单级斜齿圆柱齿轮传动设计书
一级斜齿圆柱齿轮减速器设计

目录机械设计课程设计计算说明书前言一、课程设计任务书说明书………………………………………………计算过程及计算说明一、传动方案拟定…………………………………………………………二、电动机选择……………………………………………………………三、计算总传动比及分配各级的传动比…………………………………四、运动参数及动力参数计算……………………………………………五、V带传动的设计计算…………………………………………………六、轴的设计计算…………………………………………………………七、齿轮传动的设计计算…………………………………………………八、滚动轴承的选择及校核计算…………………………………………九、键联接的选择…………………………………………………………十、箱体设计………………………………………………………………十一、润滑与密封…………………………………………………………十二、设计小结……………………………………………………………十三、参考文献……………………………………………………………课程设计任务书说明书设计一个用于带式运输一级直齿圆柱齿轮减速器。
输送机连续工作,单向运转,载荷平稳,输送带拉力为1.5KN,输送带速度为1.3m/s,卷筒直径为300mm。
输送机的使用期限为10年,2班制工作。
按弯扭合成应力校核轴的强度此,作为简支梁的轴的支撑跨距17575L=+,据按弯扭合成应力校核轴的强度120MPa=)101.81 5机械零件课程设计计算说明书设计题目:圆柱斜齿轮减速器班级:09机电一体化设计者:XXX指导教师:XXX2011年6月27日。
机械设计课程设计 (带传动—单级圆柱斜齿减速器)

一、设计题目:四、设计计算和说明:2确定传动装置的总的传动比和分配传动比(齿轮传递效率),4η=0.96(卷筒效率),5η=0.99(凸轮连轴器)aη= 0.96*30.98*0.97*0.99*0.96=0.83所以dP=1000aFVη=2250 1.310000.83⨯⨯=3.5kw确定电动机转速卷筒轴工作转速为:n=601000VD⨯Ω=6010001.3240⨯Ω⨯=103.45 minr取传动比:V带的传动比为'1i=2—4,一级圆柱斜齿传动比为'2i=3—6,所以总的传动比'ai=6—24,故电动机转速的可选范围为:'dn='ai⨯n=(6—24) ⨯103.45=621~2483minr最符合这一条件的电机为Y112M—4该电机的主要参数为:电机选用Y112M—4(主要参数:额定功率:4KW;满载转速:n=1440r/min;启动转矩T=2.0;最大转矩2.0).安装尺寸如下:电动机选好后试计算传动装置的总传动比,并分配各级传动比。
电动机型号Y112M—4,满载转速1440minr2.1 总传动比:有式ai=mmn=1440103.45=4.64分配传动比因为0ai i i=•式中i,i分别为带传动和减速器的传动比。
为使V带传动外廓尺寸不致过大,初步选0i=3,则一级4η=0.965η=0.990.83aη=3.5dP kw=n=103.45minr'dn=621~2483minr电动机选用Y112M—4传动装置的总的传动比和分配传动比所用公式皆引自《机械设计课程设计指导书》第18~~22页主要参数:3 V带传动装置:2.2.4各轴的输入转矩:dT=9550dmnP=23.21NM1T=d T0i01η=23.21*3*0.96=66.85NM2121266.85*4.64*0.98*0.97294.86N miT Tη=••==•卷筒轴输入3224294.86*0.98*0.99286.07N mT Tηη=••==•2.2.5各轴的输出转矩:'112'222'33266.85*0.9865.513294.86*0.98288.96286.07*0.98280.35N mN mN mT TT TT Tηηη=•==•=•==•=•==•运行和动力参数计算结果整理于下表:已知原动机为Y112M—4型(主要参数:额定功率:4KW;满载转速:n=1440r/min;启动转矩T=2.0;最大转矩2.0)电动机到I轴的传动比为3.0。
单级圆柱齿轮减速器设计说明书

设计
项目
计算公式及说明主要结果
1.设计任务
(1)设计带式传送机的传动系统,采用单级圆柱齿轮减速器和开式圆柱齿轮传动。
(2)原始数据
