2016年新疆中考数学试题解析版

合集下载

2016年新疆乌鲁木齐市中考数学试卷带答案解析

2016年新疆乌鲁木齐市中考数学试卷带答案解析

2016年新疆乌鲁木齐市中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)如果将“收入100元”记作“+100元”,那么“支出50元”应记作(应记作( ) A .+50元 B .﹣50元 C .+150元 D .﹣150元2.(4分)石墨烯是世界上目前最薄却也最坚硬的纳米材料,还是导电性最好的材料,其理论厚度仅为0.00000000034米,该厚度用科学记数法表示为(米,该厚度用科学记数法表示为( )A .0.34×10﹣9米 B .34.0×10﹣11米 C .3.4×10﹣10米 D .3.4×10﹣9米3.(4分)在市委、市政府的领导下,全市人民齐心协力,力争于2017年将我市创建为“全国文明城市”,为此小宇特制了正方体模具,其展开图如图所示,原正方体中与“文”字所在的面正对面上标的字是(字所在的面正对面上标的字是( )A .全.全B .国.国C .明.明D .城4.(4分)如图,已知直线a ∥b ,AC ⊥AB ,AC 与直线a ,b 分别交于A ,C 两点,若∠1=60°,则∠2的度数为(的度数为( )A .30°B .35°C .45°D .50°5.(4分)某班去看演出,甲种票每张24元,乙种票每张18元,如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?设买了x 张甲种票,y 张乙种票,则所列方程组正确的是(乙种票,则所列方程组正确的是( ) A . B . C .D .6.(4分)下列说法正确的是(分)下列说法正确的是( )A .鞋店老板比较关心的是一段时间内卖出的鞋的尺码组成的一组数据的众数B .某种彩票的中奖率是2%,则买50张这种彩票一定会中奖C .为了了解某品牌灯管的使用寿命,应采用全面调查的方式D .若甲组数据的方差S =0.06,乙组数据的方差S =0.1,则乙组数据比甲组数据稳定7.(4分)对于任意实数m ,点P (m ﹣2,9﹣3m )不可能在()不可能在( ) A .第一象限.第一象限 B .第二象限.第二象限 C .第三象限.第三象限 D .第四象限8.(4分)将圆心角为90°,面积为4πcm 2的扇形围成一个圆锥的侧面,则所围成的圆锥的底面半径为(成的圆锥的底面半径为( ) A .1cm B .2cm C .3cm D .4cm9.(4分)如图,在Rt △ABC 中,点E 在AB 上,把这个直角三角形沿CE 折叠后,使点B 恰好落到斜边AC 的中点O 处,若BC=3,则折痕CE 的长为(的长为( )A .B .2C .3D .610.(4分)如图,边长为4个单位长度的正方形ABCD 的边AB 与等腰直角三角形EFG 的斜边FG 重合,△EFG 以每秒1个单位长度的速度沿BC 向右匀速运动(保持FG ⊥BC ),当点E 运动到CD 边上时△EFG 停止运动,设△EFG 的运动时间为t 秒,△EFG 与正方形ABCD 重叠部分的面积为S ,则S 关于t 的函数大致图象为( )A .B .C .D .二、填空题(本大题共5小题,每小题4分,共20分)11.(4分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为则这个多边形的边数为 . 12.(4分)不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,则第一次摸到红球,第二次摸到绿球的概率为到绿球的概率为. 13.(4分)设I 为△ABC 的外心,若∠BIC=100°,则∠A 的度数为的度数为 . 14.(4分)如图,直线y=﹣2x +4与双曲线y=交于A 、B 两点,与x 轴交于点C ,若AB=2BC ,则k= .15.(4分)如图,矩形ABCD 中,AB=4,BC=8,P 是边DC 上的动点,G 是AP 的中点,以P 为中心,将PG 绕点P 顺时针旋转90°,G 的对应点为Gʹ,当B 、D 、Gʹ在一条直线上时,在一条直线上时,.三、解答题(共9小题,共90分)16.(8分)计算:()﹣2+|﹣2|﹣2cos30°+.17.(8分)先化简,再求值:(x +2)(x ﹣2)+(2x ﹣1)2﹣4x (x ﹣1),其中x=2.18.(10分)如图,两张宽度相等的纸条叠放在一起,重叠部分构成四边形ABCD .(1)求证:四边形ABCD 是菱形;(2)若纸条宽3cm ,∠ABC=60°,求四边形ABCD 的面积.19.(10分)某商场用24000元购入一批空调,然后以每台3000元的价格销售,因天气炎热,空调很快售完,商场又以52000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元.(1)商场第一次购入的空调每台进价是多少元?(2)商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,打算将第二次购入的部分空调按每台九五折出售,最多可将多最多可将多少台空调打折出售?20.(10分)如图,建筑物AB 的高为6m ,在其正东方向有一个通信塔CD ,在它们之间的地面点M (B ,M ,D 三点在一条直线上)处测得建筑物顶端A ,塔顶C 的仰角分别为37°和60°,在A 处测得塔顶C 的仰角为30°,则通信塔CD 的高度.(精确到0.01m )21.(10分)小强的爸爸从家骑自行车去图书馆借书,途中遇到了从图书馆步行回家的小强,回家的小强,爸爸借完书后迅速回家,爸爸借完书后迅速回家,爸爸借完书后迅速回家,途中追上了小强,途中追上了小强,途中追上了小强,便用自行车载上小强一便用自行车载上小强一起回家,结果爸爸比自己单独骑车回家晚到1分钟,两人与家的距离S (千米)和爸爸从家出发后的时间t (分钟)之间的关系如图所示. (1)图书馆离家有多少千米?(2)爸爸和小强第一次相遇时,离家多少千米? (3)爸爸载上小强后一起回家的速度是多少?22.(12分)某艺校音乐专业自主招生考试中,所有考生均参加了“声乐”和“器乐”两个科目的考试,成绩都分为五个等级.对某考场考生两科考试成绩进行了统计分析,绘制了如下统计表和统计图(不完整).根据以上信息,解答下列问题:(1)求表中a,b,c,d的值,并补全条形统计图;(2)若等级A,B,C,D,E分别对应10分,8分,6分,4分,2分,求该考场“声乐”科目考试的平均分.(3)已知本考场参加测试的考生中,恰有两人的这两科成绩均为A,在至少一科成绩为A的考生中,随机抽取两人进行面试,求这两人的两科成绩均为A的概率.23.(10分)如图,已知AB为⊙O的直径,点E在⊙O上,∠EAB的平分线交⊙O于点C,过点C作AE的垂线,垂足为D,直线DC与AB的延长线交于点P. (1)判断直线PC与⊙O的位置关系,并说明理由;(2)若tan∠P=,AD=6,求线段AE的长.24.(12分)抛物线y=﹣x2+2x+n经过点M(﹣1,0),顶点为C.(1)求点C的坐标;(2)设直线y=2x与抛物线交于A、B两点(点A在点B的左侧).①在抛物线的对称轴上是否存在点G.使∠AGC=∠BGC?若存在,求出点G的坐标;若不存在,请说明理由;②点P在直线y=2x上,点Q在抛物线上,当以O,M,P,Q为顶点的四边形是平行四边形时,求点Q的坐标.2016年新疆乌鲁木齐市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)如果将“收入100元”记作“+100元”,那么“支出50元”应记作(应记作( ) A.+50元 B.﹣50元 C.+150元 D.﹣150元【解答】解:如果将“收入100元”记作“+100元”,那么“支出50元”应记作“﹣50元”,故选B2.(4分)石墨烯是世界上目前最薄却也最坚硬的纳米材料,还是导电性最好的)米,该厚度用科学记数法表示为(材料,其理论厚度仅为0.00000000034米,该厚度用科学记数法表示为(A.0.34×10﹣9米 B.34.0×10﹣11米 C.3.4×10﹣10米 D.3.4×10﹣9米 【解答】解:0.00000000034米,该厚度用科学记数法表示为3.4×10﹣﹣10米,故选:C.3.(4分)在市委、市政府的领导下,全市人民齐心协力,力争于2017年将我市创建为“全国文明城市”,为此小宇特制了正方体模具,其展开图如图所示,原字所在的面正对面上标的字是()正方体中与“文”字所在的面正对面上标的字是(A.全.明 D.城.国 C.明.全 B.国【解答】解:正方体的平面展开图,共有六个面,其中面“国”与面“市”相对,面“文”与面“城”相对,“全”与面“明”相对.故选:D.4.(4分)如图,已知直线a∥b,AC⊥AB,AC与直线a,b分别交于A,C两点,)若∠1=60°,则∠2的度数为(的度数为(A .30°B .35°C .45°D .50° 【解答】解:∵直线a ∥b ,∠1=60°, ∴∠3=∠1=60°. ∵AC ⊥AB , ∴∠BAC=90°,∴∠2=90°﹣∠3=90°﹣60°60°=30°=30°. 故选A .5.(4分)某班去看演出,甲种票每张24元,乙种票每张18元,如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?设买了x 张甲种票,y 张乙种票,则所列方程组正确的是(乙种票,则所列方程组正确的是( ) A . B . C .D .【解答】解:设买了x 张甲种票,y 张乙种票,根据题意可得:.故选:B .6.(4分)下列说法正确的是(分)下列说法正确的是( )A .鞋店老板比较关心的是一段时间内卖出的鞋的尺码组成的一组数据的众数B .某种彩票的中奖率是2%,则买50张这种彩票一定会中奖C .为了了解某品牌灯管的使用寿命,应采用全面调查的方式D .若甲组数据的方差S =0.06,乙组数据的方差S=0.1,则乙组数据比甲组数据稳定【解答】解:A 、鞋店老板比较关心的是一段时间内卖出的鞋的尺码组成的一组数据的众数,故本选项正确;B 、某种彩票的中奖率是2%,则买50张这种彩票一定会中奖,故本选项错误;C 、为了了解某品牌灯管的使用寿命,应采用抽样调查的方式,故本选项错误;D 、若甲组数据的方差S=0.06,乙组数据的方差S=0.1,则乙组数据比甲组数据稳定,故本选项错误; 故选A .7.(4分)对于任意实数m ,点P (m ﹣2,9﹣3m )不可能在()不可能在( ) A .第一象限.第一象限 B .第二象限.第二象限 C .第三象限.第三象限 D .第四象限 【解答】解:A 、当点在第一象限时,解得2<m <3,故选项不符合题意;B 、当点在第二象限时,解得m <3,故选项不符合题意;C 、当点在第三象限时,,不等式组无解,故选项符合题意;D 、当点在第四象限时,解得m >0,故选项不符合题意.故选C .8.(4分)将圆心角为90°,面积为4πcm 2的扇形围成一个圆锥的侧面,则所围成的圆锥的底面半径为(成的圆锥的底面半径为( ) A .1cm B .2cm C .3cm D .4cm【解答】解:设扇形的半径为R ,根据题意得=4π,解得R=4,设圆锥的底面圆的半径为r ,则•2π•r•4=4π,解得r=1, 即所围成的圆锥的底面半径为1cm . 故选A .9.(4分)如图,在Rt △ABC 中,点E 在AB 上,把这个直角三角形沿CE 折叠后,使点B 恰好落到斜边AC 的中点O 处,若BC=3,则折痕CE 的长为(的长为( )A. B.2 C.3 D.6【解答】解:由翻折的性质可知,BC=CO=AO=3,∴AC=2BC,在Rt△ACB中,sin∠A==,∴∠A=30°,在Rt△AOE中,OE=OA•tan30°=3×=,∴CE=20E=2故选B.10.(4分)如图,边长为4个单位长度的正方形ABCD的边AB与等腰直角三角形EFG的斜边FG重合,△EFG以每秒1个单位长度的速度沿BC向右匀速运动(保持FG⊥BC),当点E运动到CD边上时△EFG停止运动,设△EFG的运动时间为t 秒,△EFG与正方形ABCD重叠部分的面积为S,则S关于t的函数大致图象为( )A. B. C.D.【解答】解:由题意可得, FE=GE ,AB=FG=4,∠FEG=90°, 则FE=GE=2,点E 到FG 的距离为2,当点E 从开始到点E 到边BC 上的过程中,S==﹣t 2+4t (0≤t ≤2),当点E 从BC 边上到边FG 与DC 重合时,S=(2≤t ≤4),当边FG 与DC 重合到点E 到边DC 的过程中,S==(6﹣t )2(4≤t ≤6), 由上可得,选项B 中函数图象符合要求, 故选B .二、填空题(本大题共5小题,每小题4分,共20分)11.(4分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为则这个多边形的边数为 6 . 【解答】解:∵多边形的外角和是360度,多边形的内角和是外角和的2倍, 则内角和是720度,720÷180+2=6,∴这个多边形是六边形. 故答案为:6.12.(4分)不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,则第一次摸到红球,第二次摸到绿球的概率为到绿球的概率为 . 【解答】解:列表如下:红 绿 红 (红,红) (绿,红) 绿(红,绿)(绿,绿)所有等可能的情况有4种,所以第一次摸到红球,第二次摸到绿球的概率=, 故答案为:.13.(4分)设I 为△ABC 的外心,若∠BIC=100°,则∠A 的度数为的度数为 50°或130° .【解答】解:当三角形是锐角三角形∵I是△ABC的外心,∴圆心角∠BIC与圆周角∠A所对弧是同弧,∴∠A=∠BIC,∴∠A=50°.当三角形是钝角三角形,同理可得:∠A=130°.故答案为:50°或130°.14.(4分)如图,直线y=﹣2x+4与双曲线y=交于A、B两点,与x轴交于点C,若AB=2BC,则k= .【解答】解:∵直线y=﹣2x+4与双曲线y=交于A、B两点,解,∴,,过A作AD⊥x轴于D,BE⊥x轴于E,∵直线y=﹣2x+4与x轴的交点为(2,0),∴OC=2,∵AB=2BC,∵△BCE∽△CAD,∴,∴=,∴k=.故答案为:.15.(4分)如图,矩形ABCD中,AB=4,BC=8,P是边DC上的动点,G是AP 的中点,以P为中心,将PG绕点P顺时针旋转90°,G的对应点为Gʹ,当B、D、Gʹ在一条直线上时,在一条直线上时, PD= .【解答】解:当B、D、Gʹ在一条直线上时,如图所示,过Gʹ作GʹE⊥CD,交CD的延长线于E,设PD=x,由勾股定理得:AP=,由旋转得:PGʹ=PG,∠APGʹ=90°,DPGʹ=90°°,∴∠APD+∠DPGʹ=90∵G是AP的中点,∴PG=AP,∴PGʹ=AP=,∵四边形ABCD为矩形,∴∠ADC=90°,∴∠DAP+∠APD=90°,∴∠DPGʹ=∠DAP,∵sin∠DPGʹ=,sin∠DAP=,∴=,∴EGʹ=DP=x,∵EGʹ∥BC,∴=,∵BC=8,DC=4,∴BC=2DC,∴ED=EGʹ=x,∴PE=PD+DE=,由勾股定理得:GʹP2=GʹE2+PE2,即()2=(x)2+(x)2,解得:x=±,∵x>0,∴x=,∴DP=.故答案为:DP=.三、解答题(共9小题,共90分)﹣2+|﹣2|﹣2cos30°+.16.(8分)计算:()【解答】解:原式=4+2﹣﹣2×﹣3=4+2﹣﹣﹣3=3﹣2.17.(8分)先化简,再求值:(x+2)(x﹣2)+(2x﹣1)2﹣4x(x﹣1),其中x=2.【解答】解:(x+2)(x﹣2)+(2x﹣1)2﹣4x(x﹣1),=x2﹣4+4x2﹣4x+1﹣4x2+4x,=x2﹣3,当x=2时,原式=﹣3=12﹣3=9.18.(10分)如图,两张宽度相等的纸条叠放在一起,重叠部分构成四边形ABCD. (1)求证:四边形ABCD是菱形;(2)若纸条宽3cm,∠ABC=60°,求四边形ABCD的面积.【解答】解:(1)过点A作AE⊥BC于E,AF⊥CD于F,∵两条纸条宽度相同,∴AE=AF.∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形.∵S▱ABCD=BC•AE=CD•AF.又∵AE=AF.∴BC=CD,∴四边形ABCD是菱形;(2)在Rt△AEB中,∠AEB=90°,∠ABC=60°,AE=3cm,∴AB==2cm,∴BC=2cm,∴四边形ABCD的面积=AE•BC=6cm2.19.(10分)某商场用24000元购入一批空调,然后以每台3000元的价格销售,因天气炎热,空调很快售完,商场又以52000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元.(1)商场第一次购入的空调每台进价是多少元?(2)商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利最多可将多打算将第二次购入的部分空调按每台九五折出售,最多可将多润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,少台空调打折出售?【解答】解:(1)设商场第一次购入的空调每台进价是x元,由题意列方程得:=,解得:x=2400,经检验x=2400是原方程的根,答:商场第一次购入的空调每台进价是2400元;(2)设将y台空调打折出售,根据题意,得:3000×+(3000+200)×0.95y+(3000+200)×(﹣y)≥(24000+52000)×(1+22%),解得:y≤8,答:最多将8台空调打折出售.20.(10分)如图,建筑物AB的高为6m,在其正东方向有一个通信塔CD,在它们之间的地面点M(B,M,D三点在一条直线上)处测得建筑物顶端A,塔顶C的仰角分别为37°和60°,在A处测得塔顶C的仰角为30°,则通信塔CD的高度.(精确到0.01m)【解答】解:过点A作AE⊥CD于E,则四边形ABDE 是矩形,设CE=xm ,在Rt △AEC 中,∠AEC=90°,∠CAE=30°, 所以AE==xm ,在Rt △CDM 中,CD=CE +DE=CE +AB=(x +6)m , DM==m ,在Rt △ABM 中,BM==m ,AE=BD , 所以x=+,解得:x=+3,∴CD=CE +ED=+9≈15.90(m ),答:通信塔CD 的高度约为15.90m .21.(10分)小强的爸爸从家骑自行车去图书馆借书,途中遇到了从图书馆步行回家的小强,回家的小强,爸爸借完书后迅速回家,爸爸借完书后迅速回家,爸爸借完书后迅速回家,途中追上了小强,途中追上了小强,途中追上了小强,便用自行车载上小强一便用自行车载上小强一起回家,结果爸爸比自己单独骑车回家晚到1分钟,两人与家的距离S (千米)和爸爸从家出发后的时间t (分钟)之间的关系如图所示.(1)图书馆离家有多少千米?(2)爸爸和小强第一次相遇时,离家多少千米? (3)爸爸载上小强后一起回家的速度是多少?【解答】解:(1)由图形得:图书馆离家有6千米;(2)对于爸爸:当0≤t≤30时,去图书馆,设直线OA的解析式为:s=kt,把A(30,6)代入得:30k=6,k=,则直线OA的解析式为:s=t,当t=20时,s=×20=4;答:爸爸和小强第一次相遇时,离家4千米;(3)对于爸爸,当30<t≤60时在借书,此时s=6,当60≤t≤80时独自返回,设直线BC的解析式为:s=kt+b,把B(60,6)、C(80,1)代入得:,解得:,∴直线BC的解析式为:s=﹣t+21,令s=0时,t=84,即如果爸爸独自骑车回家,是在离家84分钟的时候到家,根据题意,爸爸载上小强后晚到家1分钟,爸爸与小强同回家,一起在5分钟走了1千米,t==0.2,答:爸爸载上小强后一起回家的速度为0.2千米/分钟.22.(12分)某艺校音乐专业自主招生考试中,所有考生均参加了“声乐”和“器乐”两个科目的考试,成绩都分为五个等级.对某考场考生两科考试成绩进行了统计分析,绘制了如下统计表和统计图(不完整).根据以上信息,解答下列问题:(1)求表中a,b,c,d的值,并补全条形统计图;(2)若等级A,B,C,D,E分别对应10分,8分,6分,4分,2分,求该考场“声乐”科目考试的平均分.(3)已知本考场参加测试的考生中,恰有两人的这两科成绩均为A,在至少一科成绩为A的考生中,随机抽取两人进行面试,求这两人的两科成绩均为A的概率.【解答】解:(1)此考场的考生人数为:;a=40×0.075=3,b=,c=40﹣3﹣10﹣15﹣8=4,d=,器乐考试A等3人;(2)考生“声乐”考试平均分:(3×10+10×8+15×6+8×4+4×2)÷40=6分; (3)因为声乐成绩为A等的有3人,器乐成绩为A等的有3人,由于本考场考试恰有2人两科均为A等,不妨记为A',A'',将声乐成绩为A等的另一人记为b,在至少一科成绩为A等考生中随机抽取两人有六种情形,两科成绩均为A等的有一种情形,所以概率为.23.(10分)如图,已知AB为⊙O的直径,点E在⊙O上,∠EAB的平分线交⊙O于点C,过点C作AE的垂线,垂足为D,直线DC与AB的延长线交于点P. (1)判断直线PC与⊙O的位置关系,并说明理由;(2)若tan∠P=,AD=6,求线段AE的长.【解答】解:(1)结论:PC是⊙O的切线.理由:连接OC.∵AC平分∠EAB,∴∠EAC=∠CAB,又∵∠CAB=∠ACO,∴∠EAC=∠OCA,∴OC∥AD,∵AD⊥PD,∴∠OCP=∠D=90°,∴PC是⊙O的切线.(2)连接BE.在Rt△ADP中,∠ADP=90°,AD=6,tan∠P=, ∴PD=8,AP=10,设半径为r,∵OC∥AD,∴=,即=,解得r=,∵AB是直径,∴∠AEB=∠D=90°,∴BE∥PD,∴AE=AB•sin∠ABE=AB•sin∠P=×=.24.(12分)抛物线y=﹣x2+2x+n经过点M(﹣1,0),顶点为C.(1)求点C的坐标;(2)设直线y=2x与抛物线交于A、B两点(点A在点B的左侧).①在抛物线的对称轴上是否存在点G.使∠AGC=∠BGC?若存在,求出点G的坐标;若不存在,请说明理由;②点P在直线y=2x上,点Q在抛物线上,当以O,M,P,Q为顶点的四边形是平行四边形时,求点Q的坐标.【解答】解:(1)把M(﹣1,0)代入y=﹣x2+2x+n中得:﹣1﹣2+n=0,n=3,∴y=﹣x2+2x+3=﹣(x2﹣2x+1﹣1)+3=﹣(x﹣1)2+4,∴C(1,4);(2)如图1,存在点G,使∠AGC=∠BGC,分别过A、B两点作对称轴x=1的垂线AP和BQ,垂足分别为P、Q,设G(1,a),则,解得:,,∴A(﹣,﹣2),B(,2),∵∠AGC=∠BGC,∠APG=∠BQG=90°,∴△APG∽△BQG,∴,∴G(1,6);(3)设P(m,2m)①当四边形OMQP是平行四边形时,如图2,则Q(m﹣1,2m),∵点Q在抛物线上,∴2m=﹣(m﹣1)2+2(m﹣1)+3,解得:m=0或2,∴Q1(﹣1,0)(舍),Q2(1,4),②当四边形OMPQ是平行四边形,如图3,则Q(m+1,2m),∵点Q在抛物线上,∴2m=﹣(m+1)2+2(m+1)+3,解得:m=﹣1,∴Q3(﹣,﹣2﹣2),Q4(,﹣2+2),③当OM是对角线时,如图4,分别过P、Q作x轴的垂线,垂足分别为G、H,∵四边形MPOQ是平行四边形,可得△PGM≌△QHO,∴GM=OH=﹣m﹣1,QH=PG=﹣2m,∴Q(﹣m﹣1,﹣2m),∵点Q在抛物线上,∴﹣2m=﹣(﹣m﹣1)2+2(﹣m﹣1)+3,解得:m=0或﹣2,∴Q5(﹣1,0)(舍),Q6(1,4),综上所述,点Q的坐标是:(1,4)或(,﹣2﹣2)或(﹣,﹣2+2).赠送:初中数学几何模型举例【模型四】 几何最值模型: 图形特征:lP A'ABlC PA B D运用举例:1. △ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为AP 的中点,则MF 的最小值为的最小值为MFEACBP2.如图,在边长为6的菱形ABCD 中,∠BAD =60°,E 为AB 的中点,F 为AC 上一动点,则EF +BF 的最小值为_________。

