毕业设计论文-UEGO(宽域氧传感器)

合集下载

空燃比对排放特性的影响部分

空燃比对排放特性的影响部分

为进一步改善单燃料LPG发动机的HC、CO、NO排气温度、燃料消耗特性、采用电控系统,选用宽域空燃比氧传感器(UEGO),确保在不同工况时精确控制空燃比。

UEGO也称稀氧传感器,它不同于普通的理论空燃比传感器,后者是根据混合气的浓度或稀给出高或低的电压开关信号,而UEGO的输出信号则是在10:1~20:1之间与A/F成正比变化。

通过在运行时保持不同的空燃比,研究其排放和动力性。

另外由于LPG在稀混合器下具有稳定的着火特性,利用LPG稀燃潜力大的特性,尽量提高LPG发动机的热效率。

因而也就稀燃条件下的LPG发动机的排放特性对优化其总体性能更具现实意义。

NO的排放与过量空气系数的关系■—■Φ=1.4 ●—●Φ=1.3 ▼—▼Φ=1.0 □—□Φ=0.9NO的排放与过量空气系数和转速的关系如图所示。

影响NO排放的两个主要因素,一是燃烧过程和膨胀过程早期的气缸内氧气的浓度,他又昏昏前期的过量空气系数决定,通常存在一个NO 排放量最大的混合气浓度,过浓或过稀都会使NO的排放量下降;另一个就是燃烧过程的最高温度。

在一定空燃比的情况下,发动机的运转参数对燃烧的最高温度影响很大,在此只考虑转速的影响。

转速对燃烧最高温度的影响在低速时,由于气缸内的气体流动减弱,火焰传播的速度减低,散热损失和漏气损失相对增加,导致最高燃烧温度下降。

随着转速的提高气缸内气体流动强度加强,火焰的传播的速度上升,散热损失和漏气损失相对下降,使得最高燃烧温度存在上升的趋势;同时由于进排气的时间相对缩短,未燃混合气中的已燃气体质量分数增加,工质的比热容用上升,单位质量燃料燃烧后火焰温度升高值下降,同时废气的比例上升,也使得火焰的传播速度下降,导致最高燃烧温度存在下降趋势。

过量空气系数Φ=1.2时NO的排放比较理想,随着转速的上升,急剧下降,说明转速提高总体上使得最高燃烧温度的快速降低,在过量空气系数Φ=1.0时,即处于理论空燃比状态,火焰的传播度最快,随着转速的升高,缸内燃烧温度快速升高,NO排放量快速上升,在高转速时NO的排放量已经接近过量空气系数Φ=0.9时的混合气较浓,燃烧相对缺氧,NO的排放总体处于较低水平。

