光强测量系统设计

光强测量系统设计
光强测量系统设计

光强测量系统设计

目录

设计摘要 (2)

一、光强测量系统概述 (2)

二、光强测量系统工作原理 (2)

三、光强测量系统硬件组成 (3)

四、光强测量系统程序设计 (6)

五、光强测量系统的技术指标 (10)

六、光强测量系统的方案论证 (11)

七、结论 (11)

附录 (12)

光强测量系统设计

摘要:采用光敏电阻作为主要感应元件,设计以8051单片机为核心,控制、数据处理和即时显示为他点的光强测量系统。制作光强测量系统可以实现实时测量,数据存储等功能,具有稳定、实用、方便、快捷、可靠性高的特点,解决光强测量的技术问题,有广泛的应用前景。

一、光强测量系统概述

光强测量系统以光强度测量为核心功能,但是在实时处理光强数据时,往往不是要求即时数据,而是需要一个长期数据处理结果和即时数据的比较,所以数据存储和比较显示就显得尤为重要,这次课设完成的光强测量系统就完成了以上功能,有很强的实用性。这次设计的光强测量系统中,在光强的测量上完成了即时测量、微延迟显示,和时段平均测量值的计算和显示,并将时段光强数据存储在设计好的扩展存储空间中。通过这样的设计完成了一个高效多能的光强测量显示系统,达到了一个采集系统的标准。

二、光强测量系统工作原理

以8051单片机为核心,在单片机内部完成数据的存储及处理功能,通过数模转换芯片完成模拟信号到数字信号的转换及输入,再将数据存入存储芯片,在单片机进行数据处理后再对需要显示的数字信号进行译码显示在七段数码显示器上。每个芯片的电源处有耦合电容相连,当电容器充电达到2V时,此电容就作为电源为电路提供工作电压。单片机的RESET口上提供了供电自启动,在X1, X2口上提供了12MHZ晶振,以支持单片机的运行与启动。系统完成了采集功能,存储功能,数据处理功能,测量数据显示功能,达到了设计的基本要求。

三、光强测量系统硬件组成

图1为光强测量系统硬件电路原理图,主要由AD转换器、译码器、单片机、显示、存储器等部分组成。AD转换系统与51单片机P0口相连接,传输采集到、处理过后的光强信息,以8位2进制数字信号传输进P0口。存储系统为简单的扩展RAM系统,由74LS373和6116组成6116为2KB的SRAM芯片,图中P2.7作为6116的片选信号,P0口和P2.0~P2.2共11根地址线接6116的A0~A10,因此,6116的地址范围为7800H~7FFFH。8051以MOVX访问6116。显示系统为两个4位BCD-七段显示译码器74LS49与P1口相连,要求P1口输出8位BCD 码,符合74LS49的译码规则,完成译码,再传输到7段数码显示器上进行数据显示。51单片机在接收到AD转换系统传入的数字信号后进行数据处理和存储,在对2进制数进行BCD码转换后再输出到P1口进行相应显示,并再次循环,达到即时测量的目的,同时有供电自启动系统保证系统通电后单片机的复位。

图一:光强测量系统原理图

(1)单片机系统

单片机采用8051。塔是ROM型单片机,片内有4KB的ROM,256字节的R AM/SFR以及有32个I/O口、面向控制的8位CPU和指令系统、一个全双工串行口、两个16位定时/计数器、5个中断源、两个中断优先级的终端结构、一个片内内时钟振荡器和时钟电路,可寻址64K字节的程序存储器和64K字节的外部数据存储器。P1口与两片74LS48译码芯片和显示相连,需要输出8位BCD 码;P0口与AD0809为主体的模数转换系统相连,用作数据输入,得到即时的光强采集数字信号;P2口用于读写控制和中断。

(2)模数转换电路

模数转换电路用P0口进行数据通信,以太阳能板RO为模拟信号输入源,(其内阻需要进行相对光强和数模转换器的相应调整)以ADC0809转换模拟信号到数字信号。ADC0809是8路8位逐次逼近型A/D转换CMOS器件,在检测控制应用中,能对多路模拟信号进行分时采集和A/D转换(在本系统中只应用1路模拟信号采集),输出数字信号通过三态缓冲器,可直接与微处理器的数据总线相连接。它的采集范围为0~5V电压。ADC0809分辨率为8位,最大不可调误差小于ULSB,可锁存三态输出,能与8位微处理器接口,输出与TTL兼容,不必进行零点和满度调整,供电电压为5V,图中是以中断方式与单片机接口,这种接口方式不浪费CPU时间。

模数转换电路把收集到的光强信息转换为8位2进制数字信号传输给单片机,起到信息采集的作用,但提供的数字信号仅仅能做储存和数据处理使用,要

进一步使用则需要进行2进制数到BCD码的转换才能输出到译码显示端口进行下一步的处理。

(3)显示电路

显示部分采用数码显示,利用2个输入BCD-七段显示译码器74LS49和七段显示完成与单片机系统的显示接口,以显示即时光强信息,时段光强信息以及出错信息等。这部分电路把输出的BCD码经段译码器译码后,换成七段码(abcde fg)和小数点DP送到段驱动器输出。需要注意的是,显示必须延时一段时间,以保证观看者对信息的获取,但在我的知识范围内,延时只能采用NOP语句,在编程过程中有繁琐和资源浪费的弊端,但本人无法解决,只能采用编程部分部分省略的办法进行处理。

(4)存储器

读写器中设计了存储器。存储器选用74LS373和6116组成扩展2KBRAM。7 4LS373为地址锁存器。系统正常工作后,每隔一段时间要将采集信息放在存储器中存储并等待做下一步处理。本系统中能存储的数据信息有线,若本系统中的存储容量不够可根据具体情况进行扩展可以采用线选法或地址译码法进行进一步的RAM扩展,达到性能扩充的目的。

(5)晶振电路和来电自启动

采用12MHZ晶振和两片电容相连接地完成晶振电路。采用电容电阻串联完成来电自启动电路。两部分电路保证了单片机的正常运转,考虑到系统简单,设

计时没有采用来电自启动和手动重置并存的方法,自认为在这样一个较简单的系统中采用这种电路会增加系统的复杂性。

四、光强测量系统程序设计

下面介绍光强测量系统软件设计方法。

考虑到光强量是一个需要长期测量结果的量,我们需要将即时量和一段时间的平均值显示在显示系统中,所以需要将测得值先存入存储系统,做处理后输出。在程序设计中需要注意两个问题,一是要对A/D转换依据接口方式进行相应处理,本系统中采用了中断方式进行接口,需要进行相关编程,二是数据的存储地址处理,需要依扩展数据存储空间而定,三是显示系统传输需要输出一个8位B CD码。在编程中一定要注意处理以下三个问题。

1.主程序

主程序主要完成系统变量的初始化,循环采集数据,存储数据,将操作显示。在光强测量系统中使用了2KB存储器,主要存储的内容为1字节的光强数字信号和1字节的光强信号平均值。因此最大能存储1024个光强记录,存储首地址为7800H,末地址为7FFFH。循环采集需要使用系统中断方式进行。数据处理需要进行2进制数到BCD码的转换,主程序流程如下图所示

2存储程序

存储程序应分为两个部分,一个是存储即时信息,一个是存储即时平均值SAVE:MOV DPTR,#7800H ;将地址指向扩展数据空间第一个地址CLR A ;清空A累加器