2016年新疆中考数学试题解析版

2016年新疆中考数学试题解析版

2016年内地新疆高中班招生数学试卷、选择题,共9小题,每小题5分,共45分.)1~2平分/ BCD , /B=36 ° 则/ DCE 等于(不等式组’A . x > 4B . x <3C . 3 承 v 4D .无解4 .一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球,3个白球,从布袋中随机摸出一个球,摸出红球的概率是()2一个扇形的圆心角是120 °面积为3冗cm ,那么这个扇形的半径是(A . 1cmB . 3cmC . 6cmD . 9 cm 6 .小明的父亲从家走了20分钟到一个离家900米的书店,在书店看了10分钟书后,用15分钟返回家,下列图中表示小明的父亲离家的距离与时间的函数图象是()A . a> 0B . c v 02C . 3是方程ax +bx+c=0 的一个根D.当x v 1时,y随x的增大而减小8 .轮船从B处以每小时50海里的速度沿南偏东30。

方向匀速航行,在B处观测灯塔A位于南偏东75方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60。

方向上,则C处与灯塔A的距离是()海里.1 . - 2的绝对值是(A . 2B . - 2C . ±.D .27 .已知二次函数y=ax +bx+c (a老)的图象如图所示,则下列结论中正确的是(CE45 ° D . 54 °A . B.C.D.)9.两个小组同时从甲地出发,匀速步行到乙地,甲乙两地相距7500米,第一组的步行速 度是第二组的1.2倍,并且比第二组早15分钟到达乙地.设第二组的步行速度为x 千米/ 小时,根据题意可列方程是( )7500 dcDOT=15 B二、填空题,共小题,每小题5分,共30分.10 .计算(1 - n ) ( x+1 )的结果是 _______________________ .x+1211.关于x 的一元二次方程x +2x - k=0有两个不相等的实数根,则k 的取值范围 是 . 12 .某中学随机地调查了 50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示: 时间(小时)56 7 8人数 10 15 20 5则这50名学生这一周在校的平均体育锻炼时间是______________________________小时. AE AF 113 .如图所示,△ ABC 中,E , F 分别是边AB , AC 上的点,且满足一一=- -=,:,则△ AEF与14 .如图,测量河宽AB (假设河的两岸平行),在C 点测得/ ACB=30 ° D 点测得/ ADB=60 又CD=60m ,则河宽AB 为 _______________________ m (结果保留根号).[来源学 & •科 &网Z &X &X &K]CD B15 .如图,在?ABCD 中,P 是 CD 边上一点,且AP 和BP 分别平分/ DAB 和/ CBA ,若 AD=5 , AP=8 ,贝U △ APB 的 周长是 ____________________ .7.51. 2K=15 D 东50 D . 25三、解答题,共8小题,共75分1 _ 1(.-)_ +|1 _ . -| _ tan3 0请根据统计图表提供的信息,解答下列问题:(1) 参加调查的人数共有 _____________________人;在扇形图中,m= ___________________;将条形图补 充完整;(2) 如果该校有3500名学生,则估计喜欢篮球”的学生共有多少人?(3 )该社团计划从篮球、足球和乒乓球中,随机抽取两种球类组织比赛,请用树状图或列 表法,求抽取到的两种球类恰好是篮球”和足球”的概率.19 .如图,四边形ABCD 中,AD // BC , AE 丄AD 交BD 于点E , CF 丄BC 交BD 于点F ,且 AE=CF .求证:四边形ABCD 是平行四边形.28场比赛,应邀请多少支球队参加比赛? 21 .如图,直线y=2x+3 与y 轴交于A 点,与反比例函数沪二(x > 0)的图16 .计算 17 . 解方程组丿r2z+3y=7®x-18 .某学生社团为了解本校学生喜欢球类运动的情况, 查,要求每位学生只能填写一种自己喜欢的球类运动, 随机抽取了若干名学生进行问卷调 并将调查的结果绘制成如下的两幅 次篮球赛 赛制为单循环形式(每两队之间都赛一场),计划安排20 •周口体育局要组织象交于点B , 过点B作BC丄x轴于点C,且C点的坐标为(1 , 0). (1)求反比例函数的解析式;(2)点D ( a, 1)是反比例函数y=—( x > 0)图象上的点,在x轴上是否存在点P,使得xP B+P D最小?若存在,求出点P的坐标;若不存在,请说明理由.22 .如图,在△ ABC , AB=AC ,以AB为直径的O O分别交AC、BC于点D、E,点F在AC的延长线上,且/ CBF= . / CAB(1)求证:直线BF是O O的切线;(2) 若AB=5 , sin / CBF=「,求BC 和BF 的长.23 .如图,对称轴为直线x= •的抛物线经过点A ( 6, 0)和B ( 0 , - 4).(1)求抛物线解析式及顶点坐标;2)设点E ( x, y)是抛物线上一动点,且位于第一象限,四边形OEAF是以OA为对角线的平行四边形,求平行四边形OE AF的面积S与x之间的函数关系式;(3)当(2)中的平行四边形OEAF的面积为24时,请判断平行四边形OEAF是否为菱2016年内地新疆高中班招生数学试卷参考答案与试题解析一、选择题,共9小题,每小题5分,共45分. 1 . - 2的绝对值是( )A . 2B .- 2 C . ±. D .2【考点】绝对值.【分析】直接利用绝对值的概念:数轴上某个数与原点的距离叫做这个数的绝对值,进而 得出答案. 【解答】解:-2的绝对值是:2 . 故选:A .CE 平分/ BCD , / B=36 ° 则/ DCE 等于(【分析】根据两直线平行,内错角相等可得/ BCD= / B ,再根据角平分线的定义求出/ DCE , 从而求解. 【解答】解:•/ AB // CD , •••/ BCD= / B=36 ° •/ CE 平分/ BCD , •••/ DC=18 ° 故选:A .A . x > 4B . x <3C .3 总 v4 D .无解考点】解一元一次不等式组.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集 【解答】 解①得:x V 4 , 解②得:x 渕,则不等式的解集是:3<V 4 . 故选:C .‘3沉<2时4K " 1的解集是 45 ° D . 54【考点】平行线的性质.4 .一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球,3个白球,从布袋中 随机摸出一个球,摸出红球的概率是()【考点】概率公式.【分析】让红球的个数除以球的总数即为摸到红球的概率. 【解答】解:••• 2个红球、3个白球,一共是5个,故选:C .25 . 一个扇形的圆心角是120 ° 面积为3冗cm ,那么这个扇形的半径是( )A . 1cmB . 3cmC . 6cmD . 9cm 考点】扇形面积的计算.2【分析】根据扇形的面积公式:S= ! 代入计算即可解决问题.360【解答】解:设扇形的半径为R , 由题意:3 n =l=M ”厂,解得R= ±3,360•/ R > 0 , • R=3cm ,•••这个扇形的半径为3cm . 故选B .6 .小明的父亲从家走了 20分钟到一个离家900米的书店,在书店看了 10分钟书后,用 15分钟返回家,下列图中表示小明的父亲离家的距离与时间的函数图象是()【考点】函数的图象.【分析】因为在书店里花了 10分钟看书,应是一段平行与X 轴的线段,B 是10分钟,而A 是20分钟,依此即可作出判断.解答】解:根据题意,从20分钟到30分钟在书店里看书,离家距离没有变化,是一条 平行于x 轴的线段. 故选B .27 .已知二次函数y=ax +bx+c ( a 老)的图象如图所示,则下列结论中正确的是(A . a > 0B . c < 02C . 3是方程ax +bx+c=O 的一个根D .当x < 1时,y 随x 的增大而减小 【考点】二次函数的性质.【分析】根据二次函数的图象性质可以做出判断. 【解答】解:(A )图象开口向下,所以a < 0,•••从布袋中随机摸出一个球,摸出红球的概率是一.V/-1/HVA .B .C .D .I —>璃分〕故(A )错误;(B)图象与y轴交点在y轴的正半轴,所以C> 0,故(B)错误;(C)因为对称轴为x=1 ,所以(-1 , 0)与(3, 0)关于x=1对称,故x=3是ax +bx+c=0 的一个根;故(C)正确;(D)由图象可知:当x < 1时,y随x的增大而增大;故(D)错误.故选(C)8 .轮船从B处以每小时50海里的速度沿南偏东30。

【初中数学】2016年内地新疆高中班招生数学试卷(解析版) 人教版

【初中数学】2016年内地新疆高中班招生数学试卷(解析版) 人教版

2016年内地新疆高中班招生数学试卷一、选择题,共9小题,每小题5分,共45分.1.﹣2的绝对值是()A.2 B.﹣2 C.±2 D.2.如图,AB∥CD,CE平分∠BCD,∠B=36°,则∠DCE等于()A.18° B.36° C.45° D.54°3.不等式组的解集是()A.x>4 B.x≤3 C.3≤x<4 D.无解4.一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球,3个白球,从布袋中随机摸出一个球,摸出红球的概率是()A.B.C.D.5.一个扇形的圆心角是120°,面积为3πcm2,那么这个扇形的半径是()A.1cm B.3cm C.6cm D.9cm6.小明的父亲从家走了20分钟到一个离家900米的书店,在书店看了10分钟书后,用15分钟返回家,下列图中表示小明的父亲离家的距离与时间的函数图象是()A.B.C.D.7.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A.a>0B.c<0C.3是方程ax2+bx+c=0的一个根D.当x<1时,y随x的增大而减小8.轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处与灯塔A的距离是()海里.A.25B.25C.50 D.259.两个小组同时从甲地出发,匀速步行到乙地,甲乙两地相距7500米,第一组的步行速度是第二组的1.2倍,并且比第二组早15分钟到达乙地.设第二组的步行速度为x千米/小时,根据题意可列方程是()A.﹣=15 B.﹣=C.﹣=15 D.﹣=二、填空题,共小题,每小题5分,共30分.10.计算(1﹣)(x+1)的结果是.11.关于x的一元二次方程x2+2x﹣k=0有两个不相等的实数根,则k的取值范围是.12.某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结小时.13.如图所示,△ABC中,E,F分别是边AB,AC上的点,且满足==,则△AEF与△ABC的面积比是.14.如图,测量河宽AB(假设河的两岸平行),在C点测得∠ACB=30°,D点测得∠ADB=60°,又CD=60m,则河宽AB为m(结果保留根号).15.如图,在▱ABCD中,P是CD边上一点,且AP和BP分别平分∠DAB和∠CBA,若AD=5,AP=8,则△APB的周长是.三、解答题,共8小题,共75分16.计算:()﹣1+|1﹣|﹣tan30°.17.解方程组.18.某学生社团为了解本校学生喜欢球类运动的情况,随机抽取了若干名学生进行问卷调查,要求每位学生只能填写一种自己喜欢的球类运动,并将调查的结果绘制成如下的两幅不完整的统计图.请根据统计图表提供的信息,解答下列问题:(1)参加调查的人数共有人;在扇形图中,m=;将条形图补充完整;(2)如果该校有3500名学生,则估计喜欢“篮球”的学生共有多少人?(3)该社团计划从篮球、足球和乒乓球中,随机抽取两种球类组织比赛,请用树状图或列表法,求抽取到的两种球类恰好是“篮球”和“足球”的概率.19.如图,四边形ABCD中,AD∥BC,AE⊥AD交BD于点E,CF⊥BC交BD于点F,且AE=CF.求证:四边形ABCD是平行四边形.20.周口体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?21.如图,直线y=2x+3与y轴交于A点,与反比例函数y=(x>0)的图象交于点B,过点B作BC⊥x轴于点C,且C点的坐标为(1,0).(1)求反比例函数的解析式;(2)点D(a,1)是反比例函数y=(x>0)图象上的点,在x轴上是否存在点P,使得PB+PD最小?若存在,求出点P的坐标;若不存在,请说明理由.22.如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB.(1)求证:直线BF是⊙O的切线;(2)若AB=5,sin∠CBF=,求BC和BF的长.23.如图,对称轴为直线x=的抛物线经过点A(6,0)和B(0,﹣4).(1)求抛物线解析式及顶点坐标;(2)设点E(x,y)是抛物线上一动点,且位于第一象限,四边形OEAF是以OA为对角线的平行四边形,求平行四边形OEAF的面积S与x之间的函数关系式;(3)当(2)中的平行四边形OEAF的面积为24时,请判断平行四边形OEAF 是否为菱形.2016年内地新疆高中班招生数学试卷参考答案与试题解析一、选择题,共9小题,每小题5分,共45分.1.﹣2的绝对值是()A.2 B.﹣2 C.±2 D.【考点】绝对值.【分析】直接利用绝对值的概念:数轴上某个数与原点的距离叫做这个数的绝对值,进而得出答案.【解答】解:﹣2的绝对值是:2.故选:A.2.如图,AB∥CD,CE平分∠BCD,∠B=36°,则∠DCE等于()A.18° B.36° C.45° D.54°【考点】平行线的性质.【分析】根据两直线平行,内错角相等可得∠BCD=∠B,再根据角平分线的定义求出∠DCE,从而求解.【解答】解:∵AB∥CD,∴∠BCD=∠B=36°,∵CE平分∠BCD,∴∠DC=18°故选:A.3.不等式组的解集是()A.x>4 B.x≤3 C.3≤x<4 D.无解【考点】解一元一次不等式组.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得:x<4,解②得:x≥3,则不等式的解集是:3≤x<4.故选:C.4.一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球,3个白球,从布袋中随机摸出一个球,摸出红球的概率是()A.B.C.D.【考点】概率公式.【分析】让红球的个数除以球的总数即为摸到红球的概率.【解答】解:∵2个红球、3个白球,一共是5个,∴从布袋中随机摸出一个球,摸出红球的概率是.故选:C.5.一个扇形的圆心角是120°,面积为3πcm2,那么这个扇形的半径是()A.1cm B.3cm C.6cm D.9cm【考点】扇形面积的计算.【分析】根据扇形的面积公式:S=代入计算即可解决问题.【解答】解:设扇形的半径为R,由题意:3π=,解得R=±3,∵R>0,∴R=3cm,∴这个扇形的半径为3cm.故选B.6.小明的父亲从家走了20分钟到一个离家900米的书店,在书店看了10分钟书后,用15分钟返回家,下列图中表示小明的父亲离家的距离与时间的函数图象是()A.B.C.D.【考点】函数的图象.【分析】因为在书店里花了10分钟看书,应是一段平行与x轴的线段,B是10分钟,而A是20分钟,依此即可作出判断.【解答】解:根据题意,从20分钟到30分钟在书店里看书,离家距离没有变化,是一条平行于x轴的线段.故选B.7.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A.a>0B.c<0C.3是方程ax2+bx+c=0的一个根D.当x<1时,y随x的增大而减小【考点】二次函数的性质.【分析】根据二次函数的图象性质可以做出判断.【解答】解:(A)图象开口向下,所以a<0,故(A)错误;(B)图象与y轴交点在y轴的正半轴,所以C>0,故(B)错误;(C)因为对称轴为x=1,所以(﹣1,0)与(3,0)关于x=1对称,故x=3是ax2+bx+c=0的一个根;故(C)正确;(D)由图象可知:当x<1时,y随x的增大而增大;故(D)错误.故选(C)8.轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处与灯塔A的距离是()海里.A.25B.25C.50 D.25【考点】等腰直角三角形;方向角.【分析】根据题中所给信息,求出∠BCA=90°,再求出∠CBA=45°,从而得到△ABC为等腰直角三角形,然后根据解直角三角形的知识解答.【解答】解:根据题意,∠1=∠2=30°,∵∠ACD=60°,∴∠ACB=30°+60°=90°,∴∠CBA=75°﹣30°=45°,∴△ABC为等腰直角三角形,∵BC=50×0.5=25,∴AC=BC=25(海里).故选D.9.两个小组同时从甲地出发,匀速步行到乙地,甲乙两地相距7500米,第一组的步行速度是第二组的1.2倍,并且比第二组早15分钟到达乙地.设第二组的步行速度为x千米/小时,根据题意可列方程是()A.﹣=15 B.﹣=C.﹣=15 D.﹣=【考点】由实际问题抽象出分式方程.【分析】根据第二组的速度可得出第一组的速度,依据“时间=路程÷速度”即可找出第一、二组分别到达的时间,再根据第一组比第二组早15分钟(小时)到达乙地即可列出分式方程,由此即可得出结论.【解答】解:设第二组的步行速度为x千米/小时,则第一组的步行速度为1.2x 千米/小时,第一组到达乙地的时间为:7.5÷1.2x;第二组到达乙地的时间为:7.5÷x;∵第一组比第二组早15分钟(小时)到达乙地,∴列出方程为:﹣==.故答案为D.二、填空题,共小题,每小题5分,共30分.10.计算(1﹣)(x+1)的结果是x.【考点】分式的混合运算.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,约分即可得到结果.【解答】解:原式=•(x+1)=x,故答案为:x11.关于x的一元二次方程x2+2x﹣k=0有两个不相等的实数根,则k的取值范围是k>﹣1.【考点】根的判别式.【分析】根据判别式的意义得到△=22+4k>0,然后解不等式即可.【解答】解:∵关于x的一元二次方程x2+2x﹣k=0有两个不相等的实数根,∴△=22+4k>0,解得k>﹣1.故答案为:k>﹣1.12.某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结6.4小时.【考点】加权平均数.【分析】根据平均数的计算方法是求出所有数据的和,然后除以数据的总个数进行计算.【解答】解:=6.4.故答案为:6.4.13.如图所示,△ABC中,E,F分别是边AB,AC上的点,且满足==,则△AEF与△ABC的面积比是1:9.【考点】相似三角形的判定与性质.【分析】由已知条件易证△AEF∽△ABC,根据相似三角形的性质即可求出△AEF与△ABC的面积比.【解答】解:∵==,∴,又∵∠A=∠A,∴△AEF∽△ABC,∴△AEF与△ABC的面积比=1:9,故答案为:1:9.14.如图,测量河宽AB(假设河的两岸平行),在C点测得∠ACB=30°,D点测得∠ADB=60°,又CD=60m,则河宽AB为30m(结果保留根号).【考点】解直角三角形的应用;勾股定理的应用.【分析】先根据三角形外角的性质求出∠CAD的度数,判断出△ACD的形状,再由锐角三角函数的定义即可求出AB的值.【解答】解:∵∠ACB=30°,∠ADB=60°,∴∠CAD=30°,∴AD=CD=60m,在Rt△ABD中,AB=AD•sin∠ADB=60×=30(m).故答案为:30.15.如图,在▱ABCD中,P是CD边上一点,且AP和BP分别平分∠DAB和∠CBA,若AD=5,AP=8,则△APB的周长是24.【考点】平行四边形的性质.【分析】根据平行四边形性质得出AD∥CB,AB∥CD,推出∠DAB+∠CBA=180°,求出∠PAB+∠PBA=90°,在△APB中求出∠APB=90°,由勾股定理求出BP,证出AD=DP=5,BC=PC=5,得出DC=10=AB,即可求出答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥CB,AB∥CD,∴∠DAB+∠CBA=180°,又∵AP和BP分别平分∠DAB和∠CBA,∴∠PAB+∠PBA=(∠DAB+∠CBA)=90°,在△APB中,∠APB=180°﹣(∠PAB+∠PBA)=90°;∵AP平分∠DAB,∴∠DAP=∠PAB,∵AB∥CD,∴∠PAB=∠DPA∴∠DAP=∠DPA∴△ADP是等腰三角形,∴AD=DP=5,同理:PC=CB=5,即AB=DC=DP+PC=10,在Rt△APB中,AB=10,AP=8,∴BP==6,∴△APB的周长=6+8+10=24;故答案为:24.三、解答题,共8小题,共75分16.计算:()﹣1+|1﹣|﹣tan30°.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】直接利用负整指数幂的性质以及绝对值的性质和特殊角的三角函数值分别化简求出答案.【解答】解:()﹣1+|1﹣|﹣tan30°=2+﹣1﹣3×=1+﹣3=﹣2.17.解方程组.【考点】解二元一次方程组.【分析】先用加减消元法求出x的值,再用代入消元法求出y的值即可.【解答】解:①+②得,3x=15,解得x=5,把x=5代入①得,10+3y=7,解得y=﹣1.故方程组的解为:.18.某学生社团为了解本校学生喜欢球类运动的情况,随机抽取了若干名学生进行问卷调查,要求每位学生只能填写一种自己喜欢的球类运动,并将调查的结果绘制成如下的两幅不完整的统计图.请根据统计图表提供的信息,解答下列问题:(1)参加调查的人数共有600人;在扇形图中,m=30;将条形图补充完整;(2)如果该校有3500名学生,则估计喜欢“篮球”的学生共有多少人?(3)该社团计划从篮球、足球和乒乓球中,随机抽取两种球类组织比赛,请用树状图或列表法,求抽取到的两种球类恰好是“篮球”和“足球”的概率.【考点】列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.【分析】(1)首先根据条形统计图和扇形统计图,用喜欢篮球的人数除以它占参加调查的人数的百分率,求出参加调查的人数共有多少人;然后在扇形图中,用1减去喜欢篮球、乒乓球和其它球类的学生占的百分率,求出m的值是多少,并将条形图补充完整即可.(2)根据题意,用该校学生的人数乘喜欢“篮球”的学生占的百分率,求出喜欢“篮球”的学生共有多少人即可.(3)应用列表法,求出抽取到的两种球类恰好是“篮球”和“足球”的种数,以及一共有多少种可能,求出抽取到的两种球类恰好是“篮球”和“足球”的概率是多少即可.【解答】解:(1)∵240÷40%=600(人)∴参加调查的人数共有600人;∵1﹣40%﹣20%﹣10%=30%,∴在扇形图中,m=30..(2)3500×40%=1400(人)答:喜欢“篮球”的学生共有1400人.2÷6=.答:抽取到的两种球类恰好是“篮球”和“足球”的概率是.故答案为:600、30.19.如图,四边形ABCD中,AD∥BC,AE⊥AD交BD于点E,CF⊥BC交BD于点F,且AE=CF.求证:四边形ABCD是平行四边形.【考点】平行四边形的判定;全等三角形的判定与性质.【分析】由垂直得到∠EAD=∠FCB=90°,根据AAS可证明Rt△AED≌Rt△CFB,得到AD=BC,根据平行四边形的判定判断即可.【解答】证明:∵AE⊥AD,CF⊥BC,∴∠EAD=∠FCB=90°,∵AD∥BC,∴∠ADE=∠CBF,在Rt△AED和Rt△CFB中,∵,∴Rt△AED≌Rt△CFB(AAS),∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形.20.周口体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?【考点】一元二次方程的应用.【分析】设要邀请x支球队参加比赛,则比赛的总场数为x(x﹣1)场,与总场数为28场建立方程求出其解即可.【解答】解:设要邀请x支球队参加比赛,由题意,得x(x﹣1)=28,解得:x1=8,x2=﹣7(舍去).答:应邀请8支球队参加比赛.21.如图,直线y=2x+3与y轴交于A点,与反比例函数y=(x>0)的图象交于点B,过点B作BC⊥x轴于点C,且C点的坐标为(1,0).(1)求反比例函数的解析式;(2)点D(a,1)是反比例函数y=(x>0)图象上的点,在x轴上是否存在点P,使得PB+PD最小?若存在,求出点P的坐标;若不存在,请说明理由.【考点】反比例函数与一次函数的交点问题;轴对称-最短路线问题.【分析】(1)先根据直线y=2x+3求出点B坐标,再利用待定系数法可求得反比例函数解析式;(2)先根据反比例函数解析式求出点D 的坐标,若要在x轴上找一点P,使PB+PD最小,可作点D关于x的轴的对称点D′,连接BD′,直线BD′与x轴的交点即为所求点P.【解答】解:(1)∵BC⊥x轴于点C,且C点的坐标为(1,0),∴在直线y=2x+3中,当x=1时,y=2+3=5,∴点B的坐标为(1,5),又∵点B(1,5)在反比例函数y=上,∴k=1×5=5,∴反比例函数的解析式为:y=;(2)将点D(a,1)代入y=,得:a=5,∴点D坐标为(5,1)设点D(5,1)关于x轴的对称点为D′(5,﹣1),过点B(1,5)、点D′(5,﹣1)的直线解析式为:y=kx+b,可得:,解得:,∴直线BD′的解析式为:y=﹣x+,根据题意知,直线BD′与x轴的交点即为所求点P,当y=0时,得:﹣x+=0,解得:x=,故点P的坐标为(,0).22.如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB.(1)求证:直线BF是⊙O的切线;(2)若AB=5,sin∠CBF=,求BC和BF的长.【考点】切线的判定与性质;勾股定理;圆周角定理;相似三角形的判定与性质;解直角三角形.【分析】(1)连接AE,利用直径所对的圆周角是直角,从而判定直角三角形,利用直角三角形两锐角相等得到直角,从而证明∠ABF=90°.(2)利用已知条件证得△AGC∽△ABF,利用比例式求得线段的长即可.【解答】(1)证明:连接AE,∵AB是⊙O的直径,∴∠AEB=90°,∴∠1+∠2=90°.∵AB=AC,∴∠1=∠CAB.∵∠CBF=∠CAB,∴∠1=∠CBF∴∠CBF+∠2=90°即∠ABF=90°∵AB是⊙O的直径,∴直线BF是⊙O的切线.(2)解:过点C作CG⊥AB于G.∵sin∠CBF=,∠1=∠CBF,∴sin∠1=,∵在Rt△AEB中,∠AEB=90°,AB=5,∴BE=AB•sin∠1=,∵AB=AC,∠AEB=90°,∴BC=2BE=2,在Rt△ABE中,由勾股定理得AE==2,∴sin∠2===,cos∠2===,在Rt△CBG中,可求得GC=4,GB=2,∴AG=3,∵GC∥BF,∴△AGC∽△ABF,∴∴BF==23.如图,对称轴为直线x=的抛物线经过点A(6,0)和B(0,﹣4).(1)求抛物线解析式及顶点坐标;(2)设点E(x,y)是抛物线上一动点,且位于第一象限,四边形OEAF是以OA为对角线的平行四边形,求平行四边形OEAF的面积S与x之间的函数关系式;(3)当(2)中的平行四边形OEAF的面积为24时,请判断平行四边形OEAF 是否为菱形.【考点】二次函数综合题.【分析】(1)根据对称轴、A、B点的坐标,可得方程,根据解方程,可得答案;(2)根据平行四边形的面积公式,可得函数解析式;(3)根据函数值,可得E点坐标,根据菱形的判定,可得答案.【解答】解:(1)设抛物线的解析式为y=ax2+bx+c,将A、B点的坐标代入函数解析式,得,解得,抛物线的解析式为y=﹣x2+x﹣4,配方,得y=﹣(x﹣)2+,顶点坐标为(,);(2)E点坐标为(x,﹣x2+x﹣4),S=2×OA•y E=3(﹣x2+x﹣4)即S=﹣2x2+14x﹣12;(3)平行四边形OEAF的面积为24时,平行四边形OEAF不能为菱形,理由如下:当平行四边形OEAF的面积为24时,即﹣2x2+14x﹣12=24,化简,得x2﹣7x+18=0,△=b2﹣4ac=(﹣7)2﹣4×18=﹣23<0,方程无解,E点不存在,平行四边形OEAF的面积为24时,平行四边形OEAF不能为菱形.2016年6月30日。

