*I)存放受约束的I节点Z方向的反力

中间变量 NPF=NF*NP 二维总刚度矩阵的最大行数 NDF=ND*NF 一个单元的自由度总数(2*3=6) IN 单元特征类总数 AKE(2,2) 单元在局部坐标系中的刚度局矩阵 BL 杆件单元长度 T(2,6) 坐标转换矩阵 TAK(6,6) 单元在总体坐标系中的刚度矩阵 IT(NF,NP) 节点联系数组 LMT(NDF,NE) 单元联系数组 MAXA(NPF) 结构二维总刚度矩阵主对角元地址数组 NWK 结构一维总刚度矩阵的总容量 CKK(NWK) 结构一维总刚度矩阵 NN 结构矩阵方程的方程总数(去掉约束) NNM NNM=NN+1 V(NN) 已知节点荷载列阵数组,回代完成后为存放结构位移 PP(NPF) 所有节点荷载列阵数组 2、空间桁架结构有限元分析程序源代码 !主程序(读入文件,调用总计算程序,输出结果) CHARACTER IDFUT*20,OUTFUT*20 WRITE(*,*) 'Input Data File name:' READ (*,*)IDFUT OPEN (11,FILE=IDFUT,STATUS='OLD') WRITE(*,*) 'Output File name:' READ (*,*)OUTFUT OPEN(12,FILE=OUTFUT,STATUS='UNKNOWN') WRITE(12,*)'*****************************************' WRITE(12,*)'* Program for Analysis of Space Trusses *' WRITE(12,*)'* School of Civil Engineering CSU *' WRITE(12,*)'* 2012.6.25 Designed By MuZhaoxiang *' WRITE(12,*)'*****************************************' WRITE(12,*)' ' WRITE(12,*)'*****************************************' WRITE(12,*)'*************The Input Data****************' WRITE(12,*)'*****************************************' WRITE(12,100) READ(11,*)NF,NP,NE,NM,NR,NCF,ND WRITE(12,110)NF,NP,NE,NM,NR,NCF,ND 100 FORMAT(6X,'The General Information'/2X,'NF',5X,'NP',5X,'NE',5X,'NM',5X,'NR',& 5X,'NCF',5X,'ND') 110 FORMAT(2X,I2,6I7) NPF=NF*NP

相关文档
最新文档