基于STM32的心率血氧监测系统的毕业论文设计

基于STM32的心率血氧监测系统的毕业论文设计

设计一个基于STM32的心率血氧监测系统是一个具有挑战性和实际应用意义的课题。

以下是一个可能的毕业论文设计框架:1. 选题背景与意义:-介绍心率血氧监测系统在医疗保健领域中的重要性和应用价值,说明选择该主题的原因和意义。

2. 文献综述:-回顾相关的心率血氧监测技术,包括传感器原理、信号处理方法、嵌入式系统设计等方面的理论和应用现状,并分析已有的类似系统的特点和局限性。

3. 系统整体设计:-描述整个监测系统的设计思路和总体架构,包括硬件部分(传感器选择、信号采集电路、嵌入式处理器)和软件部分(数据处理算法、用户界面设计)。

4. 传感器选择与接口设计:-选择合适的心率血氧传感器,并设计传感器与STM32的接口电路和通讯协议,确保有效的数据采集和传输。

5. 数据采集与处理:-设计STM32的数据采集程序和信号处理算法,实现心率和血氧饱和度的准确测量和计算。

6. 嵌入式系统软件设计:-开发嵌入式系统的软件,包括实时数据处理、用户界面设计、数据存储和传输等功能。

7. 系统性能测试与验证:-进行系统的功能测试和性能验证,包括对测量结果的准确性和稳定性进行评估。

8. 实验结果分析:-分析实验结果,包括系统的准确性、灵敏度、响应速度等关键性能指标,并与市场上常见的商用设备进行比较。

9. 改进与展望:-针对实验结果中发现的问题和不足,提出系统改进的建议,并对未来的技术发展和应用前景进行展望。

10. 参考文献与引用:-在毕业论文中合理引用相关文献和资料,确保研究的可信度和学术性。

以上是基于STM32的心率血氧监测系统毕业论文设计的可能内容框架,希望可以为你提供一些启示。

在具体的研究过程中,还需要根据实际情况进行详细的研究和设计。

基于dSPACE的宽带型废气氧传感器控制器设计

基于dSPACE的宽带型废气氧传感器控制器设计
动机台架上实验 , 结果表明 : 设计的控制器能在较宽范围内较好地检测混合气空燃 比变化。 关键词 :宽带型废气氧;控制器 ;dP C ; S A E 空燃 比
中图 分 类号 :T 1 P22 文 献 标识 码 :A 文章 编 号 :10- 77 2 1 )30 8 -3 0 09 8 (00 0 -020
Hee ie s y o c n lg Hee 3 0 9, i a ) fi Unv ri fTeh oo y, fi 0 0 Chn ; t 2
Abt c:U i r l xasgs xgn U G sno aeu fwt p G no adapmpoye sr t n es h ut a ye ( E O)esrs d po si ht eE Os sr n u gn a v ae o im c y e x
t e p mpn u r n n e e au e mu t e c nr l d, GO s n o i d o o t l be s n o . h sp p r h u i g c r ta d t mp r tr s o t l UE e s ri a k n f nr l l e s r T i a e e b oe s c oa f c s sOl t e d sg f d P E— a e o tolr T e h r w r f h a— r ig tmp rt r a u i g a d o u e l h e i n o S AC b s d c n r l . h ad a e o e t i n , e ea u e me s r n e d v n p mp n u r n a u n s it d c d i e a . h  ̄e b c o to o u i g c r n s i lme td b u ig c re tme s r g i n r u e n d ti T e i o l d a k c n rl fp mpn u r t i mp e n e y e d gtlP D. h y tm a e n tse y e gn e t e . h e u t s o h t te c n rl r c n ef ciey ii I T e s se h s b e e t d b n i e t s d T e rs l h w ta h o tol a f t l a b s e e v d tcsa r u l ai f h x a s g s i d a g . ee t i— e t o e e h u t a n wie r n e f r o t

宽氧传感器知识

宽氧传感器知识

为了克服普通氧传感带来的缺陷,新一代宽量程氧传感器诞生了.下面我们就来谈谈宽量程氧传感器的工作原理.宽量程氧传感器由泵氧元(PUMP CELL)、能斯特单元(NERNST CELL)、基准参考单元(REFERENCE CELL)、加热元件以及泵氧元控制环路组成。

这是个宽量程氧传感器的闭环控制系统。

能斯特单元也就是我们非常熟悉的普通二氧化锆氧传感器的结构。

它在这里提供一个检测腔,一面开口与大气(FREE AIR)相通,另一面封闭与废气接触,输出一个与废气含氧量相关的VSENSE电压,泵控制环路是个累加运算放大器,输入端有一个恒压源,基准电压恒定在0.45V。