2016年新疆中考数学试卷

2016年新疆中考数学试卷

2016年新疆、生产建设兵团中考数学试卷一、选择题:本大题共9小题,每小题5分,共45分1.(5分)(2016•湖北)﹣3的相反数是()A.3 B.﹣3 C.D.﹣【考点】相反数.【专题】常规题型.【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是3,故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(5分)(2016•新疆)如图,直线a∥b,直线c与直线a,b相交,若∠1=56°,则∠2等于()A.24°B.34°C.56°D.124°【考点】平行线的性质.【分析】根据对顶角相等求出∠3,根据平行线的性质得出∠2=∠3,即可得出答案.【解答】解:∵∠1=56°,∴∠3=∠1=56°,∵直线a∥b,∴∠2=∠3=56°,故选C.【点评】本题考查了平行线的性质的应用,能根据平行线的性质得出∠2=∠3是解此题的关键,注意:两直线平行,同位角相等.3.(5分)(2016•新疆)不等式组的解集是()A.x≤1 B.x≥2 C.1≤x≤2 D.1<x<2【考点】解一元一次不等式组.【专题】计算题.【分析】分别解两个不等式得到x≥1和x≤2,然后利用大小小大中间找确定不等式组的解集.【解答】解:,解①得x≥1,解②得x≤2,所以不等式组的解集为1≤x≤2.故选C.【点评】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.4.(5分)(2016•新疆)如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF【考点】全等三角形的判定.【分析】根据全等三角形的判定,利用ASA、SAS、AAS即可得答案.【解答】解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;故选D.【点评】本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS和HL是解题的关键.5.(5分)(2016•新疆)如图所示,将一个含30°角的直角三角板ABC绕点A旋转,使得点B,A,C′在同一条直线上,则三角板ABC旋转的角度是()A.60°B.90°C.120°D.150°【考点】旋转的性质.【分析】根据旋转角的定义,两对应边的夹角就是旋转角,即可求解.【解答】解:旋转角是∠CAC′=180°﹣30°=150°.故选:D.【点评】本题考查的是旋转的性质,掌握对应点与旋转中心所连线段的夹角等于旋转角是解题的关键.下列关于“劳动时间”这组数据叙述正确的是()A.中位数是2 B.众数是2 C.平均数是3 D.方差是0【考点】方差;加权平均数;中位数;众数.【分析】根据中位数,众数,平均数,方差的计算方法,判断即可.【解答】解:由题意得,众数是2,故选B.【点评】此题是方差题,主要考查了众数,中位数,平均数,方差的计算方法,解本题的关键是熟练掌握他们的计算方法.7.(5分)(2016•新疆)如图,在△ABC中,D、E分别是AB、AC的中点,下列说法中不正确的是()A.DE=BC B.=C.△ADE∽△ABC D.S△ADE:S△ABC=1:2【考点】相似三角形的判定与性质;三角形中位线定理.【分析】根据中位线的性质定理得到DE∥BC,DE=BC,再根据平行线分线段成比例定理和相似三角形的性质即可判定.【解答】解:∵D、E分别是AB、AC的中点,∴DE∥BC,DE=BC,∴=,△ADE∽△ABC,∴,∴A,B,C正确,D错误;故选:D.【点评】该题主要考查了平行线分线段成比例定理和相似三角形的性质即可判定;解题的关键是正确找出对应线段,准确列出比例式求解、计算、判断或证明.8.(5分)(2016•新疆)一元二次方程x2﹣6x﹣5=0配方组可变形为()A.(x﹣3)2=14 B.(x﹣3)2=4 C.(x+3)2=14 D.(x+3)2=4【考点】解一元二次方程-配方法.【分析】先把方程的常数项移到右边,然后方程两边都加上32,这样方程左边就为完全平方式.【解答】解:x2﹣6x﹣5=0,x2﹣6x=5,x2﹣6x+9=5+9,(x﹣3)2=14,故选:A.【点评】本题考查了利用配方法解一元二次方程ax2+bx+c=0(a≠0):先把二次系数变为1,即方程两边除以a,然后把常数项移到方程右边,再把方程两边加上一次项系数的一半.9.(5分)(2016•新疆)已知A(x1,y1),B(x2,y2)是反比例函数y=(k≠0)图象上的两个点,当x1<x2<0时,y1>y2,那么一次函数y=kx﹣k的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】反比例函数图象上点的坐标特征;一次函数图象与系数的关系.【分析】首先根据x1<x2<0时,y1>y2,确定反比例函数y=(k≠0)中k的符号,然后再确定一次函数y=kx﹣k的图象所在象限.【解答】解:∵当x1<x2<0时,y1>y2,∴k>0,∴﹣k<0,∴一次函数y=kx﹣k的图象经过第一、三、四象限,∴不经过第二象限,故选:B.【点评】此题主要考查了反比例函数图象上点的坐标特征以及一次函数图象与系数的关系,解决此题的关键是确定k的符号.二、填空题:本大题共6小题,每小题5分,共30分10.(5分)(2016•新疆)分解因式:x3﹣4x=x(x+2)(x﹣2).【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】应先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣4x,=x(x2﹣4),=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次因式分解,分解因式一定要彻底,直到不能再分解为止.11.(5分)(2016•新疆)计算:=.【考点】分式的乘除法.【分析】先约分,再根据分式的乘除法运算的计算法则计算即可求解.【解答】解:=•=.故答案为:.【点评】考查了分式的乘除法,规律方法总结:①分式乘除法的运算,归根到底是乘法的运算,当分子和分母是多项式时,一般应先进行因式分解,再约分.②整式和分式进行运算时,可以把整式看成分母为1的分式.③做分式乘除混合运算时,要注意运算顺序,乘除法是同级运算,要严格按照由左到右的顺序进行运算,切不可打乱这个运算顺序.12.(5分)(2016•新疆)小球在如图所示的地板上自由滚动,并随机停留在某块正方形的地砖上,则它停在白色地砖上的概率是.【考点】几何概率.【分析】先求出瓷砖的总数,再求出白色瓷砖的个数,利用概率公式即可得出结论.【解答】解:∵由图可知,共有5块瓷砖,白色的有3块,∴它停在白色地砖上的概率=.故答案为:.【点评】本题考查的是几何概率,熟记概率公式是解答此题的关键.13.(5分)(2016•新疆)某加工厂九月份加工了10吨干果,十一月份加工了13吨干果.设该厂加工干果重量的月平均增长率为x,根据题意可列方程为10(1+x)2=13.【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】十一月份加工量=九月份加工量×(1+月平均增长率)2,把相关数值代入即可.【解答】解:设该厂加工干果重量的月平均增长率为x,根据题意,可列方程为:10(1+x)2=13,故答案为:10(1+x)2=13.【点评】本题主要考查了由实际问题抽象出一元二次方程,关键是掌握求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.14.(5分)(2016•新疆)对一个实数x按如图所示的程序进行操作,规定:程序运行从“输入一个实数x”到“结果是否大于88?”为一次操作.如果操作只进行一次就停止,则x的取值范围是x>49.【考点】一元一次不等式的应用.【分析】表示出第一次的输出结果,再由第三次输出结果可得出不等式,解不等式求出即可.【解答】解:第一次的结果为:2x﹣10,没有输出,则2x﹣10>88,解得:x>49.故x的取值范围是x>49.故答案为:x>49【点评】本题考查了一元一次不等式的应用,解答本题的关键是读懂题意,根据结果是否可以输出,得出不等式.15.(5分)(2016•新疆)如图,下面每个图形中的四个数都是按相同的规律填写的,根据此规律确定x的值为370.【考点】规律型:数字的变化类.【分析】首先观察规律,求得n与m的值,再由右下角数字第n个的规律:2n(2n﹣1)﹣n,求得答案.【解答】解:∵左下角数字为偶数,右上角数字为奇数,∴2n=20,m=2n﹣1,解得:n=10,m=19,∵右下角数字:第一个:1=1×2﹣1,第二个:10=3×4﹣2,第三个:27=5×6﹣3,∴第n个:2n(2n﹣1)﹣n,∴x=19×20﹣10=370.故答案为:370.【点评】此题考查了数字规律性问题.注意首先求得n与m的值是关键.三、解答题16.(6分)(2016•新疆)计算:(﹣2)2+|1﹣|﹣2sin60°.【考点】实数的运算;零指数幂;特殊角的三角函数值.【专题】计算题.【分析】根据实数的运算顺序,首先计算乘方,然后从左向右依次计算,求出算式(﹣2)2+|1﹣|﹣2sin60°的值是多少即可.【解答】解:(﹣2)2+|1﹣|﹣2sin60°=4+﹣1﹣2×=.【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.(3)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°角的各种三角函数值.17.(8分)(2016•新疆)某学校为绿化环境,计划种植600棵树,实际劳动中每小时植树的数量比原计划多20%,结果提前2小时完成任务,求原计划每小时种植多少棵树?【考点】分式方程的应用.【分析】设原计划每小时种植x棵树,则实际劳动中每小时植树的数量是120%x棵,根据“结果提前2小时完成任务”列出方程并求解.【解答】解:设原计划每小时种植x棵树,依题意得:=+2,解得x=50.经检验x=50是所列方程的根,并符合题意.答:原计划每小时种植50棵树.【点评】本题考查了分式方程的应用.分析题意,找到合适的等量关系是解决问题的关键.18.(10分)(2016•新疆)某校在民族团结宣传活动中,采用了四种宣传形式:A唱歌,B 舞蹈,C朗诵,D器乐.全校的每名学生都选择了一种宣传形式参与了活动,小明对同学们选用的宣传形式,进行了随机抽样调查,根据调查统计结果,绘制了如图两种不完整的统计(1)本次调查的学生共300人,a=10%,并将条形统计图补充完整;(2)如果该校学生有2000人,请你估计该校喜欢“唱歌”这种宣传形式的学生约有多少人?(3)学校采用调查方式让每班在A、B、C、D四种宣传形式中,随机抽取两种进行展示,请用树状图或列表法,求某班抽到的两种形式恰好是“唱歌”和“舞蹈”的概率.【考点】列表法与树状图法;用样本估计总体;条形统计图.【分析】(1)根据“唱歌”的人数及其百分比可得总人数,根据各项目的百分比之和为1可得a的值;(2)用样本中“唱歌”的百分比乘以总人数可得答案;(3)通过列表或画树状图列出所有可能结果,再找到使该事件发生的结果数,根据概率公式计算即可.【解答】解:(1)∵A类人数105,占35%,∴本次调查的学生共:105÷35%=300(人);a=1﹣35%﹣25%﹣30%=10%;故答案为:(1)300,10%.B的人数:300×10%=30(人),补全条形图如图:(2)2000×35%=700(人),答:估计该校喜欢“唱歌”这种宣传形式的学生约有700人;D四种宣传形式中,随机抽取两种进行展示共有12种等可能结果,其中恰好是“唱歌”和“舞蹈”的有2种,∴某班抽到的两种形式恰好是“唱歌”和“舞蹈”的概率为=.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了样本估计总体和条形统计图.19.(8分)(2016•新疆)如图,某校数学兴趣小组为测得校园里旗杆AB的高度,在操场的平地上选择一点C,测得旗杆顶端A的仰角为30°,再向旗杆的方向前进16米,到达点D处(C、D、B三点在同一直线上),又测得旗杆顶端A的仰角为45°,请计算旗杆AB的高度(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【专题】探究型.【分析】根据题意可以得到BD的长度,从而可以求得AB的高度.【解答】解:由题意可得,CD=16米,∵AB=CB•tan30°,AB=BD•tan45°,∴CB•tan30°=BD•tan45°,∴(CD+DB)×=BD×1,解得BD=8,∴AB=BD•tan45°=()米,即旗杆AB的高度是()米.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是明确题意,找出所求问题需要的条件.四、解答题20.(10分)(2016•新疆)暑假期间,小刚一家乘车去离家380公里的某景区旅游,他们离家的距离y(km)与汽车行驶时间x(h)之间的函数图象如图所示.(1)从小刚家到该景区乘车一共用了多少时间?(2)求线段AB对应的函数解析式;(3)小刚一家出发2.5小时时离目的地多远?【考点】一次函数的应用.【分析】(1)观察图形即可得出结论;(2)设AB段图象的函数表达式为y=kx+b,将A、B两点的坐标代入,运用待定系数法即可求解;(3)先将x=2.5代入AB段图象的函数表达式,求出对应的y值,进一步即可求解.【解答】解:(1)从小刚家到该景区乘车一共用了4h时间;(2)设AB段图象的函数表达式为y=kx+b.∵A(1,80),B(3,320)在AB上,∴,解得.∴y=120x﹣40(1≤x≤3);(3)当x=2.5时,y=120×2.5﹣40=260,380﹣260=120(km).故小刚一家出发2.5小时时离目的地120km远.【点评】本题考查了一次函数的应用及一次函数解析式的确定,解题的关键是通过仔细观察图象,从中整理出解题时所需的相关信息,本题较简单.21.(10分)(2016•新疆)如图,▱ABCD中,AB=2,AD=1,∠ADC=60°,将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,折痕交CD边于点E.(1)求证:四边形BCED′是菱形;(2)若点P时直线l上的一个动点,请计算PD′+PB的最小值.【考点】平行四边形的性质;菱形的判定;轴对称-最短路线问题;翻折变换(折叠问题).【分析】(1)利用翻折变换的性质以及平行线的性质得出∠DAE=∠EAD′=∠DEA=∠D′EA,进而利用平行四边形的判定方法得出四边形DAD′E是平行四边形,进而求出四边形BCED′是平行四边形,根据折叠的性质得到AD=AD′,然后又菱形的判定定理即可得到结论;(2)由四边形DAD′E是平行四边形,得到▱DAD′E是菱形,推出D与D′关于AE对称,连接BD交AE于P,则BD的长即为PD′+PB的最小值,过D作DG⊥BA于G,解直角三角形得到AG=,DG=,根据勾股定理即可得到结论.【解答】证明:(1)∵将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,∴∠DAE=∠D′AE,∠DEA=∠D′EA,∠D=∠AD′E,∵DE∥AD′,∴∠DEA=∠EAD′,∴∠DAE=∠EAD′=∠DEA=∠D′EA,∴∠DAD′=∠DED′,∴四边形DAD′E是平行四边形,∴DE=AD′,∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC,∴CE=D′B,CE∥D′B,∴四边形BCED′是平行四边形;∵AD=AD′,∴▱DAD′E是菱形,(2)∵四边形DAD′E是菱形,∴D与D′关于AE对称,连接BD交AE于P,则BD的长即为PD′+PB的最小值,过D作DG⊥BA于G,∵CD∥AB,∴∠DAG=∠CDA=60°,∵AD=1,∴AG=,DG=,∴BG=,∴BD==,∴PD′+PB的最小值为.【点评】本题考查了平行四边形的性质,最短距离问题,勾股定理,菱形的判定和性质,正确的作出辅助线是解题的关键.22.(10分)(2016•新疆)如图,在⊙O中,半径OA⊥OB,过点OA的中点C作FD∥OB 交⊙O于D、F两点,且CD=,以O为圆心,OC为半径作,交OB于E点.(1)求⊙O的半径OA的长;(2)计算阴影部分的面积.【考点】扇形面积的计算;垂径定理.【分析】(1)首先证明OA⊥DF,由OD=2CO推出∠CDO=30°,设OC=x,则OD=2x,利用勾股定理即可解决问题.(2)根据S圆=S△CDO+S扇形OBD﹣S扇形OCE计算即可.【解答】解;(1)连接OD,∵OA⊥OB,∴∠AOB=90°,∵CD∥OB,∴∠OCD=90°,在RT△OCD中,∵C是AO中点,CD=,∴OD=2CO,设OC=x,∴x2+()2=(2x)2,∴x=1,∴OD=2,∴⊙O的半径为2.(2)∵sin∠CDO==,∴∠CDO=30°,∵FD∥OB,∴∠DOB=∠ODC=30°,∴S圆=S△CDO+S扇形OBD﹣S扇形OCE=×+﹣=+.【点评】本题考查扇形面积、垂径定理、勾股定理、有一个角是30度的直角三角形的性质等知识,解题的关键是学会利用分割法求面积.学会把求不规则图形面积转化为求规则图形面积,属于中考常考题型.23.(13分)(2016•新疆)如图,抛物线y=ax2+bx﹣3(a≠0)的顶点为E,该抛物线与x轴交于A、B两点,与y轴交于点C,且BO=OC=3AO,直线y=﹣x+1与y轴交于点D.(1)求抛物线的解析式;(2)证明:△DBO∽△EBC;(3)在抛物线的对称轴上是否存在点P,使△PBC是等腰三角形?若存在,请直接写出符合条件的P点坐标,若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)先求出点C的坐标,在由BO=OC=3AO,确定出点B,A的坐标,最后用待定系数法求出抛物线解析式;(2)先求出点A,B,C,D,E的坐标,从而求出BC=3,BE=2,CE=,OD=1,OB=3,BD=,求出比值,得到得出结论;(3)设出点P的坐标,表示出PB,PC,求出BC,分三种情况计算即可.【解答】解:(1)∵抛物线y=ax2+bx﹣3,∴c=﹣3,∴C(0,﹣3),∴OC=3,∵BO=OC=3AO,∴BO=3,AO=1,∴B(3,0),A(﹣1,0),∵该抛物线与x轴交于A、B两点,∴,∴,∴抛物线解析式为y=x2﹣2x﹣3,(2)由(1)知,抛物线解析式为y=x2﹣2x﹣3=(x﹣1)2﹣4,∴E(1,﹣4),∵B(3,0),A(﹣1,0),C(0,﹣3),∴BC=3,BE=2,CE=,∵直线y=﹣x+1与y轴交于点D,∴D(0,1),∵B(3,0),∴OD=1,OB=3,BD=,∴,,,∴,∴△BCE∽△BDO,(3)存在,理由:设P(1,m),∵B(3,0),C(0,﹣3),∴BC=3,PB=,PC=,∵△PBC是等腰三角形,①当PB=PC时,∴=,∴m=﹣1,∴P(1,﹣1),②当PB=BC时,∴3=,∴m=±,∴P(1,)或P(1,﹣),③当PC=BC时,∴3=,∴m=﹣3±,∴P(1,﹣3+)或P(1,﹣3﹣),∴符合条件的P点坐标为P(1,﹣1)或P(1,)或P(1,﹣)或P(1,﹣3+)或P(1,﹣3﹣)【点评】此题是二次函数综合题,主要考查了点的坐标的确定方法,两点间的距离公式,待定系数法,等腰三角形的性质,相似三角形的判定,解本题的关键是判断△BCE∽△BDO.难点是分类.。

