选修3-1综合测评2

合集下载

高中数学人教a版高二选修2-1-章末综合测评1有答案

高中数学人教a版高二选修2-1-章末综合测评1有答案

高中数学人教a版高二选修2-1-章末综合测评1有答案(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题“若某2<1,则-1<某<1”的逆否命题是()A.若某2≥1,则某≥1,或某≤-1B.若-1<某<1,则某2<1C.若某>1,或某<-1,则某2>1D.若某≥1或某≤-1,则某2≥1【解析】命题“若p,则q”的逆否命题为“若綈q,则綈p”.【答案】D2.命题“所有能被2整除的整数都是偶数”的否定是()A.所有不能被2整除的整数都是偶数B.所有能被2整除的整数都不是偶数C.存在一个不能被2整除的整数是偶数D.存在一个能被2整除的整数不是偶数【解析】把全称量词改为存在量词并把结论否定.【答案】D3.命题p:某+y≠3,命题q:某≠1或y≠2,则命题p是q的()A.充分不必要条件C.充要条件B.必要不充分条件D.既不充分也不必要条件【解析】命题“若p,则q”的逆否命题为:“若某=1且y=2,则某+y=3”,是真命题,故原命题为真,反之不成立.【答案】A4.设点P(某,y),则“某=2且y=-1”是“点P在直线l:某+y-1=0上”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件第-1-页共8页【解析】当某=2且y=-1时,满足方程某+y-1=0,即点P(2,-1)在直线l上.点P′(0,1)在直线l上,但不满足某=2且y=-1,∴“某=2且y=-1”是“点P(某,y)在直线l上”的充分而不必要条件.【答案】A5.“关于某的不等式f(某)>0有解”等价于()A.某0∈R,使得f(某0)>0成立B.某0∈R,使得f(某0)≤0成立C.某∈R,使得f(某)>0成立D.某∈R,f(某)≤0成立【解析】“关于某的不等式f(某)>0有解”等价于“存在实数某0,使得f(某0)>0成立”.故选A.【答案】A6.设四边形ABCD的两条对角线为AC,BD,则“四边形ABCD为菱形”是“AC⊥BD”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解析】若四边形ABCD为菱形,则AC⊥BD,反之,若AC⊥BD,则四边形ABCD不一定是菱形,故选A.【答案】A7.命题p:函数y=lg(某2+2某-c)的定义域为R;命题q:函数y=lg(某2+2某-c)的值域为R.记命题p为真命题时c的取值集合为A,命题q为真命题时c的取值集合为B,则A∩B=()A.C.{c|c≥-1}B.{c|c【解析】命题p为真命题,即某2+2某-c>0恒成立,则有Δ=4+4c<0,解得c第-2-页共8页【答案】A8.对某∈R,k某2-k某-1<0是真命题,则k的取值范围是()A.-4≤k≤0C.-4<k≤0B.-4≤k<0D.-4<k<0【解析】由题意知k某2-k某-1<0对任意某∈R恒成立,当k=0时,-1<0恒k<0,成立;当k≠0时,有即-4<k<0,所以-4<k≤0.2Δ=k+4k<0,【答案】C9.已知命题p:若(某-1)(某-2)≠0,则某≠1且某≠2;命题q:存在实数某0,使2某0<0.下列选项中为真命题的是()A.綈pC.綈q∧pB.綈p∨qD.q【解析】很明显命题p为真命题,所以綈p为假命题;由于函数y=2某,某∈R的值域是(0,+∞),所以q是假命题,所以綈q是真命题.所以綈p∨q为假命题,綈q∧p为真命题,故选C.【答案】C10.设{an}是公比为q的等比数列,则“q>1”是“{an}为递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件a1>0,a1<0,【解析】等比数列{an}为递增数列的充要条件为或故“q>1”是q>10“”“{an}为递增数列”的既不充分也不必要条件.【答案】D11.已知命题p:某>0,总有(某+1)e某>1,则綈p为()A.某0≤0,使得(某0+1)e某0≤1B.某0>0,使得(某0+1)e某0≤1C.某>0,总有(某+1)e某≤1第-3-页共8页D.某≤0,使得(某+1)e某≤1【解析】因为全称命题某∈M,p(某)的否定为某0∈M,綈p(某),故綈p:某0>0,使得(某0+1)e某0≤1.【答案】B12.已知p:点P在直线y=2某-3上;q:点P在直线y=-3某+2上,则使p∧q为真命题的点P的坐标是()A.(0,-3)C.(1,-1)B.(1,2)D.(-1,1)【解析】因为p∧q为真命题,所以p,q均为真命题.所以点P为直线y=2某y=2某-3,某=1,-3与直线y=-3某+2的交点.解方程组得即点P的坐标为(1,y=-3某+2,y=-1,-1).【答案】C二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.命题p:若a,b∈R,则ab=0是a=0的充分条件,命题q:函数y=某-3的定义域是[3,+∞),则“p∨q”“p∧q”“綈p”中是真命题的为________.【解析】p为假命题,q为真命题,故p∨q为真命题,綈p为真命题.【答案】p∨q与綈p14.“末位数字是1或3的整数不能被8整除”的否定形式是________________,否命题是________________.【解析】命题的否定仅否定结论,所以该命题的否定形式是:末位数字是1或3的整数能被8整除;而否命题要同时否定原命题的条件和结论,所以否命题是:末位数字不是1且不是3的整数能被8整除.【答案】末位数字是1或3的整数能被8整除末位数字不是1且不是3的整数能被8整除15.已知f(某)=某2+2某-m,如果f(1)>0是假命题,f(2)>0是真命题,则实数m的取值范围是______.f(1)=3-m≤0,【解析】依题意,∴3≤m<8.f(2)=8-m>0,第-4-页共8页【答案】[3,8)16.给出以下判断:①命题“负数的平方是正数”不是全称命题;3②命题“某∈N,某3>某2”的否定是“某0∈N,使某0>某2;0”③“b=0”是“函数f(某)=a某2+b某+c为偶函数”的充要条件;④“正四棱锥的底面是正方形”的逆命题为真命题.其中正确命题的序号是________.【解析】①②④是假命题,③是真命题.【答案】③三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)写出下列命题的否定,并判断其真假,同时说明理由.(1)q:所有的矩形都是正方形;(2)r:某0∈R,某20+2某0+2≤0;(3):至少有一个实数某0,使某30+3=0.【解】(1)綈q:至少存在一个矩形不是正方形,真命题.这是由于原命题是假命题.(2)綈r:某∈R,某2+2某+2>0,真命题.这是由于某∈R,某2+2某+2=(某+1)2+1≥1>0恒成立.(3)綈:某∈R,某+3≠0,假命题.这是由于当某=-3时,某3+3=0.18.(本小题满分12分)指出下列命题中,p是q的什么条件?(1)p:{某|某>-2或某<3};q:{某|某2-某-6<0};(2)p:a与b都是奇数;q:a+b是偶数;(3)p:03【解】(1)因为{某|某2-某-6<0}={某|-2-2或某<3}/{某|-2-2或某<3}.所以p是q的必要不充分条件.第-5-页共8页33(2)因为a,b都是奇数a+b为偶数,而a+b为偶数/a,b都是奇数,所以p是q的充分不必要条件.(3)m某2-2某+3=01Δ>0,4-12m>0,mm>0m>0m>03所以p是q的充要条件.19.(本小题满分12分)已知命题p:不等式2某-某2q:m2-2m-3≥0,如果“綈p”与“p∧q”同时为假命题,求实数m的取值范围.【解】2某-某2=-(某-1)2+1≤1,所以p为真时,m>1.由m2-2m-3≥0得m≤-1或m≥3,所以q为真时,m≤-1或m≥3.因为“綈p”与“p∧q”同时为假命题,所以p为真命题,q为假命题,所以得m>1,-1即120.(本小题满分12分)已知两个命题p:in某+co某>m,q:某2+m某+1>0,如果对任意某∈R,有p∨q为真,p∧q为假,求实数m的取值范围.【解】当命题p是真命题时,π由于某∈R,则in某+co某=2in某+≥-2,4所以有m<-2.当命题q是真命题时,由于某∈R,某2+m某+1>0,则Δ=m2-4<0,解得-2<m<2.由于p∨q为真,p∧q为假,所以p与q一真一假.考虑到函数f(某)=某2+m某+1的图象为开口向上的抛物线,对任意的某∈R,某2+m某第-6-页共8页+1≤0不可能恒成立.所以只能是p为假,q为真,m≥-2,此时有-2<m<2,解得-2≤m<2,所以实数m的取值范围是[-2,2).21.(本小题满分12分)已知命题p:对数loga(-2t2+7t-5)(a>0,且a≠1)有意义;命题q:实数t满足不等式t2-(a+3)t+a+2<0.(1)若命题p为真,求实数t的取值范围;(2)若p是q的充分不必要条件,求实数a的取值范围.5【解】(1)因为命题p为真,则对数的真数-2t2+7t-5>0,解得125所以实数t的取值范围是1,2.(2)因为p是q解集的真子集.5的充分不必要条件,所以t1的法一因为方程t2-(a+3)t+a+2=0的两根为1和a+2,51所以只需a+2>,解得a>.22即实数a的取值范围为2,+∞.法二令f(t)=t2-(a+3)t+a+2,因为f(1)=0,15所以只需f2<0,解得a>.2即实数a的取值范围为2,+∞.22.(本小题满分12分)设a,b,c为△ABC的三边,求证:方程某2+2a某+b2=0与某2+2c某-b2=0有公共根的充要条件是∠A=90°.【证明】充分性:∵∠A=90°,∴a2=b2+c2.于是方程某2+2a某+b2=0可化为某2+2a某+a2-c2=0,∴某2+2a某+(a+c)(a-c)=0.第-7-页共8页∴[某+(a+c)][某+(a-c)]=0.∴该方程有两根某1=-(a+c),某2=-(a-c),同样另一方程某2+2c某-b2=0也可化为某2+2c某-(a2-c2)=0,即[某+(c+a)][某+(c-a)]=0,∴该方程有两根某3=-(a+c),某4=-(c-a).可以发现,某1=某3,∴方程有公共根.必要性:设某是方程的公共根,某2+2a某+b2=0,①则22某+2c某-b=0,②由①+②,得某=-(a+c),某=0(舍去).代入①并整理,可得a2=b2+c2.∴∠A=90°.∴结论成立.第-8-页共8页。