CLR R4 ;清空R4

CLR R2 ;清空R2

CLR R1 ;清空R1

RESE:PUSH ACC ;保存现场

SETB EA ;开中断

SETB IT1 ;外中断1定义为跳变触发

MOV DPTR,#0BFFFH ;送ADC0809口地址

MOV A,#00H ;选通IN0通道

MOVX @DPTR,A ;启动A/D转换

NOP ;延时10us

NOP

NOP

NOP

NOP

SETB EX1

POP ACC

RET ;以上为A/D转换启动程序

PUSH PSW ;保护现场

PUSH ACC

PUSH DPH

PUSH DPL

MOV DPTR,#0BFFFH

MOVX A,@DPTR ;读A/D转换结果

MOV R1,A ;送入R1指针

MOV A,#00H ;再次启动IN0通道

MOVX @DPTR,A

POP DPL ;恢复现场

POP DPH

POP ACC

POP PSW

RETI ;以上为A/D转换中断处理程序

MOV A,R2 ;将上一次求取的光强信息总量存入A累加器

MOVX DPTR,R1 ;存入即时光强信息

ADD A,R1 ;求取光强信息总量

MOV R2,A ;将光强信息总量存入R2

INC R4 ;统计光强信息个数

INC DPTR ;存储地址更改

MOV B,R4 ;将光强信息统计个数存入B累加器

DIV AB ;求取平均光强信息

MOV R3,A ;将平均光强信息存入R3

MOVX DPTR,R3 ;存入平均光强信息

INC DPTR ;指向下一个存储地址

LACALL RESE ;完成循环

3.显示程序

根据图1,在显示电路中,为P2口输出的8位2进制BCD码,所以应该为简单调用程序,程序如下:

DIPS: MOV P2,R5 ;将要显示的信息送入P2

LACALL DIPS ;完成循环

4.数据处理程序

只需要不断输出数据处理结果到P2口,根据显示程序,只需要将处理结果不断送入R5,程序如下:

DETAIL: MOV B,#10

MOV A,R1 ;将二进制即时光强信息存入A

DIV AB ;A中得10位数,B中得个位数

SWAP A

ADD A,B ;组合成2位BCD码

MOV R1,A ;将BCD码的光强信息存入R1

MOV R5,R1 ;显示即时光强信息

NOP

……

NOP ;1秒的显示延迟(中间有NOP省略)

MOV B,#10

MOV A,R3 ;将二进制平均光强信息存入A

DIV AB ;A中得10位数,B中得个位数

SWAP A ;组合成2位BCD码

ADD A,B ;组合成2位BCD码

MOV R3,A ;将BCD码的光强信息存入R3

MOV R5,R3 ;显示平均光强信息

NOP

……

NOP ;1秒的显示延迟(中间有NOP省略)

LACALL DETAIL

5.总程序:

由上总程序应为:

HEAD: MOV DPTR,#7800H ;将地址指向扩展数据空间第一个地址CLR A ;清空A累加器

CLR R4 ;清空R4

CLR R2 ;清空R2

CLR R1 ;清空R1

RESE: MOVX A,@DPTR

CJNE A,#7FFFH ,CC ;判断存储空间是否充满

SJMP HH ;没有则继续

JNC HEAD ;充满则初始化

HH: MOV R1,P1 ;没有则继续

PUSH ACC ;保存现场

SETB EA ;开中断

SETB IT1 ;外中断1定义为跳变触发

MOV DPTR,#0BFFFH ;送ADC0809口地址

MOV A,#00H ;选通IN0通道

MOVX @DPTR,A ;启动A/D转换

NOP ;延时10us

NOP

NOP

NOP

NOP

SETB EX1

POP ACC

RET ;以上为A/D转换启动程序

PUSH PSW ;保护现场

PUSH ACC

PUSH DPH

PUSH DPL

MOV DPTR,#0BFFFH

MOVX A,@DPTR ;读A/D转换结果

MOV R1,A ;送入R1指针

MOV A,#00H ;再次启动IN0通道

MOVX @DPTR,A

POP DPL ;恢复现场

POP DPH

POP ACC

POP PSW

RETI ;以上为A/D转换中断处理程序

MOV A,R2 ;将上一次求取的光强信息总量存入A累加器

MOVX DPTR,R1 ;存入即时光强信息

ADD A,R1 ;求取光强信息总量

MOV R2,A ;将光强信息总量存入R2

INC R4 ;统计光强信息个数

INC DPTR ;存储地址更改

MOV B,R4 ;将光强信息统计个数存入B累加器

DIV AB ;求取平均光强信息

MOV R3,A ;将平均光强信息存入R3

MOVX DPTR,R3 ;存入平均光强信息

INC DPTR ;指向下一个存储地址

DETAIL: MOV B,#10

MOV A,R1 ;将二进制即时光强信息存入A

DIV AB ;A中得10位数,B中得个位数

SWAP A

ADD A,B ;组合成2位BCD码

MOV R1,A ;将BCD码的光强信息存入R1

MOV R5,R1 ;显示即时光强信息

NOP

……

NOP ;1秒的显示延迟(中间有NOP省略)

MOV B,#10

MOV A,R3 ;将二进制平均光强信息存入A

DIV AB ;A中得10位数,B中得个位数

SWAP A ;组合成2位BCD码

ADD A,B ;组合成2位BCD码

MOV R3,A ;将BCD码的光强信息存入R3

MOV R5,R3 ;显示平均光强信息

NOP

……

NOP 1秒的显示延迟(中间有NOP省略)

DIPS: MOV P2,R5 将要显示的信息送入P2

SJMP HEAD 完成循环

五、光强测量系统的技术指标

经以上方案的测定,此系统应工作在12MHZ的晶振频率下,由来电自启动控制电路工作和复位,每次程序循环时间约为2.1秒,即约每2.1秒采样一次,显示光强即时值1秒,光强平均值1秒。因为每采集1024个光强记录即存满已设置的扩展RAM,总空间为2K,所以依据程序设计,每2.1*1024=2150.4秒,即每5小时5分50.4秒即自动系统复位一次,既是说系统的循环测量周期为5小时5分50.4秒。系统供电电压为5V,采集范围为0~5V,需要5V的稳压电源供电。

六、光强测量系统的方案论证

这次设计的光强测量系统中,在光强的测量上完成了即时测量、微延迟显示,和时段平均测量值的计算和显示延迟,并将时段光强数据存储在设计好的扩展存储空间中。通过这样的设计完成了一个高效多能的光强测量显示系统,达到了一个采集系统的标准。

在芯片选择中,系统选择了简单易用、产量化的芯片,除单片机外有5个I C,2个外设,因此价格相对低廉,因为除了单片机外,其他芯片体积较小,所以整体制版体积较小,而且要求供电电压低可以达到简便易用的效果。在实时测量中,因为采用了显示延迟,能使使用者较方便地读出测量量。系统提供了外存储设备,可扩展性好,测量循环周期长,可以测量较长时间的平均值,能在实际应用中使用。因为电路较简单,采用了来电自启动方式,出现问题可以断电重启,方便简单。

七、结论

经过严密的分析设计,本光强测量系统形成了一个以51单片机为核心,量产化简单芯片组成的,除单片机外共有5个IC,两个外设的实用光强测量系统,性能稳定,体积小,功能使用,系统技术要求达标,运算速率快,重置简单,工作时段长,可靠性高,程序设计简单,价格相对较低,工作要求低。是一个可靠,易用,方便生产,具有很高市场价值的产品。

参考文献:

1.胡乾斌李光斌等.单片微型计算机原理与应用.武汉:华中科技大学出版社.1996

2.康华光.电子技术基础.武汉:高等教育出版社.2002

3.吕能元等.MCS-51单片微型计算机原理.接口技术.应用实例.北京:科学出版社,1993

4.张毅刚等.MCS-51单片机应用设计.哈尔滨:哈尔滨工业大学出版社.1990

附录:

一、光强测量系统原理图

二、光强测量系统PCB

三、光强测量系统材料清单

Part Type Designator Footprint Description

1K R2 AXIAL0.3

1K R1 AXIAL0.3

4 HEADER POWER SIP4 4 Pin Header

10uF C5 RB.2/.4 Electrolytic Capacitor

10uF C3 RB.2/.4 Electrolytic Capacitor

39pF C1 RAD0.2 Capacitor

39pF C4 RAD0.2 Capacitor

39pF C2 RAD0.2 Capacitor

74F02 74F021 DIP-14 Quad 2-Input NOR Gate

74F02 74F022 DIP-14 Quad 2-Input NOR Gate

74F04 74F04 DIP-14 Hex Inverter

74LS49 74LS491 DIP-14

74LS49 74LS492 DIP-14

74LS373 74LS373 DIP-20 Octal D-Type Transparent Latch with 3-State Output 6116 6116 DIP-24

8051AH 8051AH DIP-40

ADC0809 ADC0809 DIP-28

AMBERCC AMBERCC1 DIP-10 Common Cathhode Seven-Segment Display, Right Hand Decimal

AMBERCC AMBERCC2 DIP-10 Common Cathhode Seven-Segment Display, Right Hand Decimal

CRYSTAL CRYSTAL XTAL1 Crystal RES2 RO AXIAL0.3 Solar panels

传感器测量系统设计

课程设计说明书 学生姓名:学号: 学院: 班级: 题目: 传感器测量系统设计 高 指导教师:高敏职称: 副教授 年 12 月 26 日

摘要 在工程实践中,经常会遇到各种需要测量转速的场合,例如在发动机、电动机、卷扬机、机床主轴等旋转设备的试验、运转和控制中,常需要分时或连续测量和显示其转速及瞬时转速。要测速,首先要解决是采样问题。在使用模技术制作测速表时,常用测速发电机的方法,即将测速发电机的转轴与待测轴相连,测速发电机的电压高低反映了转速的高低。为了能精确地测量转速外,还要保证测量的实时性,要求能测得瞬时转速方法。因此转速的测试具有重要的意义。 关键词:电动机,单片机,传感器,晶振电路,流程图

目录 1 概述 (3) 1.1本课题设计的目的和意义 (3) 1.2数字式转速测量系统的发展背景 (3) 2 单片机 (4) 2.1 单片机AT89C51介绍 (4) 3 系统方案提出和论证(传感器的选择) (7) 3.1 方案一霍尔传感器测量方案 (7) 3.2 方案二光电传感器 (8) 4 转速测量系统的原理 (9) 4.1 转速测量方法 (9) 4.2 转速测量原理 (9) 5 系统硬件设计 (11) 5.1 转速信号采集 (11) 5.2 转速信号处理电路设计 (13) 5.3 最小系统的设计 (14) 5.3.1 复位电路(图4.8) (14) 5.3.2 晶振电路 (16) 5.3.3 最小系统的仿真 (17) 总结 (18) 参考文献 (19)

1 概述 1.1 本设计课题的目的和意义 在工程实践中,经常会遇到各种需要测量转速的场合, 例如在发动机、电动机、卷扬机、机床主轴等旋转设备的试验、运转和控制中,常需要分时或连续测量和显示其转速及瞬时转速。要测速,首先要解决是采样问题。在使用模技术制作测速表时,常用测速发电机的方法,即将测速发电机的转轴与待测轴相连,测速发电机的电压高低反映了转速的高低。为了能精确地测量转速外,还要保证测量的实时性,要求能测得瞬时转速方法。因此转速的测试具有重要的意义。 这次设计内容包含知识全面,对传感器测量发电机转速的不同的方法及原理设计有较多介绍,在测量系统中能学到关于测量转速的传感器采样问题,单片机部分的内容,显示部分等各个模块的通信和联调。全面了解单片机和信号放大的具体内容。进一步锻炼我们在信号采集,处理,显示发面的实际工作能力。 1.2 数字式转速测量系统的发展背景 目前国内外测量电机转速的方法很多,按照不同的理论方法,先后产生过模拟测速法(如离心式转速表、用电机转矩或者电机电枢电动势计算所得)、同步测速法(如机械式或闪光式频闪测速仪)以及计数测速法。计数测速法又可分为机械式定时计数法和电子式定时计数法。传统的电机转速检测多采用测速发电机或光电数字脉冲编码器,也有采用电磁式(利用电磁感应原理或可变磁阻的霍尔元件等)、电容式(对高频振荡进行幅值调制或频率调制)等,还有一些特殊的测速器是利用置于旋转体内的放射性材料来发生脉冲信号.其中应用最广的是光电式,光电式测系统具有低惯性、低噪声、高分辨率和高精度的优点.加之激光光源、光栅、光学码盘、CCD 器件、光导纤维等的相继出现和成功应用,使得光电传感器在检测和控制领域得到了广泛的应用。而采用光电传感器的电机转速测量系统测量准确度高、采样速度快、测量范围宽和测量精度与被测转速无关等优点,具有广阔的应用前景。

光强分布的测量

图1 单缝衍射相对光强分布曲线图 9087848178757269666360575451484542 由图1可知: 1,当x=69时I=I0 ,出现主极大。此时,衍射图样光强最强,表现为中央亮纹。 2,夫琅禾费光强呈对称分布,主极大两侧次极大是等间距对称分

布。 3,光强分布只有一个主极大,而在其两侧分布有多个次极大,且两极间必有一极小,在衍射图样中表现为暗纹。 4,在主极大两侧的次极大相对光强比主极大小得多,中央明纹最宽最亮。 3.计算单缝宽度: D=82.0cm 第一级暗条纹: X=(76-62)/2=7cm b1=kλD/X=1×650×10∧﹣9×0.82/(7×10∧﹣3)=0.076mm 第二级暗条纹: X=(82-55)/2=13.5 cm b2=kλD/X=2×650×10∧﹣9×0.82/(13.5×10∧﹣3)=0.079mm 第三级暗条纹: X=(90-48)/2=21cm b3=kλD/X=3×650×10∧﹣9×0.82/(21×10∧﹣3)=0.076mm k=(b1+b1+b1)/3=(0.76+0.79+0.76)/3=0.077mm 分析误差:实验误差有可能来自于环境附加光强的影响以及转动螺旋侧位装置的过程中由于转动一周又向回转的原因以及其他操作所引起的误差等。

2.双缝衍射数据的处理:

图2双缝衍射相对光强分布曲线图 4.衍射现象的规律和特征: 以上图样依次为GS1,GS2 ,SK1/2/3, JK ,双缝衍射示意图。 由图可知: GS1衍射呈矩形分布,亮纹为点型,且以中央处最亮,向外亮度依 次递减。 GS2衍射呈线型分布,亮纹为点型,且以中央处最亮,向两侧亮 度依次递减。 SK1/2/3 衍射呈同心圆分布,以中央处为最亮,向外侧亮度依次 递减。

压力检测系统设计

单片机系统课程设计 成绩评定表 设计课题:压力检测系统设计 学院名称:电气工程学院 专业班级:自动1304 学生姓名:赵博 学号: 2 指导教师:王黎周刚李攀峰 设计地点 : 31-505 设计时间 : 2015-12-28~2016-01-08