新疆、生产建设兵团 2016年中考数学真题试卷附解析

新疆、生产建设兵团 2016年中考数学真题试卷附解析

2016年新疆、生产建设兵团中考数学试卷参考答案与试题解析一、选择题:本大题共9小题,每小题5分,共45分1.(2016·新疆)﹣3的相反数是()A.3 B.﹣3 C.D.﹣【考点】相反数.【专题】常规题型.【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是3,故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(2016·新疆)如图,直线a∥b,直线c与直线a,b相交,若∠1=56°,则∠2等于()A.24° B.34° C.56° D.124°【考点】平行线的性质.【分析】根据对顶角相等求出∠3,根据平行线的性质得出∠2=∠3,即可得出答案.【解答】解:∵∠1=56°,∴∠3=∠1=56°,∵直线a∥b,∴∠2=∠3=56°,故选C.【点评】本题考查了平行线的性质的应用,能根据平行线的性质得出∠2=∠3是解此题的关键,注意:两直线平行,同位角相等.3.(2016·新疆)不等式组的解集是()A.x≤1 B.x≥2 C.1≤x≤2 D.1<x<2【考点】解一元一次不等式组.【专题】计算题.【分析】分别解两个不等式得到x≥1和x≤2,然后利用大小小大中间找确定不等式组的解集.【解答】解:,解①得x≥1,解②得x≤2,所以不等式组的解集为1≤x≤2.故选C.【点评】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.4.(2016·新疆)如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF【考点】全等三角形的判定.【分析】根据全等三角形的判定,利用ASA、SAS、AAS即可得答案.【解答】解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;故选D.【点评】本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS和HL是解题的关键.5.(2016·新疆)如图所示,将一个含30°角的直角三角板ABC绕点A旋转,使得点B,A,C′在同一条直线上,则三角板ABC旋转的角度是()A.60° B.90° C.120° D.150°【考点】旋转的性质.【分析】根据旋转角的定义,两对应边的夹角就是旋转角,即可求解.【解答】解:旋转角是∠CAC′=180°﹣30°=150°.故选:D.【点评】本题考查的是旋转的性质,掌握对应点与旋转中心所连线段的夹角等于旋转角是解题的关键.6.(2016·新疆)某小组同学在一周内参加家务劳动时间与人数情况如表所示:下列关于“劳动时间”这组数据叙述正确的是()A.中位数是2 B.众数是2 C.平均数是3 D.方差是0【考点】方差;加权平均数;中位数;众数.【分析】根据中位数,众数,平均数,方差的计算方法,判断即可.【解答】解:由题意得,众数是2,故选B.【点评】此题是方差题,主要考查了众数,中位数,平均数,方差的计算方法,解本题的关键是熟练掌握他们的计算方法.7.(2016·新疆)如图,在△ABC中,D、E分别是AB、AC的中点,下列说法中不正确的是()A .DE=BCB . =C .△ADE ∽△ABCD .S △ADE :S △ABC =1:2【考点】相似三角形的判定与性质;三角形中位线定理.【分析】根据中位线的性质定理得到DE ∥BC ,DE=BC ,再根据平行线分线段成比例定理和相似三角形的性质即可判定.【解答】解:∵D 、E 分别是AB 、AC 的中点,∴DE ∥BC ,DE=BC ,∴=,△ADE ∽△ABC ,∴,∴A ,B ,C 正确,D 错误; 故选:D .【点评】该题主要考查了平行线分线段成比例定理和相似三角形的性质即可判定;解题的关键是正确找出对应线段,准确列出比例式求解、计算、判断或证明.8.(2016·新疆)一元二次方程x 2﹣6x ﹣5=0配方组可变形为( ) A .(x ﹣3)2=14 B .(x ﹣3)2=4 C .(x+3)2=14 D .(x+3)2=4 【考点】解一元二次方程-配方法.【分析】先把方程的常数项移到右边,然后方程两边都加上32,这样方程左边就为完全平方式. 【解答】解:x 2﹣6x ﹣5=0, x 2﹣6x=5, x 2﹣6x+9=5+9, (x ﹣3)2=14, 故选:A .【点评】本题考查了利用配方法解一元二次方程ax 2+bx+c=0(a ≠0):先把二次系数变为1,即方程两边除以a ,然后把常数项移到方程右边,再把方程两边加上一次项系数的一半.9.(2016·新疆)已知A(x1,y1),B(x2,y2)是反比例函数y=(k≠0)图象上的两个点,当x1<x2<0时,y1>y2,那么一次函数y=kx﹣k的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【考点】反比例函数图象上点的坐标特征;一次函数图象与系数的关系.【分析】首先根据x1<x2<0时,y1>y2,确定反比例函数y=(k≠0)中k的符号,然后再确定一次函数y=kx﹣k的图象所在象限.【解答】解:∵当x1<x2<0时,y1>y2,∴k>0,∴﹣k<0,∴一次函数y=kx﹣k的图象经过第一、三、四象限,∴不经过第二象限,故选:B.【点评】此题主要考查了反比例函数图象上点的坐标特征以及一次函数图象与系数的关系,解决此题的关键是确定k的符号.二、填空题:本大题共6小题,每小题5分,共30分10.(2016·新疆)分解因式:x3﹣4x=x(x+2)(x﹣2).【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】应先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣4x,=x(x2﹣4),=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次因式分解,分解因式一定要彻底,直到不能再分解为止.11.(2016·新疆)计算:=.【考点】分式的乘除法.【分析】先约分,再根据分式的乘除法运算的计算法则计算即可求解.【解答】解:=•=.故答案为:.【点评】考查了分式的乘除法,规律方法总结:①分式乘除法的运算,归根到底是乘法的运算,当分子和分母是多项式时,一般应先进行因式分解,再约分.②整式和分式进行运算时,可以把整式看成分母为1的分式.③做分式乘除混合运算时,要注意运算顺序,乘除法是同级运算,要严格按照由左到右的顺序进行运算,切不可打乱这个运算顺序.12.(2016·新疆)小球在如图所示的地板上自由滚动,并随机停留在某块正方形的地砖上,则它停在白色地砖上的概率是.【考点】几何概率.【分析】先求出瓷砖的总数,再求出白色瓷砖的个数,利用概率公式即可得出结论.【解答】解:∵由图可知,共有5块瓷砖,白色的有3块,∴它停在白色地砖上的概率=.故答案为:.【点评】本题考查的是几何概率,熟记概率公式是解答此题的关键.13.(2016·新疆)某加工厂九月份加工了10吨干果,十一月份加工了13吨干果.设该厂加工干果重量的月平均增长率为x,根据题意可列方程为10(1+x)2=13.【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】十一月份加工量=九月份加工量×(1+月平均增长率)2,把相关数值代入即可.【解答】解:设该厂加工干果重量的月平均增长率为x,根据题意,可列方程为:10(1+x)2=13,故答案为:10(1+x)2=13.【点评】本题主要考查了由实际问题抽象出一元二次方程,关键是掌握求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.14.(2016·新疆)对一个实数x按如图所示的程序进行操作,规定:程序运行从“输入一个实数x”到“结果是否大于88?”为一次操作.如果操作只进行一次就停止,则x的取值范围是x>49.【考点】一元一次不等式的应用.【分析】表示出第一次的输出结果,再由第三次输出结果可得出不等式,解不等式求出即可.【解答】解:第一次的结果为:2x﹣10,没有输出,则2x﹣10>88,解得:x>49.故x的取值范围是x>49.故答案为:x>49【点评】本题考查了一元一次不等式的应用,解答本题的关键是读懂题意,根据结果是否可以输出,得出不等式.15.(2016·新疆)如图,下面每个图形中的四个数都是按相同的规律填写的,根据此规律确定x的值为370.【考点】规律型:数字的变化类.【分析】首先观察规律,求得n与m的值,再由右下角数字第n个的规律:2n(2n﹣1)﹣n,求得答案.【解答】解:∵左下角数字为偶数,右上角数字为奇数,∴2n=20,m=2n﹣1,解得:n=10,m=19,∵右下角数字:第一个:1=1×2﹣1,第二个:10=3×4﹣2,第三个:27=5×6﹣3,∴第n个:2n(2n﹣1)﹣n,∴x=19×20﹣10=370.故答案为:370.【点评】此题考查了数字规律性问题.注意首先求得n与m的值是关键.三、解答题16.(2016·新疆)计算:(﹣2)2+|1﹣|﹣2sin60°.【考点】实数的运算;零指数幂;特殊角的三角函数值.【专题】计算题.【分析】根据实数的运算顺序,首先计算乘方,然后从左向右依次计算,求出算式(﹣2)0+|1﹣|﹣2sin60°的值是多少即可.【解答】解:(﹣2)2+|1﹣|﹣2sin60°=4+﹣1﹣2×=.【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.(3)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°角的各种三角函数值.17.(2016·新疆)某学校为绿化环境,计划种植600棵树,实际劳动中每小时植树的数量比原计划多20%,结果提前2小时完成任务,求原计划每小时种植多少棵树?【考点】分式方程的应用.【分析】设原计划每小时种植x棵树,则实际劳动中每小时植树的数量是120%x棵,根据“结果提前2小时完成任务”列出方程并求解.【解答】解:设原计划每小时种植x棵树,依题意得:=+2,解得x=50.经检验x=50是所列方程的根,并符合题意.答:原计划每小时种植50棵树.【点评】本题考查了分式方程的应用.分析题意,找到合适的等量关系是解决问题的关键.18.(2016·新疆)某校在民族团结宣传活动中,采用了四种宣传形式:A唱歌,B舞蹈,C朗诵,D器乐.全校的每名学生都选择了一种宣传形式参与了活动,小明对同学们选用的宣传形式,进行了随机抽样调查,根据调查统计结果,绘制了如图两种不完整的统计图表:请结合统计图表,回答下列问题:(1)本次调查的学生共300人,a=10%,并将条形统计图补充完整;(2)如果该校学生有2000人,请你估计该校喜欢“唱歌”这种宣传形式的学生约有多少人?(3)学校采用调查方式让每班在A、B、C、D四种宣传形式中,随机抽取两种进行展示,请用树状图或列表法,求某班抽到的两种形式恰好是“唱歌”和“舞蹈”的概率.【考点】列表法与树状图法;用样本估计总体;条形统计图.【分析】(1)根据“唱歌”的人数及其百分比可得总人数,根据各项目的百分比之和为1可得a的值;(2)用样本中“唱歌”的百分比乘以总人数可得答案;(3)通过列表或画树状图列出所有可能结果,再找到使该事件发生的结果数,根据概率公式计算即可.【解答】解:(1)∵A类人数105,占35%,∴本次调查的学生共:105÷35%=300(人);a=1﹣35%﹣25%﹣30%=10%;故答案为:(1)300,10%.B的人数:300×10%=30(人),补全条形图如图:(2)2000×35%=700(人),答:估计该校喜欢“唱歌”这种宣传形式的学生约有700人;(3)列表如下:由表格可知,在A、B、C、D四种宣传形式中,随机抽取两种进行展示共有12种等可能结果,其中恰好是“唱歌”和“舞蹈”的有2种,∴某班抽到的两种形式恰好是“唱歌”和“舞蹈”的概率为=.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了样本估计总体和条形统计图.19.(2016·新疆)如图,某校数学兴趣小组为测得校园里旗杆AB的高度,在操场的平地上选择一点C,测得旗杆顶端A的仰角为30°,再向旗杆的方向前进16米,到达点D处(C、D、B三点在同一直线上),又测得旗杆顶端A的仰角为45°,请计算旗杆AB的高度(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【专题】探究型.【分析】根据题意可以得到BD的长度,从而可以求得AB的高度.【解答】解:由题意可得,CD=16米,∵AB=CB•tan30°,AB=BD•tan45°,∴CB•tan30°=BD•tan45°,∴(CD+DB)×=BD×1,解得BD=8,∴AB=BD•tan45°=()米,即旗杆AB的高度是()米.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是明确题意,找出所求问题需要的条件.四、解答题20.(2016·新疆)暑假期间,小刚一家乘车去离家380公里的某景区旅游,他们离家的距离y(km)与汽车行驶时间x(h)之间的函数图象如图所示.(1)从小刚家到该景区乘车一共用了多少时间?(2)求线段AB对应的函数解析式;(3)小刚一家出发2.5小时时离目的地多远?【考点】一次函数的应用.【分析】(1)观察图形即可得出结论;(2)设AB段图象的函数表达式为y=kx+b,将A、B两点的坐标代入,运用待定系数法即可求解;(3)先将x=2.5代入AB段图象的函数表达式,求出对应的y值,进一步即可求解.【解答】解:(1)从小刚家到该景区乘车一共用了4h时间;(2)设AB段图象的函数表达式为y=kx+b.∵A(1,80),B(3,320)在AB上,∴,解得.∴y=120x﹣40(1≤x≤3);(3)当x=2.5时,y=120×2.5﹣40=260,380﹣260=120(km).故小刚一家出发2.5小时时离目的地120km远.【点评】本题考查了一次函数的应用及一次函数解析式的确定,解题的关键是通过仔细观察图象,从中整理出解题时所需的相关信息,本题较简单.21.(2016·新疆)如图,▱ABCD中,AB=2,AD=1,∠ADC=60°,将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,折痕交CD边于点E.(1)求证:四边形BCED′是菱形;(2)若点P时直线l上的一个动点,请计算PD′+PB的最小值.【考点】平行四边形的性质;菱形的判定;轴对称-最短路线问题;翻折变换(折叠问题).【分析】(1)利用翻折变换的性质以及平行线的性质得出∠DAE=∠EAD′=∠DEA=∠D′EA,进而利用平行四边形的判定方法得出四边形DAD′E是平行四边形,进而求出四边形BCED′是平行四边形,根据折叠的性质得到AD=AD′,然后又菱形的判定定理即可得到结论;(2)由四边形DAD′E是平行四边形,得到▱DAD′E是菱形,推出D与D′关于AE对称,连接BD交AE于P,则BD的长即为PD′+PB的最小值,过D作DG⊥BA于G,解直角三角形得到AG=,DG=,根据勾股定理即可得到结论.【解答】证明:(1)∵将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,∴∠DAE=∠D′AE,∠DEA=∠D′EA,∠D=∠AD′E,∵DE∥AD′,∴∠DEA=∠EAD′,∴∠DAE=∠EAD′=∠DEA=∠D′EA,∴∠DAD′=∠DED′,∴四边形DAD′E是平行四边形,∴DE=AD′,∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC,∴CE=D′B,CE∥D′B,∴四边形BCED′是平行四边形;∵AD=AD′,∴▱DAD′E是菱形,(2)∵四边形DAD′E是菱形,∴D与D′关于AE对称,连接BD交AE于P,则BD的长即为PD′+PB的最小值,过D作DG⊥BA于G,∵CD∥AB,∴∠DAG=∠CDA=60°,∵AD=1,∴AG=,DG=,∴BG=,∴BD==,∴PD′+PB的最小值为.【点评】本题考查了平行四边形的性质,最短距离问题,勾股定理,菱形的判定和性质,正确的作出辅助线是解题的关键.22.(2016·新疆)如图,在⊙O中,半径OA⊥OB,过点OA的中点C作FD∥OB交⊙O于D、F两点,且CD=,以O为圆心,OC为半径作,交OB于E点.(1)求⊙O的半径OA的长;(2)计算阴影部分的面积.【考点】扇形面积的计算;垂径定理.【分析】(1)首先证明OA⊥DF,由OD=2CO推出∠CDO=30°,设OC=x,则OD=2x,利用勾股定理即可解决问题.(2)根据S圆=S△CDO+S扇形OBD﹣S扇形OCE计算即可.【解答】解;(1)连接OD,∵OA⊥OB,∴∠AOB=90°,∵CD∥OB,∴∠OCD=90°,在RT△OCD中,∵C是AO中点,CD=,∴OD=2CO,设OC=x,∴x2+()2=(2x)2,∴x=1,∴OD=2,∴⊙O 的半径为2.(2)∵sin ∠CDO==,∴∠CDO=30°,∵FD ∥OB ,∴∠DOB=∠ODC=30°,∴S 圆=S △CDO +S 扇形OBD ﹣S 扇形OCE=×+﹣=+. 【点评】本题考查扇形面积、垂径定理、勾股定理、有一个角是30度的直角三角形的性质等知识,解题的关键是学会利用分割法求面积.学会把求不规则图形面积转化为求规则图形面积,属于中考常考题型.23.(2016·新疆)如图,抛物线y=ax 2+bx ﹣3(a ≠0)的顶点为E ,该抛物线与x 轴交于A 、B 两点,与y轴交于点C ,且BO=OC=3AO ,直线y=﹣x+1与y 轴交于点D .(1)求抛物线的解析式;(2)证明:△DBO ∽△EBC ;(3)在抛物线的对称轴上是否存在点P ,使△PBC 是等腰三角形?若存在,请直接写出符合条件的P 点坐标,若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)先求出点C 的坐标,在由BO=OC=3AO ,确定出点B ,A 的坐标,最后用待定系数法求出抛物线解析式;(2)先求出点A ,B ,C ,D ,E 的坐标,从而求出BC=3,BE=2,CE=,OD=1,OB=3,BD=,求出比值,得到得出结论;(3)设出点P的坐标,表示出PB,PC,求出BC,分三种情况计算即可.【解答】解:(1)∵抛物线y=ax2+bx﹣3,∴c=﹣3,∴C(0,﹣3),∴OC=3,∵BO=OC=3AO,∴BO=3,AO=1,∴B(3,0),A(﹣1,0),∵该抛物线与x轴交于A、B两点,∴,∴,∴抛物线解析式为y=x2﹣2x﹣3,(2)由(1)知,抛物线解析式为y=x2﹣2x﹣3=(x﹣1)2﹣4,∴E(1,﹣4),∵B(3,0),A(﹣1,0),C(0,﹣3),∴BC=3,BE=2,CE=,∵直线y=﹣x+1与y轴交于点D,∴D(0,1),∵B(3,0),∴OD=1,OB=3,BD=,∴,,,∴,∴△BCE∽△BDO,(3)存在,理由:设P(1,m),∵B(3,0),C(0,﹣3),∴BC=3,PB=,PC=,∵△PBC是等腰三角形,①当PB=PC时,∴=,∴m=﹣1,∴P(1,﹣1),②当PB=BC时,∴3=,∴m=±,∴P(1,)或P(1,﹣),③当PC=BC时,∴3=,∴m=﹣3±,∴P(1,﹣3+)或P(1,﹣3﹣),∴符合条件的P点坐标为P(1,﹣1)或P(1,)或P(1,﹣)或P(1,﹣3+)或P(1,﹣3﹣)【点评】此题是二次函数综合题,主要考查了点的坐标的确定方法,两点间的距离公式,待定系数法,等腰三角形的性质,相似三角形的判定,解本题的关键是判断△BCE∽△BDO.难点是分类.2016年广西南宁市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(2016·广西南宁)﹣2的相反数是()A.﹣2 B.0 C.2 D.4【考点】相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣2的相反数是2.故选C.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.(2016·广西南宁)把一个正六棱柱如图1摆放,光线由上向下照射此正六棱柱时的正投影是()A.B.C.D.【考点】平行投影.【分析】根据平行投影特点以及图中正六棱柱的摆放位置即可求解.【解答】解:把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是正六边形.故选A.【点评】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应按照物体的外形即光线情况而定.3.(2016·广西南宁)据《南国早报》报道:2016年广西高考报名人数约为332000人,创历史新高,其中数据332000用科学记数法表示为()A.0.332×106B.3.32×105C.3.32×104D.33.2×104【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将332000用科学记数法表示为:3.32×105.故选:B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.4.(2016·广西南宁)已知正比例函数y=3x的图象经过点(1,m),则m的值为()A.B.3 C.﹣D.﹣3【考点】一次函数图象上点的坐标特征.【分析】本题较为简单,把坐标代入解析式即可求出m的值.【解答】解:把点(1,m)代入y=3x,可得:m=3,故选B【点评】此题考查一次函数的问题,利用待定系数法直接代入求出未知系数m,比较简单.5.(2016·广西南宁)某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是()A.80分B.82分C.84分D.86分【考点】加权平均数.【分析】利用加权平均数的公式直接计算即可得出答案.【解答】解:由加权平均数的公式可知===86,故选D.【点评】本题主要考查加权平均数的计算,掌握加权平均数的公式=是解题的关键.6.(2016·广西南宁)如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC=10米,∠B=36°,则中柱AD (D为底边中点)的长是()A.5sin36°米B.5cos36°米C.5tan36°米D.10tan36°米【考点】解直角三角形的应用.【分析】根据等腰三角形的性质得到DC=BD=5米,在Rt△ABD中,利用∠B的正切进行计算即可得到AD的长度.【解答】解:∵AB=AC,AD⊥BC,BC=10米,∴DC=BD=5米,在Rt△ADC中,∠B=36°,∴tan36°=,即AD=BD•tan36°=5tan36°(米).故选:C.【点评】本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.7.(2016·广西南宁)下列运算正确的是()A.a2﹣a=a B.ax+ay=axy C.m2•m4=m6D.(y3)2=y5【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】结合选项分别进行幂的乘方与积的乘方、合并同类项、同底数幂的乘法等运算,然后选择正确答案.【解答】解:A、a2和a不是同类项,不能合并,故本选项错误;B、ax和ay不是同类项,不能合并,故本选项错误;C、m2•m4=m6,计算正确,故本选项正确;D、(y3)2=y6≠y5,故本选项错误.故选C.【点评】本题考查了幂的乘方与积的乘方、合并同类项、同底数幂的乘法的知识,解答本题的关键在于掌握各知识点的运算法则.8.(2016·广西南宁)下列各曲线中表示y是x的函数的是()A.B.C.D.【考点】函数的概念.【分析】根据函数的意义求解即可求出答案.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.【点评】主要考查了函数的定义.注意函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.9.(2016·广西南宁)如图,点A,B,C,P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,则∠P的度数为()A.140° B.70° C.60° D.40°【考点】圆周角定理.【分析】先根据四边形内角和定理求出∠DOE的度数,再由圆周角定理即可得出结论.【解答】解:∵CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,∴∠DOE=180°﹣40°=140°,∴∠P=∠DOE=70°.故选B.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.10.(2016·广西南宁)超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程()A.0.8x﹣10=90 B.0.08x﹣10=90 C.90﹣0.8x=10 D.x﹣0.8x﹣10=90【考点】由实际问题抽象出一元一次方程.【分析】设某种书包原价每个x元,根据题意列出方程解答即可.【解答】解:设某种书包原价每个x元,可得:0.8x﹣10=90,故选A【点评】本题考查一元一次方程,解题的关键是明确题意,能列出每次降价后的售价.11.(2016·广西南宁)有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于()A.1:B.1:2 C.2:3 D.4:9【考点】正方形的性质.【分析】设小正方形的边长为x,再根据相似的性质求出S1、S2与正方形面积的关系,然后进行计算即可得出答案.【解答】解:设小正方形的边长为x,根据图形可得:∵=,∴=,∴=,∴S1=S,正方形ABCD∴S1=x2,∵=,∴=,∴S2=S,正方形ABCD∴S2=x2,∴S1:S2=x2:x2=4:9;故选D.【点评】此题考查了正方形的性质,用到的知识点是正方形的性质、相似三角形的性质、正方形的面积公式,关键是根据题意求出S1、S2与正方形面积的关系.12.(2016·广西南宁)二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和()A.大于0 B.等于0 C.小于0 D.不能确定【考点】抛物线与x轴的交点.【分析】设ax2+bx+c=0(a≠0)的两根为x1,x2,由二次函数的图象可知x1+x2>0,a>0,设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b再根据根与系数的关系即可得出结论.【解答】解:设ax2+bx+c=0(a≠0)的两根为x1,x2,∵由二次函数的图象可知x1+x2>0,a>0,∴﹣>0.设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b,则a+b=﹣=﹣+,∵a>0,∴>0,∴a+b>0.故选C.【点评】本题考查的是抛物线与x轴的交点,熟知抛物线与x轴的交点与一元二次方程根的关系是解答此题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13.(2016·广西南宁)若二次根式有意义,则x的取值范围是x≥1.【考点】二次根式有意义的条件.【分析】根据二次根式的性质可知,被开方数大于等于0,列出不等式即可求出x的取值范围.【解答】解:根据二次根式有意义的条件,x﹣1≥0,∴x≥1.故答案为:x≥1.【点评】此题考查了二次根式有意义的条件,只要保证被开方数为非负数即可.14.(2016·广西南宁)如图,平行线AB,CD被直线AE所截,∠1=50°,则∠A=50°.【考点】平行线的性质.【分析】根据两直线平行,同位角相等可得∠1=∠A.【解答】解:∵AB∥CD,∴∠A=∠1,∵∠1=50°,∴∠A=50°,故答案为50°.【点评】本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同位角相等.15.(2016·广西南宁)分解因式:a2﹣9=(a+3)(a﹣3).【考点】因式分解-运用公式法.【分析】直接利用平方差公式分解因式进而得出答案.【解答】解:a2﹣9=(a+3)(a﹣3).故答案为:(a+3)(a﹣3).【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.16.(2016·广西南宁)如图,在4×4正方形网格中,有3个小正方形已经涂黑,若再涂黑任意一个白色的小正方形如图所示,反比例函数y=(k≠0,x>0)的图象经过矩形OABC的对角线AC的中点D.若矩形OABC的面积为8,则k的值为2.【考点】反比例函数系数k的几何意义.【分析】过D作DE⊥OA于E,设D(m,),于是得到OA=2m,OC=,根据矩形的面积列方程即可得到结论.【解答】解:过D作DE⊥OA于E,设D(m,),∴OE=m.DE=,∵点D是矩形OABC的对角线AC的中点,∴OA=2m,OC=,∵矩形OABC的面积为8,∴OA•OC=2m•=8,∴k=2,故答案为:2.【点评】本题考查了反比例函数系数k的几何意义,矩形的性质,根据矩形的面积列出方程是解题的关键.18.(2016·广西南宁)观察下列等式:在上述数字宝塔中,从上往下数,2016在第44层.【考点】规律型:数字的变化类.【分析】先按图示规律计算出每一层的第一个数和最后一个数;发现第一个数分别是每一层层数的平方,那么只要知道2016介于哪两个数的平方即可,通过计算可知:442<2016<452,则2016在第44层.【解答】解:第一层:第一个数为12=1,最后一个数为22﹣1=3,第二层:第一个数为22=4,最后一个数为23﹣1=8,第三层:第一个数为32=9,最后一个数为24﹣1=15,。

2016年新疆维吾尔自治区、生产建设兵团中考数学试卷(含详细答案)

2016年新疆维吾尔自治区、生产建设兵团中考数学试卷(含详细答案)
A.第一象限B.第二象限C.第三象限D.第四象限
第Ⅱ卷(非选择题 共105分)
二、填空题(本大题共6小题,每小题5分,共30分.把答案填写在题中的横线上)
10.分解因式: .
11.计算: .
12.小球在如图所示的地板上自由滚动,并随机停留在某块正方形的地砖上,则它停在白色地砖上的概率是.
13.某加工厂九月份加工了 吨干果,十一月份加工了 吨干果,设该厂加工干果重量每月平均增长率为 ,根据题意可列方程为.
19.(本小题满分8分)
如图,某校数学兴趣小组为测得校园里旗杆 的高度,在操场的平地上选择一点 ,测得旗杆顶端 的仰角为 ,再向旗杆的方向前进 米,到达点 处( , , 三点在同一直线上),又测得旗杆顶端 的仰角为 ,请计算旗杆 的高度(结果保留根号).
20.(本小题满分10分)
暑假期间,小刚一家乘车去离家 公里的某景区旅游,他们离家的距离 与汽车行驶时间 之间的函数图象如图所示.
(1)从小刚家到该景区乘车一共用了多少时间?
(2)求线段 对应的函数解析式;
(3)小刚一家出发 小时时离目的地多远?
21.(本小题满分10分)
如图,在□ 中, , , ,将□ 沿过点 的直线 折叠,使点 落到 边上的点 处,折痕交 边于点 .
(1)求证:四边形 是菱形;
(2)若点 是直线 上的一个动点,请计算 .
【考点】一元二次方程的配方法
9.【答案】B
【解析】∵当 时, ,∴ ,∴ ,∴一次函数 的图象经过第一、三、四象限,∴不经过第二象限,故选:B。
【考点】反比例函数和一次函数的图像和性质
第Ⅱ卷
二、填空题
10.【答案】
【解析】 ,答案为: 。
【考点】整式的因式分解