高中化学鲁教选修2学业分层测评:主题综合测评2 Word含解析

高中化学鲁教选修2学业分层测评:主题综合测评2 Word含解析

主题综合测评(二)主题2海水资源工业制碱(时间:60分钟分值:100分)一、选择题(本题包括12小题,每小题5分,共60分)1.污水处理的主要方法有:①中和法;②化学沉淀法;③氧化还原法;④过滤法。

其中属于化学方法的有()A.①②③B.①②④C.②③④D.①②③④【答案】 A2.下列关于硬水的叙述错误的是()A.硬水中的Ca2+、Mg2+会阻碍肥皂起泡B.用漂白粉对自来水消毒,会增加水的总硬度C.向硬水中加入明矾,可以使硬水软化D.雨水的硬度比海水的硬度小【解析】明矾净水是由于Al3+水解:Al3++3H2O Al(OH)3+3H+,生成的Al(OH)3具有吸附作用,将水中的悬浮颗粒沉淀,不能对硬水起软化作用。

【答案】 C3.加热后没有沉淀生成的水肯定不是()A.纯净的水B.蒸馏水C.具暂时硬度的水D.具永久硬度的水【解析】具暂时硬度的水中含Ca2+、Mg2+、HCO-3,加热后产生难溶性的CaCO3和MgCO3,MgCO3又转变为更难溶的Mg(OH)2。

【答案】 C4.电解饱和食盐水两电极上产生气体的体积比应是1∶1,但实际测量时却发现V(H2)>V(Cl2)(常温常压),其原因可能是() 【导学号:28920030】A.H2的摩尔质量比Cl2的小B.Cl2有刺激性气味C.H2的熔、沸点比Cl2的低D .H 2的溶解度比Cl 2的小【解析】 由于H 2难溶于水而Cl 2能溶于水,故实测V (H 2)>V (Cl 2)。

【答案】 D5.下列反应原理在索尔维制碱法中没有使用的是( )A .2NH 4Cl +Ca(OH)2=====△CaCl 2+2NH 3↑+2H 2OB .NH 4Cl=====△NH 3↑+HCl ↑C .2NaHCO 3=====△Na 2CO 3+CO 2↑+H 2O ↑D .NH 3+CO 2+NaCl +H 2O===NaHCO 3↓+NH 4Cl【解析】 A 项在索尔维制碱法中用于回收NH 3;C 项用于制备纯碱;D 项用于制备NaHCO 3。