单片机系统 课程设计课程设计名称:压力检测系统设计 专业班级:自动1304 学生姓名:赵博 学号: 2 指导教师:王黎周刚李攀峰 课程设计地点: 31-505 课程设计时间: 2015-12-28~2016-01-08 单片机系统课程设计任务书

目录 1绪论 (3) 1、1压力检测系统概述 (3) 2总体方案设计原理 (4) 2、1 基于单片机的智能压力检测的原理 (4) 2、2 压力传感器 (4) 2、2、1 压力传感器的选择 (4) 2、2、2金属电阻应变片的工作原理 (5) 2、3 A/D转换器 (5) 2、3、1 A/D转换模块器件选择 (5) 2、3、2 A/D转换器的简介 (5) 2、4单片机 (6) 2、4、1 AT89C51单片机简介 (6) 2、4、2主要特性 (7) 2、4、3 管脚说明 (7) 2、5单片机于键盘的接口技术 (8) 2、5、1 键盘功能及结构概述 (8) 2、5、2 单片机与键盘的连接 (9) 2、6 LED显示接口 (10)

2、6、1 LED显示器 (10) 2、6、2七段数码显示器 (11) 2、6、3LED数码管静态显示接口 (12) 3软件设计 (14) 3、1 A/D转换器的软件设计 (14) 3、1、1 ADC0832芯片接口程序的编写 (14) 3、2 单片机与键盘的接口程序设计 (15) 3、3 LED数码管显示程序设计 (16) 总结 (18) 参考文献 (19) 附录A (19) 附录B (20) 1绪论 1、1压力检测系统概述 压力就是工业生产过程中的重要参数之一。压力的检测或控制就是保证生产与设备安全运行必不可少的条件。实现智能化压力检测系统对工业过程的控制具有非常重要的意义。本设计主要通过单片机及专用芯片对传感器所测得的模拟信号进行处理,使其完成智能化功能。介绍了智能压力传感器外围电路的硬件设计,并根据硬件进行了软件编程。 本次设计就是基于AT89C51单片机的测量与显示。就是通过压力传感器将压力转换成电信号,再经过运算放大器进行信号放大,送至8位A/D转换器,然后将模拟信号转换成单片机可以识别的数字信号,再经单片机转换成LED显示器可以识别的信息,最后显示输出。而在显示的过程中通过键盘,向计算机系统输入各种数据与命令,让单片机系统处于预定的功能状态,显示需要的值。 本设计的最终结果就是,将软件下载到硬件上调试出来了需要显示的数据,当输入的模拟信号发生变化的时候,通过A/D转换后,LED将显示不同的数值。

光电测量系统设计报告

光电测量系统设计报告

光电测量系统设计报告

一、干涉的基本原理 干涉现象是波动独有的特征,如果光真的是一种波,就必然会观察到光的干涉现象.1801年,英国物理学家托马斯·杨(1773—1829)在实验室里成功地观察到了光的干涉.两列或几列光波在空间相遇时相互叠加,在某些区域始终加强,在另一些区域则始终削弱,形成稳定的强弱分布的现象。 由一般光源获得一组相干光波的办法是,借助于一定的光学装置(干涉装置)将一个光源发出的光波(源波)分为若干个波。由于这些波来自同一源波,所以,当源波的初位相改变时,各成员波的初位相都随之作相同的改变,从而它们之间的位相差保持不变。同时,各成员波的偏振方向亦与源波一致,因而在考察点它们的偏振方向也大体相同。一般的干涉装置又可使各成员波的振幅不太悬殊。于是,当光源发出单一频率的光时,上述四个条件皆能满足,从而出现干涉现象。当光源发出许多频率成分时,每一单频成分(对应于一定的颜色)会产生相应的一组条纹,这些条纹交叠起来就呈现彩色条纹。 1、劈尖的等厚干涉测细丝直径 见图7.2.1-2,两片叠在一起的玻璃片,在它们的一端夹一直径待测的细丝,于是两玻璃片之间形成一空气劈尖。当用单色光垂直照射时,如前所述,会产生干涉现象。因为程差相等的地方是平行于两玻璃片交线的直线,所以等厚干涉条纹是一组明暗相间、平行于交线的直线。 设入射光波为λ,则第m级暗纹处空气劈尖的厚度 由上式可知,m=0时,d=0,即在两玻璃片交线处,为零级暗条纹。如果在细丝处呈现m=N级条纹,则待测细丝直径 具体测量时,常用劈尖盒,盒内装有两片叠在一起玻璃片,在它们的一端夹一细丝,于是两玻璃片之间形成一空气劈尖,见图7.2.1-2。使用时木盒切勿倒置或将玻璃片倒出,以免细丝位置变动,给测量带来误差。

落点实时光学测量系统的设计与实现

落点实时光学测量系统的设计与实现 飞行器落点的测量是某部队一项重要的任务,落点测量是否及时准确将对飞行试验结果的判别、后续残骸的搜索等产生很大的影响。但受飞行试验落点区域条件限制和机动性要求,超声波、雷达或无线电等定位设备在本文中并不适合,简易的光学测量系统最适合本文的应用。 传统的落点光学测量主要依靠某型望远镜捕获目标,利用人工读数的方式获得角度值信息,再通过数传电台将各观测点的信息传输至计算中心,中心操作手再手工将角度信息录入计算软件,得出交会结果,最后进行结果复核计算。这种传统的方式存在时效低、人为误差大等缺点,需要构建更加自动化、精确度更高的落点实时光学测量系统。 本论文正式针对上述实际问题,将比较成熟的光电编码技术与易于操作的望远镜进行组合,增加微处理器控制电路及收发数据、交会处理的软件,使操作手确认捕获到目标后,能自动完成角度信息采集、传输、交会计算和向上级指挥所发送结果的全过程,提高了测量速度、效率和精度。本文的主要内容为:1.落点实时光学测量系统的关键技术研究。 介绍了该系统中的关键技术,两点前向交会方法、高斯投影、光电编码技术等,并通过推导计算得出一种基于最小二乘法的交会算法的优化方法。2.落点实时光学测量系统的需求分析。 基于落点测量的实际情况,对落点测量的环境、条件及主要流程进行了全面分析。对需要开发的落点实时光学测量系统的需求进行分析。 3.落点实时光学测量系统的设计。在需求分析的基础上,完成系统设计,主要包括体系架构、功能结构、网络拓扑等。

4.落点实时光学测量系统的实现。搭建系统环境,采购并接入光电编码器、数传电台等硬件,完成了数据通信、数据处理、交会计算和辅助决策等功能的实现。 在此基础上,通过模拟计算对优化算法进行了验证。5.落点实时光学测量系统的测试。 为确保系统有较高的可靠性,对系统进行相关测试,发现并解决系统中存在的问题。目前,该系统已实际应用,机动性强、受环境干扰小、性能稳定,实现了提高落点测量速度,减小人为差错的目标。

光强分布的测量

光强分布的测量实验 一、实验目的 1.观察单缝衍射现象,加深对衍射理论的理解。 2.会用光电元件测量单缝衍射的相对光强分布,掌握其分布规律。 3.学会用衍射法测量微小量。 4. 验证马吕斯定律。 二、实验原理 如图1所示, 图1 夫琅禾费单缝衍射光路图 与狭缝E 垂直的衍射光束会聚于屏上P 0处,是中央明纹的中心,光强最大,设为I 0,与光轴方向成Ф角的衍射光束会聚于屏上P A 处,P A 的光强由计算可得: 式中,b 为狭缝的宽度,λ为单色光的波长,当0=β时,光强最大,称为主极大,主极大的强度决定于光强的强度和缝的宽度。 当πβk =,即: 2 20 sin ββ I I A =)sin (λ φ πβb = b K λφ=sin ) ,,,???±±±=321(K