2016年新疆中考数学试卷附详细答案(原版+解析版)

2016年新疆、生产建设兵团中考数学试卷一、选择题:本大题共9小题,每小题5分,共45分1.﹣3的相反数是()A.3 B.﹣3 C.D.﹣2.如图,直线a∥b,直线c与直线a,b相交,若∠1=56°,则∠2等于()A.24° B.34° C.56° D.124°3.不等式组的解集是()A.x≤1 B.x≥2 C.1≤x≤2 D.1<x<24.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF5.如图所示,将一个含30°角的直角三角板ABC绕点A旋转,使得点B,A,C′在同一条直线上,则三角板ABC旋转的角度是()A.60° B.90° C.120° D.150°6.某小组同学在一周内参加家务劳动时间与人数情况如表所示:下列关于“劳动时间”这组数据叙述正确的是()A.中位数是2 B.众数是2 C.平均数是3 D.方差是07.如图,在△ABC中,D、E分别是AB、AC的中点,下列说法中不正确的是()A.DE=BC B. =C.△ADE∽△ABC D.S△ADE:S△ABC=1:28.一元二次方程x2﹣6x﹣5=0配方组可变形为()A.(x﹣3)2=14 B.(x﹣3)2=4 C.(x+3)2=14 D.(x+3)2=49.已知A(x1,y1),B(x2,y2)是反比例函数y=(k≠0)图象上的两个点,当x1<x2<0时,y1>y2,那么一次函数y=kx﹣k的图象不经过()A.第一象限B.第二象限 C.第三象限 D.第四象限二、填空题:本大题共6小题,每小题5分,共30分10.分解因式:x3﹣4x= .11.计算: = .12.小球在如图所示的地板上自由滚动,并随机停留在某块正方形的地砖上,则它停在白色地砖上的概率是.13.某加工厂九月份加工了10吨干果,十一月份加工了13吨干果.设该厂加工干果重量的月平均增长率为x,根据题意可列方程为.14.对一个实数x按如图所示的程序进行操作,规定:程序运行从“输入一个实数x”到“结果是否大于88?”为一次操作.如果操作只进行一次就停止,则x的取值范围是.15.如图,下面每个图形中的四个数都是按相同的规律填写的,根据此规律确定x的值为.三、解答题16.计算:(﹣2)2+|1﹣|﹣2sin60°.17.某学校为绿化环境,计划种植600棵树,实际劳动中每小时植树的数量比原计划多20%,结果提前2小时完成任务,求原计划每小时种植多少棵树?18.某校在民族团结宣传活动中,采用了四种宣传形式:A唱歌,B舞蹈,C朗诵,D器乐.全校的每名学生都选择了一种宣传形式参与了活动,小明对同学们选用的宣传形式,进行了随机抽样调查,根据调查统计结果,绘制了如图两种不完整的统计图表:请结合统计图表,回答下列问题:(1)本次调查的学生共人,a= ,并将条形统计图补充完整;(2)如果该校学生有2000人,请你估计该校喜欢“唱歌”这种宣传形式的学生约有多少人?(3)学校采用调查方式让每班在A、B、C、D四种宣传形式中,随机抽取两种进行展示,请用树状图或列表法,求某班抽到的两种形式恰好是“唱歌”和“舞蹈”的概率.19.如图,某校数学兴趣小组为测得校园里旗杆AB的高度,在操场的平地上选择一点C,测得旗杆顶端A的仰角为30°,再向旗杆的方向前进16米,到达点D处(C、D、B三点在同一直线上),又测得旗杆顶端A的仰角为45°,请计算旗杆AB的高度(结果保留根号)四、解答题20.暑假期间,小刚一家乘车去离家380公里的某景区旅游,他们离家的距离y(km)与汽车行驶时间x(h)之间的函数图象如图所示.(1)从小刚家到该景区乘车一共用了多少时间?(2)求线段AB对应的函数解析式;(3)小刚一家出发2.5小时时离目的地多远?21.如图,▱ABCD中,AB=2,AD=1,∠ADC=60°,将▱ABCD沿过点A的直线l折叠,使点D 落到AB边上的点D′处,折痕交CD边于点E.(1)求证:四边形BCED′是菱形;(2)若点P时直线l上的一个动点,请计算PD′+PB的最小值.22.如图,在⊙O中,半径OA⊥OB,过点OA的中点C作FD∥OB交⊙O于D、F两点,且CD=,以O为圆心,OC为半径作,交OB于E点.(1)求⊙O的半径OA的长;(2)计算阴影部分的面积.23.如图,抛物线y=ax2+bx﹣3(a≠0)的顶点为E,该抛物线与x轴交于A、B两点,与y 轴交于点C,且BO=OC=3AO,直线y=﹣x+1与y轴交于点D.(1)求抛物线的解析式;(2)证明:△DBO∽△EBC;(3)在抛物线的对称轴上是否存在点P,使△PBC是等腰三角形?若存在,请直接写出符合条件的P点坐标,若不存在,请说明理由.2016年新疆、生产建设兵团中考数学试卷参考答案与试题解析一、选择题:本大题共9小题,每小题5分,共45分1.﹣3的相反数是()A.3 B.﹣3 C. D.﹣【考点】相反数.【专题】常规题型.【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是3,故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.如图,直线a∥b,直线c与直线a,b相交,若∠1=56°,则∠2等于()A.24° B.34° C.56° D.124°【考点】平行线的性质.【分析】根据对顶角相等求出∠3,根据平行线的性质得出∠2=∠3,即可得出答案.【解答】解:∵∠1=56°,∴∠3=∠1=56°,∵直线a∥b,∴∠2=∠3=56°,故选C.【点评】本题考查了平行线的性质的应用,能根据平行线的性质得出∠2=∠3是解此题的关键,注意:两直线平行,同位角相等.3.不等式组的解集是()A.x≤1 B.x≥2 C.1≤x≤2 D.1<x<2【考点】解一元一次不等式组.【专题】计算题.【分析】分别解两个不等式得到x≥1和x≤2,然后利用大小小大中间找确定不等式组的解集.【解答】解:,解①得x≥1,解②得x≤2,所以不等式组的解集为1≤x≤2.故选C.【点评】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.4.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.∠A CB=∠F D.AC=DF【考点】全等三角形的判定.【分析】根据全等三角形的判定,利用ASA、SAS、AAS即可得答案.【解答】解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;故选D.【点评】本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS 和HL是解题的关键.5.如图所示,将一个含30°角的直角三角板ABC绕点A旋转,使得点B,A,C′在同一条直线上,则三角板ABC旋转的角度是()A.60° B.90° C.120° D.150°【考点】旋转的性质.【分析】根据旋转角的定义,两对应边的夹角就是旋转角,即可求解.【解答】解:旋转角是∠CAC′=180°﹣30°=150°.故选:D.【点评】本题考查的是旋转的性质,掌握对应点与旋转中心所连线段的夹角等于旋转角是解题的关键.6.某小组同学在一周内参加家务劳动时间与人数情况如表所示:下列关于“劳动时间”这组数据叙述正确的是()A.中位数是2 B.众数是2 C.平均数是3 D.方差是0【考点】方差;加权平均数;中位数;众数.【分析】根据中位数,众数,平均数,方差的计算方法,判断即可.【解答】解:由题意得,众数是2,故选B.【点评】此题是方差题,主要考查了众数,中位数,平均数,方差的计算方法,解本题的关键是熟练掌握他们的计算方法.7.如图,在△ABC中,D、E分别是AB、AC的中点,下列说法中不正确的是()A.DE=BC B. =C.△ADE∽△ABC D.S△ADE:S△ABC=1:2【考点】相似三角形的判定与性质;三角形中位线定理.【分析】根据中位线的性质定理得到DE∥BC,DE=BC,再根据平行线分线段成比例定理和相似三角形的性质即可判定.【解答】解:∵D、E分别是AB、AC的中点,∴DE∥BC,DE=BC,∴=,△ADE∽△ABC,∴,∴A,B,C正确,D错误;故选:D.【点评】该题主要考查了平行线分线段成比例定理和相似三角形的性质即可判定;解题的关键是正确找出对应线段,准确列出比例式求解、计算、判断或证明.8.一元二次方程x2﹣6x﹣5=0配方组可变形为()A.(x﹣3)2=14 B.(x﹣3)2=4 C.(x+3)2=14 D.(x+3)2=4【考点】解一元二次方程-配方法.【分析】先把方程的常数项移到右边,然后方程两边都加上32,这样方程左边就为完全平方式.【解答】解:x2﹣6x﹣5=0,x2﹣6x=5,x2﹣6x+9=5+9,(x﹣3)2=14,故选:A.【点评】本题考查了利用配方法解一元二次方程ax2+bx+c=0(a≠0):先把二次系数变为1,即方程两边除以a,然后把常数项移到方程右边,再把方程两边加上一次项系数的一半.9.已知A(x1,y1),B(x2,y2)是反比例函数y=(k≠0)图象上的两个点,当x1<x2<0时,y1>y2,那么一次函数y=kx﹣k的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】反比例函数图象上点的坐标特征;一次函数图象与系数的关系.【分析】首先根据x1<x2<0时,y1>y2,确定反比例函数y=(k≠0)中k的符号,然后再确定一次函数y=kx﹣k的图象所在象限.【解答】解:∵当x1<x2<0时,y1>y2,∴k>0,∴﹣k<0,∴一次函数y=kx﹣k的图象经过第一、三、四象限,∴不经过第二象限,故选:B.【点评】此题主要考查了反比例函数图象上点的坐标特征以及一次函数图象与系数的关系,解决此题的关键是确定k的符号.二、填空题:本大题共6小题,每小题5分,共30分10.分解因式:x3﹣4x= x(x+2)(x﹣2).【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】应先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣4x,=x(x2﹣4),=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次因式分解,分解因式一定要彻底,直到不能再分解为止.11.计算: = .【考点】分式的乘除法.【分析】先约分,再根据分式的乘除法运算的计算法则计算即可求解.【解答】解: =•=.故答案为:.【点评】考查了分式的乘除法,规律方法总结:①分式乘除法的运算,归根到底是乘法的运算,当分子和分母是多项式时,一般应先进行因式分解,再约分.②整式和分式进行运算时,可以把整式看成分母为1的分式.③做分式乘除混合运算时,要注意运算顺序,乘除法是同级运算,要严格按照由左到右的顺序进行运算,切不可打乱这个运算顺序.12.小球在如图所示的地板上自由滚动,并随机停留在某块正方形的地砖上,则它停在白色地砖上的概率是.【考点】几何概率.【分析】先求出瓷砖的总数,再求出白色瓷砖的个数,利用概率公式即可得出结论.【解答】解:∵由图可知,共有5块瓷砖,白色的有3块,∴它停在白色地砖上的概率=.故答案为:.【点评】本题考查的是几何概率,熟记概率公式是解答此题的关键.13.某加工厂九月份加工了10吨干果,十一月份加工了13吨干果.设该厂加工干果重量的月平均增长率为x,根据题意可列方程为10(1+x)2=13 .【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】十一月份加工量=九月份加工量×(1+月平均增长率)2,把相关数值代入即可.【解答】解:设该厂加工干果重量的月平均增长率为x,根据题意,可列方程为:10(1+x)2=13,故答案为:10(1+x)2=13.【点评】本题主要考查了由实际问题抽象出一元二次方程,关键是掌握求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.14.对一个实数x按如图所示的程序进行操作,规定:程序运行从“输入一个实数x”到“结果是否大于88?”为一次操作.如果操作只进行一次就停止,则x的取值范围是x>49 .【考点】一元一次不等式的应用.【分析】表示出第一次的输出结果,再由第三次输出结果可得出不等式,解不等式求出即可.【解答】解:第一次的结果为:2x﹣10,没有输出,则2x﹣10>88,解得:x>49.故x的取值范围是x>49.故答案为:x>49【点评】本题考查了一元一次不等式的应用,解答本题的关键是读懂题意,根据结果是否可以输出,得出不等式.15.如图,下面每个图形中的四个数都是按相同的规律填写的,根据此规律确定x的值为370 .【考点】规律型:数字的变化类.【分析】首先观察规律,求得n与m的值,再由右下角数字第n个的规律:2n(2n﹣1)﹣n,求得答案.【解答】解:∵左下角数字为偶数,右上角数字为奇数,∴2n=20,m=2n﹣1,解得:n=10,m=19,∵右下角数字:第一个:1=1×2﹣1,第二个:10=3×4﹣2,第三个:27=5×6﹣3,∴第n个:2n(2n﹣1)﹣n,∴x=19×20﹣10=370.故答案为:370.【点评】此题考查了数字规律性问题.注意首先求得n与m的值是关键.三、解答题16.计算:(﹣2)2+|1﹣|﹣2sin60°.【考点】实数的运算;零指数幂;特殊角的三角函数值.【专题】计算题.【分析】根据实数的运算顺序,首先计算乘方,然后从左向右依次计算,求出算式(﹣2)0+|1﹣|﹣2sin60°的值是多少即可.【解答】解:(﹣2)2+|1﹣|﹣2sin60°=4+﹣1﹣2×=.【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.(3)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°角的各种三角函数值.17.某学校为绿化环境,计划种植600棵树,实际劳动中每小时植树的数量比原计划多20%,结果提前2小时完成任务,求原计划每小时种植多少棵树?【考点】分式方程的应用.【分析】设原计划每小时种植x棵树,则实际劳动中每小时植树的数量是120%x棵,根据“结果提前2小时完成任务”列出方程并求解.【解答】解:设原计划每小时种植x棵树,依题意得: =+2,解得x=50.经检验x=50是所列方程的根,并符合题意.答:原计划每小时种植50棵树.【点评】本题考查了分式方程的应用.分析题意,找到合适的等量关系是解决问题的关键.18.某校在民族团结宣传活动中,采用了四种宣传形式:A唱歌,B舞蹈,C朗诵,D器乐.全校的每名学生都选择了一种宣传形式参与了活动,小明对同学们选用的宣传形式,进行了随机抽样调查,根据调查统计结果,绘制了如图两种不完整的统计图表:请结合统计图表,回答下列问题:(1)本次调查的学生共300 人,a= 10% ,并将条形统计图补充完整;(2)如果该校学生有2000人,请你估计该校喜欢“唱歌”这种宣传形式的学生约有多少人?(3)学校采用调查方式让每班在A、B、C、D四种宣传形式中,随机抽取两种进行展示,请用树状图或列表法,求某班抽到的两种形式恰好是“唱歌”和“舞蹈”的概率.【考点】列表法与树状图法;用样本估计总体;条形统计图.【分析】(1)根据“唱歌”的人数及其百分比可得总人数,根据各项目的百分比之和为1可得a的值;(2)用样本中“唱歌”的百分比乘以总人数可得答案;(3)通过列表或画树状图列出所有可能结果,再找到使该事件发生的结果数,根据概率公式计算即可.【解答】解:(1)∵A类人数105,占35%,∴本次调查的学生共:105÷35%=300(人);a=1﹣35%﹣25%﹣30%=10%;故答案为:(1)300,10%.B的人数:300×10%=30(人),补全条形图如图:(2)2000×35%=700(人),答:估计该校喜欢“唱歌”这种宣传形式的学生约有700人;(3)列表如下:由表格可知,在A、B、C、D四种宣传形式中,随机抽取两种进行展示共有12种等可能结果,其中恰好是“唱歌”和“舞蹈”的有2种,∴某班抽到的两种形式恰好是“唱歌”和“舞蹈”的概率为=.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了样本估计总体和条形统计图.19.如图,某校数学兴趣小组为测得校园里旗杆AB的高度,在操场的平地上选择一点C,测得旗杆顶端A的仰角为30°,再向旗杆的方向前进16米,到达点D处(C、D、B三点在同一直线上),又测得旗杆顶端A的仰角为45°,请计算旗杆AB的高度(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【专题】探究型.【分析】根据题意可以得到BD的长度,从而可以求得AB的高度.【解答】解:由题意可得,CD=16米,∵AB=CB•tan30°,AB=BD•tan45°,∴CB•tan30°=BD•tan45°,∴(CD+DB)×=BD×1,解得BD=8,∴AB=BD•tan45°=()米,即旗杆AB的高度是()米.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是明确题意,找出所求问题需要的条件.四、解答题20.暑假期间,小刚一家乘车去离家380公里的某景区旅游,他们离家的距离y(km)与汽车行驶时间x(h)之间的函数图象如图所示.(1)从小刚家到该景区乘车一共用了多少时间?(2)求线段AB对应的函数解析式;(3)小刚一家出发2.5小时时离目的地多远?【考点】一次函数的应用.【分析】(1)观察图形即可得出结论;(2)设AB段图象的函数表达式为y=kx+b,将A、B两点的坐标代入,运用待定系数法即可求解;(3)先将x=2.5代入AB段图象的函数表达式,求出对应的y值,进一步即可求解.【解答】解:(1)从小刚家到该景区乘车一共用了4h时间;(2)设AB段图象的函数表达式为y=kx+b.∵A(1,80),B(3,320)在AB上,∴,解得.∴y=120x﹣40(1≤x≤3);(3)当x=2.5时,y=120×2.5﹣40=260,380﹣260=120(km).故小刚一家出发2.5小时时离目的地120km远.【点评】本题考查了一次函数的应用及一次函数解析式的确定,解题的关键是通过仔细观察图象,从中整理出解题时所需的相关信息,本题较简单.21.如图,▱ABCD中,AB=2,AD=1,∠ADC=60°,将▱ABCD沿过点A的直线l折叠,使点D 落到AB边上的点D′处,折痕交CD边于点E.(1)求证:四边形BCED′是菱形;(2)若点P时直线l上的一个动点,请计算PD′+PB的最小值.【考点】平行四边形的性质;菱形的判定;轴对称-最短路线问题;翻折变换(折叠问题).【分析】(1)利用翻折变换的性质以及平行线的性质得出∠DAE=∠EAD′=∠DEA=∠D′EA,进而利用平行四边形的判定方法得出四边形DAD′E是平行四边形,进而求出四边形BCED′是平行四边形,根据折叠的性质得到AD=AD′,然后又菱形的判定定理即可得到结论;(2)由四边形DAD′E是平行四边形,得到▱DAD′E是菱形,推出D与D′关于AE对称,连接BD交AE于P,则BD的长即为PD′+PB的最小值,过D作DG⊥BA于G,解直角三角形得到AG=,DG=,根据勾股定理即可得到结论.【解答】证明:(1)∵将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,∴∠DAE=∠D′AE,∠DEA=∠D′EA,∠D=∠AD′E,∵DE∥AD′,∴∠DEA=∠EAD′,∴∠DAE=∠EAD′=∠DEA=∠D′EA,∴∠DAD′=∠DED′,∴四边形DAD′E是平行四边形,∴DE=AD′,∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC,∴CE=D′B,CE∥D′B,∴四边形BCED′是平行四边形;∵AD=AD′,∴▱DAD′E是菱形,(2)∵四边形DAD′E是菱形,∴D与D′关于AE对称,连接BD交AE于P,则BD的长即为PD′+PB的最小值,过D作DG⊥BA于G,∵CD∥AB,∴∠DAG=∠CDA=60°,∵AD=1,∴AG=,DG=,∴BG=,∴BD==,∴PD′+PB的最小值为.【点评】本题考查了平行四边形的性质,最短距离问题,勾股定理,菱形的判定和性质,正确的作出辅助线是解题的关键.22.如图,在⊙O中,半径OA⊥OB,过点OA的中点C作FD∥OB交⊙O于D、F两点,且CD=,以O为圆心,OC为半径作,交OB于E点.(1)求⊙O的半径OA的长;(2)计算阴影部分的面积.【考点】扇形面积的计算;垂径定理.【分析】(1)首先证明OA⊥DF,由OD=2CO推出∠CDO=30°,设OC=x,则OD=2x,利用勾股定理即可解决问题.(2)根据S圆=S△CDO+S扇形OBD﹣S扇形OCE计算即可.【解答】解;(1)连接OD,∵OA⊥OB,∴∠AOB=90°,∵CD∥O B,∴∠OCD=90°,在RT△OCD中,∵C是AO中点,CD=,∴OD=2CO,设OC=x,∴x2+()2=(2x)2,∴x=1,∴OD=2,∴⊙O的半径为2.(2)∵sin∠CDO==,∴∠CDO=30°,∵FD∥OB,∴∠DOB=∠ODC=30°,∴S圆=S△CDO+S扇形OBD﹣S扇形OCE=×+﹣=+. 【点评】本题考查扇形面积、垂径定理、勾股定理、有一个角是30度的直角三角形的性质等知识,解题的关键是学会利用分割法求面积.学会把求不规则图形面积转化为求规则图形面积,属于中考常考题型.23.如图,抛物线y=ax 2+bx ﹣3(a≠0)的顶点为E ,该抛物线与x 轴交于A 、B 两点,与y 轴交于点C ,且BO=OC=3AO ,直线y=﹣x+1与y 轴交于点D .(1)求抛物线的解析式;(2)证明:△DBO∽△EBC;(3)在抛物线的对称轴上是否存在点P ,使△PBC 是等腰三角形?若存在,请直接写出符合条件的P 点坐标,若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)先求出点C 的坐标,在由BO=OC=3AO ,确定出点B ,A 的坐标,最后用待定系数法求出抛物线解析式;(2)先求出点A ,B ,C ,D ,E 的坐标,从而求出BC=3,BE=2,CE=,OD=1,OB=3,BD=,求出比值,得到得出结论; (3)设出点P 的坐标,表示出PB ,PC ,求出BC ,分三种情况计算即可.【解答】解:(1)∵抛物线y=ax 2+bx ﹣3,∴c=﹣3,∴C(0,﹣3),∴OC=3,∵BO=OC=3AO,∴BO=3,AO=1,∴B(3,0),A (﹣1,0),∵该抛物线与x 轴交于A 、B 两点,∴,∴,∴抛物线解析式为y=x 2﹣2x ﹣3,(2)由(1)知,抛物线解析式为y=x2﹣2x ﹣3=(x ﹣1)2﹣4,∴E(1,﹣4), ∵B (3,0),A (﹣1,0),C (0,﹣3),∴BC=3,BE=2,CE=,∵直线y=﹣x+1与y 轴交于点D ,∴D(0,1),∵B(3,0),∴OD=1,OB=3,BD=,∴,,,∴,∴△BCE∽△BDO,(3)存在,理由:设P (1,m ),∵B(3,0),C (0,﹣3),∴BC=3,PB=,PC=,∵△PBC 是等腰三角形,①当PB=PC 时,∴=,∴m=﹣1,∴P(1,﹣1),②当PB=BC时,∴3=,∴m=±,∴P(1,)或P(1,﹣),③当PC=BC时,∴3=,∴m=﹣3±,∴P(1,﹣3+)或P(1,﹣3﹣),∴符合条件的P点坐标为P(1,﹣1)或P(1,)或P(1,﹣)或P(1,﹣3+)或P(1,﹣3﹣)【点评】此题是二次函数综合题,主要考查了点的坐标的确定方法,两点间的距离公式,待定系数法,等腰三角形的性质,相似三角形的判定,解本题的关键是判断△BCE∽△BDO.难点是分类.。

新疆2016中考试题数学卷(解析版)

