多元函数积分学总结

合集下载

第一轮复习之多元函数积分学

第一轮复习之多元函数积分学
D
f ( x, y ) ≡ 0 , ( x, y ) ∈ D 。
设 f ( x, y ) 在 D 上连续, 若在 D 内的任意子区域 D0 , 有 ∫∫ f ( x, y )dxdy = 0 ,则 f ( x, y ) ≡ 0 , ( x, y ) ∈ D 。
D0
三、
两类曲线积分之间的联系: 1) 设 L ∩ 是分段光滑的曲线,两类曲线积分的关系为:
切不可大意失荆州! 具体计算方法: 取 x 轴上一点 x0 , 做平行于 YOZ 的平面 x = x0 , 这 个 截面是以区间
[ϕ1 ( x), ϕ2 ( x)] 为底,曲线 z = f ( x, y)
ϕ2 ( x )
为曲边的曲边梯形,这个截面的面积
f ( x0 , y ) dy
AB
L∩
Qdy ∫ ( P cos α + Q cos β ) ds ∫ Pdx +=
AB
L∩
AB
cos α cos β
为曲线弧 AB 从 A 到 B 方向的切线的方
AB

向余弦,P Q 是在 L ∩ 上的连续函数。 可推广到空间的情形。 2) 两类曲面积分之间的关系: 设 ∑ 为光滑的曲面,则两类曲面积分之间的关系为:
S
∫∫ Rdxdy = 0 (若 S 在垂直于 OXY 平面)
S
四、
多元积分的运算:
6
细节决定成败!
切不可大意失荆州! 1) 曲线积分化成定积分: 根据: 曲线由参数方程给出:
= ds
φ ′2 (t ) + ϕ ′2 (t )dt
r 2 (θ ) + r ′2 (θ )dθ
曲线由极坐标方程给出:
= ∫ f ( x, y, z )ds

大学数学微积分第九、十章 多元函数积分学二重积分知识点总结

大学数学微积分第九、十章  多元函数积分学二重积分知识点总结

第九、十章 多元函数积分学§9.1 二重积分一、在直角坐标系中化二重积分为累次积分以及交换积分顺序序问题 X型区域:设有界闭区域{}12(,),()()D x y a x b x y x φφ=≤≤≤≤其中12(),()x x ϕϕ在[,]a b 上连续,(,)f x y 在 D 上连续,则21()()(,)(,)(,)x bDDax f x y d f x y dxdy dx f x y dy φφσ==⎰⎰⎰⎰⎰⎰Y 型区域:设有界闭区域{}12(,),()()D x y c y d y x y φφ=≤≤≤≤其中12(),()y y ϕϕ在[,]c d 上连续,(,)f x y 在D 上连续则21()()(,)(,)(,)y dDDcy f x y d f x y dxdy dy f x y dx ϕϕσ==⎰⎰⎰⎰⎰⎰关于二重积分的计算主要根据X 型区域或Y 型区域I ,把二重积分化为累次积分从而进行计算,对于比较复杂的区域D 如果既不符合X 型区域中关于D 的要求,又不符合Y 型区域中关于D 的要求,那么就需要把D 分解成一些小区域,使得每一个小区域能够符合X 型区域或Y 型区域中关于区域的要求,利用二重积分性质,把大区域上二重积分等于这些小区域上二重积分之和,而每个小区域上的二重积分则可以化为累次积分进行计算。

在直角坐标系中两种不同顺序的累次积分的互相转化是一种很重要的手段,具体做法是先把给定的累次积分反过来化为二重积分,求出它的积分区域D ,然后根据D 再把二重积分化为另外一种顺序的累次积分。

二、在极坐标系中化二重积分为累次积分在极坐标系中一般只考虑一种顺序的累次积分,也即先固定θ对γ进行积分,然后再对θ进行积分,由于区域D 的不同类型,也有几种常用的模型。

模型I 设有界闭区域{}12(,),()()D γθαθβϕθγϕθ=≤≤≤≤其中12(),()ϕθϕθ在[,]αβ上连续,(,)(cos ,sin )f x y f γθγθ=在D 上连续。