时,出现暗条纹。 除了主极大之外,两相邻暗纹之间都有一个次极大,由数学计算可得出现这些次极大的位置在β=±1.43π,±2.46π,±3.47π,…,这些次极大的相对光强I/I 0依次为0.047,0.017,0.008,… 图2 夫琅禾费衍射的光强分布 夫琅禾费衍射的光强分布如图2所示。 图3 夫琅禾费单缝衍射的简化装置 用氦氖激光器作光源,则由于激光束的方向性好,能量集中,且缝的宽度b 一般很小,这样就可以不用透镜L 1,若观察屏(接受器)距离狭缝也较远(即D 远大于b )则透镜L 2也可以不用,这样夫琅禾费单缝衍射装置就简化为图3,这时, 由上二式可得 三、实验装置 激光器座、半导体激光器、导轨、二维调节架、一维光强测试装置、分划板 、可调狭缝、平行光管、起偏检偏装置、光电探头 、小孔屏、 数字式检流计、专用测量线等。 D x /tan sin =≈φφx D K b /λ=

基于单片机的压力检测系统设计

常熟理工学院 电气与自动化工程学院 《传感器原理与检测技术》课程设计 题目:基于AT89C51单片机的 压力检测系统的设计 姓名:李莹 学号: 160509240 班级:测控 092 指导教师:戴梅 起止日期: 2012年7月2日-9日

电气与自动化工程学院 课程设计评分表 课程名称:传感器原理与检测技术 设计题目:压力检测系统的设计 班级:测控092学号:160509240 姓名:李莹 指导老师:戴梅 年月日

课程设计答辩记录 自动化系测控专业 092 班级答辩人:李莹课程设计题目压力检测系统的设计

目录第一章概述 1.相关背景和应用简介 2.总体设计方案 2.1总体设计框图 2.2各模块的功能介绍 第二章硬件电路的设计 1.传感器的选型 2.单片机最小系统设计 3.模数转换电路设计 4.传感器接口电路设计 5.显示电路设计 6.电源电路设计 7.原理图 第三章软件部分的设计 1.总体流程图 2.子程序流程图及相关程序 第四章仿真及结果 第五章小结 参考文献

第一章概述 1.传感器的相关背景及应用简介 近年来,随着微型计算机的发展,传感器在人们的工作和日常生活中应用越来越普遍。压力是工业生产过程中的重要参数之一。压力的检测或控制是保证生产和设备安全运行必不可少的条件。实现智能化压力检测系统对工业过程的控制具有非常重要的意义。压力传感器是工业实践、仪器仪表控制中最为常用的一种传感器,并广泛应用于各种工业自控环境,涉及水利水电、铁路交通、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业。压力测量对实时监测和安全生产具有重要的意义。在工业生产中,为了高效、安全生产,必须有效控制生产过程中的诸如压力、流量、温度等主要参数。由于压力控制在生产过程中起着决定性的安全作用,因此有必要准确测量压力。通过压力传感器将需要测量的位置的压力信号转化为电信号,再经过运算放大器进行信号放大,送至8位A/D转换器,然后将模拟信号转换成单片机可以识别的数字信号,再经单片机转换成LED显示器可以识别的信息,最后显示输出。 此次设计是基于单片机的压力检测系统,选择的单片机是基于AT89C51单片机的测量与显示,将压力经过压力传感器转变为电信号,经过放大器放大,然后进入A/D 转换器将模拟量转换为数字量显示,我们所采样的A/D转换器为ADC0808。 2.总体设计方案 本次设计是基于AT89C51单片机的测量与显示。电路采用ADC0809模数转换电路,ADC0809是CMOS工艺,采用逐次逼近法的8位A/D转换芯片,片内有带锁存功能的8路模拟电子开关,先用ADC0809的转换器对各路电压值进行采样,然后将模拟信号转换成单片机可以识别的数字信号,再经单片机转换成LED显示器可以识别的信息,最后显示输出。本次设计是以单片机组成的压力测量,系统中必须有前向通道作为电信号的输入通道,用来采集输入信息。压力的测量,需要传感器,利用传感器将压力转换成电信号后,再经放大并经A/D转换为数字量后才能由计算机进行有效处理。然后用LED进行显示。本设计的最终结果是,将软件下载到硬件上调试出来了需要显示的数据,当输入的模拟信号发生变化的时候,通过A/D转换后,LED将显示不同的数值。

光电系统课程设计报告

光电系统课程设计报告 设计题目:光电心率计 指导老师:吴xx 班级: 10XX 设计者: XXX 设计者学号: ************* 同组者姓名: ****************************** ****************************** ********************************* 设计者联系电话: ****************** 目录 一.摘要 (4) 二.技术指标 (4) 三.设计原理 (5) 3.1、光电探测电路 (5) 3.2、电源电路 (6) 3.3、滤波放大电路及虚拟地电路 (6) 3.4、单片机电路 (7) 3.5、显示电路 (8) 3.6、蜂鸣器电路 (9) 四.设计方案论证 (9)

4.1、心率计的软件实现方法 (9) 4.2、滤波放大电路的实现 (9) 4.3、光电探测电路的实现 (10) 4.4、心率值的显示方法 (10) 五. 硬件电路设计 (11) 5.1、电源电路设计 (11) 5.2、光电探测电路 (12) 5.3、“虚拟地”电路 (12) 5.4、滤波放大电路 (12) 5.5、单片机电路 (13) 5.6、译码显示电路 (15) 5.7、蜂鸣器电路 (16) 六.软件设计 (16) 6.1 总流程图 (17) 6.2 主函数流程图 (18) 6.3 采样比较程序 (19) 6.4 心率计算与显示警报模块 (20) 七.结论 (21) 八.课程设计的心得体会 (21) 参考文献 (22) 附录 (23) 附录一、程序代码 (23)

附录二、原理图 (28) 附录三、PCB所有层图 (29) 附录四、顶层PCB图 (30) 附录五、底层PCB图 (30) 附录六、元件清单 (31) 一.摘要 随着现代社会,人们对自己的健康越来越关心,因此对各种医疗设备的需要也越来越大。其中心率测量仪是最常见的医疗设备之一,它能应用于医疗、 健康、体育以及我们生活中的方方面面,因此一个简单便宜而又有较高精度的 心率测量仪是很有市场的。 我们无法通过直接测量来获取人的心率,但是由于人的脉搏是与心跳直接相关的。因此,我们可以通过测量脉搏来间接测量人的心率。我们小组的光电 系统课程设计制作的光电心率测量仪是用光电传感器测量经手指尖反射的信号,然后经过滤波放大后送到51单片机进行信号处理并将计算所得到的心率值通过动态扫描的方式显示出来。 关键词:51单片机;光电测量;A/D采样;动态扫描显示;响铃提醒。二.技术指标 利用光电方法测量人体心率,并通过显示器显示出来,具体要求 如下: 1、采用51 系列单片机 2、制作光电测量头 3、通过A/D 采样方式测定人体心率(不能整形成方波计数)