输送带的有效拉力 F=4000N
输送带的工作转速 V=s(允许误差 5%)
输送带滚筒的直径 d=380mm
减速器的设计寿命为5年
(3)工作条件
两班工作制,空载起动,载荷平稳,常温下连续单向运转,工作环境多尘;三相交流电源,电压为380V/220V。
2.传动方案的拟定
带式输送机传动系统方案如下所示:
带式输送机由电动机驱动。
电动机1通过联轴器2将动
力传入减速器3,再经联轴器4及开式齿轮5将动力传至输送
机滚筒6,带动输送带7工作。
传动系统中采用单级圆柱齿轮
减速器,其结构简单,齿轮相对于轴位置对称,为了传动的
平稳及效率采用斜齿圆柱齿轮传动,开式则用圆柱直齿传动。
传动系统方
案图见附图(一)
参考文献
[1] 诸文俊主编,机械原理与设计,机械工业出版社,2001
[2] 任金泉主编,机械设计课程设计,西安交通大学出版社,2002
[]3朱文俊钟发祥主编,机械原理及机械设计,西安交通大学城市学院,2009
马小龙
2009年6月30日。
单级斜齿轮传动课程设计

一、传动方案拟定1、设计任务:设计用于螺旋输送机上的传动装置工作条件:三班制单向连续运转,载荷平稳,使用年限为10年,只生产10台,每年工作240天,输送工作转速允许误差为±5%,输送级效率为0.95(包括轴承的效率)。
2、设计原始数据:输送机工作轴转矩T=900N m转速n=125r/min3、方案拟定:根据设计任务,和实际情况,选择斜齿轮减速,外部传动为锥齿轮传动。
[бF2]= Бfe2/S F =480MPa 2. 按齿轮面接触强度设计计算齿轮按8级精度制造。
查表取载荷系数K=1.3,齿宽系数φd =0.8,计算齿轮转矩﹑初选螺旋角﹑实际传动比以及齿形系数。
小齿轮上的转矩 T 1 = 9.55×106×(P Ⅰ/ n Ⅰ) =9.19×105 N ·mm 取Z E =188 标准齿轮Z H =2.5 初选螺旋角 = 15°βZ =βCOS =0.981d []321d 12⎪⎪⎭⎫⎝⎛∂•••±•Φ≥H Z ZH ZE U U KT β=60.606mm取小齿轮齿数为Z 1=21,大齿轮齿数为Z 2=81.69,取Z 2=82, 实际传动比i=88.321=Z Z模数 11COS d m Z n β•==2.788 取模数 3 计算中心距 a ()βcos 221nm z z +==159.95mm[бF2] =480MPaT 1= 9.19×105 N ·mmi=3.88=n m 3a 圆整后取160mm按圆整后的中心距修正螺旋角 β= arcos()am z z n221+= 15°36’39’’计算大、小齿轮的分度圆直径1d βcos 1nm z ==65.243mm 2d βcos 2n mz ==254.757mm计算齿轮宽度b=φd d 1= 0.8×76023= 52.19mm取b 1=55mm ,b 2= 50mm3.按弯曲强度校核 齿形系数 Z V1=Z 1/=23.302 Z V2=Z 2/=90.99查图11-8得 Y Fa1=2.8 Y Fa2=2.23 查图11-9得 Y Sa1=1.58 Y Sa2= 1.78бF1=nSa Fa m Y Y KT •••1111d b 2=98.2MPa<[бF1]=368MPa该斜齿轮安全=a 160mm=β15°36’39’’1d =65.243mm 2d =254.757mm=1b 55mm =2b 50mmZ V1=23.302 Z V2=90.99确定齿轮和轴承的润滑计算齿轮圆周速度 11601000v d n π=⨯=4.8m/s <5m/s 所以齿轮采用油润滑1. 轴材料的选择根据轴的受力分析查表 轴2选择45钢,调制处理,而轴1和齿轮做成一体,则选择和小齿轮一样的材料同样选用45钢 2. 轴的结构设计 (1) 高速轴高速轴径向选择:1、联轴器轴段:根据最小直径和联轴器的标准尺寸选择,d 1=40mm2、密封处轴段:根据密封圈的标准(拟采用毡圈密封)取 d 2=45mm轴的载荷图(2)低速轴1、联轴器轴段:根据最小直径和联轴器的标准尺寸选择,D1=45mm2、密封处轴段:根据密封圈的标准(拟采用毡圈密封)取 D2=50mm3、滚动轴承轴段:D3=55mm(按标准选取)4、齿轮处轴段:该段轴应比滚动轴大2到3mm 则选D24=57mm5、过度轴段(轴肩):D4=69mm,D5=62mm(由于箱体内壁等原因此段比较长因此采用阶梯轴肩)根据齿宽b和轴承标准件的宽度以及箱座的的结构,定L1=84mm;L2=53 mm;L3=30mm ;轴的载荷分析图如下选用凸缘式端盖易于调整,采用闷安装无架式旋转轴J封圈实现密封。
