第7章 多元函数积分学2-16 (重积分计算 直角坐标系 )
实验2 多元函数积分学(基础实验)

项目三 多元函数微积分实验2 多元函数积分学(基础实验)实验目的掌握用Mathematica 计算二重积分与三重积分的方法; 深入理解曲线积分、曲面积分的 概念和计算方法. 提高应用重积分和曲线、曲面积分解决各种问题的能力.基本命令1. 计算重积分的命令lntegrate 和NIntegrate 例如,计算dydx xy x ⎰⎰102, 输入Integrate[x*y^2,{x,0,1},{y,0,x}]则输出 151又如,计算dydx xy )sin(10102⎰⎰的近似值, 输入NIntegrate[Sin[x*y^2],{x,0,1},{y,0,1}] 则输出 0.160839注: Integrate 命令先对后边的变量积分.计算三重积分时,命令Integrate 的使用格式与计算二重积分时类似. 由此可见, 利用 Mathematica 计算重积分, 关键是确定各个积分变量的积分限. 2. 柱坐标系中作三维图形的命令CylindricalPlot3D使用命令Cylindricalplot3D, 首先要调出作图软件包. 输入 <<Graphics`ParametricPlot3D` 执行成功后便可继续下面的工作.使用命令Cylindricalplot3D 时,一定要把z 表示成r ,θ的函数. 例如,在直角坐标系中方 程22y x z +=是一旋转抛物面, 在柱坐标系中它的方程为2r z =. 因此,输入 CylindricalPlot3D[r^2,{r,0,2},{t,0,2Pi}] 则在柱坐标系中作出了该旋转抛物面的图形.3. 球面坐标系中作三维图形命令SphericalPlot3D使用命令SphericalPlot3D, 首先要调出作图软件包. 输入 <<Graphics`ParametricPlot3D` 执行成功后便可继续下面的工作.命令SphericalPlot3D 的基本格式为SphericalPlot3D[r[],θϕ, {}],,{},,,2121θθθϕϕϕ其中r[],θϕ是曲面的球面坐标方程, 使用时一定要把球面坐标中的r 表示成ϕ、θ的函数. 例如,在球面坐标系中作出球面,22222=++z y x 输入Sphericalplot3D[2,{u,0,pi},|v,0,2,pi|,plotpoints->40]则在球面坐标系中作出了该球面的图形. 4. 向量的内积用“.”表示两个向量的内积. 例如,输入 vecl={al,bl,cl} vec2={a2,b2,c2}则定义了两个三维向量, 再输入 vec1. vec2 则得到它们的内积a1a2+b1b2+c1c2实验举例计算重积分 例2.1 (教材 例2.1) 计算,2dxdy xy D⎰⎰其中D 为由,,2y x y x ==+ 2=y 所围成的有界区域.先作出区域D 的草图, 易直接确定积分限,且应先对x 积分, 因此, 输入 Integrate[x*y^2,{y,1,2},{x,2-y,Sqrt[y]}] 则输出所求二重积分的计算结果.120193例2.2 (教材 例2.2) 计算,)(22dxdy e Dy x⎰⎰+- 其中D 为.122≤+y x如果用直角坐标计算, 输入Clear[f,r];f[x,y]=Exp [-(x^2+y^2)];Integrate[f[x,y],{x,-1,1},{y,-Sqrt[1-x^2],Sqrt[1-x^2]}]则输出为dx x 1Erf e 211x 2⎥⎦⎤⎢⎣⎡-π⎰--其中Erf 是误差函数. 显然积分遇到了困难.如果改用极坐标来计算, 也可用手工确定积分限. 输入Integrate[(f[x,y]/.{x->r*Cos[t],y->r*Sin[t]})*r,{t,0,2 Pi},{r,0,1}] 则输出所求二重积分的计算结果eπ-π 如果输入NIntegrate[(f[x,y]/.{x->r*Cos[t],y->r*Sin[t]})*r,{t,0,2 Pi},{r,0,1}] 则输出积分的近似值1.98587例2.3 (教材 例2.3) 计算dxdydz z y x)(22++⎰⎰⎰Ω, 其中Ω由曲面222y x z --=与22y=围成.xz+先作出区域Ω的图形. 输入g1=ParametricPlot3D[{Sqrt[2]*Sin[fi]*Cos[th],Sqrt[2]*Sin[fi]*Sin[th], Sqrt[2]*Cos[fi]},{fi,0,Pi/4},{th,0,2Pi}]g2=ParametricPlot3D[{z*Cos[t],z*Sin[t],z},{z,0,1},{t,0,2Pi}]Show[g1,g2,ViewPoint->{1.3,-2.4,1.0}]则分别输出三个图形(图2.1(a), (b), (c)).考察上述图形, 可用手工确定积分限. 如果用直角坐标计算, 输入 g[x_,y_,z_]=x^2+y^2+z;Integrate[g[x,y,z],{x,-1,1},{y,-Sqrt[1-x^2], Sqrt[1-x^2]},{z,Sqrt[x^2+y^2],Sqrt[2-x^2-y^2]}] 执行后计算时间很长, 且未得到明确结果.现在改用柱面坐标和球面坐标来计算. 如果用柱坐标计算,输入Integrate[(g[x,y,z]/.{x->r*Cos[s],y->r*Sin[s]})*r,{r,0,1},{s,0,2Pi},{z,r,Sqrt[2-r^2]}]则输出π⎪⎪⎭⎫⎝⎛+-15281252 如果用球面坐标计算,输入Integrate[(g[x,y,z]/.{x->r*Sin[fi]*Cos[t],y->r*Sin[fi]*Sin[t],z->r*Cos[fi]})*r^2*Sin[fi],{s,0,2Pi},{fi,0,Pi/4},{r,0,Sqrt[2]}]则输出π⎪⎪⎭⎫ ⎝⎛+-321662551这与柱面坐标的结果相同.重积分的应用例2.4 求由曲面()y x y x f --=1,与()222,y x y x g --=所围成的空间区域Ω的体积.输入Clear[f,g];f[x_,y_]=1-x -y;g[x_,y_]=2-x^2-y^2;Plot3D[f[x,y],{x,-1,2},{y,-1,2}] Plot3D[g[x,y],{x,-1,2},{y,-1,2}] Show[%,%%]一共输出三个图形, 最后一个图形是图2.1.首先观察到Ω的形状. 