光学测量技术详解

光学测量技术详解(图文) 光学测量是生产制造过程中质量控制环节上重要的一步。它包括通过操作者的观察进行的快速、主观性的检测,也包括通过测量仪器进行的自动定量检测。光学测量既可以在线下进行,即将工件从生产线上取下送到检测台进行测量;还可以在线进行,即工件无须离开产线;此外,工件还可以在生产线旁接受检测,完成后可以迅速返回生产线。 人的眼睛其实就是一台光学检测仪器;它可以处理通过晶状体映射到视网膜上的图像。当物体靠近眼球时,物体的尺寸感觉上会增加,这是因为图像在视网膜上覆盖的“光感器”数量增加了。在某一个位置,图像达到最大,此时再将物体移近时,图像就会失焦而变得模糊。这个距离通常为10英寸(250毫米)。在这个位置上,图像分辨率大约为0.004英寸(100微米)。举例来说,当你看两根头发时,只有靠得很近时才能发现它们之间是有空隙的。如果想进一步分辨更加清楚的细节的话,则需要进行额外的放大处理。 本部分设定了隐藏,您已回复过了,以下是隐藏的内容 人的眼睛其实就是一台光学检测仪器;它可以处理通过晶状体映射到视网膜上的图像。本图显示了人眼成 像的原理图。 人眼之外的测量系统 光学测量是对肉眼直接观察获得的简单视觉检测的强化处理,因为通过光学透镜来改进或放大物体的图像,可以对物体的某些特征或属性做出准确的评估。大多数的光学测量都是定性的,也就是说操作者对放大的图像做出主观性的判断。光学测量也可以是定量的,这时图像通过成像仪器生成,所获取的图像数据再用于分析。在这种情况下,光学检测其实是一种测量技术,因为它提供了量化的图像测量方式。 无任何仪器辅助的肉眼测量通常称为视觉检测。当采用光学镜头或镜头系统时,视觉检测就变成了光学测量。光学测量系统和技术有许多不同的种类,但是基本原理和结构大致相同。

简单多点温度测量系统课程设计

课程设计报告(2010 —2011 年度第2学期) 题目:基于DS18B20的多点温度测量系统 院系: 姓名: 学号: 专业: 指导老师: 2011年5 月22 日

目录 1设计要求…………………………………………………………………………2设计的作用、目的………………………………………………………………3设计的具体实现…………………………………………………………………. 3.1系统概述……………………………………………………………………. 3.2单元电路设计与分析……………………………………………………… 3.3电路的安装与调试…………………………………………………………4心得体会及建议………………………………………………………………… 4.1心得体会…………………………………………………………………… 4.2建议…………………………………………………………………………5附录………………………………………………………………………………6参考文献…………………………………………………………………………

基于DS12B20的多点温度测量系统设计报告 1设计要求 运用DS12B20温度测量芯片实现一个多点温度测量系统,要求如下: (1).测量点为两点。 (2).测量的温度为-40~+40°C (3).温度测量的精度为±0.5°C (4).测量系统的响应时间要小于1S。 (5).温度数据的传输方式采用串行数据传送的方式。 2 设计的作用、目的 通过本设计可以进一步了解熟悉单片机的控制原理以及外设与单片机的数据通信方法,尤其是串行通信方法以及单片机与外设间的接口问题。 本设计旨在提高学生的实际应用系统开发能力,增长学生动手实践经验,激起学生学以致用的兴趣。 3设计的具体实现 3.1系统概述 本系统分为温度采集模块、核心处理模块、控制模块和显示模块。温度采集模块由DS18B20温度测量芯片构成,它负责测量温度后将温度量转化为数字信号,传输到数据处理模块;核心处理模块由AT89S52单片机组成,它负责与温度采集模块进行数据通信、对数据进行操作处理已经对各种外设的响应与控制;控制模块由几个按键组成,实现对测量点的选择以及电路复位的操作;显示模块由一块四位的八段译码显示管和驱动芯片组成,它的作用是显示测量的温度值。 系统模块组成图:

单缝衍射光强分布的测定

实验名称: 单缝衍射光强分布的测定 实验时间: 实验者: 院系: 学号: 指导教师签字: 实验目的: 1.测定单缝衍射的相对光强分布; 2.测定半导体激光器激光的波长。 实验仪器设备: 光具座 半导体激光器 可调单缝 硅光电池 光电检流器 移测显微镜 光屏 实验原理: 1. 夫琅禾费衍射 当光在传播过程中经过障碍物,如不透明物体的边缘、小孔、细线、狭缝等时,一部分光会传播到几何阴影中去,产生衍射现象。 衍射通常分为两类:一类是满足衍射屏离光源或接收屏的距离为有限远的衍射,称为菲涅耳衍射;另一类是满足衍射屏与光源和接收屏的距离都是无限远的衍射,也就是照射到衍射屏上的入射光和离开衍射屏的衍射光都是平行光的衍射,称为夫琅禾费衍射。 以波长为λ的单色平行光(实验用散射角极小的 激光器产生激光束)垂直通过单缝,经衍射后,在屏 上可以得到一组平行于单缝的明暗相间的条纹(夫琅禾费衍射条纹)。如图所示。根据惠更斯——菲涅耳原 理,可知 2 20 sin ββ θI I = 由θλ π βsin a = 得 220 ) s i n () s i n ( s i n λ θπλθ πθa a I I = 0I I θ叫做相对光强 暗纹条件 ) 0,,2,1(a sin =±±==θλ θI k k (θ很小,故θθθ≈≈tan sin ,) 中央明纹两侧暗条纹之间的角宽 a 2λ θ= ? 相邻两暗条纹之间角宽a λθ=?’ 0=θ时,0I I =θ,此时光强最大,为主最大。 其两侧相邻两暗条纹间都有一个次最大,角位置分别为 。,、、 a 47.3a 46.2a 43.1sin λ λλθ±±±= 相应的 008.0017.0047.00、、 =I I θ 得到单缝衍射相对光强分布曲线

光电课程设计报告2012

课程设计总结报告 课程名称:《光电技术》课程设计学生姓名:邓跃斌、付炜、黑阳超、林松系别:物理与电子学院 专业:电子信息科学与技术 指导教师:雷立云 2012年11月29日

目录 一、设计任务书 (3) 1、课题 (3) 2、目的 (3) 3、设计要求 (3) 二、实验仪器 (3) 三、设计框图及整体概述 (4) 四、各单元电路的设计方案及原理说明 (4) N E定时器构成多谐振荡器作调制电源 (5) 1、用555 N E电路结构 (5) (1)555 N E定时器组成的多谐振荡器 (5) (2)由555 (3)发射端电路 (6) L F放大器构成接收放大电路 (7) 2、用353 (1)光放大器 (7) (2)光比较放大器 (7) 五、调试过程及结果 (8) 1、调试的过程及体会 (8) 2、调试结果 (8) 六、设计、安装及调试中的体会 (9) 七、对本次课程设计的意见及建议 (9) 八、参考文献 (10) 九、附录 (10) 1、整体电路图 (10) 2、课程设计实物图 (10) 3、元器件清单 (11)

一、设计任务书 1、课题 光电报警系统设计与实现。 2、目的 本课程设计的基本目的在于巩固电子技术、光电技术、感测技术以及传感器原理等方面的理论知识,从系统角度出发,培养综合运用理论知识解决实际问题的能力,并养成严谨务实的工作作风。通过个人收集资料,系统设计,电路设计、安装与调试,课程设计报告撰写等环节,初步掌握光电系统设计方法和研发流程,逐步熟悉开展工程实践的程序和方法。 3、设计要求 (1)基本要求 用555 N E构成占空比为0.5多谐振荡器作发光二极管的调制电源,并对参数选择进行分析说明;选用324 L M构成比较放大器进行报警电路设计;画出所做实验的全部电路图,并注明参数;记录调试完成后示波器输出的各测量点电压波形。 (2)扩展要求(选做) 分析影响作用距离的因素,提出提高作用距离的措施;设想光电报警系统的应用场合,并根据不同应用提出相应电路的设计方案。如需要闪烁报警,电路如何设计? 二、实验仪器 多功能面包板………………………………………………………………1块T D S.60M H z.1Gs s双通道数字存储波示器………………………1台1002 YB A A直流稳压电源…………………………………………………1台17333 万用表………………………………………………………………………1台