高中数学人教a版高二选修1-2_章末综合测评4_word版有答案

高中数学人教a版高二选修1-2_章末综合测评4_word版有答案

章末综合测评(四)框图(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.要描述一工厂某产品的生产工艺,应用()A.程序框图B.工序流程图C.知识结构图D.组织结构图【解析】这是设计生产过程,应为工序流程图,选B.【答案】 B2.在下面的图示中,是结构图的是()A.Q⇐P1→P1⇐P2→P2⇐P3→得到一个明显成立的条件C.D.【解析】A是流程图;C是图表;D是图示;B是知识结构图.【答案】 BA.图象变换B.奇偶性C.对称性D.解析式【解析】函数的性质包括单调性、奇偶性、周期性等,故选B.【答案】 B4.阅读如图2所示的知识结构图:图2“求简单函数的导数”的“上位”要素有( ) A .1个 B .2个 C .3个D .4个【解析】 “上位”要素有“基本导数公式”“函数四则运算求导法则”“复合函数求导法则”共3个.【答案】 C5.(2015·湖南高考)执行如图3所示的程序框图,如果输入n =3,则输出的S =( )图3A.67B.37C.89 D.49【解析】第一次循环:S=11×3,i=2;第二次循环:S=11×3+13×5,i=3;第三次循环:S=11×3+13×5+15×7,i=4,满足循环条件,结束循环.故输出S=11×3+13×5+15×7=12⎝⎛⎭⎪⎫1-13+13-15+15-17=37,故选B.【答案】 B6.学校教职成员、教师、后勤人员、理科教师、文科教师的结构图正确的是()【解析】由学校教职工组织结构易知选A.【答案】 A7.(2015·重庆高考)执行如图4所示的程序框图,若输出k 的值为8,则判断框内可填入的条件是( )图4A .s ≤34B .s ≤56 C .s ≤1112D .s ≤2524【解析】 由s =0,k =0满足条件,则k =2,s =12,满足条件;k =4,s =12+14=34,满足条件;k =6,s =34+16=1112,满足条件;k =8,s =1112+18=2524,不满足条件,输出k =8,所以应填s ≤1112.【答案】 C8.(2016·锦州高二检测)如图5是“向量的线性运算”知识结构图,如果要加入“三角形法则”和“平行四边形法则”,应该放在( )【导学号:19220067】A.“向量的加减法”中“运算法则”的下位B.“向量的加减法”中“运算律”的下位C.“向量的数乘”中“运算法则”的下位D.“向量的数乘”中“运算律”的下位【解析】因为“三角形法则”和“平行四边形法则”是向量的加减法的运算法则,故应该放在“向量的加减法”中“运算法则”的下位.【答案】 A9.(2014·湖南高考)执行如图6所示的程序框图,如果输入的t∈[-2,2],则输出的S属于()图6A.[-6,-2]B.[-5,-1]C.[-4,5]D.[-3,6]【解析】由程序框图知,当0≤t≤2时,输出S=t-3,此时S∈[-3,-1];当-2≤t<0时,执行t=2t2+1后1<t≤9,执行1<t≤9时,输出S=t-3,此时S∈(-2,6].综上,输出S的值属于[-3,6].【答案】 D10.如图7所示的工序流程图中,设备采购的下一道工序是()图7A.设备安装B.土建设计C.厂房土建D.工程设计【解析】结合工序流程图可知,设备采购的下一道工序是设备安装.【答案】 A11.执行如图8所示的程序框图,若输入x=9,则输出y=()图8A.113B.49C.299D.43【解析】 x =9时,y =93+2=5,|y -x |=|5-9|=4<1不成立;x =5,y =53+2=113,|y -x |=⎪⎪⎪⎪⎪⎪113-5=43<1不成立;x =113,y =119+2=299,|y -x |=⎪⎪⎪⎪⎪⎪299-113=49<1成立,输出y =299.【答案】 C12.阅读下面程序框图,如果输出的函数值在区间内⎣⎢⎡⎦⎥⎤14,12,那么输入实数x 的取值范围是( )【导学号:19220068】图9A .(-∞,-2]B .[-2,-1]C .[-1,2]D .[2,+∞)【解析】 若输出f (x )∈⎣⎢⎡⎦⎥⎤14,12,则x ∈[-2,-1].【答案】 B二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中横线上.) 13.在组织结构图中,一般采用________形结构绘制,它直观、容易理解,被应用于很多领域.【解析】 组织结构图一般采用“树”形结构. 【答案】 “树”14.如图10为有关函数的结构图,由图我们可以知道基本初等函数包括________.图10【解析】 基本初等函数包括指数函数、对数函数、幂函数三种. 【答案】 指数函数、对数函数、幂函数15.某工程由A ,B ,C ,D 四道工序组成,完成它们需用时间依次为2,5,x,4天,四道工序的先后顺序及相互关系是:A ,B 可以同时开工;A 完成后,C 可以开工;B ,C 完成后,D 可以开工.若完成该工程共需9天,则完成工序C 需要的天数最大是________.【导学号:19220069】【解析】由题意可画出工序流程图如图所示:∴2+x+4≤9,∴x≤3.【答案】 316.(2014·山东高考)执行如图11所示的程序框图,若输入的x的值为1,则输出的n的值为________.图11【解析】由x2-4x+3≤0,解得1≤x≤3.当x=1时,满足1≤x≤3,所以x=1+1=2,n=0+1=1;当x=2时,满足1≤x≤3,所以x=2+1=3,n=1+1=2;当x=3时,满足1≤x≤3,所以x=3+1=4,n=2+1=3;当x=4时,不满足1≤x≤3,所以输出n=3.【答案】 3三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤.)17.(本小题满分10分)画出求平方值小于2 000的最大整数的程序框图.【解】如图:18.(本小题满分12分)某公司局域网设置如下:经理室、市场部、销售部、客户服务部、系统管理员通过服务器与外部连接.试画出该公司局域网设置的结构图.【解】该公司局域网设置的结构图如图所示.19.(本小题满分12分)写出《数学3(必修)》第2章“统计”的知识结构图.【解】20.(本小题满分12分)阅读如图12所示的结构图:图12试根据此结构图阐述“圆锥曲线与方程”知识的逻辑关系.【解】先由椭圆的实际背景引出椭圆的定义,用坐标法由定义推导出椭圆的标准方程和简单几何性质,然后是椭圆的简单应用.再由双曲线的实际背景引出双曲线的定义,用坐标法由定义推导出双曲线的标准方程和简单几何性质,然后是双曲线的简单应用.最后由抛物线的实际背景引出抛物线的定义,用坐标法由定义推导出抛物线的标准方程和简单几何性质,然后是抛物线的简单应用.21.(本小题满分12分)在选举过程中常用差额选举(候选人数多于当选人数),某班选举班长,具体方法是:筹备选举,由班主任提名候选人,同学投票(同意,不同意,弃权),验票统计.若有得票多者,则选为班长,若票数相同由班主任决定谁当选,请用流程图表示该选举过程.【解】选举过程流程图为:22.(本小题满分12分)某公司组织结构中的部门及关系有:股东大会为一切政策制订和计划实施的最终审批机构,其下有董事会为其负责,监事会为董事会提供顾问和决策建议,董事会下设总经理管理日常工作,总经理直接领导综合办公室的工作,由综合办公室再去管理其他各部门的工作,有职能管理部门,管理人力企划部、计财部、监察审计部,市场营销部门又下辖市场开拓部、采购部、集团客户部,工程部门负责工程部、后勤部、售后服务部的工作,技术研发部门管理产品开发部、技术支援部.根据以上信息,绘制出其组织结构图.【解】该公司组织结构图如下:。