【精品】毕业设计---单级斜齿圆柱齿轮减速器设计

【精品】毕业设计---单级斜齿圆柱齿轮减速器设计目录一.设计要求 (4)1.1传动装置简图 (4)1.2原始数据 (4)1.3工作条件 (4)二.传动系统的总体设计 (6)2.1电动机的选择 (6)2.1.1选择电动机类型 (6)2.1.2选择电动机容量 (6)2.1.3确定电动机转速 (6)2.2传动装置运动和动力参数的计算 (7)2.2.1计算总传动比及分配传动比 (7)2.2.2计算传动装置各轴的运动和运动参数 (7)2.2.2.1各轴轴转速 (7)2.2.2.2各轴的输入功率 (8)2.2.2.3各轴的输入转矩 (8)三 V带及带轮结构设计 (10)4.1 一级斜齿轮大小齿轮的设计 (12)4.1.1选精度等级,材料及齿数 (12)4.1.2按齿面接触强度设计 (12)4.1.3 按齿根弯曲强度设计 (14)4.1.3.1确定参数 (14)4.1.3.2 设计计算 (15)4.1.4几何中心距计算 (15)4.1.5齿轮受力分析 (16)五轴的计算 (17)5.1 齿轮轴的设计 (17)5.1.1基本参数 (17)5.1.2初步确定轴的最小直径 (17)5.1.3轴的结构设计 (18)5.1.4轴的受力分析 (19)5.1.5按弯扭合成应力校核轴的强度 (21)5.1.6精确校核轴的疲劳强度 (21)5.2低速轴的设计 (22)5.2.1材料选择及热处理 (22)5.2.2初定轴的最小直径 (23)5.2.3轴的结构设计 (23)5.2.4轴的受力分析 (25)5.2.5精确校核轴的疲劳强度 (27)六轴承、润滑密封和联轴器等的选择及校验计算 (31)6.1轴承的确定及校核 (31)6.1.1对初选高速及轴承7306C校核 (31)6..1.2对初选低速轴承7211AC进行校核 (34)6.2键的校核 (36)6.2.1齿轮轴上的键连接的类型和尺寸 (36)6.2.2大齿轮轴上的键 (36)6.3联轴器的校核 (37)6.4润滑密封 (37)七.箱体端盖齿轮的位置确定 (38)八.设计小结 (39)九、参考文献 (40)一.设计要求1.1传动装置简图带式运输机的传动装置如图所示1.2原始数据带的圆周力F/N 带速V(m/s) 滚筒直径D/mm2400N 2 4001.3工作条件三班制,使用十年,连续单向运载,载荷平稳,小批量生产,运输链速度允许误差为链速度的±5%.传动方案如下图所示二.传动系统的总体设计2.1电动机的选择2.1.1选择电动机类型按工作要求选用Y 型全封闭自扇冷式笼型三相异步电动机,电压为380V 2.1.2选择电动机容量电动机所需工作功率为awdp pη=又wwFVPη1000=根据带式运输机工作机的类型,可取工作机效率96.0=w η传动装置的总效率433221ηηηηη⋅⋅⋅=a 查课本表10-2机械传动和摩擦副的效率概略值,确定各部分效率为:联轴器效率99.01=η,滚动轴承传动效率(一对)99.02=η,齿轮转动效率99.03=η,V 带的传动效率96.04=η;代人得:893.096.099.099.099.032=⨯⨯⨯=a ηW η为工作机效率,96.0=W η所需电动机功率为KWFV P a W d 60.5893.096.01000224001000=⨯⨯⨯==ηη 电动机额定功率cdP 约大于dP ,由课本第19章表19-1所示Y 系列三相异步电动机的技术参数,选电动机额定功率cd P =7.5 2.1.3确定电动机转速卷筒轴工作转速为min 5.95min 4002100060100060r r D n =⨯⨯⨯=⨯=ππ V 带传动的传动比为2~4单级圆柱齿轮减速一般传动比范围为3~6 则总传动比合理范围为i=6~24故电动机转速可选范围min 2292~573min 5.95)24~6(''r r n i n d d =⨯=⋅=,符合这一范围的同步转速有750r/min 、960r/min 、1440r/min ,750r/min 不常用,故选择1440r/min 的电方案优点:结构简单、带传动易加工、成本低,可吸震缓冲,应用较广泛。
(完整版)单级斜齿圆柱齿轮减速器课程设计