光学投影层析三维成像测量实验系统的设计概述

光学投影层析三维成像测量实验系统的设计

摘要 光学投影式三维轮廓测量在机器/机器人视觉、CAD/CAM以及医疗诊断等领域有重要的应用,这种测量方法具有非接触性、无破坏、数据获取速度快等优点,其测量系统是宏观光学轮廓仪中最有发展前途的一种。 本课题拟采用激光光源(或普通卤素灯作为光源),应用光学系统、计算机控制,进行图像采集、图像处理,设计成像系统的断层图像重建及三维图像显示实验系统,并对其成像理论、成像质量及成像误差进行理论分析。该项目完成的光学投影层析三维成像测量实验系统适用于光学教学演示,其理论分析有利于学生积极的汲取现代光学发展的科研成果、思路和方法,从而潜移默化的培养学生的科学素养和创新能力。 关键词:光学投影层析,三维成像,CT技术

目录 1.引言 (1) 2.CT原理及重建算法 (2) 整个实验用到的理论相关联名称 2.1 CT技术原理 (3) 2.2 OPT原理简介 (4) 3.1 滤波反投影算法的快速实现 3. 光学投影层析三维成像测量实验系统 (5) 3.1实验系统的设计 (6) 3.2 光学投影层析三维成像测量实验系统 3.3 影响图像重建质量的因素分析 (7) 4. 结论 (11) 5. 参考文献 (13)

图表清单

1.引言 2002年4月英国科学家Sharpe在《Science》上首次报道了光学投影层析技术(optical projection tomography,OPT),这是一种新的三维显微成像技术,是显微技术和CT技术的结合。光学投影层析巧妙的利用了光学成像中“景深”的概念,实现了光学CT,和其它光学三维成像技术相比,结构简单、成本较低、成像速度快,在对成像分辨率要求不高的情况下,容易建立起光学投影层析三维成像测量系统。 光学三维成像代表着光学领域的前沿技术,这些技术涉及光学、计算机和图像处理等相关领域的知识,通过本项目--光学投影层析三维成像测量实验系统的设计,将是基础光学通向现代光学科技的不可多得的窗口之一,不仅显示基础知识的生命力,也反映基础知识的时代性,而且本项目实现所需成本较低、物理思想清晰,适用于物理实验教学,并适合作为大学生的综合设计性物理实验项目进行开发研究,同时对于激发大学生的学习兴趣、开阔大学生的视野和思路、培养综合科研素养均有很大的帮助。 2 CT技术原理及重建算法 2.1 CT技术原理 CT(计算机断层成像,mography ComputerTo的缩写)技术的研究自20世纪50至70年代在美国和英国发起,美国科学家A.M. Cormark和英国科学家G. N. Hounsfield在研究核物理、核医学等学科时发明的,他们因此共同获得1979年的诺贝尔医学奖。第一代供临床应用的CT设备自1971年问世以来,随着电子技术的不断发展,CT技术不断改进,诸如螺旋式CT机、电子束扫描机等新型设备逐渐被医疗机构普遍采用。除此之外,CT技术还在工业无损探测、资源勘探、生态监测等领域也得到了广泛的应用。 与传统的X射线成像不同,CT有自己独特的成像特点。下面以一个一般的图示来说明。 如图1所示,假设有一个半透明状物体,如琼脂等,在其内部嵌入5个不同透明度的球,如果按照图1中(a)所示那样单方向地观察,因为其中有2个球被前面的1个球挡住,我们会误解为只有3个球,尽管重叠球的透明度比较低,但我们仍无法确定球的数目,更不可能知道每个球的透明度。而如果按照图1(b)

光电测量系统设计报告

光电测量系统设计报告 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

光电测量系统设计报告 一、干涉的基本原理 干涉现象是波动独有的特征,如果光真的是一种波,就必然会观察到光的干涉现象.1801年,英国物理学家托马斯·杨(1773—1829)在实验室里成功地观察到了光的干涉.两列或几列光波在空间相遇时相互叠加,在某些区域始终加强,在另一些区域则始终削弱,形成稳定的强弱分布的现象。 由一般光源获得一组相干光波的办法是,借助于一定的光学装置(干涉装置)将一个光源发出的光波(源波)分为若干个波。由于这些波来自同一源波,所以,当源波的初位相改变时,各成员波的初位相都随之作相同的改变,从而它们之间的位相差保持不变。同时,各成员波的偏振方向亦与源波一致,因而在考察点它们的偏振方向也大体相同。一般的干涉装置又可使各成员波的振幅不太悬殊。于是,当光源发出单一频率的光时,上述四个条件皆能满足,从而出现干涉现象。当光源发出许多频率成分时,每一单频成分(对应于一定的颜色)会产生相应的一组条纹,这些条纹交叠起来就呈现彩色条纹。 1、劈尖的等厚干涉测细丝直径 设入射光波为λ,则第m级暗纹处空气劈尖的厚度 由上式可知,m=0时,d=0,即在两玻璃片交线处,为零级暗条纹。如果在细丝处呈现m=N级条纹,则待测细丝直径 2、利用干涉条纹检验光学表面面形 检查光学平面的方法通常是将光学样板(平面平晶)放在被测平面之上,在样板的标准平面与待测平面之间形成一个空气薄膜。当单色光垂直照射时,通过观测空气膜上的等厚干涉条纹即可判断被测光学表面的面形。 (1)待测表面是平面 (2)待测表面呈微凸球面或微凹球面 当手指向下按时,空气膜变薄,各级干涉条纹要发生移动,以满足式(2), 3 式中λ为入射光的波长,δ是空气层厚度,空气折射率n ≈ 1。 当程差Δ为半波长的奇数倍时为暗环,若第m个暗环处的空气层厚度为m,则有:R,即,可得: 式中是第m个暗环的半径。由式(2)和式(3)可得: 可见,我们若测得第m个暗环的半径便可由已知λ求R,或者由已知R求λ了。但是,由于玻璃接触处受压,引起局部的弹性形变,使透镜凸面与平面玻璃不可能很理想的只以一个点相接触,所以圆心位置很难确定,环的半径也就不易测准。同时因玻璃表面的不洁净所引入的附加程差,使实验中看到的干涉级数并不代表真正的干涉级数m。为此,我们将式(4)作一变换,将式中半径换成直径,则有: 对第m+n个暗环有 将(5)和(6)两式相减,再展开整理后有 可见,如果我们测得第m个暗环及第(m+n)个暗环的直径、,就可由式(7)计算透镜的曲率半径R。 经过上述的公式变换,避开了难测的量和m,从而提高了测量的精度,这是物理实验中常采用的方法。