多元函数微积分学总结

多元函数微积分学总结

多元函数微积分学总结多元函数微积分学是微积分学的一个重要分支,研究多个变量之间的关系以及对这些变量的变化进行分析和计算。

本文将对多元函数微积分学的主要内容进行总结,并介绍常见的方法和技巧。

一、空间坐标系和极坐标系在多元函数微积分学中,我们通常使用空间坐标系和极坐标系来描述多维空间中的点和曲线。

空间坐标系是由三个相互垂直的坐标轴x、y、z组成,用来表示三维空间中的点。

我们可以通过向量运算、平面的方程等方式来研究空间中的曲线、曲面以及相关的计算方法。

极坐标系是在平面上建立的坐标系,由极径r和极角θ组成。

极坐标系可以用来描述平面上的点和曲线,通过坐标变换的方法可以与空间坐标系进行转换。

二、多元函数的极限和连续性多元函数的极限和连续性是多元函数微积分学的基础概念。

类似于一元函数的极限和连续性,多元函数的极限和连续性也可以通过定义、性质等方式进行研究和计算。

对于多元函数的极限,我们需要考虑函数在不同方向上的极限以及函数在某点处的极限。

通过使用极限的定义和极限运算法则,我们可以判断多元函数在某点处的极限是否存在,并进行具体的计算。

多元函数的连续性与一元函数的连续性类似,即函数在某点附近的函数值和极限值之间存在一个足够小的常数δ,使得当自变量的取值在这个常数范围内时,函数值的变化足够小。

通过使用连续函数的定义和连续性的性质,我们可以判断多元函数在某点处是否连续,并进行具体的计算。

三、多元函数的偏导数和全微分多元函数的偏导数和全微分是研究多元函数变化的重要工具,在微积分学中有着广泛的应用。

对于多元函数的偏导数,我们可以通过定义和偏导数的性质来进行计算。

偏导数可以表示函数在某个方向上的变化率,它在多个方向上的值决定了函数的变化趋势和比例。

通过计算偏导数和一阶偏导数的矩阵,我们可以得到多元函数的梯度,进而进行更复杂的分析和计算。

多元函数的全微分则广义地描述了函数在某一点附近的变化情况。

全微分可以通过偏导数和偏导数向量的运算来进行计算,并可以表示函数值的一个线性近似。

04高数——多元函数积分学知识点速记

04高数——多元函数积分学知识点速记

多元函数积分学1、不定积分1)原函数定义定义在某区间I 上的函数()f x ,若对I 的一切x ,均有()()F x f x '=,则称()F x 为()f x 在区间I 上的原函数。

若函数()f x 存在原函数,则()f x 就有无穷多个原函数,可表示为()F x C +。

2)不定积分定义函数()f x 的全体原函数称为()f x 的不定积分,记作()d f x x ⎰。

若()F x 是()f x 的一个原函数,则()()d f x x F x C =+⎰(C 为任意常数)3)不定积分计算:①第一类换元积分法:设()f u 具有原函数()F u ,而()u x ϕ=可导,则有()()()()d d f x x x f u u F x C ϕϕϕ'==+⎡⎤⎡⎤⎣⎦⎣⎦⎰⎰②第二类换元积分法:设()x t ϕ=在区间[],αβ上单调可导,且()0t ϕ'≠,又设()()f t t ϕϕ'⎡⎤⎣⎦具有原函数()F t ,则有()()()()()1d d f x x f t t t F t c F x Cϕϕϕ-'⎡⎤==+=+⎡⎤⎣⎦⎣⎦⎰⎰式中,()1x ϕ-为()x t ϕ=的反函数。