为了确定积分限, 要把两曲面的交线投影到Oxy 平面上输入 jx=Solve[f[x,y]==g[x,y],y] 得到输出 ⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛-++→⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛-+-→22445121,445121x x y x x y为了取出这两条曲线方程, 输入 y1=jx[[1,1,2]] y2=jx[[2,1,2]] 输出为⎪⎭⎫ ⎝⎛-+-2445121x x⎪⎭⎫ ⎝⎛-++2445121x x再输入tu1=Plot[y1,{x,-2,3},PlotStyle->{Dashing[{0.02}]},DisplayFunction->Identity];tu2=Plot[y2,{x,-2,3},DisplayFunction->Identity]; Show[tu1,tu2,AspectRatio->1, DisplayFunction-> $DisplayFunction]输出为图2.2, 由此可见,1y 是下半圆(虚线),2y 是上半圆,因此投影区域是一个圆.设21y y =的解为1x 与2x ,则21,x x 为x 的积分限. 输入 xvals=Solve[y1==y2,x]输出为 ()()⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧+→⎭⎬⎫⎩⎨⎧-→6121,6121x x 为了取出21,x x , 输入x1=xvals[[1,1,2]]x2=xvals[[2,1,2]]输出为()6121- ()6121+ 这时可以作最后的计算了. 输入V olume=Integrate[g[x,y]-f[x,y],{x,x1,x2},{y,y1,y2}]//Simplify 输出结果为 89π例2.5 (教材 例2.4) 求旋转抛物面224y x z --=在Oxy 平面上部的面积.S 先调用软件包, 输入<<Graphics`ParametricPlot3D` 再输入CylindricalPlot3D[4-r^2,{r,0,2},{t,0,2 Pi}] 则输出图2.3.利用计算曲面面积的公式⎰⎰++=xyD y z dxdy z z S 221, 输入Clear[z,z1];z=4-x^2-y^2;z=Sqrt[D[z,x]^2+D[z,y]^2+1]输出为22441y x ++, 因此,利用极坐标计算. 再输入z1=Simplify[z/.{x->r*Cos[t],y->r*Sin[t]}]; Integrate[z1*r,{t,0,2 Pi},{r,0,2}]//Simplify则输出所求曲面的面积()π1717161+-例2.6 在Oxz 平面内有一个半径为2的圆, 它与z 轴在原点O 相切, 求它绕z 轴旋转一周所得旋转体体积.先作出这个旋转体的图形. 因为圆的方程是,422x z x =+它绕z 轴旋转所得的圆环面的方程为)(16)(222222y x z y x +=++,所以圆环面的球坐标方程是.sin 4φ=r 输入SphericalPlot3D[4 Sin[t],{t,0,Pi},{s,0,2 Pi},PlotPoints->30,ViewPoint->{4.0,0.54,2.0}]输出为图2.4.图2.4这是一个环面, 它的体积可以用三重积分计算(用球坐标). 输入 Integrate[r^2*Sin[t],{s,0,2 Pi},{t,0,Pi},{r,0,4 Sin[t]}] 得到这个旋转体的体积为216π计算曲线积分例2.7 (教材 例2.5) 求⎰Lds z y x f ),,(, 其中(),10301,,2y x z y x f ++=积分路径为L :,3,,22t z t y t x ===.20≤≤y注意到,弧长微元dt z y x ds t t t 222++=, 将曲线积分化为定积分,输入 Clear[x,y,z];luj={t,t^2,3t^2}; D[luj,t]则输出z y x ,,对t 的导数 }6,2,1{t t再输入ds=Sqrt[D[luj,t].D[luj,t]];Integrate[(Sqrt[1+30 x^2+10y]/.{x->t, y->t^2,z->3t^2})*ds,{t,0,2}]则输出所求曲线积分的结果:326/3.例2.8 (教材 例2.6) 求dr F L.⎰, 其中.20,sin cos 2)(,)2(356π≤≤+=++=t tj ti t r j xy x i xy F输入vecf={x*y^6,3x*(x*y^5+2)};vecr={2*Cos[t],Sin[t]};Integrate[(vecf.D[vecr,t])/.{x->2Cos[t],y->Sin[t]}, {t,0,2 Pi}]则输出所求积分的结果12π例2.9 求锥面0,222≥=+z z y x 与柱面x y x =+22的交线的长度.先画出锥面和柱面的交线的图形. 输入g1=ParametricPlot3D[{Sin[u]*Cos[v], Sin[u]*Sin[v], Sin[u]}, {u,0,Pi},{v,0,2Pi},DisplayFunction->Identity]; g2=ParametricPlot3D[{Cos[t]^2,Cos[t]*Sin[t],z}, {t,0,2Pi},{z,0,1.2}, DisplayFunction->Identity]; Show[g1,g2,ViewPoint->{1,-1,2},DisplayFunction->$DisplayFunction]输出为图2.5.输入直接作曲线的命令ParametricPlot3D[{Cos[t]^2,Cos[t]*Sin[t],Cos[t]},{t,-Pi/2,Pi/2}, ViewPoint->{1,-1,2},Ticks->False]输出为图2.6.为了用线积分计算曲线的弧长, 必须把曲线用参数方程表示出来. 因为空间曲线的投影曲线的方程为x y x =+22, 它可以化成t x 2cos =,,sin cos t t y =再代入锥面方程222z y x =+, 得[]().2/,2/cos ππ=∈=t t z因为空间曲线的弧长的计算公式是()()()⎰'+'+'=21222t t dt t z t y t x s ,因此输入Clear[x,y,z]; x=Cos[t]^2; y=Cos[t]*Sin[t]; z=Cos[t]; qx={x,y,z};Integrate[Sqrt[D[qx,t]. D[qx,t]]//Simplify, {t,-Pi/2,Pi/2}]输出为 2Elliptice[-1]这是椭圆积分函数. 换算成近似值. 