机械设计课程设计计算说明书设计题目:带式运输机传动装置专业0班设计者:指导老师:2009 年 12 月27日专业课设计课程设计说明书一、传动方案拟定……………………………………………二、电动机的选择……………………………………………三、计算总传动比及分配各级的传动比……………………四、运动参数及动力参数计算………………………………五、传动零件的设计计算……………………………………六、轴的设计计算……………………………………………七、滚动轴承的选择及校核计算……………………………八、键联接的选择及计算……………………………………九、润滑方式的确定………………………………………十、参考资料………………………………………………计算过程及计算说明一、传动方案拟定1.设计题目名称单级斜齿圆柱齿轮减速器。
2.运动简图 3.工作条件运输机双班制工作,单向运转,有轻微振动,小批量生产,使用年限6年。
4,原始数据1.输送带牵引力F=1100N 2.输送带线速度V=1.5 m/s 3.鼓轮直径D=250 mm 二、电动机选择 1、选择电动机的类型:按工作要求和工况条件,选用三相鼠笼式异步电动机,封闭式结构,电压为380V ,Y 型。
2、计算电机的容量d P :ηa——电机至工作机之间的传动装置的总效率:式中:1η-带传动效率:0.95;2η-滚子轴承传动效率:0.993η-圆柱齿轮的传动效率:0.97;4η-弹性联轴器的传动效率:0.99 5η—卷筒的传动效率:0.96已知运输带的速度v=0.95m/s :所以:kwFv w adP 03.296.085.010005.111001000=⨯⨯⨯==ηη从表22-1中可选额定功率为3kw 的电动机。
3、确定电机转速:卷筒的转速为:min /65.11425014.35.1100060100060r D v n =⨯⨯⨯=⨯=π 按表14-8推荐的传动比合理范围,取V 带传动比4~21=i单级圆柱齿轮减速器传动比6~42=i ,则从电动机到卷轴筒的总传动比合理范围为:24~8=i 。
减速箱单级圆柱齿轮减速器和链传动设计说明书
减速箱单级圆柱齿轮减速器和链传动设计说明书第一章传动方案1.1拟定传动方案设计单级圆柱齿轮减速器和链传动,总体布置简图如下:图1-1传动方案设计简图原始数据:带送带最大有效拉力F=2600N传送带带速V=1.80m/s;滚筒直径D=400mm第二章电动机的选择计算合理的选择电动机是正确使用的先决条件。
选择恰当,电动机就能安全、经济、可靠地运行;选择得不合适,轻者造成浪费,重者烧毁电动机。
2.1选择电动机类型和结构形式电动机的型号很多,如无特殊要求通常选用丫系列异步电动机。
与单相异步电动机相比,三相异步电动机运行性能好,并可节省各种材料。
按转子结构的不同,三相异步电动机可分为笼式和绕线式两种。
笼式转子的异步电动机结构简单、运行可靠、重量轻、价格便宜,得到了广泛的应用。
Y 系列电动机是全封闭自扇冷式鼠笼型三相异步电动机,是全国统一设计的基本系列,它同时是符合JB/T9616-1999 和IEC34-1 标准的有关规定,具有国际互换的特点。
Y 系列电动机具有高效、节能、起动转矩大、噪声低、振动小、可靠性高、使用维护方便等特点。
Y 系列电动机广泛应用于不含易燃、易爆或腐蚀性气体的一般场合和特殊要求的机械设备上,如金属切削机床、泵、风机、运输机械、搅拌机食品机械等。
使用条件:环境温度:-15CVBV 40C额定电压:380V,可选220-760V之间任何电压值连接方式:3KW及以下丫接法、4KW及以上为△接法2.2 电动机容量的选择电动机功率的选择电动机功率的选择对电动机的工作和经济性都有影响。
电动机的功率不能选择过小,否则难于启动或者勉强启动,使运转电流超过电动机的额定电流,导致电动机过热以致烧损。
电动机的功率也不能选择太大,否则不但浪费投资,而且电动机在低负荷下运行,其功率和功率因数都不高,造成功率浪费。