一、选择题,共9小题,每小题5分,共45分.1.﹣2的绝对值是( ) A .2 B .﹣2 C .±2 D.12 【答案】A 【解析】试题分析:直接利用绝对值的概念可得-2的绝对值是2.故选A. 考点:绝对值.2.如图,AB∥CD,CE 平分∠BCD,∠B=36°,则∠DCE 等于( ) A .18° B.36° C.45° D.54°【答案】A. 【解析】试题分析:∵AB ∥CD ,∴∠BCD=∠B=36°,∵CE 平分∠BCD ,∴∠DCE=12∠BCD=18°考点:1平行线的性质;2角平分线的性质. 3.不等式组⎩⎨⎧≥-+<21423x x x 的解集是( )A .x >4B .x≤3 C.3≤x<4 D .无解 【答案】C.考点:解一元一次不等式.4.一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球,3个白球,从布袋中随机摸出一个球,摸出红球的概率是( ) A .12 B .23 C .25 D .35 【答案】C【解析】试题分析:用红球的个数除以球的总数即为摸到红球的概率为25.故选C.考点:概率.5.一个扇形的圆心角是120°,面积为3πcm 2,那么这个扇形的半径是( ) A .1cm B .3cm C .6cm D .9cm 【答案】B.考点:扇形面积.6.小明的父亲从家走了20分钟到一个离家900米的书店,在书店看了10分钟书后,用15分钟返回家,下列图中表示小明的父亲离家的距离与时间的函数图象是( )A .B .C .D .【答案】B. 【解析】试题分析:根据题意,从20分钟到30分钟在书店里看书,离家距离没有变化,是一条平行于x 轴的线段. 故选B . 考点:函数图象.7.已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,则下列结论中正确的是( ) A .a >0 B .c <0C .3是方程ax 2+bx+c=0的一个根D .当x <1时,y 随x 的增大而减小【答案】C.考点:二次函数图形性质.8.轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处与灯塔A的距离是()海里.A.325 C.50 D.2525 B.2【答案】D.【解析】试题分析:根据题意,∠1=∠2=30°,∵∠ACD=60°,∴∠ACB=30°+60°=90°,∴∠CBA=75°﹣30°=45°,∴∠A=45°,∴AB=AC.∵BC=50×0.5=25,∴AC=BC=25(海里).故选D.考点:1等腰直角三角形;2方位角.9.两个小组同时从甲地出发,匀速步行到乙地,甲乙两地相距7500米,第一组的步行速度是第二组的1.2倍,并且比第二组早15分钟到达乙地.设第二组的步行速度为x 千米/小时,根据题意可列方程是( ) A .152.175007500=-x x B .412.175007500=-x xC .152.15.75.7=-x xD .412.15.75.7=-x x【答案】D.考点:分式方程的应用.二、填空题,共小题,每小题5分,共30分.10.计算(1﹣1x +1)(x+1)的结果是 . 【答案】x. 【解析】 试题分析:原式-xx +1⋅(x+1)=x.考点:分式的混合运算.11.关于x 的一元二次方程x 2+2x ﹣k=0有两个不相等的实数根,则k 的取值范围是 . 【答案】k >-1. 【解析】试题分析:∵关于x 的一元二次方程x 2+2x ﹣k=0有两个不相等的实数根,∴△=22+4k >0,解得k >﹣1.考点:一元二次方程根的判别式.12.某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:名学生这一周在校的平均体育锻炼时间是 小时. 【答案】6.4【解析】试题分析: 体育锻炼时间=4.65058207156105=⨯+⨯+⨯+⨯(小时).考点:加权平均数.13.如图所示,△ABC 中,E ,F 分别是边AB ,AC 上的点,且满足A E E B =AF FC =12,则△AEF 与△ABC的面积比是 .【答案】1:9.考点:相似三角形的判定与性质.14.如图,测量河宽AB (假设河的两岸平行),在C 点测得∠ACB=30°,D 点测得∠ADB=60°,又CD=60m ,则河宽AB 为 m (结果保留根号).【答案】30 3. 【解析】试题分析:∵∠ACB=30°,∠ADB=60°,∴∠CAD=30°,∴AD=CD=60m ,在Rt △ABD 中,∠ABD=90°,∴AB=AD •sin ∠ADB=60⋅sin60° =60×23=303(m ). 考点:解直角三角形的应用.15.如图,在平行四边形ABCD 中,P 是CD 边上一点,且AP 和BP 分别平分∠DAB 和∠CBA,若AD=5,AP=8,则△APB 的周长是 .【答案】24. 【解析】试题分析: ∵四边形ABCD 是平行四边形,∴AD ∥CB ,AB ∥CD ,∴∠DAB+∠CBA=180°,又∵AP 和BP 分别平分∠DAB 和∠CBA ,∴∠PAB=12∠DAB ,∠PBA=12∠ABC ,∴∠PAB+∠PBA=12(∠DAB+∠CBA )=90°,∴∠APB=180°﹣(∠PAB+∠PBA )=90°;∵AB ∥CD ,∴∠PAB=∠DPA ,∴∠DAP=∠DPA ,∴AD=DP=5,同理:PC=CB=5,即AB=DC=DP+PC=10,在Rt △APB 中,AB=10,AP=8,∴BP=22AP AB -=6,∴△APB 的周长=6+8+10=24.考点:1平行四边形;2角平分线性质;3勾股定理;4等腰三角形.三、解答题,共8小题,共75分16.计算:︒--+⎪⎪⎭⎫⎝⎛-30tan 2721211.【答案】2-2.考点:1负整数指数幂;2三角函数值;3实数的运算. 17.解方程组⎩⎨⎧=-=+②8y 3x ①732y x .【答案】⎩⎨⎧-==15y x .【解析】试题分析:利用加减消元法可接此方程组.试题解析:①+②得,3x=15,∴x=5,把x=5代入①得,10+3y=7,∴y=﹣1.∴方程组的解为:⎩⎨⎧-==15y x .考点:解二元一次方程组的解.18.某学生社团为了解本校学生喜欢球类运动的情况,随机抽取了若干名学生进行问卷调查,要求每位学生只能填写一种自己喜欢的球类运动,并将调查的结果绘制成如下的两幅不完整的统计图.请根据统计图表提供的信息,解答下列问题:(1)参加调查的人数共有人;在扇形图中,m= ;将条形图补充完整;(2)如果该校有3500名学生,则估计喜欢“篮球”的学生共有多少人?(3)该社团计划从篮球、足球和乒乓球中,随机抽取两种球类组织比赛,请用树状图或列表法,求抽取到的两种球类恰好是“篮球”和“足球”的概率.【答案】(1)600 30,条形统计图见解析;(2)1400;(3)恰是篮球和足球的概率是1.3∴m=30.(2)3500×40%=1400(人)答:喜欢“篮球”的学生共有1400人.(3)2÷6=3,答:抽取到的两种球类恰好是“篮球”和“足球”的概率是3.考点:1条形统计图;2扇形统计图;3概率.19.如图,四边形ABCD 中,AD∥BC,AE⊥AD 交BD 于点E ,CF⊥BC 交BD 于点F ,且AE=CF .求证:四边形ABCD 是平行四边形.【答案】证明见解析.考点: 1平行四边形的判定;2全等三角形的判定与性质.20.周口体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛? 【答案】8支. 【解析】试题分析:此题利用一元二次方程解决,等量关系为:比赛总场次=28场.试题解析:设要邀请x 支球队参加比赛,由题意得 12x (x ﹣1)=28,解得:x 1=8,x 2=﹣7(舍去).答:应邀请8支球队参加比赛. 考点:一元二次方程的应用.21.如图,直线y=2x+3与y 轴交于A 点,与反比例函数y=kx (x >0)的图象交于点B ,过点B 作BC⊥x 轴于点C ,且C 点的坐标为(1,0). (1)求反比例函数的解析式;(2)点D (a ,1)是反比例函数y=kx (x >0)图象上的点,在x 轴上是否存在点P ,使得PB+PD 最小?若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)y=5x ;(2)P (133,0).【解析】试题分析: (1)把x=1代入y=2x+3中,可求得B 点坐标为(1,5),再带到反比例函数解析式中可求得解得:x=133,故点P 的坐标为(133,0).PD'考点:1反比例函数;2一次函数;3轴对称.22.如图,在△ABC,AB=AC ,以AB 为直径的⊙O 分别交AC 、BC 于点D 、E ,点F 在AC 的延长线上,且∠CBF=12∠CAB. (1)求证:直线BF 是⊙O 的切线; (2)若AB=5,sin∠CBF=55,求BC 和BF 的长.【答案】(1)证明见解析;(2)BC=25,BF=203.•sin ∠1=5,∵AB=AC ,∠AEB=90°,∴BC=2BE=25,在Rt △ABE 中,由勾股定理得考点:1切线的判定与性质;2勾股定理;3圆周角定理;4解直角三角形.23.如图,对称轴为直线x=72的抛物线经过点A (6,0)和B (0,﹣4).(1)求抛物线解析式及顶点坐标;(2)设点E (x ,y )是抛物线上一动点,且位于第一象限,四边形OEAF 是以OA 为对角线的平行四边形,求平行四边形OEAF 的面积S 与x 之间的函数关系式;(3)当(2)中的平行四边形OEAF 的面积为24时,请判断平行四边形OEAF 是否为菱形.【答案】(1)y=-23x 2+143x-4,顶点坐标(72,256);(2)S=-2x 2+14x-12;(3)不能. 【解析】试题分析:(1)根据对称轴,以及A 、B 坐标可求得解析式,进而可求顶点坐标;(2)根据平行四边形的面积公式,可得函数解析式;(3)根据函数值,可得E 点坐标,根据菱形的判定,可得答案.试题解析:(1)设抛物线的解析式为y=ax2+bx+c ,将A 、B 点的坐标代入函数解析式,得⎪⎪⎪⎩⎪⎪⎪⎨⎧-==++=-40636272c c b a a b ,考点:1二次函数综合题;2菱形.。

2016乌鲁木齐数学中考试卷+答案

2016年乌鲁木齐市初中毕业生学业水平测试数学试题(含答案全解全析)(满分:150分时间:120分钟)第Ⅰ卷(选择题,共40分)一、选择题(本大题共10小题,每小题4分,共40分)每题的选项中只有一项符合题目要求.1.如果将“收入100元”记作“+100元”,那么“支出50元”应记作( )A.+50元B.-50元C.+150元D.-150元2.石墨烯是世界上目前最薄却也是最坚硬的纳米材料,还是导电性最好的材料,其理论厚度仅为0.000 000 000 34米.该厚度用科学记数法表示为( )A.0.34×10-9米B.34.0×10-11米C.3.4×10-10米D.3.4×10-9米3.在市委、市政府的领导下,全市人民齐心协力,力争于2017年将我市创建为“全国文明城市”.为此小宇特制了一个正方体模具,其展开图如图所示,原正方体中与“文”字所在的面相对的面上标的字是( )A.全B.国C.明D.城4.如图,已知直线a∥b,AC⊥AB,AC与直线a,b分别交于A,C两点,若∠1=60°,则∠2的度数为( )A.30°B.35°C.45°D.50°5.某班去看演出,甲种票每张24元,乙种票每张18元,如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?设买了x张甲种票,y张乙种票,则所列方程组正确的是( )A.B.C.--D.--6.下列说法正确的是( )A.鞋店老板比较关心的是一段时间内卖出的鞋的尺码组成的一组数据的众数B.某种彩票的中奖率是2%,则买50张这种彩票一定会中奖C.为了了解某品牌灯管的使用寿命,应采用全面调查的方式D.若甲组数据的方差甲=0.06,乙组数据的方差乙=0.1,则乙组数据比甲组数据稳定7.对于任意实数m,点P(m-2,9-3m)不可能在( )A.第一象限B.第二象限C.第三象限D.第四象限8.将圆心角为90°,面积为4π cm2的扇形围成一个圆锥的侧面,则此圆锥的底面圆的半径为( )A.1 cmB.2 cmC.3 cmD.4 cm9.如图,在Rt△ABC中,点E在AB上,把这个直角三角形沿CE折叠后,使点B恰好落到斜边AC的中点O处,若BC=3,则折痕CE的长为( )A. B.2 C.3 D.610.如图,边长为4个单位长度的正方形ABCD的边AB与等腰直角三角形EFG的斜边FG重合,△EFG以每秒1个单位长度的速度沿BC向右匀速运动(保持FG⊥BC),当点E运动到CD 边上时△EFG停止运动.设△EFG的运动时间为t秒,△EFG与正方形ABCD重叠部分的面积为S,则S关于t的函数的大致图象为( )第Ⅱ卷(非选择题,共110分)二、填空题(本大题共5小题,每小题4分,共20分)11.一个多边形的内角和是外角和的2倍,则这个多边形的边数为.12.不透明袋子中装有红、绿小球各一个,除颜色外无其他差别.随机摸出一个小球后,放回并摇匀,再随机摸出一个.则第一次摸到红球,第二次摸到绿球的概率为.13.设I为△ABC的外心,若∠BIC=100°,则∠A的度数为.14.如图,直线y=-2x+4与双曲线y=交于A,B两点,与x轴交于点C,若AB=2BC,则k= .15.如图,矩形ABCD中,AB=4,BC=8,P是边DC上的动点,G是AP的中点,以P为中心,将PG 绕点P顺时针旋转90°,G的对应点为G',当B、D、G'在一条直线上时,PD= .三、解答题(本大题包括Ⅰ~Ⅴ题,共9小题,共90分)解答时应写出文字说明、证明过程或演算过程.Ⅰ.(本题满分16分,第16,17题每题8分)16.计算:-+|-2|-2cos 30°+-.17.先化简,再求值:(x+2)(x-2)+(2x-1)2-4x(x-1),其中x=2.Ⅱ.(本题满分30分,第18,19,20题每题10分)18.如图,两张宽度相等的纸条叠放在一起,重叠部分构成四边形ABCD.(1)求证:四边形ABCD是菱形;(2)若纸条宽3 cm,∠ABC=60°,求四边形ABCD的面积.19.某商场用24 000元购入一批空调,然后以每台3 000元的价格销售,因天气炎热,空调很快售完;商场又以52 000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元.(1)商场第一次购入的空调每台进价是多少元?(2)商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售?20.如图,建筑物AB的高为 6 m,在其正东方向有一个通信塔CD,在它们之间的地面点M(B,M,D三点在一条直线上)处测得建筑物顶端A、塔顶C的仰角分别为37°和60°,在A 处测得塔顶C的仰角为30°,求通信塔CD的高度.(精确到0.01 m)Ⅲ.(本题满分22分,第21题10分,第22题12分)21.小强的爸爸从家骑自行车去图书馆借书,途中遇到了从图书馆步行回家的小强.爸爸借完书后迅速回家,途中追上了小强,便用自行车载上小强一起回家.结果爸爸比自己单独骑车回家晚到1分钟.两人与家的距离s(千米)和爸爸从家出发后的时间t(分钟)之间的关系如图所示.(1)图书馆离家有多少千米?(2)爸爸和小强第一次相遇时,离家多少千米?(3)爸爸载上小强后一起回家的速度是多少?22.某艺校音乐专业自主招生考试中,所有考生均参加了“声乐”和“器乐”两个科目的考试,成绩都分为五个等级.对某考场考生两科考试成绩进行了统计分析,绘制了如下统计表和统计图(不完整).E c d根据以上信息,解答下列问题:(1)求表中a,b,c,d的值,并补全条形统计图;(2)若等级A,B,C,D,E分别对应10分,8分,6分,4分,2分,求该考场考生“声乐”科目考试成绩的平均分;(3)已知本考场参加测试的考生中,恰有两人的这两科成绩均为A,在至少一科成绩为A的考生中,随机抽取两人进行面试,求这两人的两科成绩均为A的概率.Ⅳ.(本题满分10分)23.如图,已知AB为☉O的直径,点E在☉O上,∠EAB的平分线交☉O于点C,过点C作AE 的垂线,垂足为D,直线DC与AB的延长线交于点P.(1)判断直线PC与☉O的位置关系,并说明理由;(2)若tan∠P=,AD=6,求线段AE的长.Ⅴ.(本题满分12分)24.如图,抛物线y=-x2+2x+n经过点M(-1,0),顶点为C.(1)求点C的坐标;(2)设直线y=2x与抛物线交于A、B两点(点A在点B的左侧):①在抛物线的对称轴上是否存在点G,使∠AGC=∠BGC?若存在,求出点G的坐标;若不存在,请说明理由;②点P在直线y=2x上,点Q在抛物线上,当以O,M,P,Q为顶点的四边形是平行四边形时,求点Q的坐标.答案全解全析:一、选择题1.B 收入与支出是一对具有相反意义的量,所以如果将收入100元记作+100元,那么支出50元记作-50元,故选B.2.C 0.000 000 000 34米=3.4×10-10米.故选C.3.D 根据动手操作可知,与“文”字所在的面相对的面上标的字是“城”.故选D.4.A ∵AC⊥AB,∴∠1+∠B=90°,∵∠1 =60°,∴∠B=30°,∵a∥b,∴∠2=∠B=30°,故选A.5.B 根据题意列方程组,得故选B.6.A 易知A选项正确;中奖率是2%不能说明买50张彩票一定会中奖,B选项错误;数量大,且具有破坏性,应该采用抽样调查的方式,C选项错误;甲组数据的方差小于乙组数据的方差,则甲组数据比乙组数据稳定,D选项错误.故选A.7.C 当m-2<0时,m<2,9-3m>0,此时点P在第二象限;当m-2>0时,m>2,9-3m有可能是正数也有可能是负数,此时点P有可能在第一象限,也有可能在第四象限,∴点P(m-2,9-3m)不可能在第三象限.故选C. 8.A 设扇形的半径为R cm,根据题意得·π·=4π,解得R=4,设圆锥的底面圆的半径为r cm,则·2π·r ·4=4π,解得r=1.∴此圆锥的底面圆的半径为1 cm.故选A.9.B 根据折叠可知,∠BCE=∠ACE,BC=CO=3,∵O 是斜边AC 的中点,∴AC=2CO=6. ∴BC=AC,∴∠A=30°,∴∠ACB=60°,∴∠BCE=30°, 在Rt △BCE 中,CE=∠ =°=2 ,故选B.评析 本题考查折叠问题,折叠前后图形的形状和大小不变. 10.B 当0≤t ≤2时,如图(1),OO'=t,EO'=2-t, ∵AD ∥GF,∴△EMN ∽△EFG, ∴ =,即 = -, ∴MN=4-2t,∴S= (MN+FG)·OO'= (4-2t+4)·t=-t 2+4t; 当2<t ≤4时,如图(2),易得S=EF ·GE=4;当4<t ≤6时,如图(3),OO'=t-4,EO'=2-(t-4)=6-t, ∵BC ∥GF,∴△EMN ∽△EFG, ∴ =,即 = -, ∴MN=12-2t,∴S=MN ·EO'=×(12-2t)(6-t)=(t-6)2.综上所述,当0≤t ≤2时,S 关于t 的函数图象为开口向下的抛物线的一部分;当2<t ≤4时,S 关于t 的函数图象为平行于x 轴的一条线段;当4<t ≤6时,S 关于t 的函数图象为开口向上的抛物线的一部分.故选B.二、填空题 11.答案 6解析 设这个多边形的边数为n,根据题意得(n-2)·180°=360°×2,解得n=6.12.答案解析 两次模球共有4种情况:红红、红绿、绿红、绿绿.它们发生的可能性相等,其中第一次摸到红球,第二次摸到绿球的结果只有一种,故所求概率为. 13.答案 50°或130°解析 当I 在△ABC 的内部时,如图1,∠A=∠BIC=50°; 当I 在△ABC 的外部时,如图2,∠A+∠BIC=180°,∴∠A=130°.图1 图214.答案解析 过点A 作AE ⊥x 轴,垂足为E,过点B 作BF ⊥x 轴,垂足为F,∴AE ∥BF,∴△CBF ∽△CAE,∴ = =,∵AB=2BC,∴==,∴y B=y A,∵x A·y A=k,x B·y B=k,∴x B=3x A.由题意可知C点坐标为(2,0),则CF=2-x B,CE=2-x A,∵=,∴2-x A=3(2-x B),又∵x B=3x A,∴2-x A=3(2-3x A),解得x A=.把x A=代入y=-2x+4,得y A=3,∴A点坐标为,∴k=×3=.评析此题综合考查了反比例函数的图象和性质,相似三角形的性质等知识点,有一定难度,综合性较强,注意对各个知识点的灵活运用,本题的关键是通过点A,B的坐标,由两点之间与点C的关系得到点A的坐标,进而确定k的值.15.答案解析当B、D、G'在一条直线上时(如图),过点G'作G'M⊥CD的延长线,垂足为M.∵∠ADC=90°,∠GPG'=90°,∴∠DAP+∠APD=90°,∠APD+∠DPG'=90°,∴∠DAP=∠DPG',∴Rt△PAD∽Rt△G'PM,∴==,∵AP的中点为G,PG绕P顺时针旋转90°得PG',∴PG'∶AP=1∶2,∴==,不妨设PD=x,则G'M=x,∵G'M∥BC,∴△DCB∽△DMG',∴=,∵AB=CD=4,BC=8,∴=,则DM=x,∴PM=x.∵=,∴=,解得x=.三、解答题16.解析原式=4+(2-)-2×+(-3)=3-2.17.解析原式=(x2-4)+(4x2-4x+1)-(4x2-4x)=x2-3.当x=2 时,原式=(2)2-3=9.18.解析(1)证明:由题意,易知AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,过点A分别作AE⊥BC,AF⊥CD,垂足分别为E,F,依题意,AE,AF的长就是两张纸条的宽,且AE=AF,又∠AEB=∠AFD=90°,∴△AEB≌△AFD,∴AB=AD,∴四边形ABCD是菱形.(2)在Rt△AEB中,∵∠AEB=90°,∠ABC=60°,AE=3 cm,=2 cm,∴BC=2 cm,∴AB=°∴菱形ABCD的面积为AE·BC=6 cm2.19.解析(1)设第一次购入的空调每台进价是x元,依题意,得=2×,解得x=2 400,经检验,x=2 400是原方程的解.答:第一次购入的空调每台进价为2 400元.(2)第一次购进空调的数量为24 000÷2 400=10台,总收入为3 000×10=30 000元,第二次购进空调的数量为52 000÷(2 400+200)=20台,不妨设打折售出y 台空调, 则总收入为(3 000+200)·(20-y)+(3 000+200)·0.95y=640 000-160y 元.两次空调销售的总利润为[30 000+(64 000-160y)]-(24 000+52 000)=18 000-160y 元, 依题意,得18 000-160y ≥(24 000+52 000)×22%,解得y ≤8. 答:最多可将8台空调打折销售.20.解析 过点A 作AE ⊥CD 于E,由题意,易知四边形ABDE 是矩形,∴AB=DE=6 m,AE=BD. 设CE=x m,在Rt △AEC 中,∠AEC=90°,∠CAE=30°,∴AE=°= x m.在Rt △CDM 中,CD=CE+ED=(x+6)m, ∴DM=°=m. 在Rt △ABM 中,BM=°=°m.由AE=BD=BM+DM,得 x= °+(x+6),解得x= °+3,∴CD=°+9≈15.90 m.答:通信塔CD 的高度约为15.90 m.21.解析 (1)6千米.(2)对于爸爸:当0≤t ≤30时,s=t,由题图可知当t=20分钟时,爸爸和小强第一次相遇,此时,s=×20=4千米.故爸爸和小强第一次相遇时,离家4千米. (3)对于爸爸:当30≤t ≤60时,s=6; 当60≤t ≤80时,设s=kt+b(k ≠0),则 解得 -∴s=- t+21,令s=0,得t=84,即如果爸爸独自骑车回家,那么在离家84分钟的时候到家.根据题意,爸爸载上小强后晚到家1分钟,则当80≤t ≤85时,爸爸与小强共同回家,一起用5分钟走了1千米,∴速度为0.2千米/分钟.22.解析 (1)本考场的考生人数为=40, ∴a=40×0.075=3,b==0.375, c=40-3-10-15-8=4,d= =0.1.“器乐”考试成绩为A 等级的有40-15-15-6-1=3人,补全条形统计图如下:(2)该考场考生“声乐”科目考试成绩的平均分为 (3×10+10×8+15×6+8×4+4×2)÷40=6分.(3)声乐成绩为A 等级的有3人,器乐成绩为A 等级的有3人,由于本考场考试恰有2人这两科成绩均为A 等级,不妨记为A 1,A 2,将声乐成绩为A 等级的另一人记为a,器乐成绩为A 等级的另一人记为 b.在至少一科成绩为A 等级的考生中随机抽取两人有:A 1,A 2;A 1,a;A 1,b;A 2,a;A 2,b;a,b 六种情形,两科成绩均为A 等级的有A 1,A 2这一种情形,故所求概率为.23.解析 (1)PC 与☉O 相切,理由如下:连接OC,∵AC 平分∠EAB,∴∠EAC=∠CAB,又OA=OC, ∴∠CAB=∠ACO,∴∠EAC=∠ACO,∴OC∥AD,而AD⊥PD,∴∠OCP=∠D=90°,又点C在☉O上,∴PC与☉O相切.(2)在Rt△ADP中,∠ADP=90°,AD=6,tan∠P=, ∴PD=8,则AP=10.设☉O的半径为r,由(1)知OC∥AD,∴=,即=-,解得r=,连接BE,∵AB是直径,E在☉O上,∴∠AEB=90°, ∴BE∥PD,∴∠ABE=∠P.∴AE=ABsin∠ABE=ABsin∠P=2××=.24.解析∵抛物线y=-x2+2x+n过点M(-1,0), ∴0=-(-1)2+2×(-1)+n,解得n=3,∴抛物线的解析式为y=-x2+2x+3.(1)∵y=-x2+2x+3=-(x-1)2+4,∴抛物线的顶点C的坐标为(1,4).(2)①存在.联立-解得--∴A(-,-2),B(,2),∴点B(,2)关于对称轴x=1的对称点为B'(2-,2). ∵∠AGC=∠BGC,∴点B'在直线AG上.设直线AB'的方程为y=kx+b(k≠0),由---得-∴y=2令x=1,得y=6,∴G(1,6).②设P(m,2m),当四边形OMPQ为平行四边形时,则Q(m+1,2m),∵点Q在抛物线y=-x2+2x+3上,∴2m=-(m+1)2+2(m+1)+3,解得m=-1±, ∴Q1(-,-2-2),Q2(,-2+2);当四边形OMQP为平行四边形时,则Q(m-1,2m),∵点Q在抛物线y=-x2+2x+3上,∴2m=-(m-1)2+2(m-1)+3,解得m=0或2,∴Q3(1,4),Q4(-1,0)(舍);当OM为平行四边形对角线时,则Q(-1-m,-2m),∵点Q在抛物线y=-x2+2x+3上,∴-2m=-(-m-1)2+2(-m-1)+3,解得m=-2或0,∴Q5(1,4),Q6(-1,0)(舍).综上所述:点Q的坐标为(-,-2-2或()或(1,4).。