高 数多元函数积分学知识点速记③分部积分法:设()u x ,()v x 可微,且()() d v x u x ⎰存在,由公式()d d d uv u v v u =+得到分部积分公式d d u v uv v u=-⎰⎰2、定积分1)两点规定:①当a b =时,()d 0b a f x x =⎰;②当a b >时,()()d d b a a b f x x f x x =-⎰⎰2)积分上限函数及其导数①()d xa f x x ⎰为积分上限函数,记作()()d x ax f x x Φ=⎰,经常写成如下形式()()()d xa f t t a x xb Φ=≤≤⎰②积分上限函数的导数()()()d x a x f t t f x '⎡⎤'Φ==⎢⎥⎣⎦⎰()a xb ≤≤③()()()()()()()d g x h x f t t f g x g x f h x h x '⎡⎤''==⋅-⋅⎡⎤⎡⎤⎣⎦⎣⎦⎢⎥⎣⎦⎰3、定积分的应用旋转体的体积:设由曲线()y f x =,直线x a =,x b =以及x 轴围成的平面图形,绕x 轴旋转一周而生成的旋转体的体积,则()2πd b x aV f x x =⎡⎤⎣⎦⎰平行截面面积为已知的立体的体积:设立体由曲面S ,以及平面x a =、x b =所围成,且对于[],a b 上任一点x 作垂直截面,截得的面积()A A x =为x 的连续函数,则()d bc V A x x =⎰4、二重积分1)二元函数(),f x y 在闭区域D 上的二重积分,记作(),d D f x y σ⎰⎰2)(),d f x y σ⎰⎰表示以曲面(),z f x y =为顶,以区域D 为底,以D 的边D界为准线,母线平行于 Oz 轴的柱面围成的曲顶柱体的体积。

多元函数积分学

多元函数积分学

多元函数积分学是数学的一个分支,它是对多元函数进行积分的理论。

与一元函数积分学相比,它更加复杂,但它为我们研究物理学、工程学和其他自然科学问题提供了更强大的工具。

在本文中,我将介绍的一些基本理论,包括重积分、极坐标变换、格林公式等。

一、重积分重积分是的基本概念,它是对多元函数在某一区域上的积分。

重积分可以表示为Riemann积分或Lebesgue积分两种形式,具体形式与多元函数的性质有关。

在Riemann积分中,我们将区域分成有限个小区域,对每个小区域内的多元函数进行积分,最后将积分结果相加。

而在Lebesgue积分中,我们采用测度的概念,将多元函数的定义域分成不可数个小区域,在每个小区域上定义一个测度,对多元函数在每个小区域内的值进行加权积分,最后求出所有小区域上的积分和即为整个区域上的积分。

重积分在物理学和工程学中有着广泛的应用,例如计算物体的体积、求解场的强度等。

同时,重积分也是进一步研究多元函数性质的基础。

二、极坐标变换极坐标变换是一种将平面直角坐标系上的点表示为极径和极角的变换。

它可以将一些复杂的函数转化为简单的极坐标函数,使得对多元函数进行积分更加方便。

在极坐标系中,被积函数可以表示为一个积分项和一个积分域,积分项为正态函数,积分域为从 $0$ 到 $2\pi$ 的一个闭区间和一个在某个圆内部的有界区域,在这个有界区域上的积分相当于在平面直角坐标系上的二重积分。

因此,我们可以使用积分转化公式将多元函数在极坐标系中的积分转化为在平面直角坐标系中的二重积分。

极坐标变换在数学中有着广泛的应用。

例如,对于一个椭球体积的计算,使用极坐标变换可以将三维积分转化为二维积分,更加方便计算。

三、格林公式格林公式是中的一个重要定理,它是关于多元函数的一个等式,用于计算曲面积分和线积分之间的关系。

在平面上,格林公式是一个计算平面上曲线积分和面积的公式,它表明二元函数在解析条件下,其在一个闭合路径内的曲线积分等于该函数在这个区域内的面积积分。

多元函数积分学

多元函数积分学
(3)规定
( 4)

(5)如果 是分段光滑的:
,则

(6)如果 是封闭曲线,特记为 。
所围成的区域。
解二:画出积分区域的草图。 因为 D虽然是 X----型区域,但由于在定限时,第一次积分的上、下限发生了一次
改变,故不得已对 D进行分块。(作图:用直线
将 D分成
其中,

于是,有

注意;由例 2可见,对此题,虽然两种积分次序都可行,但第二种显然更麻烦。我们说有些 时候,就不仅仅是麻烦的问题了,如果积分次序选得不合适,可能做不出来。请看下面的
解:(1)这里
。画出草图如右。
(2)更换积分次序,即要将积分区域视为 X----型区域。为定限方便,需将积分区域分 为三块:
,则
其中,


