第6章-图论(I)

合集下载

算法设计与分析习题答案1-6章

算法设计与分析习题答案1-6章

习题11. 图论诞生于七桥问题。

出生于瑞士的伟大数学家欧拉(Leonhard Euler ,1707—1783)提出并解决了该问题。

七桥问题是这样描述的:一个人是否能在一次步行中穿越哥尼斯堡(现在叫加里宁格勒,在波罗的海南岸)城中全部的七座桥后回到起点,且每座桥只经过一次,图是这条河以及河上的两个岛和七座桥的草图。

请将该问题的数据模型抽象出来,并判断此问题是否有解。

七桥问题属于一笔画问题。

输入:一个起点输出:相同的点1, 一次步行2, 经过七座桥,且每次只经历过一次3, 回到起点该问题无解:能一笔画的图形只有两类:一类是所有的点都是偶点。

另一类是只有二个奇点的图形。

2.在欧几里德提出的欧几里德算法中(即最初的欧几里德算法)用的不是除法而是减法。

请用伪代码描述这个版本的欧几里德算法=m-n2.循环直到r=0m=nn=rr=m-n3 输出m3.设计算法求数组中相差最小的两个元素(称为最接近数)的差。

要求分别给出伪代码和C++描述。

编写程序,求n 至少为多大时,n 个“1”组成的整数能被2013整除。

#include<iostream>using namespace std;int main(){double value=0;图 七桥问题for(int n=1;n<=10000 ;++n){value=value*10+1;if(value%2013==0){cout<<"n至少为:"<<n<<endl;break;}}计算π值的问题能精确求解吗编写程序,求解满足给定精度要求的π值#include <iostream>using namespace std;int main (){double a,b;double arctan(double x);圣经上说:神6天创造天地万有,第7日安歇。

为什么是6天呢任何一个自然数的因数中都有1和它本身,所有小于它本身的因数称为这个数的真因数,如果一个自然数的真因数之和等于它本身,这个自然数称为完美数。

离散数学——图论

离散数学——图论


提示:反证法。
设有两个连通分支,这两个分支至多是完 全图。由此得到图中点与边之间的数量关系。
§8.3欧拉图

欧拉图产生的背景就是前面的七桥问题。

定义:图G的回路,若它通过G中的每条边一 次,这样的回路称为欧拉回路。具有欧拉回 路的图称为欧拉图。
定义欧拉通路:通过图G中每条边一次的通 路(非回路)称为欧拉通路。


基本通路:通路中没有重复的点。
简单回路和基本回路。

基本通路一定是简单通路,但反之简单通路 不一定是基本通路。基本回路必是简单回路。

定理:一个有向(n,m)图中任何基本通路长 度≤n-1。任何基本回路的长度≤n。 任一通路中如果删去所有回路,必得基本通 路。 任一回路中如删去其中间的所有回路,必得 基本回路。

例1:教材121页。
结点次数

引出次数:有向图中以结点v为起点的边的条数称为 v的引出次数,记 deg(v) 引入次数:有向图中以结点v为终点的边的条数称为 v的引出次数,记 deg(v)


结点次数:有向图中引出次数和引入次数之和称为 结点次数;无向图中与结点v相关联的边的条数称为 V的次数。统一为记deg(v)。
图论的发展

图论的产生和发展经历了二百多年的历史, 从1736年到19世纪中叶是图论发展的第一阶 段。 第二阶段大体是从19世纪中叶到1936年,主 要研究一些游戏问题:迷宫问题、博弈问题、 棋盘上马的行走线路问题。


一些图论中的著名问题如四色问题(1852年)和哈密 尔顿环游世界问题(1856年)也大量出现。同时出现 了以图为工具去解决其它领域中一些问题的成果。

有向连通图

运筹学线性规划

运筹学线性规划
主要解决以下两类问题: 1、任务确定后,如何统筹安排,做到应用尽量少的人 力和物力资源来完成任务; 2、在一定量的人力、物力资源的条件下,如何安排、 使用他们,使完成的任务最多。
4
例1.1:(计划安排问题) I 设备A(h) 0 设备B(h) 4 原材料(公斤) 2 利润(万元) 2 II 资源总量 3x2 15 3 15 0 12 s.t. 4x1 12 2 14 2x1+2x2 14 3 x1,x2 0 I,II生产多少, 可获最大利润?
s.t. x1 -x2 +x4 -x5 -x7 =2
x1 , x2 , x4 ,