输入 %//N 输出为3.8202计算曲面积分例2.10 (教材 例2.7) 计算曲面积分⎰⎰∑++dS zx yz xy )(, 其中∑为锥面22y x z +=被柱面x y x 222=+所截得的有限部分.注意到,面积微元dxdy z z dS y x 221++=, 投影曲线x y x 222=+的极坐标方程为,22,cos 2ππ≤≤-=t t r将曲面积分化作二重积分,并采用极坐标计算重积分.输入Clear[f,g,r,t];f[x_,y_,z_]=x*y+y*z+z*x; g[x_,y_]=Sqrt[x^2+y^2];mj=Sqrt[1+D[g[x,y],x]^2+D[g[x,y],y]^2]//Simplify; Integrate[(f[x,y,g[x,y]]*mj/.{x->r*Cos[t],y->r* Sin[t]})*r,{t,-Pi/2,Pi/2},{r,0,2Cos[t]}]则输出所求曲面积分的计算结果15264例2.11 计算曲面积分,333dxdy z dzdx y dydz x ++⎰⎰∑其中∑为球面2222a x y x =++的外侧.可以利用两类曲面积分的关系, 化作对曲面面积的曲面积分⎰⎰∑nds A .. 这里{}{}a z y x n z y x A /,,,,,333==. 因为球坐标的体积元素,sin 2θϕϕd drd r dv =注意到在球面∑上a r =, 取1=dr 后得到面积元素的表示式:().20,0sin 2πθπϕθϕθ≤≤≤≤=d d a ds把对面积的曲面即直接化作对θϕ,的二重积分. 输入Clear[A,fa,ds]; A={x^3,y^3,z^3}; fa={x,y,z}/a; ds=a^2*Sin[u];Integrate[(A.fa/.{x->a*Sin[u]*Cos[v],y->a*Sin[u]*Sin[v], z->a*Cos[u]})*ds//Simplify,{u,0,Pi}, {v,0,2Pi}]输出为855122πa如果用高斯公式计算, 则化为三重积分()d v z y x ⎰⎰⎰Ω++2223, 其中Ω为2222a z y x ≤++.采用球坐标计算, 输入<<Calculus`VectorAnalysis` 执行后再输入SetCoordinates[Cartesian[x,y,z]]; (*设定坐标系*) diva=Div[A]; (*求向量场的散度*)Integrate[(diva/.{x->r*Sin[u]*Cos[v],y->r*Sin [u]*Sin[v],z->r*Cos[u]})*r^2Sin[u],{v,0,2Pi}, {u,0,Pi},{r,0,a}]输出结果相同.实验习题 1. 计算⎰⎰-6/02/0.sin sin ππydydx x x y2. 计算下列积分的近似值: (1)();cos 022dydx y x ⎰⎰-ππ(2)().sin 1010dydx e xy ⎰⎰3. 计算下列积分 (1)();23012dydzdx z y e x x z xz x -⎰⎰⎰+- (2)⎰⎰1010.)arctan(dydx xy4. 交换积分次序并计算下列积分 (1)()d ydx y x x⎰⎰30922cos . (2) .20422dxdy e yx ⎰⎰5. 用极坐标计算下列积分: (1) ;10122dydx y x yx ⎰⎰+ (2) .13/3/22dxdy yx y y y ⎰⎰-+6. 用适当方法计算下列积分:(1)(),2/3222dv zy x z⎰⎰⎰Ω++ 其中Ω是由22y x z +=与1=z 围成;(2),)(224dv z y x++⎰⎰⎰Ω其中Ω是.1222≤++z y x7. 求()ds z y x f L⎰,,的近似值. 其中(),51,,33y x z y x f ++=,路径L :3/,2t y t x ==,.20,≤≤=t t z8. 求⎰L dr F ., 其中().0,sin cos ,121322π≤≤+=+++=t tj ti t r j y i x F 9. 用柱面坐标作图命令作出xy z =被柱面122=+y x 所围部分的图形,并求出其面积.86 10. 求曲面积分,22zdxdy y x⎰⎰∑其中∑为球面2222a z y x =++的下半部分的下侧.11. 求曲面积分⎰⎰∑++zdS y x ,其中∑为球面2222a z y x=++上)0(a h z <<≥的部分.。
2多元函数积分学.docx

2.多元函数积分学K考试内容》(数学一)二重积分、三重积分的概念及性质二重积分与三重积分的计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林公式平面曲线积分与路径无关的条件己知全微分求原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯公式斯托克斯公式散度、旋度的概念及计算曲线积分和曲面积分的应用K考试要求》(数学一)1 •理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理。
2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标)。
3•理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。
4.掌握计算两类曲线积分的方法。
5.掌握格林公式并会运用平面曲线积分与路径元关的条件,会求全微分的原函数。
6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法。
会用高斯公式、斯托克斯公式计算曲面、曲线积分。
7.了解散度与旋度的概念,并会计算。
8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、重心、转动惯量、引力、功及流量等)。
K考试要求』(数学二)1.了解二重积分的概念及性质,掌握二重积分的计算方法(直角坐标、极坐标)。
K考试要求》(数学三)1.了解二重积分的概念及性质,掌握二重积分的计算方法(直角坐标、极坐标)。
2.了解无界区域上较简单的广义二重积分及其计算。