(1)传动装置的总功率:由机械设计课程设计书表10-2 选取n cy :输送机滚筒效率n cy=0.96n b:—对滚动轴承的效率n b=0.99n g:闭式圆柱齿轮传动效率n g=0.97n c :联轴器效率n c=0.99n 4w:传动卷筒效率n 4w=o.96n h:为滚子链传动效率(闭式)n h=o.96则:n 01= n c=0.99 n 23= n g x n b=0.97 x0.99=0.9603n 12=n b=0.99 n 34=n h=0.96 n 4w=0.96(2)电机所需的工作功率:应使电动机额定功率Pe稍大于所需功率Pd;即Pe> Pd工作机所需功率:Pw=FV/(1000)= 2600x1.80/1000=4.68KW电动机的输出功率:P d=也n总估算总效率为n= n 01 Xn 12Xn 23Xn 34x n 4w=0.99 x 0.99 x 0.9603 x 0.96 x 0.96=0.8674则Pd=Pw/n =4.68/0.8674=5.395KW由设计指导书表12-1可知,满足Pe> Pd条件的系列三相交流异步电动机额定功率Pe应取5.5KW(3)确定电动机转速:一般机械中,用得最多的是同步转速为1500r/min或1000r/min的电动机。
单级斜齿圆柱齿轮减速器的设计计算说明书
课程设计指导课程名称:机械零件课程设计标题:带式输送机齿轮减速器班级:X班,XXXX,XXXX专业姓氏:XXXX编号:XXXXX讲师:XXXXX评估结果:老师的评语:讲师签名:目录一、设计任务书二。
设计目的三。
运动参数的计算、原动机的选择四。
链传动的设计和计算齿轮传动的设计和计算不及物动词轴的设计与计算低速轴的设计高速轴的设计和检查七。
检查滚动轴承的选择八。
键的选择和检查九。
联轴器的选择和计算XI。
润滑方式、润滑油品牌和密封装置的选择十二。
设计总结十三。
参考文献一.程序1.设计题目:带式输送机齿轮减速器2.传动装置示意图1.马达2。
耦合3。
单级螺旋圆柱形减速器4。
链传动5。
驱动辊6。
移动带3.使用条件1)使用寿命10年,两班倒(每年300天);2)负荷有轻微冲击;3)运输物品和货物;4)传输不可逆。
4.原始条件1)工作机输入功率为3.5KW2)工作机的输入速度为160转/分。
二。
设计目标(1)培养理论联系实际的设计思想,分析解决机械设计、选型、验算的知识。
(2)培养学生的机械设计技能,使其能够独立分析和解决问题。
树立正确的设计思想,重点学习典型齿轮减速器的工作原理和动态计算特点,为以后的实际工作打下基础。
(3)基本设计技能的培训,如查阅设计资料(手册、标准和法规等。
),计算、应用和使用经验数据,进行经验估计和处理数据。
进一步培养学生的CAD制图能力和撰写设计说明书等基本技能。
完成工程技术人员在机械设计方面所必需的设计能力的培训。
3.运动参数的计算和原动机的选择。
一、电机的选择1.运动参数的计算和电机的选择。
(1)查表可知各传动机构的传动效率如下表所示:效率因此,机构的总传动效率由上表计算得出。
总计= 0.992×0.99×0.97×0.96×0.97×0.96 = 0.84计算电机功率电力=3.5/0.84=4.17(千瓦)(2)选择电机a)根据电机转速、电机所需工作功率Pd,考虑传动装置尺寸、重量传动比、价格等因素,根据《机械设计手册》第167页表12-1,电机型号为Y132S1-2,额定功率5.5KW,满载转速2900 r/min。
设计一单级斜齿圆柱齿轮减速器中的齿轮传动
目录1)机械零件课程设计任务书-------------------------------------32)电动机的选择-------------------------------------------------43)设计链传动---------------------------------------------------- 84)设计一单级斜齿圆柱齿轮减速器中的齿轮传动------115)主动轴的设计------------------------------------------------136)从动轴的设计------------------------------------------------207)滚动轴承的选择及寿命计算------------------------------258)联轴器的设计------------------------------------------------269)键的选择、螺栓、螺母、螺钉的选择---------------------2810)减速器的润滑与密封----------------------------------------2811)装配图上的小数据-------------------------------------------3012)设计心得-------------------------------------------------------32机械零件课程设计任务书姓名:方宗华 专业:数控 班级:05数控(1)班 学号:05313111 设计题目 带式输送机传动装置中的一级斜齿圆柱齿轮减速箱及链传动 运动简图工作条件 输送带连续工作,单向运转,载荷变化不大,空载起动,使用期限10年,两班制工作,输送带速度容许误差为±5%。