, x7 0
12
第二节 线性规划问题的图解法及几何意义
一、线性规划问题的解的概念
0 3 1 0 0 15 4 0 0 1 0 X= 12 2 2 0 0 1 14
5
max Z= 2x1 +3x2
解:设 计划期内生产产品I、II的数量x1、x2 则该问题的数学模型为:
例1.2 成本问题
某炼油厂根据每季度需供应给合同单位汽油15万吨、煤油 12万吨、重油12万吨。该厂计划从A,B两处运回原油 提炼,已知两处的原油成分含量见表1-2;又已知从A 处采购的原油价格为每吨(包括运费)200元,B处采购 的原油价格为每吨(包括运费)290元, 问:该炼油厂该 如何从A,B两处采购原油,在满足供应合同的条件下, 使购买成本最小。 油品来源 A B min S 200x1 290x 2
解:(1) 确定可行域 x1 0 x1 =0 (横)
30
x2 0 x2=0 (纵) x1+2x2 30 x1+2x2 =30

图论习题

图论习题

第三章 平面图
7.若G的顶点数不少于11个,则G c 不是平面图 证明:ε (G ) + ε (G c ) = v(v − 1) 2 , 又ε (G ) ≤ 3v(G ) − 6 则ε (G c ) ≥ 1 (v 2 − 7v + 12) 2 当v ≥ 11时,ε (G c ) > 3v(G c ) − 6, 从而G c 不是平面图
第四章 匹配理论及其应用
• 2.树上是否可能有两个不同的完备匹配?为什么? • 解:不可能。
设M1,M 2为两个不同的完备匹配,则M1 ⊕ M 2 ≠ φ 且T[M1 ⊕ M 2 ]中的每个顶点的度为2. 由例1.9可知,T中包含圈。这与T为树矛盾。
第五章 着色理论
• 1.求n顶轮的边色数 • hints:n-1
' '
第五章 着色理论
第一条边颜色不变,其余边两色互换。 直至vl −1处无i h 色,多i l -1色; 得出矛盾:v l -1v l 着i h 色; vl 处i h = i l 色出现至少三次; 从而G中i h 和i l -1色边的导出子图中含v l的分支不可能是奇圈, 从而得出矛盾。
第五章 着色理论
• 8. 4名老师4个班级上课问题。 • 计算,一天应分几节课?若每天8节课,需几 间教室? • hints: ∆(G ) = 16, ε (G ) = 48
16 = 4 一天分4节课 5 48 = 2 需2间教室 5*8
若 13. δ是单图G顶的最小次数,证明;若δ > 1则存在δ − 1边着色, 使与每顶关联的边种有δ − 1种颜色。 h int s : 反证法:设C = (E1 , E 2 ,..., E δ −1 )为G的(δ − 1) − 最佳边着色 构造点列:v1 , v2 ,..., vh , vh +1 ,....., vl ,.... v1处无i 0色,v j v j +1着i j色,且在v j点处i j 色重复出现,仅一个i j-1色;h = i l i 着色调整:v j v j +1着i j-1色( j = 1,2,..., h) 奇圈,颜色互换:E( Eih ∪ Eik )(k = h + 1, h + 2,..., l − 2),

图论(张先迪-李正良)课后习题答案(第一章)

图论(张先迪-李正良)课后习题答案(第一章)

习题一作者---寒江独钓1.证明:在n 阶连通图中(1) 至少有n-1条边;(2) 如果边数大于n-1,则至少有一条闭迹;(3) 如果恰有n-1条边,则至少有一个奇度点。

证明: (1) 若G 中没有1度顶点,由握手定理:()2()21v V G m d v n m n m n ∈=≥⇒≥⇒>-∑若G 中有1度顶点u ,对G 的顶点数作数学归纳。