实验七 CCD多道光强分布测量

实验七 CCD 多道光强分布测量 随着科技进步,当今先进的光谱实验室已不再使用照相干版法获得光谱图形,先进的光学实验室不再用测量望远镜或丝杠带动光电池来测量干涉、衍射花样的光强分布,所使用的 都是以CCD 器件为核 心构成的各种光学测量仪器。 LM99MP 单缝衍射仪/多道光强分布测量系统用线阵CCD 器件接收光谱图形和光强分布,经过微处理系统的分析处理,在监视器上显示出光强曲线,并以之为对象进行测量而展开实验。LM99MP 具有分辨率高(微米级),实时采集、实时处理和实时观测,物理现象显著,物理内涵丰富等明显的优点。 一、 实验目的 CCD 单缝衍射仪用于光学实验项目中作单缝、单丝、双缝、多缝、双光束等的干涉、衍射实验。通过采集系统实时获得曲线,测量其相对光强分布和衍射角,进而测量单缝的缝宽、单丝的直径、光源的波长、双缝的缝宽和缝间距、光栅常数、激光束发散角测量等。 二、 实验原理 光的衍射现象是光的波动性的一种表现,可分为菲涅耳衍射击与夫琅禾费衍射两类。菲涅耳衍射是近场衍射,夫琅禾费衍射是远场衍射,又称平行光衍射。见图8。将单色点光源放置在透镜L1的前焦面,经透镜后的光束成为平行光垂直照射在单缝AB 上,按惠更斯--菲涅耳原理,位于狭缝的波阵面上的每一点都可以看成一个新的子波源,他们向各个方向发射球面子波,这些子波相叠加经透镜L2会聚后,在L2的后焦面上形成明暗相间的衍射条纹,其光强分布规律为: 2 20sin ?? θI I =(1) 其中 ?π λ θ= a sin ,a 是单缝宽度,θ是衍射角,λ为入射光波长。 图1 单缝衍射 参见图2,由(1)式可见: 1、 当θ=0时,I I θ=0,为中央主极大的强度,光强最强,绝大部分的光能都落在中央明

数字显示压力测量系统设计

数字显示压力测量系统设计 一、数字显示仪表的设计原理 工业生产过程中常用的数字式仪表有数字式温度计、数字式压力计、数字流量计、数字电子秤等。数字式仪表的出现适应了科学技术及自动化生产过程中高速、高准确度测量的需要,它具有模拟仪表无法比拟的优点。数字仪表的主要特点有:准确度高、分辨率高、无主观读数误差、测量速度快、能以数码形式输出结果。同时数字量传输信息,可使得传输距离不受限制。 数字仪表按工作原理可分为:带微处理器的和不带微处理器的。不带微处理器的仪表,通常用运算放大器和中、大规模集成电路来实现;带微处理器的仪表,是借助软件的方式来实现有关功能。 1.传感器输出信号的特点: (1)传感器的输出会受温度的影响,有温度系数变化。 (2)传感器的输出顺着输入的变化而变化,但之间的关系不一定是线性比例关系。 (31传感器的动态范围很宽。 (4)传感器的种类多,输出的形式也多种多样。 (5)传感器的输出阻抗较高,到测量电路时会产生较大的信号衰减。 2.传感器信号的二次变换 根据上述的传感器输出信号的特点来看,传感器输出的信号一般是能直接用于仪器、仪表显示作控制信号用,往往需要通过专门的电子电路对传感器输出信号进行“加工处理”。如将微弱的信号给予放大,经过滤波器将有害的杂波信号滤掉,将非线性的特性曲线线性化,如有必要再加温度补偿电路。这种信号变换一般称为二次变换。完成二次变换的电路称为传感器电子电路,一般也称为测量电路,仪表电子电路或调理电路。

3.传感器二次变换的组成 传感器电子电路主要是模拟电路,它与数字电路一样,是由一些单元电路组成。这些单元电路有:各种信号放大电路、有源及无源滤波电路、绝对值检测电路、峰值保持电路、采样.保持电路、A/D及D/A 变换电路、V/F及F/V变换电路、调制解调电路温度补偿电路及非线性特性化补偿电路等。 4.传感器信号的调理电路 信号调理是指测量系统的组成部分,它的输入时传感器的输出信号,输出为适合传输、显示、记录或者能更好的满足后续标准设备或装置要求的信号。信号调理电路通常具有放大、电平移动、阻抗匹配、滤波、解调功能。 传感器输出信号通常可以分为模拟量和数字量两类。对模拟量信号进行调整匹配时,传感器的信号调理环节相对复杂些,通常需要放大电路、调制与解调电路、滤波电路、采样保持电路、A/D及AD/A 转换电路等。而对于数字量信号进行调理匹配时,通常只需使信号通过比较器电路及整形电路,控制計数器技术即可。 5.DVM的概述 模拟式电压表具有电路简单、成本低、测量方便等特点,但测量精度较差。数字电压表(DVM),以其功能齐全、精度高、灵敏度高、显示直观等突出优点深受用户欢迎。DVM应用单片机控制,组成智能仪表;与计算机接口,组成自动测试系统。目前,DVM多组成多功能式的,因此又称数字多用表。 DVM是将模拟电压变换为数字显示的测量仪器,这就要求将模拟量变换成数字量。这实质上是个量化过程,即将连续的无穷多个模拟量用有限个数字表示的过程,完成这种变换的核心部件是A/D转换器,最后用电子计数器计数显示,因此,DVM的基本组成是A/D 转换器和电子计数器。 二、压力测量数显系统设计 测量系统的整机电路包括:P3000S-102A压力传感器、恒流源、

基于单片机的智能压力检测系统的设计—-毕业论文设计

题目:基于单片机的智能压力检 测系统的设计

基于单片机的智能压力检测系统的设计 摘要 压力是工业生产过程中的重要参数之一。压力的检测或控制是保证生产和设备安全运行必不可少的条件。实现智能化压力检测系统对工业过程的控制具有非常重要的意义。本设计主要通过单片机及专用芯片对传感器所测得的模拟信号进行处理,使其完成智能化功能。介绍了智能压力传感器外围电路的硬件设计,并根据硬件进行了软件编程。 本次设计是基于AT89C51单片机的测量与显示。是通过压力传感器将压力转换成电信号,再经过运算放大器进行信号放大,送至8位A/D转换器,然后将模拟信号转换成单片机可以识别的数字信号,再经单片机转换成LED显示器可以识别的信息,最后显示输出。而在显示的过程中通过键盘,向计算机系统输入各种数据和命令,让单片机系统处于预定的功能状态,显示需要的值。 本设计的最终结果是,将软件下载到硬件上调试出来了需要显示的数据,当输入的模拟信号发生变化的时候,通过A/D转换后,LED将显示不同的数值。 关键词:压力;AT89C51单片机;压力传感器;A/D转换器;LED显示;

Design of pressure detecting system based on single-chip Abstract Pressure is one of the important parameters in the process of industrial production. Pressure detection or control is an essential condition to ensure production and the equipment to safely operating, which is of great significance. The single-chip is infiltrating into all fields of our lives, so it is very difficult to find the area in which there is no traces of single-chip microcomputer. In this graduation design, primarily through by using single-chip and dedicated chip, handling of analog signal measured by the sensor to complete intelligent function. This design illustrates external hardware circuit design of intelligent pressure sensor, and conduct software development to the hardware. The design is based on measurement and display of AT89C51 single-chip. This is the pressure sensors will convert the pressure into electrical signals. After using operational amplifier, the signal is amplified, and transferred to the 8-bit A/D converter. Then the analog signal is converted into digital signals which can be identified by single-chip and then converted by single-chip into the information which can be displayed on LED monitor, and finally display output. In the course of show, through the keyboard to input all kinds of data and commands into the computer, the single-chip will locate in a predetermined function step to display required values. The end result of this design is that by downloading software to the hardware, it will get the data which is required to display by debugging. When the input analog signals change, the LED monitor will display different values through the A/D converting. Key words:pressure; AT89C51 single-chip; pressure sensor; A/D converter; LED monitor;

相关文档
最新文档