原始数据 设计工作量设计说明书1份 减速箱装配图1张减速箱零件图3张(主动轴、大齿轮及箱体底座) 指导教师:王春花老师开始日期: 2007 年6月11日 完成日期 : 2007 年6 月22 日=cos10=arccosm17,轴3的长度取为100,轴承支点距离12117l mm =;根据箱体结构及联轴器距轴承盖要有一定距离的要求,取35l mm '=; 查阅有关的手册取l ''为55mm ;在轴段1上分别加工出键槽,使两键槽处于轴的同一圆柱母线上, 键槽的长度比相应的轮毂宽度小约5~10mm ,键槽的 宽度按轴段直径查手册得到。
单级斜齿轮圆柱齿轮减速器设计
单级斜齿轮圆柱齿轮减速器设计随着工业化的发展,减速器的应用范围越来越广泛。
而在众多减速器中,单级斜齿轮圆柱齿轮减速器以其精度高、可靠性好、噪声低等特点,被广泛应用于各种机械传动中。
一、设计的目的本次设计旨在开发一种单级斜齿轮圆柱齿轮减速器,满足各种类型的机械传动的需求,同时使其具有高效、稳定的特点。
二、设计的基本结构单级斜齿轮圆柱齿轮减速器的基本结构包括输入轴、输出轴、斜齿轮、圆柱齿轮等部分。
其中,输入轴与斜齿轮的啮合传递动力,从而带动圆柱齿轮旋转,最终通过输出轴输出,实现将输入轴的高速转动转化为输出轴的低速高扭矩输出。
三、设计的优点1.高效:单级斜齿轮圆柱齿轮减速器的效率一般在90%以上,与其他减速器相比,其效率更高。
2.精度高:由于斜齿轮是通过直线与斜面的啮合传动动力,因此其传动精度更高,传动的力矩更平稳。
3.可靠性好:单级斜齿轮圆柱齿轮减速器采用模块化设计,各个部件之间配合精度高,制造质量稳定,因此其可靠性更高。
4.噪声低:单级斜齿轮圆柱齿轮减速器传动过程中,声音低,运转噪声小,使其在一些机械配置要求噪音小的场合得到了广泛应用。
四、设计注意事项在进行单级斜齿轮圆柱齿轮减速器的设计时,需要注意以下几点:1. 需要注意输入轴与斜齿轮的啮合处,要保证啮合精度。
2. 要保证圆柱齿轮的模数与斜齿轮的模数相同,从而保证两者的啮合传动效果。
3. 选择合适的材料,使其具有高硬度、耐磨性、抗腐蚀性等特点,从而保证其使用寿命长。
五、结论单级斜齿轮圆柱齿轮减速器具有高效、精度高、可靠性好、噪声低等特点,可应用于各种传动设备中。
在设计时需要注意输入轴与斜齿轮的啮合处,圆柱齿轮的模数与斜齿轮的模数要相同,并选择合适的材料。
在使用过程中,可加强润滑次数和强度,延长使用寿命。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单级斜齿圆柱齿轮传动设计书二.前言分析和拟定传动方案机器通常由原动机、传动装置和工作装置三部分组成。
传动装置用来传递原动机的运动和动力、变换其运形式以满足工作装置的需要,是机器的重要组成部分。
传动装置的传动方案是否合理将直接影响机器的工作性能、重量和成本。
满足工作装置的需要是拟定传动方案的基本要求,同一种运动可以有几种不同的传动方案来实现,这就是需要把几种传动方案的优缺点加以分析比较,从而选择出最符合实际情况的一种方案。
合理的传动方案除了满足工作装置的功能外,还要求结构简单、制造方便、成本低廉、传动效率高和使用维护方便。
所以拟定一个合理的传动方案,除了应综合考虑工作装置的载荷、运动及机器的其他要求外,还应熟悉各种传动机构的特点,以便选择一个合适的传动机构。
因链传动承载能力低,在传递相同扭矩时,结构尺寸较其他形式大,但传动平稳,能缓冲吸振,宜布置在传动系统的高速级,以降低传递的转矩,减小链传动的结构尺寸。
故本文在选取传动方案时,采用链传动。
众所周知,链式输送机的传动装置由电动机、链、减速器、联轴器、滚筒五部分组成,而减速器又由轴、轴承、齿轮、箱体四部分组成。
所以,如果要设计链式输送机的传动装置,必须先合理选择它各组成部分,下面我们将一一进行选择。
三.运动学与动力学的计算第一节选择电动机电动机是常用的原动机,具体结构简单、工作可靠、控制简便和维护容易等优点。