当n=2时,结论显然;设结论对n=k 时成立。

当n=k+1时,考虑G-u,它仍然为连通图,所以,边数≥k-1.于是G 的边数≥k.(2) 考虑G 中途径:121:n n W v v v v -→→→→L若W 是路,则长为n-1;但由于G 的边数大于n-1,因此,存在v i 与v j ,它们相异,但邻接。

于是:1i i j i v v v v +→→→→L 为G 中一闭途径,于是也就存在闭迹。

(3) 若不然,G 中顶点度数至少为2,于是由握手定理:()2()21v V G m d v n m n m n ∈=≥⇒≥⇒>-∑这与G 中恰有n-1条边矛盾! 2.(1)2n −12n 2−12n −1 (2)2n−2−1(3) 2n−2。

证明:u 1的两个邻接点与v 1的两个邻接点状况不同。

所以,两图不同构。

4.证明下面两图同构。

u 1 v 1证明:作映射f : v i ↔ u i (i=1,2….10)容易证明,对∀v i v j ∈E ((a)),有f (v i v j,),=,u i,u j,∈,E,((b))(1≤ i ≤ 10, 1≤j ≤ 10 )由图的同构定义知,图(a)与(b)是同构的。

5.指出4个顶点的非同构的所有简单图。

分析:四个顶点的简单图最少边数为0,最多边数为6,所以可按边数进行枚举。

(a)v 2 v 3u 4u(b)6.证明:1)充分性:当G 是完全图时,每个顶点的度数都是n −1,共有n 个顶点,总的度数为n(n −1),因此总的边数是n(n−1)2=(n 2). 2)必要性:因为G 是简单图,所以当G 是完全图的时候每个顶点的度数才达到最大:n −1.若G 不是完全图,则至少有一个顶点的度数小于n −1,这样的话,总的度数就要小于n (n −1),因此总的边数小于(n 2),矛盾。

电路理论基础总复习

电路理论基础总复习
应在电流源两端设一未知电压,列入 方程。同时引入支路电流等于电流源 电流
四 主要内容的学习要点-- 回路电流方程
设法将电流源的 按“自阻”、“互阻”、“回路源电压”等规 源电流、待求电 则,列KVL方程。 互阻有正负 流、电流控制的 受控源按独立源处理,但最后需要补充方程。 受控源的控制电 对电流源支路,其端电压是未知的,适当选取 流选为回路电流 回路,使电流源只包含在一个回路中,若无需
ruriigulllulixirusrisisgususzsi直流电路交流电路动态电路第2章线性直流电路第3章电路定理第4章非线性直流电路第6章正弦交流电路第7章三相电路第8章非正弦周期电流电路第9章频率特性和谐振现象第10章线性动态电路暂态过程的时域分析第11章线性动态电路暂态过程的复频域分析第13章网络的图网络矩阵与网络方程第14章二端口网络介绍电路的简化分析方法各种电路定理图论稳态分析暂态分析现代电路理论电源
电流确定,电压和功率由外电路决定 受控源:VCVS,VCCS,CCVS,CCCS
VCR 变 化 多 样
一 电路的基本规律--
KCL : I 0 KVL : U 0
VCR R : U RI I GU
在直流电路中的表述
在上述方程 基础之上, 建立了电路 的各种分析 法方程,基 本定理,等 效变换
L : U L (s) sLI L (s) LiL (0 )
uC (0 ) 1 C : U C ( s) I C ( s) sC s
电源:U S ( s )
IS ( s)
二 电路课程的主要内容
直流电路
介绍电路 的简化、 分析方法、 各种电路 定理
稳态 分析
交流电路
第2章 线性直流电路 第3章 电路定理 第4章 非线性直流电路 第6章 正弦交流电路 第7章 三相电路 第8章 非正弦周期电流电路 第9章 频率特性和谐振现象 第14章 二端口网络