【高中同步测控 优化设计】高中物理选修3-1同步练习:第一章测评B Word版含答案[ 高考]

【高中同步测控 优化设计】高中物理选修3-1同步练习:第一章测评B Word版含答案[ 高考]

第一章测评B(高考体验卷)一、选择题(本题共8小题,每小题6分,共48分。

其中第1~5题为单选题;第6~8题为多选题,全部选对得6分,选不全得3分,有选错或不答的得0分)1.(2014·北京理综)如图所示,实线表示某静电场的电场线,虚线表示该电场的等势面。

下列判断正确的是()A.1、2两点的电场强度相等B.1、3两点的电场强度相等C.1、2两点的电势相等D.2、3两点的电势相等解析:根据电场线密处电场强度大、电场线稀处电场强度小的特点,1点的电场强度大于2、3点的电场强度,A、B错误;根据沿着电场线方向电势逐渐降低的原理,1点的电势大于2点的电势,C错误;同一等势面上电势相等,故2、3两点电势相等,D正确。

答案:D2.(2014·山东理综)如图,半径为R的均匀带正电薄球壳,其上有一小孔A。

已知壳内的电场强度处处为零;壳外空间的电场,与将球壳上的全部电荷集中于球心O时在壳外产生的电场一样。

一带正电的试探电荷(不计重力)从球心以初动能E k0沿OA方向射出。

下列关于试探电荷的动能E k与离开球心的距离r的关系图线,可能正确的是()解析:球壳内部即r≤R的区域E=0,粒子不受力,动能不变。

球壳外部即r>R的区域,由E=k 可知,离球壳越远,电场强度E越小,粒子沿电场线方向移动相同的位移静电力做功越小,因此,随着r的增大,E k-r图线斜率越来越小。

本题只有选项A正确。

答案:A3.(2014·重庆理综)如图所示为某示波管内的聚焦电场,实线和虚线分别表示电场线和等势线。

两电子分别从a、b两点运动到c点。

设静电力对两电子做的功分别为W a和W b,a、b点的电场强度大小分别为E a和E b,则()A.W a=W b,E a>E bB.W a≠W b,E a>E bC.W a=W b,E a<E bD.W a≠W b,E a<E b解析:根据题图可知a处的电场线比b处密,所以a处电场强度较大,即E a>E b。

2021-2022学年鲁科版化学选修3章末综合测评1 Word版含解析

2021-2022学年鲁科版化学选修3章末综合测评1 Word版含解析

章末综合测评(一) 原子结构(时间45分钟,满分100分)一、选择题(本题包括12小题,每小题4分,共48分)1.为揭示原子光谱是线性光谱这一事实,玻尔提出了核外电子的分层排布理论。

下列说法中,不符合这一理论的是()A.电子绕核运动具有特定的半径和能量B.电子在特定半径的轨道上运动时不辐射能量C.电子跃迁时,会吸取或放出特定的能量D.揭示了氢原子光谱存在多条谱线【解析】玻尔理论解释了氢原子光谱为线状光谱,但却没有解释出氢原子在外磁场的作用下分裂为多条谱线,所以D是错误的,A、B、C是玻尔理论的三个要点。

【答案】 D2.下列比较正确的是()A.第一电离能:I1(P)>I1(S)B.离子半径:r(Al3+)>r(O2-)C.能量:E(4s)>E(3d)D.电负性:K原子>Na原子【解析】同周期第一电离能ⅤA族元素大于ⅥA族元素,A正确。

具有相同电子层结构的离子半径,原子序数越大,半径越小,B不正确。

能量E(4s)<E(3d),C不正确。

同主族元素,自上而下电负性减小,D不正确。

【答案】 A3.下列轨道表示式能表示氧原子的最低能量状态的是()【解析】氧原子共有8个电子,C有10个,D有7个,都错。

B不符合洪特规章,也错。

【答案】 A4.某元素原子的价电子构型是3s23p4,则它在周期表中的位置是()A.第2周期ⅣA族B.第3周期ⅣA族C.第4周期ⅡA族D.第3周期ⅥA族【解析】由价电子构型为3s23p4可知为硫,故D正确。

【答案】 D5.以下对核外电子运动状况的描述正确的是()A.电子的运动与行星相像,围绕原子核在固定的轨道上高速旋转B.能量低的电子只能在s轨道上运动,能量高的电子总是在f轨道上运动C.电子层数越大,s轨道的半径越大D.在同一轨道上运动的电子,其能量不相同【解析】电子的运动没有固定的轨道,也不能描画出它的运动轨迹,A错误;原子轨道能量的凹凸取决于电子层数和原子轨道的外形两个因素,不能单从原子轨道的外形来推断,例如7s轨道的能量比4f轨道的能量高,故B错误;相同类型的原子轨道,电子层序数越大,能量越高,电子运动的区域越大,原子轨道的半径越大,C正确。