K考试要求》(数学四)同数学三2.多元函数积分学K知识点概述H 2. 1二重积分基本概念:定义、基本性质计算方法:直角坐标法(x型简单区域;y型简单区域)极坐标法(r型简单区域;&型简单区域)一般变换法几何应用:面积、曲顶柱体体积物理应用:质量、质心、转动惯量2. 2三重积分基本概念:定义、基本性质计算方法:直角坐标法:x型简单区域;y型简单区域;z型简单区域投影法(先定积分后二重积分)截面法(先二重积分后定积分)柱坐标法;球坐标法;一般变换法儿何应用:体积物理应用:质量、质心、转动惯量、引力2. 3曲线积分第一类曲线积分基本概念:定义、基本性质计算方法:参数化法儿何应用:弧长物理应用:质量、质心、转动惯量、引力第二类曲线积分基本概念:定义、基本性质计算方法:参数化法曲线积分基本定理(曲线积分与路径无关的条件(平面情形,空间情形);全微分的原函数;场论基本概念与计算格林公式(平面曲线积分);斯托克斯公式(空间曲线积分)物理应用:功,环流量,通量第一类曲线积分与第二类曲线积分的联系2. 4曲而积分第一类曲面积分基本概念:定义、基本性质计算方法:投影法(向xoy 平面投影;向yoz 平面投影;向zox 平面投影)儿何应用:曲面面积 物理应用:质量、质心、转动惯量、引力第二类曲面积分基本概念:定义、基本性质计算方法:有向投影法(各向投影;单向投影);化成第一类曲面积分;高斯公式;斯托克斯公式物理应用:通量第一类曲面积分与第二类曲面积分的联系K 典型例题一二重积分H例1 (91103)设D 是XOY 平面上以(1,1),(-1,1),(-1,-1)为顶点的三角形区域,®是D 在第 一象限部分,则 jjp (xy + cosxsin y)dxdy =()K 注》二重积分的对称性例2计算力dy,其中D 是由直线兀=-2,y = 0,y = 2以及曲线兀= -(2y- y 2所围成的平而区域K 注》平面区域的重心(质心)变式1计算Jjp(x+刃加/y,其中: 2以+》2 < y +1例3计算血(手+評如),,其中D :X 2 + y 2 </?2 (/?>0)注1极坐标法是计算二重积分的重要方法变式 1 计算 JJ^ln(x 2+ y 2 yixdy ,其中 D: x 2 + y 2 < 1 变式2计算吕-和如其中D :名+着「注2二重积分的轮换对称性变式3计算H (斗+其)必〃y ,其中D:x 2 + y 2<R 2 (/?>0) H D a 2 b 2(B) 2血 xydxdy (A)cosxsin ydxdy (C) (xy + cos x sin y)dxdy (D) 0x » 0, y 2 0上的正值连续函数例 4 (94103)计算 JJ D + xf(x 2 + y 2)]dxdy ,其中 D 由直线 y = x,y = -\,x = \ 围成,f 为连续函数 变式 1 (01306)计算 J.y [l +兀+〉)]dxdy ,其中 D 由直线 y = x.y =-l,x = 1^成 例 5(02107)计算 JJ 创曲{兀2,护}必労,其中 p = {(X5y ):o<x<l,O<y<l}变式 1 计算^D x 2dxdy ,其中 D: x 4 + y 4 < 1 变式 2 (95305)计算 jj /?2 min{x,y}e-^2^y 2)dxdy ,其中 M 为整个 xoy 平面 例6计算Z = J ■:必产号%‘注将二重积分化成二次积分计算时,确定积分次序是关键变式1计算心恥J 謬字变式2计算I = ff^sin y 2dxdy ,其中D 由y = x, y =五及Y 轴围成变式3计算/二J 診rj ; 了——dy , f\x)在[0, a ]连续u J(d-x)(x- y)例7设/(兀)在[0,1]上连续,证明J :闵:/(兀)/()曲=*[仃(兀)〃兀]2例 8 求在 D:x 2 + y 2 < y 9x>0上连续的 /(x,刃,使 /(x,y) = Jl-x 2一)2 一却需/仏*)dud\ 例9 (97306)求/(/),使得/⑴在[0,2)上连续,且满足方程 f ⑴=e 伽2 + 几2+严 <4,2 f(yx 2 + y 2)dxdy例]0 (00406)设 f(x,y)=<X "求 /(x, y)dxdy ,其中 D:x 2 + y 2 > 2x 0, 他变式 1 (05111)计算二重积分仏巩1 + %2 + y2]Jxdy ,其中 D :x 2 + y 2 < 72,x> 0, y > 0,[1 +兀2 +y2]表示不超过1 +兀2 + y2的最大整数变式4 (05204)计算血aj/(兀)+bj/(y) z/xdy ,其中 为常数,/(x)为£>:%2 + ^2 <4,变式 2 (05209)计算二重积分血| 兀 2+y2_i/dy,其中 D = {(x,y):O<x<l,O<y<l}K 典型例题一三重积分H例1 (88203)设有空间区域V1 : x 2 + y 2 + z 2 < /?2,z > 0 , V2 :x 2 + y 2 +z 2 < /?2,x>0, y >0,z>0,贝!J ()⑷ JJJy xdxdydz = 4川xdxdydz (B) JJ. ydxdydz = ydxdydz(0 zdxdydz = 4出” zdxdydz (D) xyzdxdydz = xyzdxdydz 注三重积分的对称性 例 2 计算 J%兀,其中 V : x 2 + y 2 + z 2 < /?2,x > 0,>?> 0,z > 0 (/? > 0)解一:投影法解二:截面法解三:柱坐标变换法解四:球坐标变换法,2 n 变式1用截面法计算出“如皿,其中V:^- + -p- + ^-<l,z>0变式 2 利用对称性计算^^x-dxdydz ,其中 V : x 2 + y 2 4- z 2 < /?2,z > 0 (7? > 0)dxdydz (l+|x| + |y| + |z|)3 例 4 计算 (x + y + z)dxdydz ,其中 V : 2以+3y2 + 么2 5 z注空间区域的重心(质心)变式 1 设 /⑴可导,V :以 +『2 + z2 w/2 , = /(x 2 +y2 + z^)dxdydz,求 F'(/) 例 6 (03112)设/(r)为正值连续函数,V(t):x 2 + y 2 + z 2 <t 2 , D(t):x 2 + y 2<r 2, 肛⑴ /X + y 2 + z2 Zdxdydz血初 f(x 2 + y 2)dxdy F ⑴ JJ D(Z) /(x 2 + y 2)dxdy (1)讨论F(f)在(0,+oo)内的单调性(2)证明(>0时,F(r)>-G(r)71 K 典型例题一曲线积分与曲面积分H例1计算#厶(2兀2+3y2)〃$ ,其中厶:兀2 + y2 = 2(兀+y)解一:参数化法 解二:利用曲线积分的对称性变式1计算+ yz + xz)d$ ,其中厶为球面兀2 +y2 +z2 =]与平面乂+y + z 二0的交线例3计算皿 其中 V:|x| + |y| + |z|<l例5设/⑴可导, /(0) = 0, V :兀2 + y2 + z2 5/2 求 Ii m+ y2 + z 2)dxdydz