5.图论


注意:在无向图中,无向边(a,b)是从顶点a到顶点b的 线段,无方向.在有向图中,有向边<a,b>是有方向的, 且箭头必须从a指向b.也常用e=<vi,vj>表示边.有时 用G泛指无向图或有向图,而D只能表示有向图. 几个概念: 设G=<V,E>为一无向图或有向图, (1)若V,E都是有穷集合,则称G是有限图. (2)若|V|=n,则称G为n阶图.(此处|V|表示V中元素个 数;这里n≥1) (3)若E=,则称G为零图(仅包含孤立结点的图).特别 的,若此时又有|V|=1,则称G为平凡图(只有一个结点 的图).
第三部分 图论
在计算机科学领域,如开关理论,逻辑设 计,形式语言,操作系统,编译程序,数据结 构和信息检索等,都以图论为工具来解决实 际问题和理论问题,图论有着广泛的应用. 图论的内容十分丰富,涉及面也比较广, 本部分所涉及的只是图论中最基本的,但在 实际中经常用到的知识.
第7章 图的基本概念
7.1 无向图和有向图
定义 一个无向图G是一个二元组<V,E>, 即 G=<V,E>,其中
(1)V是一个非空的集合(在图的运算中,有时产生 顶点集合为的结果,因而规定顶点集为的图 是无意义的),称为G的顶点集,V中元素称为顶 点或结点. (2)E是无序积V&V的一个多重子集(元素可重复出 现的集合为多重集),E中元素称为无向边,也简 称边. 在一个图G=<V,E>中,为了表示V和E分别为G的顶 点集和边集,常将V记成V(G),E记成E(G).
在上图中,(2),(3)均为(1)的子图,(3)是生成图,(2) 是顶点集{v1,v2}的导出子图,也是边子集{e4,e5}的 导出子图.(3)是边子集{e1,e3,e4}的导出子图. (5),(6)是(4)的子图,(5)是生成子图,也是边子集 {e1,e2}的导出子图.(6)边子集{e1}的导出子图.

第6章 事故树分析(修改)