高中数学选修2-2分层测评 章末综合测评2 含答案

高中数学选修2-2分层测评 章末综合测评2 含答案

章末综合测评(二)推理与证明(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面四个推理不是合情推理的是()A.由圆的性质类比推出球的有关性质B.由直角三角形、等腰三角形、等边三角形的内角和都是180°,归纳出所有三角形的内角和都是180°C.某次考试张军的成绩是100分,由此推出全班同学的成绩都是100分D.蛇、海龟、蜥蜴是用肺呼吸的,蛇、海龟、蜥蜴是爬行动物,所以所有的爬行动物都是用肺呼吸的【解析】逐项分析可知,A项属于类比推理,B项和D项属于归纳推理,而C项中各个学生的成绩不能类比,不是合情推理.【答案】 C2.根据偶函数定义可推得“函数f(x)=x2在R上是偶函数”的推理过程是() A.归纳推理B.类比推理C.演绎推理D.非以上答案【解析】根据演绎推理的定义知,推理过程是演绎推理,故选C.【答案】 C3.下列推理是归纳推理的是()A.A,B为定点,动点P满足|P A|+|PB|=2a>|AB|,得P的轨迹为椭圆B.由a1=1,a n=3n-1,求出S1,S2,S3,猜想出数列的前n项和S n的表达式C.由圆x2+y2=r2的面积πr2,猜出椭圆x2a2+y2b2=1的面积S=πabD.科学家利用鱼的沉浮原理制造潜艇【解析】由归纳推理的特点知,选B.4.“凡是自然数都是整数,4是自然数,所以4是整数.”以上三段论推理( )A .完全正确B .推理形式不正确C .不正确,两个“自然数”概念不一致D .不正确,两个“整数”概念不一致【解析】 大前提“凡是自然数都是整数”正确.小前提“4是自然数”也正确,推理形式符合演绎推理规则,所以结论正确.【答案】 A5.用数学归纳法证明“5n -2n 能被3整除”的第二步中,当n =k +1时,为了使用假设,应将5k +1-2k +1变形为( )A .(5k -2k )+4×5k -2kB .5(5k -2k )+3×2kC .(5-2)(5k -2k )D .2(5k -2k )-3×5k【解析】 5k +1-2k +1=5k ·5-2k ·2=5k ·5-2k ·5+2k ·5-2k ·2=5(5k -2k )+3·2k . 【答案】 B6.已知n 为正偶数,用数学归纳法证明1-12+13-14+…-1n =2⎝ ⎛⎭⎪⎫1n +2+1n +4+…+12n 时,若已假设n =k (k ≥2且k 为偶数)时等式成立,则还需要用归纳假设再证n =________时等式成立.( )A .k +1B .k +2C .2k +2D .2(k +2)【解析】 根据数学归纳法的步骤可知,n =k (k ≥2且k 为偶数)的下一个偶数为n =k +2,故选B.7.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=()A.28B.76C.123 D.199【解析】利用归纳法,a+b=1,a2+b2=3,a3+b3=4=3+1,a4+b4=4+3=7,a5+b5=7+4=11,a6+b6=11+7=18,a7+b7=18+11=29,a8+b8=29+18=47,a9+b9=47+29=76,a10+b10=76+47=123,规律为从第三组开始,其结果为前两组结果的和.【答案】 C8.分析法又叫执果索因法,若使用分析法证明:“设a>b>c,且a+b+c=0,求证:b2-ac<3a”最终的索因应是() 【导学号:05410056】A.a-b>0 B.a-c>0C.(a-b)(a-c)>0 D.(a-b)(a-c)<0【解析】因为a>b>c,且a+b+c=0,所以3c<a+b+c<3a,即a>0,c<0.要证明b2-ac<3a,只需证明b2-ac<3a2,只需证明(-a-c)2-ac<3a2,只需证明2a2-ac-c2>0,只需证明2a+c>0(a>0,c<0,则a-c>0),只需证明a+c +(-b-c)>0,即证明a-b>0,这显然成立,故选A.【答案】 A9.在等差数列{a n}中,若a10=0,则有等式a1+a2+…+a n=a1+a2+…+a19 (n<19且n∈N+)成立,类比上述性质,在等比数列{b n}中,若b11=1,则有-n() A.b1·b2·…·b n=b1·b2·…·b19-nB.b1·b2·…·b n=b1·b2·…·b21-nC.b1+b2+…+b n=b1+b2+…+b19-nD .b 1+b 2+…+b n =b 1+b 2+…+b 21-n 【解析】 令n =10时,验证即知选B. 【答案】 B10.将石子摆成如图1的梯形形状.称数列5,9,14,20,…为“梯形数”.根据图形的构成,此数列的第2 016项与5的差,即a 2 016-5=( )图1A .2 018×2 014B .2 018×2 013C .1 010×2 012D .1 011×2 013【解析】 a n -5表示第n 个梯形有n -1层点,最上面一层为4个,最下面一层为n +2个.∴a n -5=(n -1)(n +6)2,∴a 2 016-5=2 015×2 0222=2 013×1 011. 【答案】 D11.在直角坐标系xOy 中,一个质点从A (a 1,a 2)出发沿图2中路线依次经过B (a 3,a 4),C (a 5,a 6),D (a 7,a 8),…,按此规律一直运动下去,则a 2 015+a 2 016+a 2 017=( )图2A .1 006B .1 007C .1 008D .1 009【解析】 依题意a 1=1,a 2=1;a 3=-1,a 4=2;a 5=2,a 6=3;…,归纳可得a 1+a 3=1-1=0,a 5+a 7=2-2=0,…,进而可归纳得a 2 015+a 2 017=0,a 2=1,a 4=2,a 6=3,…,进而可归纳得a 2 016=12×2 016=1 008,a 2 015+a 2 016+a 2 017=1 008.故选C.【答案】 C 12.记集合T={0,1,2,3,4,5,6,7,8,9},M =⎩⎨⎧⎭⎬⎫a 110+a 2102+a 3103+a 4104|a i ∈T ,i =1,2,3,4,将M 中的元素按从大到小排列,则第2 016个数是( )A.710+9102+8103+4104B.510+5102+7103+2104 C.510+5102+7103+3104 D.710+9102+9103+1104【解析】 因为a 110+a 2102+a 3103+a 4104=1104(a 1×103+a 2×102+a 3×101+a 4),括号内表示的10进制数,其最大值为9 999,从大到小排列,第2 016个数为9 999-2 016+1=7 984,所以a 1=7,a 2=9,a 3=8,a 4=4. 【答案】 A二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.已知圆的方程是x 2+y 2=r 2,则经过圆上一点M (x 0,y 0)的切线方程为x 0x+y 0y =r 2.类比上述性质,可以得到椭圆x 2a 2+y 2b 2=1类似的性质为__________.【解析】 圆的性质中,经过圆上一点M (x 0,y 0)的切线方程就是将圆的方程中的一个x 与y 分别用M (x 0,y 0)的横坐标与纵坐标替换.故可得椭圆x 2a 2+y 2b 2=1类似的性质为:过椭圆x 2a 2+y 2b 2=1上一点P (x 0,y 0)的切线方程为x 0x a 2+y 0yb 2=1.【答案】 经过椭圆x 2a 2+y 2b 2=1上一点P (x 0,y 0)的切线方程为x 0x a 2+y 0yb 2=1 14.已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个“整数对”是________ .【导学号:05410057】【解析】 依题意,把“整数对”的和相同的分为一组,不难得知第n 组中每个“整数对”的和均为n +1,且第n 组共有n 个“整数对”,这样的前n 组一共有n (n +1)2个“整数对”,注意到10×(10+1)2<60<11×(11+1)2,因此第60个“整数对”处于第11组(每个“整数对”的和为12的组)的第5个位置,结合题意可知每个“整数对”的和为12的组中的各对数依次为:(1,11),(2,10),(3,9),(4,8),(5,7),…,因此第60个“整数对”是(5,7).【答案】 (5,7)15.