f_t f(x 2)dx变式2计算#/2ds ,其中厶为球面兀2 +歹2 + z2 =以与平面兀+ + z = 0的交线例2 计算(x2 + y)dS 9其中S: x2 + y2=a^fi<z< h.a > 0解一:投影法解二:利用曲面积分的对称性例3 (87103)计算(2xy-2y)dx4-(x2 -4x)dy,其中L:x2 + y2 =9取正向(逆时针方向)解一:参数化法解二:格林公式例4 (03110)己知平面区域£)= {(x,y):0<x<^, 0<y<7r},厶为其正向边界,试证(1 )彳厶壮sin yjy _ y^-sin x(}x = #厶壮-sin y dy - ye s^n X dx , ( 2 ) #厶xe sin ydy - >^_sin X dx > 2兀2解一:参数化法解二:格林公式例5 (97105)计算(z - y)dx + (x - z)dy 4- (x - y)dz ,其中L x2 + y2 = 1与平面x-y + z = 2的交线,从Z轴正向往Z轴负向看厶的方向是顺时针正向解-:参数化法解二:斯托克斯公式例6 (00106)计算i r Xdy~ycb",其中厶是以点(1,0)为中心,半径为R(R > 1)的圆周,JL 4兀2 +y2取逆时针方向例7 (98106)确定常数使在右半平面x>0上的向量A(x,y) = 2xy(x4 + y2)a i -x2(x4 + y2)a j为某二元函数u(x9y)的梯度,并求u(x9y)解一:曲线积分法解二:不定积分法变式1(05112)设函数0(y)具有连续导数,在围绕原点的任意分段光滑简单闭曲线厶上, 曲线积分£俠鑒身晋的值恒为同一常数。
二重积分的解法技巧及应用研究

二重积分的解法技巧及应用研究摘要二重积分是多元函数积分学中的一部分,而二重积分的概念和解法技巧是多元函数微积分学的重要部分,二重积分是联系其他多元函数积分学内容的中心环节,故而它也是核心。
二重积分在多元函数积分学中有重要的作用,深入理解二重积分的概念,熟练掌握二重积分的计算方法,是学好多元函数积分学的关键。
本文主要研究的是二重积分的解法技巧,对于二重积分的解法主要利用在直角坐标系下求解,极坐标的方法,积分次序的交换与坐标系的转换的方法,选择适当的积分次序求二重积分,用适当方法计算二重积分(奇偶性,周期性等)的计算技巧。
本文首先主要介绍二重积分的概念以及性质;其次介绍二重积分的解法技巧;最后主要根据二重积分的概念和性质,给出实例分析二重积分在物理、经济以及工程上的一些应用问题。
二重积分是《数学分析》中的重要内容,它涉及到多个学科领域,并且起着至关重要的作用,在计算过程中通常寻求更好的解题技巧,从而在实际应用中获得更高的效率。
关键词:二重积分;性质;解法技巧;应用研究Double integral solution techniques and application researchAbstractThe double integral is part of a multivariate function in integral calculus. The concept of double integrals and the techniques of solutions are an important part of multi-variate calculus.The double integral is the center link with other multivariate function integration of content.Therefore ,it is also the core. The double integral is important in multivariate integral calculus. Understanding the concept of double integral and mastering the double integral calculation method are the key to learn the multivariate function in integral calculus.This paper mainly studies the solutions for double integral and application research.Dou- ble integral to the solution of the main use is solved in the Cartesian coordinate system, polar coordinates method, method of integral order exchange and coordinate system, selecting the integral order appropriate for calculation of double integral, double integral with the appropri- ate method (parity, periodic etc.) on the computational techniques.Firstly,this paper introduces the concept and properties of double integral solution skill; Secondly,it introduces the introdu- ction of double integral; finally, according to the concept and nature of the double integral, it gives examples to analyze some application problems in physics, economics and engineering of the double integral.The double integral is the important content of "mathematical analysis", which involves many fields and plays a vital role. we often seek better problem-solving skills in the process of calculation, so as to gain higher efficiency in practical application.Keywords:double