当废气不断从扩散小孔进入能斯特单元检测腔时,由于某种原因造成废气变浓时,VSENSE电压就升高,通过累加运算放大器运算处理后,输出IPUMP(泵电流)为负值,泵氧元将氧气泵入检测腔内进行化学分解反应,在废气中产生水和一氧化碳及一些氧化物附着在泵氧元的表面.在化学反应中将过多的碳氢化合物分解,从而降低了废气的浓度,使检测腔恢复到VSENSE电压为0.45V的废气含氧浓度的平衡状态.当废气浓度变稀时,VSENSE电压降低,同样通过累加运算放大器运算处理后,输出IPUMP(泵电流)为正值,泵氧元将氧气泵出检测腔.泵控制环路反馈系统始终维持检测腔内废气含氧量的浓度.当达到检测腔废气含氧浓度平衡也就是VSENSE电压为0.45时,泵氧元不工作,此时IPUMP等于零.上面谈到的是泵氧元的工作原理.概述了改变泵电流的极性(电流流动方向)与大小就可以达到平衡检测腔里的废气含氧量,如何将这个变化的泵电流再去控制发动机ECU对喷油器喷油时间的调整,是至关重要的.在泵氧元控制环路中有一块DSP(数字信号处理器)电路,该电路有二路输出,一路将变化的泵电流信号通过放大数模转换成线性电压,此电压从0-5V连续变化去控制发动机ECU的AFR调整.另一路输出脉宽调制信号去控制COM 场效应开关晶体管导通与截止时间,给加热单元组件提供电流,加热氧传感器.宽量程氧传感器它的特点,工作曲线平滑,能够连续检测空燃比(AFR)10至20之间,相当于过量空气系数LAMBDA从0.686至1.405的宽范围内.,当线性电压在2.5V 时,就达到了理论AFR14.7的控制.在检测宽量程氧传感时,不能用万用表电压档及示波器进行直接测量氧传感器的端口线束电压.只能用相关的专用检测仪进行数据流分析.本田新款车系安装在三元催化器上游为AFR传感器,检测信号为电流(MA)值,下游为副氧传感器检测信号为线性电压值.氧传感器的判别宽量程空燃比传感器和老式氧化锆氧传感器由于其结构原理不同,所以检测也不同:氧化锆氧传感器直接利用电压信号作为测量值;而宽带氧传感器将经过特殊处理和控制的泵氧元供给电流作为测量过量空气系数的参数,这样传感器产生的就不是阶跃函数性质的响应而是连续递增的信号。

传感器论文

传感器论文

第2章电阻式传感器电阻式传感器的基本原理是将被测物理量的变化转换成电阻值的变化,再经相应的测量电路和装置显示或记录被测量值的变化。

按其工作原理可分为电位器式、应变式和固态压阻式传感器三种。

2.1电位器式传感器电位器是一种人们熟知的机电元件,广泛用于各种电气和电子设备中。

在仪表与传感器中,它主要是作为一种把机械位移输入转换为与它成一定函数关系的电阻或电压输出的传感元件来使用的。

利用电位器作为传感元件可制成各种电位器式传感器,用以测定线位移或角位移,以及一切可能转换为位移的其他被测物理量参数,如压力、加速度等。

此外,在伺服式仪表中,它还可用作反馈元件及解算元件,制成各种伺服式仪表。

电位器的优点是结构简单、尺寸小、重量轻、输出特性精度高(可达0.1%或更高)且稳定性好,可以实现线性及任意函数特性;受环境因素(温度、湿度、电磁干涉、放射性)影响较小;输出信号较大,一般不需放大。

因此,它是最早获得工业应用的传感器之一。

伹它也存在一些缺点,主要是存在摩擦和磨损。

由于有摩擦,因而要求敏感元件有较大的输出功率,否则会降低传感器的精度,又由于有滑动触点及磨损,则使电位器的可靠性和寿命受到影响。

另外线绕电位器分辨力较低也是一个主要缺点。

目前电位器围绕着减小或消除摩擦、提高使用寿命和可靠性、提高精度和分辨力等而不断得到发展。

目前电位器虽然在不少应用场合已被更可靠的无接触式的传感元件所代替,但其某些独特的性能仍然不能被完全取代,在同类传感元件中仍然占有一定的地位。

电位器的种类极其繁多。

按其结构形式不同,可分为绕线式、薄膜式、光电式、磁敏式等。

在绕线电位器中,又可分为单圈式和多圈式两种。

按其特性曲线不同,还可分为线性电位器和非线性(函数)电位器两种。

如图2-1所示为常用电位器式传感器。

图2-1 电位器传感器2.1.1线性电位器1. 电位器的理想特性、灵敏度图 2-2所示为电位器式位移传感器原理图。

如果把它作为变阻器使用,且假定全长为max x 的电位器其总电阻为max R ,电阻沿长度的分布是均匀的,则当滑臂由A 向B 移动x 后,A 到滑臂间的阻值为max max x xR R x =若把它作为分压器使用,且假定加在电位器A 、B 之间的电压为max U ,则输出电压为max max x xU U x =图2-3所示为电位器式角度传感器。