(2016·东莞高二检测)当n =1时,有(a -b )(a +b )=a 2-b 2,当n =2时,有(a -b )(a 2+ab +b 2)=a 3-b 3,当n =3时,有(a -b )(a 3+a 2b +ab 2+b 3)=a 4-b 4,当n ∈N +时,你能得到的结论是__________.【解析】 根据题意,由于当n =1时,有(a -b )(a +b )=a 2-b 2,当n =2时,有(a -b )(a 2+ab +b 2)=a 3-b 3,当n =3时,有(a -b )(a 3+a 2b +ab 2+b 3)=a 4-b 4,当n ∈N +时,左边第二个因式可知为a n +a n -1b +…+ab n -1+b n ,那么对应的表达式为(a -b )·(a n +a n -1b+…+ab n -1+b n )=a n +1-b n +1.【答案】 (a -b )(a n +a n -1b +…+ab n -1+b n )=a n +1-b n +116.如图3,如果一个凸多面体是n (n ∈N +)棱锥,那么这个凸多面体的所有顶点所确定的直线共有________条,这些直线共有f (n )对异面直线,则f (4)=________,f (n )=__________.(答案用数字或n 的解析式表示)图3【解析】 所有顶点所确定的直线共有棱数+底边数+对角线数=n +n +n (n -3)2=n (n +1)2.从题图中能看出四棱锥中异面直线的对数为f (4)=4×2+4×12×2=12,所以f (n )=n (n -2)+n (n -3)2·(n -2)=n (n -1)(n -2)2.【答案】 n (n +1)2 12 n (n -1)(n -2)2三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)用综合法或分析法证明: (1)如果a ,b >0,则lg a +b 2≥lg a +lg b2;(2)6+10>23+2.【证明】 (1)当a ,b >0时,有a +b2≥ab , ∴lg a +b2≥lg ab ,∴lg a +b 2≥12lg ab =lg a +lg b 2.(2)要证6+10>23+2, 只要证(6+10)2>(23+2)2, 即260>248,这是显然成立的, 所以,原不等式成立.18.(本小题满分12分)观察以下各等式: sin 230°+cos 260°+sin 30°cos 60°=34, sin 220°+cos 250°+sin 20°cos 50°=34, sin 215°+cos 245°+sin 15°cos 45°=34.分析上述各式的共同特点,猜想出反映一般规律的等式,并对等式的正确性作出证明.【解】 猜想:sin 2α+cos 2(α+30°)+sin αcos(α+30°)=34. 证明如下:sin 2α+cos 2(α+30°)+sin αcos(α+30°) =sin 2α+⎝ ⎛⎭⎪⎫32cos α-12sin α2+sin α⎝ ⎛⎭⎪⎫32cos α-12sin α=sin 2α+34cos 2α-32sin αcos α+14sin 2α+32sin α·cos α-12sin 2α =34sin 2α+34cos 2α=34.19.(本小题满分12分)等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2. (1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S nn (n ∈N +),求证:数列{b n }中任意不同的三项都不可能成为等比数列.【解】 (1)由已知得⎩⎪⎨⎪⎧a 1=2+1,3a 1+3d =9+32,∴d =2.故a n =2n -1+2,S n =n (n +2). (2)由(1)得b n =S nn =n + 2.假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r 互不相等)成等比数列,则b 2q =b p b r ,即(q +2)2=(p +2)(r +2), ∴(q 2-pr )+(2q -p -r )2=0, ∵p ,q ,r ∈N +,∴⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0,∴⎝⎛⎭⎪⎫p +r 22=pr ,(p -r )2=0. ∴p =r ,与p ≠r 矛盾.∴数列{b n }中任意不同的三项都不可能成等比数列.20.(本小题满分12分)点P 为斜三棱柱ABC -A 1B 1C 1的侧棱BB 1上一点,PM ⊥BB 1交AA 1于点M ,PN ⊥BB 1交CC 1于点N .(1)求证:CC 1⊥MN ;(2)在任意△DEF 中有余弦定理:DE 2=DF 2+EF 2-2DF ·EF ·cos ∠DFE .扩展到空间类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系式,并予以证明.【解】 (1)因为PM ⊥BB 1,PN ⊥BB 1,又PM ∩PN =P ,所以BB1⊥平面PMN,所以BB1⊥MN.又CC1∥BB1,所以CC1⊥MN.(2)在斜三棱柱ABC-A1B1C1中,有S2ABB1A1=S2BCC1B1+S2ACC1A1-2SBCC1B1SACC1A1cos α.其中α为平面BCC1B1与平面ACC1A1所成的二面角.证明如下:因为CC1⊥平面PMN,所以上述的二面角的平面角为∠MNP.在△PMN中,因为PM2=PN2+MN2-2PN·MN cos∠MNP,所以PM2·CC21=PN2·CC21+MN2·CC21-2(PN·CC1)·(MN·CC1)cos∠MNP,由于SBCC1B1=PN·CC1,SACC1A1=MN·CC1,SABB1A1=PM·BB1=PM·CC1,所以S2ABB1A1=S2BCC1B1+S2ACC1A1-2SBCC1B1·SACC1A1·cos α.21.(本小题满分12分)(2014·江苏高考)如图4,在三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点.已知P A⊥AC,P A=6,BC=8,DF=5.求证:图4(1)直线P A∥平面DEF;(2)平面BDE⊥平面ABC.【证明】(1)因为D,E分别为棱PC,AC的中点,所以DE∥P A.又因为P A ⊄平面DEF ,DE ⊂平面DEF ,所以直线P A ∥平面DEF .(2)因为D ,E ,F 分别为棱PC ,AC ,AB 的中点,P A =6,BC =8,所以DE ∥P A ,DE =12P A =3,EF =12BC =4.又因为DF =5,故DF 2=DE 2+EF 2,所以∠DEF =90°,即DE ⊥EF .又P A ⊥AC ,DE ∥P A ,所以DE ⊥AC .因为AC ∩EF =E ,AC ⊂平面ABC ,EF ⊂平面ABC ,所以DE ⊥平面ABC .又DE ⊂平面BDE ,所以平面BDE ⊥平面ABC .22.(本小题满分12分)在数列{a n }中,a 1=1,a 2=14,且a n +1=(n -1)a n n -a n(n ≥2). (1)求a 3,a 4,猜想a n 的表达式,并加以证明;(2)设b n =a n ·a n +1a n +a n +1, 求证:对任意的n ∈N +,都有b 1+b 2+…+b n <n 3.【解】 (1)容易求得:a 3=17,a 4=110.故可以猜想a n =13n -2,n ∈N +. 下面利用数学归纳法加以证明:①显然当n =1,2,3,4时,结论成立,②假设当n =k (k ≥4,k ∈N +)时,结论也成立,即a k =13k -2.那么当n =k +1时,由题设与归纳假设可知:a k +1=(k -1)a k k -a k =(k -1)×13k -2k -13k -2=k -13k 2-2k -1=k -1(3k +1)(k -1) =13k +1=13(k +1)-2. 即当n =k +1时,结论也成立,综上,对任意n ∈N +,a n =13n -2成立. (2)b n =a n ·a n +1a n +a n +1 =13n -2·13n +113n -2+13n +1 =13n +1+3n -2 =13(3n +1-3n -2),所以b 1+b 2+…+b n =13[(4-1)+(7-4)+(10-7)+…+(3n +1-3n -2)] =13(3n +1-1),所以只需要证明13(3n +1-1)<n3⇔3n +1<3n +1⇔3n +1<3n +23n +1⇔0<23n (显然成立),n 所以对任意的n∈N+,都有b1+b2+…+b n<3.。