integral; properties; solution techniques; application research目录引言 (1)第1章二重积分的概念与性质........................................... - 2 -1.1二重积分的概念...................................................... - 2 -1.2二重积分的性质...................................................... - 6 -第2章二重积分的解法技巧.............................................. - 7 -2.1计算二重积分的方法步骤.............................................. - 7 -2.2直角坐标中下二重积分的计算 .......................................... - 7 -2.3特殊类型的二重积分解题技巧.......................................... - 8 -2.4极坐标系下计算二重积分............................................. - 11 -2.5用变量替换计算二重积分............................................. - 12 -2.6无界区域上的二重积分............................................... - 13 -第3章二重积分的应用研究............................................ - 14 -3.1物理上应用研究..................................................... - 14 -3.2经济上的应用....................................................... - 16 -3.3工程力学上的应用 ................................................... - 18 -结论与展望 ............................................................ - 22 -致谢 ................................................................ - 23 -参考文献 .............................................................. - 24 -附录 .................................................................. - 25 -附录A外文文献及翻译 ................................................. - 25 -附录B 主要参考文献的题录及摘要 ....................................... - 33 -插图清单图1-1 直线网图 (3)图1-2 曲顶柱体图 (5)图1-3 曲顶柱体分割图 (5)引言目前,关于二重积分方面的讨论非常活跃,随着二重积分的不断发展与创新,为使二重积分在各个学科领域中得到更广泛的应用,还得继续探讨与研究。
高等数学-重积分PPT课件

重积分的性质
线性性质
若α、β为常数,则∫[αf+βg]=α∫f+β∫g。
积分区域的可加性
若D1、D2是两个不相交的区域,则∫[D1∪D2]f=∫[D1]f+∫[D2]f。
保序性
若在D上,f(x,y)≤g(x,y),则∫[D]f≤∫[D]g。
绝对可积性
若f在D上可积,则|f|在D上也可积,且|∫[D]f|≤∫[D]|f|。
课件内容与结构
课件内容
本课件主要介绍重积分的基本概念、性质、计算方法和应用实例,包括二重积分和三重积分的定义、性质、计算 方法和应用等。
课件结构
课件按照“概念引入-性质探讨-计算方法-应用实例”的逻辑顺序进行编排,层次分明,条理清晰,便于学生理解 和掌握。
02
重积分的定义与性质
重积分的定义
二重积分的定义
计算消费者剩余和生产者剩余
02 重积分可用于计算消费者剩余和生产者剩余,通过对
需求函数和供给函数进行积分得到。
计算社会福利
03
重积分可用于计算社会福利,通过对消费者剩余和生
产者剩余进行加总得到。
06
重积分的数值计算方法
矩形法则与梯形法则
矩形法则
将积分区间划分为若干个小矩形,每个小矩形的面积近似等于其底边长度与高的乘积,将所有小矩形 的面积相加得到积分的近似值。
计算转动惯量
重积分可用于计算物体绕某轴的 转动惯量,通过对物体质量分布 和到轴距离的平方进行积分得到。
计算引力
重积分可用于计算两个物体之间 的引力,通过对两物体间的质量 分布和距离进行积分得到。
在工程学中的应用
计算面积和体积
重积分可用于计算平面图形或立体图形的面积和体积,通过对图形 的边界函数进行积分得到。
高等数学(下册)

读书笔记模板
01 思维导图
03 读书笔记 05 目录分析
目录
02 内容摘要 04 精彩摘录 06 作者介绍
思维导图
本书关键字分析思维导图
内容
曲面
数学
函数
积分
小结
曲线
数学
知识点
教材 函数
方程
下册
章节
公式
概念
准则
级数
展开式
内容摘要
本书是按照教育部大学数学课程教学指导委员会的基本要求,充分吸取当前高等数学教材的精华,并结合同 济大学数学系多年来的教学实践经验,针对当前学生的知识结构和习惯特点而编写的。全书分为上、下两册。本 书为下册,是多元函数微积分部分,共四章,主要内容包括向量与空间解析几何,多元函数微分学,多元函数积 分学,无穷级数。每节前面配有课前导读,核心知识点配备微课,每章后面附有章节测试和拓展阅读。本书注重 知识点的引入方法,使之符合认知规律,更易于读者接受。同时,本书精炼了主要内容,对部分内容调整了顺序, 使结构更加简洁,思路更加清晰。本书还注重知识的连贯性,例题的多样性和习题的丰富性、层次性,使读者在 学习数学知识点的同时拓宽视野,欣赏数学之美。本书可作为高等院校理工科类各专业的教材,也可作为社会从 业人员的自学参考用书。
精彩摘录
方程 称为拉普拉斯方程,它代表数学物理方程中的一类很重要的方程,若引入记号(算子) ,则拉普拉斯 方程可写成Δu=0.上述算子也称为拉普拉斯算子.