电动机的选择主要包括选择其类型和结构形式、容量(功率)和转速、确定具体型号。
(1)选择电动机的类型:按工作要求和条件选取Y系列一般用途的全封闭自扇冷鼠笼型三相异步电动机。
(2)选择电动机的容量:工作所需的功率:P d = P w/ηP w = F*V/(1000ηw)所以:P d = F*V/(1000η*ηw)由电动机至工作机之间的总效率(包括工作机的效率)为η*ηw = η1*η2*η2*η3*η4*η5*η6式中η1、η2、η3、η4、η5、η6分别为齿轮传动、链传动、联轴器、卷筒轴的轴承及卷筒的效率。
取η1= 0.96、η2= 0.99、η3=0.97、η4= 0.97、η5 = 0.98、η6 = 0.96 ,则:η*ηw = 0.96×0.99×0.99×0.97×0.97×0.98×0.96 =0.832所以:P d = F*V/1000η*ηw = 2600×1.5/(1000×0.832) kW = 4.68 kW 根据Pd选取电动机的额定功率P w使P m = (1∽1.3)P d = 4.68∽6.09 kW由查表得电动机的额定功率P w = 7.5 kW(3)确定电动机的转速:卷筒轴的工作转速为:n w = 60×1000V/πD = 60×1000×1.5/(3.14×400) r/min = 71.66r/min 按推荐的合理传动比范围,取链传动的传动比i1 = 2 ∽ 5,单级齿轮传动比i2= 3 ∽ 5 则合理总传动比的范围为: i = 6 ∽ 25故电动机的转速范围为:n d = i*n w = (6∽25)×71.66 r/min = 429.96 ∽ 1791.5r/min符合这一范围的同步转速有750 r/min 、1000 r/min 、1500 r/min ,再根据计算出的容量,由附表5.1查出有三种适用的电动机型号,其技术参数及传动比的比较情况见下表。
适合。
因此选定电动机型号为Y160M-6,所选电动机的额定功率Ped = 7.5 kW ,满载转速nm = 970 r/min ,总传动比适中,传动装置结构紧凑。
所选电动机的主要外形尺寸和安装尺寸如下表所示。
第二节 计算总传动比并分配各级传动比电动机确定后,根据电动机的满载转速和工作装置的转速就可以计算传动装置的总传动比。
(1) 计算总传动比:i = n m /n w = 970/71.66 = 13.54 1440/115=12.52(2) 分配各级传动比:为使链传动的尺寸不至过大,满足i b <i g ,可取i b =3.5 ,则齿轮的传动比:i g = i /i b = 13.54/ 3.5 = 3.87 =12.52/3=4.17(3) 计算传动装置的运动和动力参数:各轴的转速n Ι= n m /i b = 970/3.87 = 250.65 r/min =1440/3=480n Π= n Ι/i g = 250.65/3.5 = 71.62 r/min =480/115=4.17 n w = n Π = 71.62 r/min各轴的功率PΙ= P m*η1 = 7.5×0.96 = 7.2 kWPΠ=PΙ*η2 *η3 = 7.2×0.99×0.97 =6.914 kWP w = PΠ*η2*η4 = 6.914×0.99×0.97 = 6.64 kW(4 ) 各轴的转矩电动机的输出轴转矩T dT d = 9550×P m/n m =9550×7.5/970 = 73.84 Nm其他轴转矩TΙ= 9550×PΙ/nΙ= 9550×7.2/250.65 = 274.33 Nm =9550*6.84*0.96/480=130.644TΠ= 9550×PΠ/nΠ= 9550× 6.914/71.62 = 921.93Nm =9550*6.06/115=503.24T w = 9550×P w/n w = 9550×6.64/71.62= 885.34 Nm第三节各轴的转速,功率及转矩,列成表格四、传动零件的设计计算链传动是由链条和链轮构成,链条由许多链节构成,带齿的大,小轮安装在两平行轴上。
链传动属于啮合运动优点有:1)传动比准确,传动可靠,张紧力小,装配容易,轴与轴承的载荷较小,传动的效率较高,可达98%;2)与齿轮传动比较有较大的中心距;3)可在高温和润滑油环境工作,也可用于多灰尘的环境。