6 事故树分析事故是安全管理的重要依据。

一方面,事故造成了人员伤害和财产损失,人类为此付出了血的代价;另一方面,事故这种偶然事件中都蕴涵必然的规律性。

为了不使事故重演,为了发现和认识事故中的必然规律,人类必须百倍珍惜事故过程中反映出的各种信息,通过分析其隐患、征兆、表象、关联等认识事故。

本章介绍的事故树分析是系统安全工程中的一种重要方法,它是通过对事故的演绎、推理,找到防止事故的措施和方法。

事故树分析(Fault Tree Analysis,简称FTA)也叫故障树分析或事故逻辑分析,是一种演绎分析方法。

6.1事故树分析基础6.1.1概述(1)事故树分析简介事故树分析是系统安全分析方法中得到广泛应用的一种方法。

该方法起源于美国贝尔电话研究所。

1961年华特逊在研究民兵式导弹发射控制系统的安全性评价时首先提出了这种方法。

接着,该所的A.B.门斯等人改进了这种方法,对预测导弹发射偶然事故做出了贡献。

后来,波音公司对FTA 进行了重要改革,使之能够利用计算机模拟。

1974年美国原子能委员会利用FTA对商业原子电站事故危险性进行评价,发表了著名的拉氏姆逊报告,引起世界各国关注。

事故树是由图论理论发展而来的。

在许多领域里,常牵涉到图的概念。

然而,图论中所研究的图,既不是通常的几何学中的图,也不是工程图。

它所研究的图是由一些顶点(节点)及边构成的图,通常称之为线图。

事故树是一种逻辑树图,树图是图论中的一种图,逻辑树图是用逻辑门联结的树图。

事故树中包含的事件一般的都是故障事件。

这些故障事件之间具有一定的逻辑关系,这种逻辑关系用相应的逻辑门来表达。

确切地说,事故树是演绎地表示故障事件发生原因及其逻辑关系的逻辑树图。

据研究,尽管世界上的事物千变万化,但是它们之间的逻辑关系却最终归结为三种:“与”、“或”、“非”。

相应地,表达这些逻辑关系的逻辑门为逻辑“与门”、逻辑“或门”、逻辑“非门”。

在事故树中,上一层故障事件是下一层故障事件造成的结果;下一层故障事件是引起上层故障事件的原因。

图论第二版答案

图论第二版答案【篇一:图论与代数结构第一二三章习题解答】厂为一结点;若两个工厂之间有业务联系,则此两点之间用边相联;这样就得到一个无向图。

若每点的度数为3,则总度数为27,与图的总度数总是偶数的性质矛盾。

若仅有四个点的度数为偶数,则其余五个点度数均为奇数,从而总度数为奇数,仍与图的总度数总是偶数的性质矛盾。

(或者利用度数为奇数的点的个数必须为偶数个) 2. 若存在孤立点,则m不超过kn-1的边数, 故m = (n-1)(n-2)/2, 与题设矛盾。

?-3. 记ai为结点vi的正度数,ai为结点vi的负度数,则nnnn? 2? 22-ai?[(n?1)?ai]?n(n?1)?2(n?1)ai+ai-2, i?1i?1i?1i?1 nnn-2? 2 因为ai?cn?n(n?1)/2,所以ai?ai- 2。

i?1i?1i?14. 用向量(a1,a2,a3)表示三个量杯中水的量, 其中ai为第i杯中水的量, i = 1,2,3.以满足a1+a2+a3 = 8 (a1,a2,a3为非负整数)的所有向量作为各结点, 如果(a1,a2,a3)中某杯的水倒满另一杯得到( a’1, a’2, a’3 ) , 则由结点到结点画一条有向边。

这样可得一个有向图。

本题即为在此图中找一条由( 8, 0, 0 )到( 4, 4, 0 )的一条有向路,以下即是这样的一条: ( 8, 0, 0 ) ( 5, 0, 3 ) ( 5, 3, 0 ) ( 2, 3, 3 ) ( 2, 5,1 )(7, 0, 1 ) ( 7, 1, 0 ) ( 4, 1, 3 ) ( 4, 4, 0 )5. 可以。

???????6 若9个人中没有4个人相互认识,构造图g,每个点代表一个点,两个人相互认识则对应的两个点之间有边。

1)若可以找到点v,d(v)5,则与v相连的6个点中,要么有3个相互认识,要么有3个相互不认识(作k6并给边涂色:红=认识,蓝=不认识,只要证图中必有同色三角形。

图论第1章

所以,两图不同构。
14/111
三.完全图 ,偶图 ,补图
完全图:任意两点均相邻的简单图称为完全图, 在同构意义下,n 阶完全图只有一个,记为Kn。例 如K2, K3, K4分别为如下图所示。
K2
K3
n阶完全图有多少条边?
K4
15/111
KK3015
16/111
具有二分类( V1, V2 )的偶图(或二部图): 是指该图的点集可以分解为两个(非空)子集 V1 和 V2 ,使得每条边的一个端点在 V1 中,另 一个端点在V2 中。
(5)判定图的同构是很困难的,属于NP完全 问题。对于规模不大的两个图,判定其是否同 构,可以采用观察加推证的方法。
12/111
例 证明下面两图同构。
v1
v2
v6
v10 v5
v7
v8 v9
v3
v4 (a)
u1
u6 u5
u2
u8
u10
u3
u7
u9
u4
(b)
证明 作映射 f : vi ↔ ui (i=1,2….10),易知该映射为双射。
偶数个。
25/111
例7 证明在任意一次集会中和奇数个 人握手的人的个数为偶数个。
证明: 将集会中的人作为点,若两个人 握手则对应的点联线,则得简单图G。这样G 中点v的度对应于集会中与v握手的人的个数。 于是,问题转化为证明“图G 中度数为奇的 点的个数为偶数”,这正是推论1的结论。
26/111
则 G = (V, E) 是一个图。
v1 e1
v2
v4
e2
e4
v3 e3
e5
6/111
相关概念:
(1) 若边e = uv , 此时称 u 和v 是 e 的端点; 并称 u 和 v 相
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档