定理1 如果函数z=f(x,y)的两个二阶混合偏导数 在区域D内连续,则在该区域内有 . 定理2 两个向量的和在轴上的投影等于两个向量在轴上的投影的和. 如果函数z=f(x,y)的偏导数 在点(x,y)存在且连续,则函数在该点处可微分. cos2α+cos2β+cos2γ=1,即任一向量的方向余弦的平方和为1. 定理1 向量[插图]在u轴上的投影等于向量的模乘以u轴与向量[插图]的夹角θ的余弦,即 在一元函数微分学中,我们知道,如果函数在某点存在导数,则它在该点必定连续.但对多元函数而言,即 使函数在某点的各个偏导数都存在,也不能保证函数在该点连续. 方程Ax+By+Cz+D=0称为平面的一般方程,其中n=(A,B,C)即为该平面的一个法向量. 定义1 给定向量a与b,我们将|a|与|b|及它们的夹角θ的余弦的乘积,称为向量a与b的数量积,记为a·b, 即a·b=|a||b|cosθ=|a||b|cos([插图])(0≤θ<π).
二重积分

s 1 ds ds
D D
这个性质的几何意义是:高为1的平顶柱体的体积在数 值上就等于柱体的底面积.
9
性质5
如果在 D 上,f ( x , y ) ( x , y ) ,则有不等式
f ( x , y )ds ( x , y )ds
D D
特殊的,由于
f ( x, y)ds
D
b
a
b
2 ( x ) f ( x, y )dydx . 1 ( x )
dx
2 ( x ) 1 ( x )
f ( x, y )ds
D
a
f ( x , y )dy
计算时,先把x看作常量,把 f(x,y) 只看作y的函数,并对y计 算从 1 ( x ) 到 2 ( x ) 的定积分,然后把算得的结果再对x计算在区 间[a,b]上的定积分.这种连续的积分计算称为:累次积分
y (x, 1) 1 y=x
1 1 2 (1 x y ) dx 3 1 x 3 1 1 ( x 1)dx 1 3 1 2 1 3 ( x 1)dx 3 0 1 2
3 2 2
1
O ( x, x) 1
1
x
25
解法(2) 画出区域D, 可把D看成是Y型区域:
16
d
d y
c
d
x2 ( y )
x1 ( y )
f ( x , y )dx
3. 计算公式及方法:
当 D 为X型区域时: y
y=2(x)
y=1(x)
y
y=2(x) y=1(x)
O a
b
x
O a
b
二重积分的计算
二重积分的计算二重积分的计算,是多元函数积分学的第一个难关,这一关过好了,对于其他类型(三重积分,曲线和曲面积分等)的积分,将开个好头,希望大家真正理解并掌握。
首先需要化点功夫弄明白二重积分的定义以及性质。
这里我就不写过多的内容,因为深入理解需要在具体的计算中才能加深理解,就事论事地背定义是很难有效果的。
二重积分的计算,最基本也是最根本的是要理解转化二重积分为累次积分的原理,即一个二重积分化为两个有先后次序的定积分,这2个定积分一般彼此存在着关系,先积分的那个定积分一般是后一个定积分的被积函数。
转化的前提是需要将被积区域D 表示为不等式形式。
二重积分的被积区域是个平面域,常用两种表示法:1)12()():x y x D a x b ϕϕ≤≤⎧⎨≤≤⎩,这时,累次积分的次序是“先y 后x ”,具体公式为2211()()()()(,)(,)(,)x x bb Da x a x f x y d f x y dy dx dx f x y dy ϕϕϕϕσ⎛⎫== ⎪ ⎪⎝⎭⎰⎰⎰⎰⎰⎰。
2)12()():y x y D c y d ψψ≤≤⎧⎨≤≤⎩,这时,累次积分的次序是“先x 后y ”,具体公式为2211()()()()(,)(,)(,)y y dd Dc y c y f x yd f x y dx dy dy f x y dx ψψψψσ⎛⎫== ⎪ ⎪⎝⎭⎰⎰⎰⎰⎰⎰。
上述公式表示的是在直角坐标系下的计算公式。
在直角坐标系下,对平面区域可以沿平行于坐标轴的直线来分划该区域,所以积分微元d dxdy σ=。
如果被积区域D 是一个矩形区域,则:c y dD a x b ≤≤⎧⎨≤≤⎩,而且被积函数可表为(,)()()f x y g x h y =, 此时,二重积分实际变为两个独立定积分的乘积:(,)()()()()bd b dDa c a c f x y d g x h y dy dx g x dx h y dy σ⎛⎫== ⎪⎝⎭⎰⎰⎰⎰⎰⎰,这是二重积分计算中最简单的情况。
6-2-二重积分的计算[1]
d
ψ 2 ( y)
⑤