毕业设计(论文)-温度、湿度以及CO2浓度测控仪的设计

毕业设计(论文)-温度、湿度以及CO2浓度测控仪的设计

兰州工业高等专科学校毕业设计(论文)题目温度、湿度以及CO2浓度测控仪的设计系别电气工程系专业电气自动化技术班级电自09-2班姓名学号指导教师(职称)(教授)日期摘要随着蔬菜大棚的迅速增多,人们对其性能要求也越来越高,特别是为了提高生产效率,对大棚的自动化程度要求也越来越高。

随着单片机及各种电子器件性价比的迅速提高,使得这种要求变为可能。

本文介绍了一种以AT89S52单片机为控制核心的测控仪,主要是为了对蔬菜大棚内的温湿度,以及二氧化碳浓度进行有效、可靠地检测与控制而设计的。

该测控仪具有检测精度高、使用简单、成本较低和工作稳定可靠等特点,所以具有一定的应用前景。

关键词:二氧化碳浓度蔬菜大棚测控仪温湿度检测自动化程度性能要求AbstractWith the rapid increase of the awning vegetables, people on its performance requirements also more and more high, especially in order to increase the production efficiency, to shed the automation degree of demand more and more is also high. With the single chip microcomputer and various kinds of electronic device performance to price ratio increased quickly, make such a request possible. This paper introduces a kind of AT89S52 SCM in as control core and control the device, mainly is for vegetables in the trellis of temperature and humidity, and carbon dioxide concentration is effective and reliable to detect and control and of the design. The measurement and control instrument has high accuracy, easy to use and low cost and stable and reliable, and other characteristics, so has certain application prospect. Keywords: carbon dioxide concentration measurement instrument testing temperature and humidity awning vegetables automation degree of performance requirements1.概述课题名称:温度、湿度、二氧化碳浓度测控仪的设计课题内容性质:工程设计课题来源性质:教师收集的结合生产实际的课题目前,在仓库、图书馆、蔬菜大棚等许多场合需要温度、湿度、二氧化碳浓度的控制。

基于霍尔传感器的测速仪设计毕业设计论文

基于霍尔传感器的测速仪设计毕业设计论文

基于霍尔传感器的测速仪设计【摘要】霍尔传感器是对磁敏感的传感元件,常用于开关信号采集的有CS3020、CS3040等,这种传感器是一个3端器件,外形与三极管相似,只要接上电源、地,即可工作,输出通常是集电极开路(OC)门输出,工作电压范围宽,使用非常方便。

使用霍尔传感器获得脉冲信号,其机械结构也可以做得较为简单,只要在转轴的圆周上粘上一粒磁钢,让霍尔开关靠近磁钢,就有信号输出,转轴旋转时,就会不断地产生脉冲信号输出。

这种传感器不怕灰尘、油污,在工业现场应用广泛。

【关键词】传感器原理;检测技术;检测速度;一、测速仪功能简介测速是工农业生产中经常遇到的问题,测速仪表具有很重要的意义。

要测速,首先要解决是采样的问题。

在使用模拟技术制作测速表时,常用测速发电机的方法,即将测速发电机的转轴与待测轴相连,测速发电机的电压高低反映了转速的高低。

使用单片机技术进行测速,可以采用简单的脉冲计数法。

只要转轴每旋转一周,产生一个或固定的多个脉冲,并将脉冲送入单片机中进行计数,即可获得转速的信息。

二、霍尔传感器介绍霍尔传感器是对磁敏感的传感元件,常用于开关信号采集的有CS3020、CS3040等,这种传感器是一个3端器件,外形与三极管相似,只要接上电源、地,即可工作,输出通常是集电极开路(OC)门输出,工作电压范围宽,使用非常方便。

如图1所示是CS3020的外形图,将有字面对准自己,三根引脚从左向右分别是Vcc,地,输出。

如图1所示,这种传感器不怕灰尘、油污,在工业现场应用广泛。

图1 CS3020三、基于霍尔传感器的测速仪系统设计1、系统总体结构基于霍尔传感器的测速仪系统总体结构如图2所示:图2基于霍尔传感器的测速仪系统结构图2、信号获取电路图3是测速电路的信号获取部分,在电源输入端并联电容C6用来滤去电源尖啸,使霍尔元件稳定工作。