2016年部分省中考数学试卷汇总(10套)

文件清单:上海市2016年中考数学试卷(解析版)2016年安徽省中考数学试卷(解析版)新疆2016年中考数学试题(word版,含解析)新疆维吾尔自治区、生产建设兵团2016届九年级学业水平考试数学试题(扫描版)江西省2016年中考数学试题(word版,含答案)2016年中考真题精品解析数学(海南卷)精编word版(原卷版)2016年中考真题精品解析数学(甘肃武威卷)精编word版(原卷版)甘肃省兰州市2016年中考数学试题(word版,含解析)甘肃省天水市2016年中考数学试题(图片版,含答案)2016年陕西省中考数学试卷(解析版)2016年青海省西宁市中考数学试卷(解析版)青海省2016年中考数学试题(word版,含解析)2016年上海市中考数学试卷一、选择题:本大题共6小题,每小题4分,共24分1.如果a与3互为倒数,那么a是()A.﹣3 B.3 C.﹣D.2.下列单项式中,与a2b是同类项的是()A.2a2b B.a2b2C.ab2D.3ab3.如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是()A.y=(x﹣1)2+2 B.y=(x+1)2+2 C.y=x2+1 D.y=x2+34.某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男生该周参加篮球运动次数的平均数是()次数 2 3 4 5人数 2 2 10 6A.3次 B.3.5次 C.4次 D.4.5次5.已知在△ABC中,AB=AC,AD是角平分线,点D在边BC上,设=,=,那么向量用向量、表示为()A.+B.﹣C.﹣+D.﹣﹣6.如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,⊙A的半径长为3,⊙D与⊙A相交,且点B在⊙D外,那么⊙D的半径长r的取值范围是()A.1<r<4 B.2<r<4 C.1<r<8 D.2<r<8二、填空题:本大题共12小题,每小题4分,共48分7.计算:a3÷a= .8.函数y=的定义域是.9.方程=2的解是.10.如果a=,b=﹣3,那么代数式2a+b的值为.11.不等式组的解集是.12.如果关于x的方程x2﹣3x+k=0有两个相等的实数根,那么实数k的值是.13.已知反比例函数y=(k≠0),如果在这个函数图象所在的每一个象限内,y的值随着x的值增大而减小,那么k的取值范围是.14.有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…6点的标记,掷一次骰子,向上的一面出现的点数是3的倍数的概率是.15.在△ABC中,点D、E分别是边AB、AC的中点,那么△ADE的面积与△ABC的面积的比是.16.今年5月份有关部门对计划去上海迪士尼乐园的部分市民的前往方式进行调查,图1和图2是收集数据后绘制的两幅不完整统计图.根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是.17.如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为米.(精确到1米,参考数据:≈1.73)18.如图,矩形ABCD中,BC=2,将矩形ABCD绕点D顺时针旋转90°,点A、C分别落在点A′、C′处.如果点A′、C′、B在同一条直线上,那么tan∠ABA′的值为.三、解答题:本大题共7小题,共78分19.计算:|﹣1|﹣﹣+.20.解方程:﹣=1.21.如图,在Rt△ABC中,∠ACB=90°,AC=BC=3,点D在边AC上,且AD=2CD,DE⊥AB,垂足为点E ,联结CE,求:(1)线段BE的长;(2)∠ECB的余切值.22.某物流公司引进A、B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A 种机器人于某日0时开始搬运,过了1小时,B种机器人也开始搬运,如图,线段OG表示A种机器人的搬运量y A(千克)与时间x(时)的函数图象,根据图象提供的信息,解答下列问题:(1)求y B关于x的函数解析式;(2)如果A、B两种机器人连续搬运5个小时,那么B种机器人比A种机器人多搬运了多少千克?23.已知:如图,⊙O是△ABC的外接圆,=,点D在边BC上,AE∥BC,AE=BD.(1)求证:AD=CE;(2)如果点G在线段DC上(不与点D重合),且AG=AD,求证:四边形AGCE是平行四边形.24.如图,抛物线y=ax2+bx﹣5(a≠0)经过点A(4,﹣5),与x轴的负半轴交于点B,与y轴交于点C,且OC=5OB,抛物线的顶点为点D.(1)求这条抛物线的表达式;(2)联结AB、BC、CD、DA,求四边形ABCD的面积;(3)如果点E在y轴的正半轴上,且∠BEO=∠ABC,求点E的坐标.25.如图所示,梯形ABCD中,AB∥DC,∠B=90°,AD=15,AB=16,BC=12,点E是边AB上的动点,点F是射线CD上一点,射线ED和射线AF交于点G,且∠AGE=∠DAB.(1)求线段CD的长;(2)如果△AEC是以EG为腰的等腰三角形,求线段AE的长;(3)如果点F在边CD上(不与点C、D重合),设AE=x,DF=y,求y关于x的函数解析式,并写出x的取值范围.2016年上海市中考数学试卷参考答案与试题解析一、选择题:本大题共6小题,每小题4分,共24分1.如果a与3互为倒数,那么a是()A.﹣3 B.3 C.﹣D.【考点】倒数.【分析】根据乘积为1的两个数互为倒数,可得答案.【解答】解:由a与3互为倒数,得a是,故选:D.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.下列单项式中,与a2b是同类项的是()A.2a2b B.a2b2C.ab2D.3ab【考点】同类项.【分析】根据同类项的概念:所含字母相同,并且相同字母的指数也相同,结合选项解答即可.【解答】解:A、2a2b与a2b所含字母相同,且相同字母的指数也相同,是同类项,故本选项正确;B、a2b2与a2b所含字母相同,但相同字母b的指数不相同,不是同类项,故本选项错误;C、ab2与a2b所含字母相同,但相同字母a的指数不相同,不是同类项,本选项错误;D、3ab与a2b所含字母相同,但相同字母a的指数不相同,不是同类项,本选项错误.故选A.【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项中相同字母的指数相同的概念.3.如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是()A.y=(x﹣1)2+2 B.y=(x+1)2+2 C.y=x2+1 D.y=x2+3【考点】二次函数图象与几何变换.【分析】根据向下平移,纵坐标相减,即可得到答案.【解答】解:∵抛物线y=x2+2向下平移1个单位,∴抛物线的解析式为y=x2+2﹣1,即y=x2+1.故选C.【点评】本题考查了二次函数的图象与几何变换,向下平移|a|个单位长度纵坐标要减|a|.4.某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男生该周参加篮球运动次数的平均数是()次数 2 3 4 5人数 2 2 10 6A.3次 B.3.5次 C.4次 D.4.5次【考点】加权平均数.【分析】加权平均数:若n个数x1,x2,x3,…,x n的权分别是w1,w2,w3,…,w n,则x1w1+x2w2+…+ xnwnw1+w2+…+wn叫做这n个数的加权平均数,依此列式计算即可求解.【解答】解:(2×2+3×2+4×10+5×6)÷20=(4+6+40+30)÷2080÷20=4(次).答:这20名男生该周参加篮球运动次数的平均数是4次.【点评】本题考查的是加权平均数的求法.本题易出现的错误是求2,3,4,5这四个数的平均数,对平均数的理解不正确.5.已知在△ABC中,AB=AC,AD是角平分线,点D在边BC上,设=,=,那么向量用向量、表示为()A.+B.﹣C.﹣+D.﹣﹣【考点】*平面向量.【分析】由△ABC中,AD是角平分线,结合等腰三角形的性质得出BD=DC,可求得的值,然后利用三角形法则,求得答案.【解答】解:如图所示:∵在△ABC中,AB=AC,AD是角平分线,∴BD=DC,∵=,∴=,∴=+=+.故选:A.【点评】此题考查了平面向量的知识,注意掌握三角形法则的应用是解题关键.6.如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,⊙A的半径长为3,⊙D与⊙A相交,且点B在⊙D外,那么⊙D的半径长r的取值范围是()A.1<r<4 B.2<r<4 C.1<r<8 D.2<r<8【考点】圆与圆的位置关系;点与圆的位置关系.【分析】连接AD,根据勾股定理得到AD=5,根据圆与圆的位置关系得到r>5﹣3=2,由点B在⊙D外,于是得到r<4,即可得到结论.【解答】解:连接AD,∵AC=4,CD=3,∠C=90°,∴AD=5,∵⊙A的半径长为3,⊙D与⊙A相交,∴r>5﹣3=2,∵BC=7,∵点B在⊙D外,∴r<4,∴⊙D的半径长r的取值范围是2<r<4,故选B.【点评】本题考查了圆与圆的位置关系,点与圆的位置关系,设点到圆心的距离为d,则当d=r时,点在圆上;当d>r时,点在圆外;当d<r时,点在圆内.二、填空题:本大题共12小题,每小题4分,共48分7.计算:a3÷a= a2.【考点】同底数幂的除法.【专题】计算题.【分析】根据同底数幂相除,底数不变指数相减进行计算即可求解.【解答】解:a3÷a=a3﹣1=a2.故答案为:a2.【点评】本题考查了同底数幂的除法的运算性质,熟记运算性质是解题的关键.8.函数y=的定义域是x≠2.【考点】函数自变量的取值范围.【分析】直接利用分式有意义的条件得出答案.【解答】解:函数y=的定义域是:x≠2.故答案为:x≠2.【点评】此题主要考查了函数自变量的取值范围,正确把握相关性质是解题关键.9.方程=2的解是x=5 .【考点】无理方程.【分析】利用两边平方的方法解出方程,检验即可.【解答】解:方程两边平方得,x﹣1=4,解得,x=5,把x=5代入方程,左边=2,右边=2,左边=右边,则x=5是原方程的解,故答案为:x=5.【点评】本题考查的是无理方程的解法,正确利用两边平方的方法解出方程,并正确进行验根是解题的关键.10.如果a=,b=﹣3,那么代数式2a+b的值为﹣2 .【考点】代数式求值.【专题】计算题;实数.【分析】把a与b的值代入原式计算即可得到结果.【解答】解:当a=,b=﹣3时,2a+b=1﹣3=﹣2,故答案为:﹣2【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.11.不等式组的解集是x<1 .【考点】解一元一次不等式组.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得x<,解②得x<1,则不等式组的解集是x<1.故答案是:x<1.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.12.如果关于x的方程x2﹣3x+k=0有两个相等的实数根,那么实数k的值是.【考点】根的判别式;解一元一次方程.【分析】根据方程有两个相等的实数根结合根的判别式,即可得出关于k的一元一次方程,解方程即可得出结论.【解答】解:∵关于x的方程x2﹣3x+k=0有两个相等的实数根,∴△=(﹣3)2﹣4×1×k=9﹣4k=0,解得:k=.故答案为:.【点评】本题考查了根的判别式以及解一元一次方程,解题的关键是找出9﹣4k=0.本题属于基础题,难度不大,解决该题型题目时,根据方程解的情况结合根的判别式得出方程(不等式或不等式组)是关键.13.已知反比例函数y=(k≠0),如果在这个函数图象所在的每一个象限内,y的值随着x的值增大而减小,那么k的取值范围是k>0 .【考点】反比例函数的性质.【分析】直接利用当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大,进而得出答案.【解答】解:∵反比例函数y=(k≠0),如果在这个函数图象所在的每一个象限内,y的值随着x的值增大而减小,∴k的取值范围是:k>0.故答案为:k>0.【点评】此题主要考查了反比例函数的性质,正确记忆增减性是解题关键.14.有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…6点的标记,掷一次骰子,向上的一面出现的点数是3的倍数的概率是.【考点】概率公式.【专题】计算题.【分析】共有6种等可能的结果数,其中点数是3的倍数有3和6,从而利用概率公式可求出向上的一面出现的点数是3的倍数的概率.【解答】解:掷一次骰子,向上的一面出现的点数是3的倍数的概率==.故答案为.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.15.在△ABC中,点D、E分别是边AB、AC的中点,那么△ADE的面积与△ABC的面积的比是.【考点】三角形中位线定理.【分析】构建三角形中位线定理得DE∥BC,推出△ADE∽△ABC,所以=()2,由此即可证明.【解答】解:如图,∵AD=DB,AE=EC,∴DE∥BC.DE=BC,∴△ADE∽△ABC,∴=()2=,故答案为.【点评】本题考查三角形中位线定理,相似三角形的判定和性质,解题的关键是记住相似三角形的面积比等于相似比的平方,属于中考常考题型.16.今年5月份有关部门对计划去上海迪士尼乐园的部分市民的前往方式进行调查,图1和图2是收集数据后绘制的两幅不完整统计图.根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是6000 .【考点】条形统计图;扇形统计图.【分析】根据自驾车人数除以百分比,可得答案.【解答】解:由题意,得4800÷40%=12000,公交12000×50%=6000,故答案为:6000.【点评】本题考查了条形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.17.如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为208米.(精确到1米,参考数据:≈1.73)【考点】解直角三角形的应用-仰角俯角问题.【分析】分别利用锐角三角函数关系得出BD,DC的长,进而求出该建筑物的高度.【解答】解:由题意可得:tan30°===,解得:BD=30,tan60°===,解得:DC=90,故该建筑物的高度为:BC=BD+DC=120≈208(m),故答案为:208.【点评】此题主要考查了解直角三角形的应用,熟练应用锐角三角函数关系是解题关键.18.如图,矩形ABCD中,BC=2,将矩形ABCD绕点D顺时针旋转90°,点A、C分别落在点A′、C′处.如果点A′、C′、B在同一条直线上,那么tan∠ABA′的值为.【考点】旋转的性质;矩形的性质;锐角三角函数的定义.【分析】设AB=x,根据平行线的性质列出比例式求出x的值,根据正切的定义求出tan∠BA′C,根据∠AB A′=∠BA′C解答即可.【解答】解:设AB=x,则CD=x,A′C=x+2,∵AD∥BC,∴=,即=,解得,x1=﹣1,x2=﹣﹣1(舍去),∵AB∥CD,∴∠A BA′=∠BA′C,tan∠BA′C===,∴tan∠ABA′=,故答案为:.【点评】本题考查的是旋转的性质、矩形的性质以及锐角三角函数的定义,掌握旋转前、后的图形全等以及锐角三角函数的定义是解题的关键.三、解答题:本大题共7小题,共78分19.计算:|﹣1|﹣﹣+.【考点】实数的运算;负整数指数幂.【分析】利用绝对值的求法、分数指数幂、负整数指数幂分别化简后再加减即可求解.【解答】解:原式=﹣1﹣2﹣2+9=6﹣【点评】本题考查了实数的运算及负整数指数幂的知识,解题的关键是了解相关的运算性质及运算法则,难度不大.20.解方程:﹣=1.【考点】解分式方程.【分析】根据解分式方程的步骤:去分母、去括号、移项、合并同类项、系数化为1进行计算即可.【解答】解:去分母得,x+2﹣4=x2﹣4,移项、合并同类项得,x2﹣x﹣2=0,解得x1=2,x2=﹣1,经检验x=2是增根,舍去;x=﹣1是原方程的根,所以原方程的根是x=﹣1.【点评】本题考查了解分式方程,熟记解分式方程的步骤:去分母、去括号、移项、合并同类项、系数化为1是解题的关键,注意验根.21.如图,在Rt△ABC中,∠ACB=90°,AC=BC=3,点D在边AC上,且AD=2CD,DE⊥AB,垂足为点E ,联结CE,求:(1)线段BE的长;(2)∠ECB的余切值.【考点】解直角三角形;勾股定理.【分析】(1)由等腰直角三角形的性质得出∠A=∠B=45°,由勾股定理求出AB=3,求出∠ADE=∠A =45°,由三角函数得出AE=,即可得出BE的长;(2)过点E作EH⊥BC,垂足为点H,由三角函数求出EH=BH=BE•cos45°=2,得出CH=1,在Rt△CHE中,由三角函数求出cot∠ECB==即可.【解答】解:(1)∵AD=2CD,AC=3,∴AD=2,∵在Rt△ABC中,∠ACB=90°,AC=BC=3,∴∠A=∠B=45°,AB===3,∵DE⊥AB,∴∠AED=90°,∠ADE=∠A=45°,∴AE=AD•cos45°=2×=,∴BE=AB﹣AE=3﹣=2,即线段BE的长为2;(2)过点E作EH⊥BC,垂足为点H,如图所示:∵在Rt△BEH中,∠EHB=90°,∠B=45°,∴EH=BH=BE•cos45°=2×=2,∵BC=3,∴CH=1,在Rt△CHE中,cot∠ECB==,即∠ECB的余切值为.【点评】本题考查了解直角三角形、勾股定理、等腰直角三角形的性质、三角函数;熟练掌握等腰直角三角形的性质,通过作辅助线求出CH是解决问题(2)的关键.22.某物流公司引进A、B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A 种机器人于某日0时开始搬运,过了1小时,B种机器人也开始搬运,如图,线段OG表示A种机器人的搬运量y A(千克)与时间x(时)的函数图象,根据图象提供的信息,解答下列问题:(1)求y B关于x的函数解析式;(2)如果A、B两种机器人连续搬运5个小时,那么B种机器人比A种机器人多搬运了多少千克?【考点】一次函数的应用.【分析】(1)设设y B关于x的函数解析式为y B=kx+b(k≠0),将点(1,0)、(3,180)代入一次函数函数的解析式得到关于k,b的方程组,从而可求得函数的解析式;(2)设y A关于x的解析式为y A=k1x.将(3,180)代入可求得y A关于x的解析式,然后将x=6,x=5代入一次函数和正比例函数的解析式求得y A,y B的值,最后求得y A与y B的差即可.【解答】解:(1)设y B关于x的函数解析式为y B=kx+b(k≠0).将点(1,0)、(3,180)代入得:,解得:k=90,b=﹣90.所以y B关于x的函数解析式为y B=90x﹣90(1≤x≤6).(2)设y A关于x的解析式为y A=k1x.根据题意得:3k1=180.解得:k1=60.所以y A=60x.当x=5时,y A=60×5=300(千克);x=6时,y B=90×6﹣90=450(千克).450﹣300=150(千克).答:若果A、B两种机器人各连续搬运5小时,B种机器人比A种机器人多搬运了150千克.【点评】本题主要考查的是一次函数的应用,依据待定系数法求得一次函数的解析式是解题的关键.23.已知:如图,⊙O是△ABC的外接圆,=,点D在边BC上,AE∥BC,AE=BD.(1)求证:AD=CE;(2)如果点G在线段DC上(不与点D重合),且AG=AD,求证:四边形AGCE是平行四边形.【考点】三角形的外接圆与外心;全等三角形的判定与性质;平行四边形的判定;圆心角、弧、弦的关系.【分析】(1)根据等弧所对的圆周角相等,得出∠B=∠ACB,再根据全等三角形的判定得△ABD≌△C AE,即可得出AD=CE;(2)连接AO并延长,交边BC于点H,由等腰三角形的性质和外心的性质得出AH⊥BC,再由垂径定理得BH=CH,得出CG与AE平行且相等.【解答】证明:(1)在⊙O中,∵=,∴AB=AC,∴∠B=∠ACB,∵AE∥BC,∴∠EAC=∠ACB,∴∠B=∠EAC,在△ABD和△CAE中,,∴△ABD≌△CAE(SAS),∴AD=CE;(2)连接AO并延长,交边BC于点H,∵=,OA为半径,∴AH⊥BC,∴BH=CH,∵AD=AG,∴DH=HG,∴BH﹣DH=CH﹣GH,即BD=CG,∵BD=AE,∵CG∥AE,∴四边形AGCE是平行四边形.【点评】本题考查了三角形的外接圆与外心以及全等三角形的判定和性质,平行四边形的判定,圆心角、弧、弦之间的关系,把这几个知识点综合运用是解题的关键.24.如图,抛物线y=ax2+bx﹣5(a≠0)经过点A(4,﹣5),与x轴的负半轴交于点B,与y轴交于点C,且OC=5OB,抛物线的顶点为点D.(1)求这条抛物线的表达式;(2)联结AB、BC、CD、DA,求四边形ABCD的面积;(3)如果点E在y轴的正半轴上,且∠BEO=∠ABC,求点E的坐标.【考点】二次函数综合题.【分析】(1)先得出C点坐标,再由OC=5BO,得出B点坐标,将A、B两点坐标代入解析式求出a,b;(2)分别算出△ABC和△ACD的面积,相加即得四边形ABCD的面积;(3)由∠BEO=∠ABC可知,tan∠BEO=tan∠ABC,过C作AB边上的高CH,利用等面积法求出CH,从而算出tan∠ABC,而BO是已知的,从而利用tan∠BEO=tan∠ABC可求出EO长度,也就求出了E点坐标.【解答】解:(1)∵抛物线y=ax2+bx﹣5与y轴交于点C,∴C(0,﹣5),∵OC=5OB,∴OB=1,又点B在x轴的负半轴上,∴B(﹣1,0).∵抛物线经过点A(4,﹣5)和点B(﹣1,0),∴,解得,∴这条抛物线的表达式为y=x2﹣4x﹣5.(2)由y=x2﹣4x﹣5,得顶点D的坐标为(2,﹣9).连接AC,∵点A的坐标是(4,﹣5),点C的坐标是(0,﹣5),又S△ABC=×4×5=10,S△ACD=×4×4=8,∴S四边形ABCD=S△ABC+S△ACD=18.(3)过点C作CH⊥AB,垂足为点H.∵S△ABC=×AB×CH=10,AB=5,∴CH=2,在RT△BCH中,∠BHC=90°,BC=,BH==3,∴tan∠CBH==.∵在RT△BOE中,∠BOE=90°,tan∠BEO=,∵∠BEO=∠ABC,∴,得EO=,∴点E的坐标为(0,).【点评】本题为二次函数综合题,主要考查了待定系数法求二次函数解析式、三角形面积求法、等积变换、勾股定理、正切函数等知识点,难度适中.第(3)问,将角度相等转化为对应的正切函数值相等是解答关键.25.如图所示,梯形ABCD中,AB∥DC,∠B=90°,AD=15,AB=16,BC=12,点E是边AB上的动点,点F是射线CD上一点,射线ED和射线AF交于点G,且∠AGE=∠DAB.(1)求线段CD的长;(2)如果△AEC是以EG为腰的等腰三角形,求线段AE的长;(3)如果点F在边CD上(不与点C、D重合),设AE=x,DF=y,求y关于x的函数解析式,并写出x的取值范围.【考点】四边形综合题.【专题】综合题.【分析】(1)作DH⊥AB于H,如图1,易得四边形BCDH为矩形,则DH=BC=12,CD=BH,再利用勾股定理计算出AH,从而得到BH和CD的长;(2)分类讨论:当EA=EG时,则∠AGE=∠GAE,则判断G点与D点重合,即ED=EA,作EM⊥AD于M ,如图1,则AM=AD=,通过证明Rt△AME∽Rt△AHD,利用相似比可计算出此时的AE长;当GA= GE时,则∠AGE=∠AEG,可证明AE=AD=15,(3)作DH⊥AB于H,如图2,则AH=9,HE=AE﹣AH=x﹣9,先利用勾股定理表示出DE=,再证明△EAG∽△EDA,则利用相似比可表示出EG=,则可表示出DG,然后证明△DGF∽△EGA,于是利用相似比可表示出x和y的关系.【解答】解:(1)作DH⊥AB于H,如图1,易得四边形BCDH为矩形,∴DH=BC=12,CD=BH,在Rt△ADH中,AH===9,∴BH=AB﹣AH=16﹣9=7,∴CD=7;(2)当EA=EG时,则∠AGE=∠GAE,∵∠AGE=∠DAB,∴∠GAE=∠DAB,∴G点与D点重合,即ED=EA,作EM⊥AD于M,如图1,则AM=AD=,∵∠MAE=∠HAD,∴Rt△AME∽Rt△AHD,∴AE:AD=AM:AH,即AE:15=:9,解得AE=;当GA=GE时,则∠AGE=∠AEG,∵∠AGE=∠DAB,而∠AGE=∠ADG+∠DAG,∠DAB=∠GAE+∠DAG,∴∠GAE=∠ADG,∴∠AEG=∠ADG,∴AE=AD=15,综上所述,△AEC是以EG为腰的等腰三角形时,线段AE的长为或15;(3)作DH⊥AB于H,如图2,则AH=9,HE=AE﹣AH=x﹣9,在Rt△ADE中,DE==,∵∠AGE=∠DAB,∠AEG=∠DEA,∴△EAG∽△EDA,∴EG:AE=AE:ED,即EG:x=x:,∴EG=,∴DG=DE﹣EG=﹣,∵DF∥AE,∴△DGF∽△EGA,∴DF:AE=DG:EG,即y:x=(﹣):,∴y=(9<x<).