的二次积分公式。 上式右端的积分称为先对 x 后对 y 的二次积分公式。
型区域的特点是 Y 型区域的特点是:穿过 D 内部
y 公式⑤ 型区域。 用公式⑤时,必须是 Y 型区域。 d
D
x=ψ2( y)
且平行于 x 轴的直线与 D 的边界 相交不多于两点。 相交不多于两点。
x=ψ1( y)
第三原则—分块原则: (3) 第三原则—分块原则:若积分区域既是 X 型又是 Y 型 且满足第一原则时, 要使积分分块最少。 且满足第一原则时, 要使积分分块最少。
的积分次序。 例 4.交换二次积分的积分次序。 .交换二次积分的积分次序 (1) ∫ dy ∫ )
0 4 2− y − y
f(x,y)dx
x
∫∫ e
D
− y2
dσ = ∫ dy ∫
0
1
1 − y2 y − y2 e dx = ye dy 0 0
∫
o
1 − y2 1 1 = e = (1− e −1 ). 0 2 2
积分次序的选择原则:
第一原则—函数原则: (1) 第一原则—函数原则:必须保证各层积分的原函数 能够求出。 能够求出。 (2) 第二原则—区域原则:若积分区域是 X 型(或 Y 型) 第二原则—区域原则: 则先对 y (或 x) 积分。
y
y= x =
o
D1
1
1 x
(4, 2)
D2
y= x−2
4 x
4 x
y=− x (1,−1)
5 ∫∫ xydσ = ∫∫ xydσ + ∫∫ xydσ = ∫0 dx ∫− x xydy + ∫1 dx ∫x−2 xydy = 5 8 .
高等数学下册第十章 重积分
sin x dxd y
π sin x dx
x
dy
Dx
0x
0
π
0 sin x dx
y yx
D xπ
o
πx
2
说明: 有些二次积分为了积分方便, 还需交换积分顺序.
DMU
第二节 直角坐标系中二重积分的计算
例 交换下列积分顺序
2
x2
22
8 x 2
I
0
dx
2 0
f (x, y)dy 2
dx0
f (x, y)dy
y y 2(x) D
D
:
1(
x) a
y x
b
2
(
x)
x o a y 1(x)b x
则
f (x, y) dx d y
b
dx
a
2 (x) 1( x)
f (x, y) dy
D
即先对y后对x积分
y d
x 2(y)
(2)
若D为Y -型区域
D
:
1(
y) c
x y
2 ( y)
d
y
x 1(y)
例 计算二重积分
exyds 其中D {(x, y) x y 1}
D
答案为 e e1
-1
1
DMU
第二节 直角坐标系中二重积分的计算
例 求两个底圆半径为R 的直角圆柱面所围的体积.
解 设两个直圆柱方程为
z
x2 y2 R2, x2 z2 R2
利用对称性, 考虑第一卦限部分, R
其曲顶柱体的顶为 z R2 x2
D2
为D 的面积, 则
1d d
D
关于计算二重积分的几种方法
例 4 : 求 : f f ( 1 + 。 ’ ) , 其 中 D 由 = 一 1 ,
, = f I 2
皓
号
Y = , =1 围成。
解 :利用 函数 的右 禺 性 及积 分区 域的对 称性 可 以简化 计算 ,有
2极 坐 标 系 下 计 算 = I 积 分
有直 角坐标 系计算 二重 积分 ,极 坐标 系下 计 算二 重积 分 ,利用 对
I + Y : 1
例3 : 求 , : f 『 a r c t a 1 1
解:
.
称 性计 算 二重 积分 等等 。下 面分 别就 这三 个方 面 介绍计 算 二 重积 分 的方 法 , 对 每种方 法给 出相 应的求 解思 路 ,并举 出典 型的 实例 , 便 于读 者 更好 地理 解和 掌握 这 些方 法 ,达到 事半 功倍 、举 一 反三
关键 词 : 二重积分
二次积分
直 角坐标 系 极 坐标系
中 图分类 号 :0 7 1 2 . 2 文献 标识码 :A
被积函 数f ( x , ) 或者 积分区 域D中 含有 “ , +Y ‘ ’^ , 一”时
二 重 积 分 的 计算 是 高 等 数 学 中 多 元 函数 积 分 学 重 要 的 一 部 可 以用极 坐标 来计 算二 重积 分 。直 角坐 标与
例 乏 求 = 盯 吾 , 其 中 D 由 : 2 , y = x , x y = l  ̄。 其中 D 是 D 的第一象限部分。
( 4 ) D 关 于 : 轴 对 称 , Ⅱ 厂 ( , y ) d a =  ̄ f ( y , x ) d c r ;
解: 先确定积分区域 D : { l 1 ,, , 则 S x S