HR3020表示霍尔元件,采用3020,在霍尔元件输出端(引脚3)与地并联电容C7滤去波形尖峰,再接一个上拉电阻R15,然后将其接入LM393的引脚3。

本科毕业论文_脉宽调制型差动电容位移传感器的研究

本科毕业论文_脉宽调制型差动电容位移传感器的研究

J I A N G S U U N I V E R S I T Y本科毕业论文脉宽调制型差动电容位移传感器的研究Study of Displacement Sensor Based on Pulse Width ModulatedDifferential Capacitors学院名称:机械工程学院专业班级:测控技术与仪器0801班学生:指导教师:指导教师职称:2012年 06 月毕业设计(论文)任务书机械学院测控0801 班级学生设计(论文)题目脉宽调制型电容位移传感器研究课题来源自选起讫日期 2012 年 03 月 15 日至 2012 年 06 月 7 日共 14 周指导教师(签名)系(教研室)主任(签名)毕业设计(论文)进度计划:脉宽调制型差动位移传感器的研究专业班级:测控0801 学生:朱彤指导教师:鲍丙豪职称:教授摘要电容式传感器是将被测非电量的变化转换成电容量变化的一种传感器。

结构简单、分辨率高、可非接触测量,并能在高温、辐射和强烈振动等恶劣条件下工作。

目前在位移、振动、角度、加速度、压力、压差、液面和成分含量测量等方面获得广泛应用。

然而,电容式传感器将被测非电量变换为电容变化后,其信号十分微弱,不便于直接测量,所以为了测出被测非电量必须采用测量电路将其转换成电压、电流或频率信号。

本论文主要研究的容是电容式位移传感器与其测量电路。

设计中电容器由三片一样的金属板构成,三块板平行放置,连成差动结构,然后配以脉宽调制信号处理电路从而实现对微小位移的检测。

这种电路无需相敏检波电路即可判定产生位移的板的运动位置,由于采用差动结构,整体电路具有线性度高、灵敏度高和温漂小的特点。

设计时将系统分为两部分,即传感器制作部分和测量电路部分,通过分步测试调理,最后建立一个完整的实验系统,研制出一台微位移测试仪。

当动极板与两固定极板的相对位置发生变化时,即产生相对位移时,电路的输出电压产生变化,电压变化与位移呈现线性关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0 目 录 中文摘要 .............................................................. 1 英文摘要 .............................................................. 2 1 引言 ............................................................... 3 1.1 问题的引出....................................................... 3 1.2 国内外研究现状................................................... 3 1.3 课题主要研究内容................................................. 4 2 宽域型氧传感器结构和工作原理 ....................................... 5 2.1 宽域氧传感器结构................................................ 5 2.1.1 扩散室和参考室 .............................................. 6 2.1.2 泵电池 ...................................................... 6 2.1.3 氧浓差电池 .................................................. 6 2.1.4 加热部件 .................................................... 7 2.2 基本工作原理.................................................... 7 2.2.1 概述........................... ..............................7 2.2.2 当内燃机工作在稀燃状态 ...................................... 8 2.2.3 当内燃机工作在富燃状态 ...................................... 9 3 宽带型氧传感器控制器设计 .......................................... 11 3.1 TMS320F28335DSP介绍 ............................................ 11 3.2 UEGO传感器控制器概述 ........................................... 13 3.2.1 温度控制部分 ............................................... 14 3.2.2 泵电流控制部分 ............................................. 15 3.2.3 空燃比测量部分 ............................................. 16 3.3 UEGO控制器外围信号调理电路设计 ................................. 17 3.3.1 交流通道的设计 ............................................. 17 3.3.2 直流通道的设计 ............................................. 18 3.3.3 加热驱动电路的设计 ......................................... 19 3.4 UEGO控制器外围电路设计 ......................................... 20 3.4.1 电压产生电路的设计 ......................................... 20 3.4.2 时钟电路的设计 ............................................. 22 3.4.3 复位电路的设计 ............................................. 23 4 全文总结 .......................................................... 24 谢 辞 ................................................................ 26 参考文献 ............................................................. 27 1