于是,有:
例 9。对 (1)画出积分区域的草图;(2)更换积分次序。
解:(1)这里 记

。分别画
出草图如右。则
(2)更换积分次序,即要将积分区域视为 X----型区域。为定限方便,需将积分区域分 为四块:
,所以,
3.由积分中值定理,知:
注意:(6)关于重积分的对称性 (i)如果积分区域 D关于 X轴(或 Y)轴 对称,且被积函数
为奇,则
=0;
关于 y(或 X)
(ii)如果积分区域 D关于 X轴(或 Y)轴 对称,且被积函数
关于 y(或 X)
为偶,则
(其中, 为 D的上(右)一半区域)。
三.二重积分的计算 (一)利用直角坐标计算二重积分
的上、下限; (三)。计算累次积分。 注意:选择积分次序的原则 (一)。选择的积分次序使积分区域 D尽可能的少分块,以简化计算过程。 (二)。第一次积分的上、下限表达式要简单,并且容易根据第一次计算的结果作第二 次积分。 (三)。确定上、下限是重积分的关键。

多元函数的积分

多元函数的积分

多元函数的积分在数学中,多元函数的积分是一个重要的概念和计算方法。

与一元函数的积分不同,多元函数的积分需要考虑多个自变量和相应的积分变量。

一、多元函数的积分定义对于二元函数f(x, y),其在有界闭区域D上的积分可以定义为:∬f(x, y)dA = limΔx,Δy→0 Σf(xi, yj)ΔA其中,Δx和Δy分别表示x和y方向的分割长度,Σ表示对所有的(i, j)求和,xi和yj表示分割后的小区域的任意点,ΔA表示小区域的面积。

对于n元函数f(x1, x2, ..., xn),其在有界闭区域D上的积分可以定义为:∭f(x1, x2, ..., xn)dV = limΔx1,Δx2,...,Δxn→0 Σf(x1i, x2j, ..., xnk)ΔV其中,Δx1, Δx2, ..., Δxn分别表示各个方向的分割长度,Σ表示对所有的(i1, i2, ..., in)求和,x1i, x2j, ..., xnk表示分割后小区域的任意点,ΔV表示小区域的体积。

二、多元函数的积分计算与一元函数的积分类似,对于多元函数的积分计算也需要借助于定积分的性质、微积分的基本定理和换元积分法等方法。

1. 球坐标和柱坐标对于具有某种对称性的多元函数,可以选择适当的坐标系来简化积分计算。

常用的坐标系有球坐标和柱坐标。

球坐标系适用于具有球对称性的问题,对于三元函数可以表示为:x = rsinθcosφ, y = rsinθsinφ, z = rcosθ其中,r代表点到坐标原点的距离,θ表示点与正z轴的夹角,φ表示点在xy平面上与正x轴的夹角。

柱坐标系适用于具有柱对称性的问题,对于三元函数可以表示为:x = rcosθ, y = rsinθ, z = z其中,r代表点到z轴的距离,θ表示点在xy平面上与正x轴的夹角,z表示点在z轴上的坐标。

2. 积分的性质多元函数的积分具有类似于一元函数积分的一些性质,如线性性质、可加性质、保号性质等。

高数(同济第六版)下册多元函数的积分学及其应用知识点

高数(同济第六版)下册多元函数的积分学及其应用知识点

第十章多元函数的积分学及其应用一、二重积分1.二重积分的概念�定义:设(,)f x y 是有界闭区域D 上的有界函数,“分割、近似、求和、取极限”:01(,)lim (,)n i iii D f x y d f λσξησ→==∆∑∫∫其中:D 为积分区域,(,)f x y 称为被积函数,d σ为面积元素。

�几何意义:当(,)0f x y ≥,(,)D f x y d σ∫∫表示以区域D 为底、以曲面(,)z f x y =为顶的曲顶柱体的体积。

�非均匀平面薄片的质量:(,)DM x y d µσ=∫∫。

2.二重积分的性质�性质1(线性性质).),(),()],(),([∫∫∫∫∫∫±=±DD D d y x g d y x f d y x g y x f σβσασβα�性质2(区域具有可加性)如果闭区域D 可被曲线分为两个没有公共内点的闭子区域1D 和2D ,则.),(),(),(21∫∫∫∫∫∫+=D D Dd y x f d y x f d y x f σσσ�性质3如果在闭区域D 上,σ,1),(=y x f 为D 的面积,则.1σσσ==⋅∫∫∫∫DD d d 几何意义:以D 为底、高为1的平顶柱体的体积在数值上等于柱体的底面积。