高中数学苏教版选修2-1学业分层测评:模块综合测评含解析

模块综合测评(时间120分钟,满分160分)一、填空题(本大题共14小题,每小题5分,共70分.请把答案填在题中的横线上)1.若空间三点A(1,5,-2),B(2,4,1),C(p,3,q +2)共线,则p +q =________. 【解析】 易得AB →=(1,-1,3),AC →=(p -1,-2,q +4).∵AB →∥AC →,∴p -11=-2-1=q +43,∴p =3,q =2,p +q =5. 【答案】 52.设命题p :|4x -3|≤1;命题q :x 2-(2a +1)x +a(a +1)≤0.若非p 是非q 的必要不充分条件,则实数a 的取值范围是________. 【09390093】【解析】 先列出命题非p 和非q :|4x -3|>1和x 2-(2a +1)x +a(a +1)>0,分别解得非p :x>1或x<12;非q :x>a +1或x<a.若非p ⇐非q ,则a ≤12且a +1≥1,即0≤a ≤12.【答案】 0≤a ≤123.已知双曲线x 264-y 236=1上一点P 到它的右焦点的距离为8,那么点P 到它的右准线的距离是________.【解析】 设到右准线的距离为d ,则8d =54,所以d =325.【答案】 3254.设a ∈R ,则a >1是1a <1的________条件.(填“充分不必要”、“必要不充分”、“充要”和“既不充分也不必要”)【解析】 由1a <1,得1-a a <0,即a <0或a >1,所以a >1是1a <1的充分不必要条件.【答案】 充分不必要5.抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是________.【09390094】【解析】 由题意可得抛物线的焦点坐标为(1,0), 双曲线的渐近线方程为3x -y =0或3x +y =0,则焦点到渐近线的距离d 1=|3×1-0|(3)2+(-1)2=32或d 2=|3×1+0|(3)2+12=32.【答案】326.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三向量共面,则实数λ=________.【解析】 由题意得c =ta +μb =t(2,-1,3)+μ(-1,4,-2)=(2t -μ,-t +4μ,3t -2μ),即(7,5,λ)=(2t -μ,-t +4μ,3t -2μ),∴⎩⎪⎨⎪⎧7=2t -μ,5=-t +4μ,λ=3t -2μ,解得⎩⎪⎪⎨⎪⎪⎧t =337,μ=177,λ=657.【答案】 6577.已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,下列条件中能确定点M 与点A ,B ,C 一定共面的是________(填序号).①OM →=OA →+OB →+OC →;②OM →=2OA →-OB →-OC →;③OM →=OA →+12OB →+13OC →;④OM →=13OA →+13OB →+13OC →;⑤ OM →=5OA →-3OB →-OC →.【解析】 对空间任一点O 和不共线的三点A ,B ,C ,若满足向量关系式OM →=xOA →+yOB →+zOC →(其中x +y +z =1),则四点M ,A ,B ,C 共面.所以④⑤满足题意.【答案】 ④⑤8.双曲线x 24+y 2k =1的离心率e ∈(1,2),则k 的取值范围是________.【解析】 因为方程x 24+y 2k=1表示双曲线,所以k<0,所以a 2=4,b 2=-。