UEGO传感器控制器设计 摘要:传统氧传感器只能反馈混合气浓或稀,至于精确的空燃比却不能反馈,所以

便有了宽域型线性氧传感器(UEGO)。其输出信号可以精确的反馈混合气的空燃比,提高ECU的控制精度,最大限度的发挥三元催化器的作用,降低有害气体的排放。本文研究的是基于TMS320F28335DSP的宽域型氧传感器控制器的硬件部分,它主要包括以下几个部分:泵电流控制部分、温度控制部分、传感器加热部分和泵电流测量部分,它在工作的过程中需要对电流和温度等量进行控制。除此之外,还要设计DSP的复位电路、时钟电路以及电源电路,以满足控制的要求。 关键词:宽域型氧传感器;空燃比;氧传感器控制器;UEGO 2

THE DESIGN OF UNIVERSAL EXHAUST GAS OXYGEN SENSOR CONTROLLER

Abstract: The traditional oxygen sensor can only feedback thick or thin of the mixed gas,

as the air-fuel ratio can not be feedbacked accurately,so the Universal Exhaust Gas Oxygen sensor (UEGO) come into being.The output signal can accurately feedback the air-fuel ratio of the mixed gas to improve ECU's control accuracy, maximize the role of catalytic converters to reduce harmful gas emissions.This study is about the hardware of Universal Exhaust Gas Oxygen sensor controller based on TMS320F28335DSP, which includes the following components: pump current control section, the temperature control section, the sensor heating section and the pump current measurement section,its current and temperature need to be controlled during its word time. In addition,the DSP' reset circuit,clock circuit and power circuit must be designed to meet the control requirement. Key words: Universal Exhaust Gas Oxygen sensor;air-fuel ratio;oxygen sensor

controller;UEGO 3

1 引言 1.1 问题的引出 氧传感器是汽车发动机燃油反馈控制系统的重要部件,在空燃比控制中有着非常重要的作用。氧化锆型氧传感器的工作范围是在λ=1附近产生一个跳跃性的输出电压变化,一旦超出此范围,其反应性能便降低。当发动机需要作稀混合或浓混合控制时,这一类型的氧传感器便无法胜任了,使得发动机的燃油控制不能十分精确[1]。随着人们环保意识的日渐加深和对汽车尾气排放要求的不断提高,传统的开关

型氧传感器已不能满足高排放标准的要求,因为它只能定性的知道气体的浓稀,而不知道浓稀的程度;且应用开关型氧传感器的发动机空燃比控制系统,只能以当量空燃比值为目标进行反馈,线性宽域氧传感器(Universal Exhaust Oxygen Sensor,简称UEGO)就在这种情况下诞生了。它通过检测发动机尾气排放中的氧含量,并向电子控制单元(ECU)输送相应的电压信号,反映空气燃油混合比的稀浓。ECU根据氧传感器传送的实际混合汽浓稀反馈信号而相应调节喷油脉宽,使发动机运行在最佳空燃(λ=1)状态,从而为催化转换器的尾气处理创造理想的条件。如果混合汽太浓(λ<1),必须减少喷油量,如果混合汽太稀(λ>1),则要增加喷油量。它可以在很宽的空燃比范围内(λ=0.65--2.4)提供准确的空燃比值,提高汽车发动机电控单元ECU 的控制精度,最大限度的发挥三元催化器的作用,降低废气中的有害成分[2]。宽域型氧传感器由于其特殊的结构,必须配合控制器方能使用。当其配合单独的控制器时,可以组成便携式空燃比分析仪,成为发动机测控平台的一台重要仪器。

1.2 国内外研究现状 国外已将宽域型氧传感器(UEGO) 传感器用于汽油机的燃烧控制系统中,如大众、奥迪、沃尔沃等。目前市场上使用最多是日本 Horiba 公司的空燃比分析仪MEXA-700λ,测量精度高,功能十分强大,但价格昂贵,人民币10 万左右,并且只能使用市场上罕见的专用UEGO 传感器,动态响应时间80ms,在汽车高转速或工况突变情况下,其动态性能还有待提高。美国的ECM4800R 空燃比仪的动态响应时间为150ms。现在国内也开展了UEGO 控制器的相关研究。西华大学交通与汽车工程学院利用德国Bosch 公司针对其LSU 系列UEGO 传感器开发的CJ125 控制芯片,开发UEGO

相关文档
最新文档