【点评】本题考查了四边形的综合题:熟练掌握梯形的性质等等腰三角形的性质;常把直角梯形化为一个直角三角形和一个矩形解决问题;会利用勾股定理和相似比计算线段的长;会运用分类讨论的思想解决数学问题.2016年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.﹣2的绝对值是()A.﹣2 B.2 C.±2 D.2.计算a10÷a2(a≠0)的结果是()A.a5B.a﹣5C.a8D.a﹣83.2016年3月份我省农产品实现出口额8362万美元,其中8362万用科学记数法表示为()A.8.362×107B.83.62×106 C.0.8362×108D.8.362×1084.如图,一个放置在水平桌面上的圆柱,它的主(正)视图是()A.B.C.D.5.方程=3的解是()A.﹣B.C.﹣4 D.46.2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为()A.b=a(1+8.9%+9.5%)B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5%)D.b=a(1+8.9%)2(1+9.5%)7.自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有()组别月用水量x(单位:吨)A 0≤x<3B 3≤x<6C 6≤x<9D 9≤x<12E x≥12A.18户 B.20户 C.22户 D.24户8.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为()A.4 B.4C.6 D.49.一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A 出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是()A.B.C.D.10.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为()A.B.2 C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.不等式x﹣2≥1的解集是.12.因式分解:a3﹣a= .13.如图,已知⊙O的半径为2,A为⊙O外一点,过点A作⊙O的一条切线AB,切点是B,AO的延长线交⊙O于点C,若∠BAC=30°,则劣弧的长为.14.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG=S△FGH;④AG+DF=FG.其中正确的是.(把所有正确结论的序号都选上)三、(本大题共2小题,每小题8分,满分16分)15.计算:(﹣2016)0++tan45°.16.解方程:x2﹣2x=4.四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB与BC ,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A′B′C′D′.18.(1)观察下列图形与等式的关系,并填空:(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填空:1+3+5+…+(2n﹣1)+()+(2n﹣1)+…+5+3+1=.五、(本大题共2小题,每小题10分,满分20分)19.如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D是l2上的两点,某人在点A处测得∠CAB= 90°,∠DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB上),测得∠DEB=60°,求C、D两点间的距离.20.如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.六、(本大题满分12分)21.一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.七、(本大题满分12分)22.如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.八、(本大题满分14分)23.如图1,A,B分别在射线OA,ON上,且∠MON为钝角,现以线段OA,OB为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.①如图1,若∠MON=150°,求证:△ABR为等边三角形;②如图3,若△ARB∽△PEQ,求∠MON大小和的值.2016年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)1.﹣2的绝对值是()A.﹣2 B.2 C.±2 D.【考点】绝对值.【分析】直接利用数轴上某个数与原点的距离叫做这个数的绝对值,进而得出答案.【解答】解:﹣2的绝对值是:2.故选:B.2.计算a10÷a2(a≠0)的结果是()A.a5B.a﹣5C.a8D.a﹣8【考点】同底数幂的除法;负整数指数幂.【分析】直接利用同底数幂的除法运算法则化简求出答案.【解答】解:a10÷a2(a≠0)=a8.故选:C.3.2016年3月份我省农产品实现出口额8362万美元,其中8362万用科学记数法表示为()A.8.362×107B.83.62×106 C.0.8362×108D.8.362×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:8362万=8362 0000=8.362×107,故选:A.4.如图,一个放置在水平桌面上的圆柱,它的主(正)视图是()A.B.C.D.【考点】简单几何体的三视图.【分析】根据三视图的定义求解.【解答】解:圆柱的主(正)视图为矩形.故选C.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年内地新疆高中班招生数学试卷一、选择题,共9小题,每小题5分,共45分.1.﹣2的绝对值是()A.2 B.﹣2 C.±2 D.2.如图,AB∥CD,CE平分∠BCD,∠B=36°,则∠DCE等于()A.18° B.36° C.45° D.54°3.不等式组的解集是()A.x>4 B.x≤3 C.3≤x<4 D.无解4.一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球,3个白球,从布袋中随机摸出一个球,摸出红球的概率是()A.B.C.D.5.一个扇形的圆心角是120°,面积为3πcm2,那么这个扇形的半径是()A.1cm B.3cm C.6cm D.9cm6.小明的父亲从家走了20分钟到一个离家900米的书店,在书店看了10分钟书后,用15分钟返回家,下列图中表示小明的父亲离家的距离与时间的函数图象是()A.B.C.D.7.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A.a>0B.c<0C.3是方程ax2+bx+c=0的一个根D.当x<1时,y随x的增大而减小8.轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处与灯塔A的距离是()海里.A.25B.25C.50 D.259.两个小组同时从甲地出发,匀速步行到乙地,甲乙两地相距7500米,第一组的步行速度是第二组的1.2倍,并且比第二组早15分钟到达乙地.设第二组的步行速度为x千米/小时,根据题意可列方程是()A.﹣=15 B.﹣=C.﹣=15 D.﹣=二、填空题,共小题,每小题5分,共30分.10.计算(1﹣)(x+1)的结果是.11.关于x的一元二次方程x2+2x﹣k=0有两个不相等的实数根,则k的取值范围是.育锻炼时间,结果如下表所示:小时.13.如图所示,△ABC中,E,F分别是边AB,AC上的点,且满足==,则△AEF与△ABC的面积比是.14.如图,测量河宽AB(假设河的两岸平行),在C点测得∠ACB=30°,D点测得∠ADB=60°,又CD=60m,则河宽AB为m(结果保留根号).15.如图,在▱ABCD中,P是CD边上一点,且AP和BP分别平分∠DAB和∠CBA,若AD=5,AP=8,则△APB的周长是.三、解答题,共8小题,共75分16.计算:()﹣1+|1﹣|﹣tan30°.17.解方程组.18.某学生社团为了解本校学生喜欢球类运动的情况,随机抽取了若干名学生进行问卷调查,要求每位学生只能填写一种自己喜欢的球类运动,并将调查的结果绘制成如下的两幅不完整的统计图.请根据统计图表提供的信息,解答下列问题:(1)参加调查的人数共有人;在扇形图中,m=;将条形图补充完整;(2)如果该校有3500名学生,则估计喜欢“篮球”的学生共有多少人?(3)该社团计划从篮球、足球和乒乓球中,随机抽取两种球类组织比赛,请用树状图或列表法,求抽取到的两种球类恰好是“篮球”和“足球”的概率.19.如图,四边形ABCD中,AD∥BC,AE⊥AD交BD于点E,CF⊥BC交BD于点F,且AE=CF.求证:四边形ABCD是平行四边形.20.周口体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?21.如图,直线y=2x+3与y轴交于A点,与反比例函数y=(x>0)的图象交于点B,过点B作BC⊥x轴于点C,且C点的坐标为(1,0).(1)求反比例函数的解析式;(2)点D(a,1)是反比例函数y=(x>0)图象上的点,在x轴上是否存在点P,使得PB+PD最小?若存在,求出点P的坐标;若不存在,请说明理由.22.如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB.(1)求证:直线BF是⊙O的切线;(2)若AB=5,sin∠CBF=,求BC和BF的长.23.如图,对称轴为直线x=的抛物线经过点A(6,0)和B(0,﹣4).(1)求抛物线解析式及顶点坐标;(2)设点E(x,y)是抛物线上一动点,且位于第一象限,四边形OEAF是以OA为对角线的平行四边形,求平行四边形OE AF的面积S与x之间的函数关系式;(3)当(2)中的平行四边形OEAF的面积为24时,请判断平行四边形OEAF是否为菱形.2016年内地新疆高中班招生数学试卷参考答案与试题解析一、选择题,共9小题,每小题5分,共45分.1.﹣2的绝对值是()A.2 B.﹣2 C.±2 D.【考点】绝对值.【分析】直接利用绝对值的概念:数轴上某个数与原点的距离叫做这个数的绝对值,进而得出答案.【解答】解:﹣2的绝对值是:2.故选:A.2.如图,AB∥CD,CE平分∠BCD,∠B=36°,则∠DCE等于()A.18° B.36° C.45° D.54°【考点】平行线的性质.【分析】根据两直线平行,内错角相等可得∠BCD=∠B,再根据角平分线的定义求出∠DCE,从而求解.【解答】解:∵AB∥CD,∴∠BCD=∠B=36°,∵CE平分∠BCD,∴∠DC=18°故选:A.3.不等式组的解集是()A.x>4 B.x≤3 C.3≤x<4 D.无解【考点】解一元一次不等式组.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得:x<4,解②得:x≥3,则不等式的解集是:3≤x<4.故选:C.4.一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球,3个白球,从布袋中随机摸出一个球,摸出红球的概率是()A.B.C.D.【考点】概率公式.【分析】让红球的个数除以球的总数即为摸到红球的概率.【解答】解:∵2个红球、3个白球,一共是5个,∴从布袋中随机摸出一个球,摸出红球的概率是.故选:C.5.一个扇形的圆心角是120°,面积为3πcm2,那么这个扇形的半径是()A.1cm B.3cm C.6cm D.9cm【考点】扇形面积的计算.【分析】根据扇形的面积公式:S=代入计算即可解决问题.【解答】解:设扇形的半径为R,由题意:3π=,解得R=±3,∵R>0,∴R=3cm,∴这个扇形的半径为3cm.故选B.6.小明的父亲从家走了20分钟到一个离家900米的书店,在书店看了10分钟书后,用15分钟返回家,下列图中表示小明的父亲离家的距离与时间的函数图象是()A.B.C.D.【考点】函数的图象.【分析】因为在书店里花了10分钟看书,应是一段平行与x轴的线段,B是10分钟,而A是20分钟,依此即可作出判断.【解答】解:根据题意,从20分钟到30分钟在书店里看书,离家距离没有变化,是一条平行于x轴的线段.故选B.7.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A.a>0B.c<0C.3是方程ax2+bx+c=0的一个根D.当x<1时,y随x的增大而减小【考点】二次函数的性质.【分析】根据二次函数的图象性质可以做出判断.【解答】解:(A)图象开口向下,所以a<0,故(A)错误;(B)图象与y轴交点在y轴的正半轴,所以C>0,故(B)错误;(C)因为对称轴为x=1,所以(﹣1,0)与(3,0)关于x=1对称,故x=3是ax2+bx+c=0的一个根;故(C)正确;(D)由图象可知:当x<1时,y随x的增大而增大;故(D)错误.故选(C)8.轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处与灯塔A的距离是()海里.A.25B.25C.50 D.25【考点】等腰直角三角形;方向角.【分析】根据题中所给信息,求出∠BCA=90°,再求出∠CBA=45°,从而得到△ABC为等腰直角三角形,然后根据解直角三角形的知识解答.【解答】解:根据题意,∠1=∠2=30°,∵∠ACD=60°,∴∠ACB=30°+60°=90°,∴∠CBA=75°﹣30°=45°,∴△ABC为等腰直角三角形,∵BC=50×0.5=25,∴AC=BC=25(海里).故选D.9.两个小组同时从甲地出发,匀速步行到乙地,甲乙两地相距7500米,第一组的步行速度是第二组的1.2倍,并且比第二组早15分钟到达乙地.设第二组的步行速度为x千米/小时,根据题意可列方程是()A.﹣=15 B.﹣=C.﹣=15 D.﹣=【考点】由实际问题抽象出分式方程.【分析】根据第二组的速度可得出第一组的速度,依据“时间=路程÷速度”即可找出第一、二组分别到达的时间,再根据第一组比第二组早15分钟(小时)到达乙地即可列出分式方程,由此即可得出结论.【解答】解:设第二组的步行速度为x千米/小时,则第一组的步行速度为1.2x千米/小时,第一组到达乙地的时间为:7.5÷1.2x;第二组到达乙地的时间为:7.5÷x;∵第一组比第二组早15分钟(小时)到达乙地,∴列出方程为:﹣==.故答案为D.二、填空题,共小题,每小题5分,共30分.10.计算(1﹣)(x+1)的结果是x.【考点】分式的混合运算.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,约分即可得到结果.【解答】解:原式=•(x+1)=x,故答案为:x11.关于x的一元二次方程x2+2x﹣k=0有两个不相等的实数根,则k的取值范围是k>﹣1.【考点】根的判别式.【分析】根据判别式的意义得到△=22+4k>0,然后解不等式即可.【解答】解:∵关于x的一元二次方程x2+2x﹣k=0有两个不相等的实数根,∴△=22+4k>0,解得k>﹣1.故答案为:k>﹣1.育锻炼时间,结果如下表所示:小时.【考点】加权平均数.【分析】根据平均数的计算方法是求出所有数据的和,然后除以数据的总个数进行计算.【解答】解:=6.4.故答案为:6.4.13.如图所示,△ABC中,E,F分别是边AB,AC上的点,且满足==,则△AEF与△ABC的面积比是1:9.【考点】相似三角形的判定与性质.【分析】由已知条件易证△AEF∽△ABC,根据相似三角形的性质即可求出△AEF与△ABC 的面积比.【解答】解:∵==,∴,又∵∠A=∠A,∴△AEF∽△ABC,∴△AEF与△ABC的面积比=1:9,故答案为:1:9.14.如图,测量河宽AB(假设河的两岸平行),在C点测得∠ACB=30°,D点测得∠ADB=60°,又CD=60m,则河宽AB为30m(结果保留根号).【考点】解直角三角形的应用;勾股定理的应用.【分析】先根据三角形外角的性质求出∠CAD的度数,判断出△ACD的形状,再由锐角三角函数的定义即可求出AB的值.【解答】解:∵∠ACB=30°,∠ADB=60°,∴∠CAD=30°,∴AD=CD=60m,在Rt△ABD中,AB=AD•sin∠ADB=60×=30(m).故答案为:30.15.如图,在▱ABCD中,P是CD边上一点,且AP和BP分别平分∠DAB和∠CBA,若AD=5,AP=8,则△APB的周长是24.【考点】平行四边形的性质.【分析】根据平行四边形性质得出AD∥CB,AB∥CD,推出∠DAB+∠CBA=180°,求出∠PAB+∠PBA=90°,在△APB中求出∠APB=90°,由勾股定理求出BP,证出AD=DP=5,BC=PC=5,得出DC=10=AB,即可求出答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥CB,AB∥CD,∴∠DAB+∠CBA=180°,又∵AP和BP分别平分∠DAB和∠CBA,∴∠PAB+∠PBA=(∠DAB+∠CBA)=90°,在△APB中,∠APB=180°﹣(∠PAB+∠PBA)=90°;∵AP平分∠DAB,∴∠DAP=∠PAB,∵AB∥CD,∴∠PAB=∠DPA∴∠DAP=∠DPA∴△ADP是等腰三角形,∴AD=DP=5,同理:PC=CB=5,即AB=DC=DP+PC=10,在Rt△APB中,AB=10,AP=8,∴BP==6,∴△APB的周长=6+8+10=24;故答案为:24.三、解答题,共8小题,共75分16.计算:()﹣1+|1﹣|﹣tan30°.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】直接利用负整指数幂的性质以及绝对值的性质和特殊角的三角函数值分别化简求出答案.【解答】解:()﹣1+|1﹣|﹣tan30°=2+﹣1﹣3×=1+﹣3=﹣2.17.解方程组.【考点】解二元一次方程组.【分析】先用加减消元法求出x的值,再用代入消元法求出y的值即可.【解答】解:①+②得,3x=15,解得x=5,把x=5代入①得,10+3y=7,解得y=﹣1.故方程组的解为:.18.某学生社团为了解本校学生喜欢球类运动的情况,随机抽取了若干名学生进行问卷调查,要求每位学生只能填写一种自己喜欢的球类运动,并将调查的结果绘制成如下的两幅不完整的统计图.请根据统计图表提供的信息,解答下列问题:(1)参加调查的人数共有600人;在扇形图中,m=30;将条形图补充完整;(2)如果该校有3500名学生,则估计喜欢“篮球”的学生共有多少人?(3)该社团计划从篮球、足球和乒乓球中,随机抽取两种球类组织比赛,请用树状图或列表法,求抽取到的两种球类恰好是“篮球”和“足球”的概率.【考点】列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.【分析】(1)首先根据条形统计图和扇形统计图,用喜欢篮球的人数除以它占参加调查的人数的百分率,求出参加调查的人数共有多少人;然后在扇形图中,用1减去喜欢篮球、乒乓球和其它球类的学生占的百分率,求出m的值是多少,并将条形图补充完整即可.(2)根据题意,用该校学生的人数乘喜欢“篮球”的学生占的百分率,求出喜欢“篮球”的学生共有多少人即可.(3)应用列表法,求出抽取到的两种球类恰好是“篮球”和“足球”的种数,以及一共有多少种可能,求出抽取到的两种球类恰好是“篮球”和“足球”的概率是多少即可.【解答】解:(1)∵240÷40%=600(人)∴参加调查的人数共有600人;∵1﹣40%﹣20%﹣10%=30%,∴在扇形图中,m=30..(2)3500×40%=1400(人)答:喜欢“篮球”的学生共有1400人.32÷6=.答:抽取到的两种球类恰好是“篮球”和“足球”的概率是.故答案为:600、30.19.如图,四边形ABCD中,AD∥BC,AE⊥AD交BD于点E,CF⊥BC交BD于点F,且AE=CF.求证:四边形ABCD是平行四边形.【考点】平行四边形的判定;全等三角形的判定与性质.【分析】由垂直得到∠EAD=∠FCB=90°,根据AAS可证明Rt△AED≌Rt△CFB,得到AD=BC,根据平行四边形的判定判断即可.【解答】证明:∵AE⊥AD,CF⊥BC,∴∠EAD=∠FCB=90°,∵AD∥BC,∴∠ADE=∠CBF,在Rt△AED和Rt△CFB中,∵,∴Rt△AED≌Rt△CFB(AAS),∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形.20.周口体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?【考点】一元二次方程的应用.【分析】设要邀请x支球队参加比赛,则比赛的总场数为x(x﹣1)场,与总场数为28场建立方程求出其解即可.【解答】解:设要邀请x支球队参加比赛,由题意,得x(x﹣1)=28,解得:x1=8,x2=﹣7(舍去).答:应邀请8支球队参加比赛.21.如图,直线y=2x+3与y轴交于A点,与反比例函数y=(x>0)的图象交于点B,过点B作BC⊥x轴于点C,且C点的坐标为(1,0).(1)求反比例函数的解析式;(2)点D(a,1)是反比例函数y=(x>0)图象上的点,在x轴上是否存在点P,使得PB+PD最小?若存在,求出点P的坐标;若不存在,请说明理由.【考点】反比例函数与一次函数的交点问题;轴对称-最短路线问题.【分析】(1)先根据直线y=2x+3求出点B坐标,再利用待定系数法可求得反比例函数解析式;(2)先根据反比例函数解析式求出点D 的坐标,若要在x轴上找一点P,使PB+PD最小,可作点D关于x的轴的对称点D′,连接BD′,直线BD′与x轴的交点即为所求点P.【解答】解:(1)∵BC⊥x轴于点C,且C点的坐标为(1,0),∴在直线y=2x+3中,当x=1时,y=2+3=5,∴点B的坐标为(1,5),又∵点B(1,5)在反比例函数y=上,∴k=1×5=5,∴反比例函数的解析式为:y=;(2)将点D(a,1)代入y=,得:a=5,∴点D坐标为(5,1)设点D(5,1)关于x轴的对称点为D′(5,﹣1),过点B(1,5)、点D′(5,﹣1)的直线解析式为:y=kx+b,可得:,解得:,∴直线BD′的解析式为:y=﹣x+,根据题意知,直线BD′与x轴的交点即为所求点P,当y=0时,得:﹣x+=0,解得:x=,故点P的坐标为(,0).22.如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB.(1)求证:直线BF是⊙O的切线;(2)若AB=5,sin∠CBF=,求BC和BF的长.【考点】切线的判定与性质;勾股定理;圆周角定理;相似三角形的判定与性质;解直角三角形.【分析】(1)连接AE,利用直径所对的圆周角是直角,从而判定直角三角形,利用直角三角形两锐角相等得到直角,从而证明∠ABF=90°.(2)利用已知条件证得△AGC∽△ABF,利用比例式求得线段的长即可.【解答】(1)证明:连接AE,∵AB是⊙O的直径,∴∠AEB=90°,∴∠1+∠2=90°.∵AB=AC,∴∠1=∠CAB.∵∠CBF=∠CAB,∴∠1=∠CBF∴∠CBF+∠2=90°即∠ABF=90°∵AB是⊙O的直径,∴直线BF是⊙O的切线.(2)解:过点C作CG⊥AB于G.∵sin∠CBF=,∠1=∠CBF,∴sin∠1=,∵在Rt△AEB中,∠AE B=90°,AB=5,∴BE=AB•sin∠1=,∵AB=AC,∠AEB=90°,∴BC=2BE=2,在Rt△ABE中,由勾股定理得AE==2,∴sin∠2===,cos∠2===,在Rt△CBG中,可求得GC=4,GB=2,∴AG=3,∵GC∥BF,∴△AGC∽△ABF,∴∴BF==23.如图,对称轴为直线x=的抛物线经过点A(6,0)和B(0,﹣4).(1)求抛物线解析式及顶点坐标;(2)设点E(x,y)是抛物线上一动点,且位于第一象限,四边形OEAF是以OA为对角线的平行四边形,求平行四边形OEAF的面积S与x之间的函数关系式;(3)当(2)中的平行四边形OEAF的面积为24时,请判断平行四边形OEAF是否为菱形.【考点】二次函数综合题.【分析】(1)根据对称轴、A、B点的坐标,可得方程,根据解方程,可得答案;(2)根据平行四边形的面积公式,可得函数解析式;(3)根据函数值,可得E点坐标,根据菱形的判定,可得答案.【解答】解:(1)设抛物线的解析式为y=ax2+bx+c,将A、B点的坐标代入函数解析式,得,解得,抛物线的解析式为y=﹣x2+x﹣4,配方,得y=﹣(x﹣)2+,顶点坐标为(,);(2)E点坐标为(x,﹣x2+x﹣4),S=2×OA•y E=3(﹣x2+x﹣4)即S=﹣2x2+14x﹣12;(3)平行四边形OEAF的面积为24时,平行四边形OEAF不能为菱形,理由如下:当平行四边形OEAF的面积为24时,即﹣2x2+14x﹣12=24,化简,得x2﹣7x+18=0,△=b2﹣4ac=(﹣7)2﹣4×18=﹣23<0,方程无解,E点不存在,平行四边形OEAF的面积为24时,平行四边形OEAF不能为菱形.2016年6月30日。

相关文档
最新文档