五.齿轮的设计计算六.轴与轴承的设计计算及校核轴的设计及键联接的选择与校核轴主要用来支承作旋转运动的零件,如齿轮、带轮,以传递运动和动力。
本减速器有两根轴,根据设计要求,设计的具体步骤、内容如下:制轴的草图,如图2-2。
考虑到斜齿圆柱齿轮传动,选用角接触球轴承,采用内嵌式轴承盖实现轴承两端单向固定,依靠普通平键联接实现周向固定,利用轴肩结构实现轴与轴承的轴向固定。
考虑到小齿轮分度圆直径与轴的直径差距不大的情况,采用齿轮轴的结构方案,如图2-2示。
轴与其它零部件相配合的具体情况见后装配。
图 2-25.轴的结构设计`轴的结构设计主要有三项内容:(1)各轴段径向尺寸的确定;(2)各轴段轴向长度的确定;(3)其它尺寸(如键槽、圆角、到角,退刀槽等)的确定。
(1)径向尺寸的确定七、键等相关标准键的选择标准键的选择包括键的选择,联轴器的选择,螺栓、螺母、螺钉的选择,销的选择、垫圈、垫片的选择。
(1)键的选择查表4-1(机械设计基础课程设计)Ι轴与齿轮相配合的键:b = 12 mm, h = 8 mm, t = 5.0mm, t1=3.3mmΠ轴与大齿轮相配合的键:b = 18mm, h = 11mm, t = 7.0mm, t1 = 4.4mmΠ轴与联轴器相配合的键:b = 14mm, h = 9mm, t = 5.5mm, t 1= 3.8mm(2)联轴器的选择根据轴设计中的相关数据,查表4-1(机械设计基础课程设计),选用联轴器的型号为HL2, GB5014 – 85。
(3)螺栓、螺母、螺钉的选择考虑到减速器的工作条件,后续想体的附件的结构,以及其他因素的影响选用螺栓GB5782 – 86, M6*25和GB5782 – 86, M10*35 ,GB5782 – 86, M10*25三种。
选用螺母GB6170 – 86, M10和GB6170 – 86, M12两种。
选用螺钉GB5782 – 86, M6*25和GB5782 – 86, M6*30两种。
八、减速器的润滑与密封1、传动件的润滑浸油润滑:浸油润滑适用于齿轮圆周速度V≤12m/s的减速器。
为了减小齿轮的阻力和油的升温,齿轮浸入油中的深度以1∽2个齿高为宜,速度高时还应浅些,在0.7个齿高上下,但至少要有10mm,速度低时,允许浸入深度达1/6∽1/3的大齿轮顶圆半径。
油池保持一定深度,一般大齿轮齿顶圆到油池底面的距离不应小于30∽50mm。
以免太浅会激起沉积在箱底的油泥,油池中应保持一定的油量,油量可按每千瓦约350∽700cm3来确定,在大功率时用较小值。
2、滚动轴承的润滑:减速器中滚动轴承的润滑应尽可能利用传动件的润滑油来实现,通常根据齿轮的圆周速度来选择润滑方式,本设计采用润滑脂润滑,并在轴承内侧设置挡油环,以免油池中的稀油进入舟车功能而使润滑脂稀释。
3、润滑剂的选择:润滑剂的选择与传动类型、载荷性质、工作条件、转动速度等多种因素有关。
轴承负荷大、温度高、应选用粘度较大的润滑油。
而轴承负荷较小、温度低、转速高时,应选用粘度较小的润滑油,一般减速器常采用HT-40,HT-50号机械油,也可采用HL-20,HL-30齿轮油。
当采用润滑脂润滑时,轴承中润滑脂装入量可占轴承室空间的1/3~1/2。
4、减速器的密封:减速器的密封是为了防止漏油和外界灰尘和水等进入常见的漏油部位有分箱面、轴头、盖端及视孔盖等。
分箱面的密封,可在箱体剖分面上开回油槽,轴伸出处密封的装置有垫圈,O型橡胶圈和唇形密封圈。
在老师的耐心指导下,以及各位同学的讨论中,经过两周多时间的设计,本课题——单级斜齿圆柱齿轮传动设计+链传动。
其说明书的编写终于完成。
本设计虽然较简单,但通过这一设计实践,我感到自己在这方面仍存在许多不足之处,对于我的本次设计,我觉得设计计算部分非常认真,该方案结构简单,易于加工,装配。
且经济实用,可适用于精度要求不高的场所。
同时也存在有一些尺寸设计方面的误差,对材料的选择也并非完全合理。
希望指导老师能批正。
通过此设计,使我加深了对机械设计基础及有关课程和知识,提高了综合运用这些知识的能力。
并为在今后学习本专业打下了必须的基础,并提高了运用设计资料,及国家标准的能力。
九、箱体结构设计一、小型圆柱齿轮,为了使结构紧凑,重量较轻,采用整体式箱体,它的材料为HL150。
十、设计小结在申爱琳老师的耐心指导下,以及各位同学的讨论中,经过两周多时间的设计,本课题——单级斜齿圆柱齿轮传动设计+链传动。
其说明书的编写终于完成。