�性质4(单调性)如果在闭区域D 上,有),,(),(y x g y x f ≤则.),(),(∫∫∫∫≤DD d y x g d y x f σσ推论1.|),(|),(∫∫∫∫≤DD d y x f d y x f σσ推论2设m M ,分别是),(y x f 在闭区域D 上的最大值和最小值,σ为D 的面积,则.),(σσσM d y x f m D≤≤∫∫这个不等式称为二重积分的估值不等式。

�性质5(积分中值定理)如果函数(,)f x y D 上连续,σ是D 的面积,那么在D 上至少存在一点(,)ξη,使得(,)(,)Df x y d f σξησ=⋅∫∫。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多元函数积分学总结
引言
多元函数积分学是微积分的一个重要分支,研究的是多个变量的函数在特定区域上的积分计算和性质。

在实际问题中,我们经常需要求解多元函数的积分,以求得面积、体积、质量等物理量。

本文将对多元函数积分学的基本概念、计算方法和应用进行总结和介绍。

一、多元函数积分的基本概念
1. 二重积分
二重积分是多元函数积分学中最基本的概念之一。

它表示在二维平面上的一个有界区域上对函数进行积分。

二重积分的计算可以通过投影到坐标轴上的两个一元积分来实现。

根据积分区域的形状和函数性质的不同,二重积分可以分为类型I和类型II两种。

•类型I:积分区域为矩形、正方形或一般的可由直线分割成有限个矩形的区域。

•类型II:积分区域不属于类型I的情况,一般需要进行变量替换或极坐标转化来简化计算。

2. 三重积分
三重积分是对三维空间内的函数进行积分。

它可以用于计算体积、质量、重心等与物体形状和密度有关的物理量。

三重积分的计算方法较为复杂,一般需要采用适当的坐标变换或者使用球坐标、柱坐标等不同坐标系下的积分公式来进行计算。

二、多元函数积分的计算方法
1. Fubini定理
Fubini定理是多元函数积分计算的基础定理之一。

它建立了二重积分和三重积分之间的关系,使得计算复杂多元函数积分时可以拆分为若干个简单的积分。

Fubini定理主要有两种形式:对于矩形区域上的二重积分,可以通过交换积分次序将其转化为两次一元积分。

对于空间区域上的三重积分,也可以利用类似的方法进行计算。

2. 极坐标和球坐标
对于具有相关几何特性的问题,使用极坐标和球坐标可以简化多元函数积分的
计算过程。

极坐标常用于计算平面上的二重积分,而球坐标常用于计算空间中的三重积分。

通过引入极坐标或球坐标的坐标变换,我们可以将原积分区域变换为一个更简
单的形式,从而简化积分计算。

在实际应用中,灵活运用极坐标和球坐标可以大大提高计算效率。

三、多元函数积分的应用
多元函数积分在物理学、工程学、经济学等领域有广泛的应用。

以下列举其中
一些典型的应用场景和问题。

1. 物体质量和重心的计算
通过三重积分可以计算不规则物体的质量和重心。

根据物体的密度分布,我们
可以将物体分成无穷小的体积元,并对每个体积元的质量进行积分得到总质量。

同时,通过坐标系的选择和合理的变量代换,可以计算得到物体的重心位置。

2. 曲面的面积和质量
通过二重积分可以计算曲面的面积和质量。

根据曲面方程,我们可以将其参数化,并对每个参数范围内的面积或质量进行积分得到总面积或总质量。

3. 空间区域的体积
通过三重积分可以计算空间区域的体积。

根据区域的形状,可以选择适当的坐
标系并确定积分区域的边界。

通过积分计算每个体积元的体积,并对整个区域进行积分得到总体积。

结论
多元函数积分学是微积分的重要分支,它研究的是多个变量的函数在特定区域
上的积分计算和性质。

通过掌握多元函数积分的基本概念、计算方法和应用,我们可以应用高等数学知识解决实际问题,对于各种物理量的计算和分析提供有效的数学工具。

在实际应用中,灵活运用坐标变换和积分计算技巧可以大大简化计算过程,提高计算效率。

相关文档
最新文档