2017-2018学年高中数学 第三章 空间向量与立体几何章末综合测评 新人教B版选修2-1

(三) 空间向量与立体几何(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.与向量a =(1,-3,2)平行的一个向量的坐标是( )A.⎝ ⎛⎭⎪⎫13,1,1 B .(-1,-3,2) C.⎝ ⎛⎭⎪⎫-12,32,-1 D .()2,-3,-22【解析】 a =(1,-3,2)=-2⎝ ⎛⎭⎪⎫-12,32,-1.【答案】 C2.两平行平面α,β分别经过坐标原点O 和点A (2,1,1),且两平面的一个法向量n =(-1,0,1),则两平面间的距离是( )A.32 B .22C. 3D .3 2【解析】 两平面间的距离d =|OA →·n ||n |=22.【答案】 B3.已知A (2,-4,-1),B (-1,5,1),C (3,-4,1),D (0,0,0),令a =CA →,b =CB →,则a +b 为( )A .(5,-9,2)B .(-5,9,-2)C .(5,9,-2)D .(5,-9,-2)【解析】 a =CA →=(-1,0,-2),b =CB →=(-4,9,0), ∴a +b =(-5,9,-2). 【答案】 B4.在平行六面体ABCD ­A 1B 1C 1D 1中,若AC 1→=aAB →+2bAD →+3cA 1A →,则abc 的值等于( )【导学号:15460084】A.16 B .56 C.76D .-16【解析】 ∵AC 1→=AB →+AD →-A 1A →=aAB →+2bAD →+3cA 1A →, ∴a =1,b =12,c =-13,∴abc =-16.【答案】 D5.在棱长为1的正方体ABCD ­A 1B 1C 1D 1中,下列结论不正确的是( ) A.AB →=-C 1D 1→B .AB →·BC →=0 C.AA 1→·B 1D 1→=0D .AC 1→·A 1C →=0【解析】 如图,AB →∥C 1D 1→,AB →⊥BC →,AA 1→⊥B 1D 1→,故A ,B ,C 选项均正确.【答案】 D6.已知向量a ,b 是平面α内的两个不相等的非零向量,非零向量c 在直线l 上,则“c ·a =0,且c ·b =0”是l ⊥α的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】 若l ⊥α,则l 垂直于α内的所有直线,从而有c ·a =0,c ·b =0.反之,由于a ,b 是否共线没有确定,若共线,则结论不成立;若不共线,则结论成立.【答案】 B7.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的中线长为( )A .2B .3C .4D .5【解析】 设BC 的中点为D ,则D (2,1,4), ∴AD →=(-1,-2,2), ∴|AD →|=-2+-2+22=3,即BC 边上的中线长为3.【答案】 B8.若向量a =(x,4,5),b =(1,-2,2),且a 与b 的夹角的余弦值为26,则x =( ) A .3 B .-3 C .-11D .3或-11【解析】 因为a·b =(x,4,5)·(1,-2,2)=x -8+10=x +2,且a 与b 的夹角的余弦值为26,所以26=x +2x 2+42+52×1+4+4,解得x =3或-11(舍去),故选A. 【答案】 A9.如图1,在长方体ABCD ­A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成的角的正弦值为( )图1A.63 B .255C.155D .105【解析】 以D 点为坐标原点,以DA ,DC ,DD 1所在的直线为x 轴、y 轴、z 轴,建立空间直角坐标系(图略),则A (2,0,0),B (2,2,0),C (0,2,0),C 1(0,2,1),∴BC 1→=(-2,0,1),AC →=(-2,2,0),且AC →为平面BB 1D 1D 的一个法向量. ∴cos 〈BC 1→,AC →〉=BC 1→·AC →|BC 1→||AC →|=45·8=105.∴sin 〈BC →1,AC →〉=|cos 〈BC →1,AC →〉|=105,∴BC 1与平面BB 1D 1D 所成的角的正弦值为105. 【答案】 D10.已知正四棱柱ABCD ­A 1B 1C 1D 1中,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于( )A.23 B .33 C.23D .13【解析】 以D 为坐标原点,建立空间直角坐标系,如图,设AA 1=2AB =2,则D (0,0,0),C (0,1,0),B (1,1,0),C 1(0,1,2),则DC →=(0,1,0),DB →=(1,1,0),DC 1→=(0,1,2).设平面BDC 1的法向量为n =(x ,y ,z ),则n ⊥DB →,n ⊥DC 1→,所以有⎩⎪⎨⎪⎧x +y =0,y +2z =0,令y =-2,得平面BDC 1的一个法向量为n =(2,-2,1).设CD 与平面BDC 1所成的角为θ,则sin θ=|cos 〈n ,DC →〉|=⎪⎪⎪⎪⎪⎪⎪⎪n ·DC→|n ||DC →|=23.【答案】 A11.已知正方体ABCD ­A 1B 1C 1D 1中,若点F 是侧面CD 1的中心,且AF →=AD →+mAB →-nAA 1→,则m ,n 的值分别为( )A.12,-12 B .-12,-12C .-12,12D .12,12【解析】 由于AF →=AD →+DF →=AD →+12(DC →+DD 1→)=AD →+12AB →+12AA 1→,所以m =12,n =-12,故选A.【答案】 A12.在矩形ABCD 中,AB =3,AD =4,PA ⊥平面ABCD ,PA =435,那么二面角A ­BD ­P的大小为( )A .30°B .45°C .60°D .75°【解析】如图所示,建立空间直角坐标系, 则PB →=⎝ ⎛⎭⎪⎫3,0,-453,BD →=(-3,4,0).设n =(x ,y ,z )为平面PBD 的一个法向量,则⎩⎪⎨⎪⎧n ·PB →=0,n ·BD →=0,得⎩⎪⎨⎪⎧x ,y ,z⎝ ⎛⎭⎪⎫3,0,-453=0,x ,y ,z-3,4,=0.即⎩⎪⎨⎪⎧3x -453z =0,-3x +4y =0.令x =1,则n =⎝ ⎛⎭⎪⎫1,34,543.又n 1=⎝ ⎛⎭⎪⎫0,0,453为平面ABCD 的一个法向量, ∴cos 〈n 1,n 〉=n 1·n |n 1||n |=32,∴所求二面角为30°.【答案】 A二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上) 13.若a =(2x,1,3),b =(1,-2y,9),且a 与b 为共线向量,则x =________,y =________.【导学号:15460085】【解析】 由题意得2x 1=1-2y =39,∴x =16,y =-32.【答案】 16 -3214.△ABC 的三个顶点坐标分别为A (0,0,2),B ⎝ ⎛⎭⎪⎫-32,12, 2,C (-1,0, 2),则角A 的大小为________.【解析】 AB →=⎝ ⎛⎭⎪⎫-32,12,0,AC →=(-1,0,0),则cos A =AB →·AC →|AB →||AC →|=321×1=32,故角A 的大小为30°.【答案】 30°15.在空间直角坐标系Oxyz 中,已知A (1,-2,3),B (2,1,-1),若直线AB 交平面xOz 于点C ,则点C 的坐标为________.【解析】 设点C 的坐标为(x,0,z ),则AC →=(x -1,2,z -3),AB →=(1,3,-4),因为AC →与AB →共线,所以x -11=23=z -3-4,解得⎩⎪⎨⎪⎧x =53,z =13,所以点C 的坐标为⎝ ⎛⎭⎪⎫53,0,13.【答案】 ⎝ ⎛⎭⎪⎫53,0,1316.如图2,在四棱锥S ­ABCD 中,底面ABCD 是边长为1的正方形,S 到A ,B ,C ,D 的距离都等于2.图2给出以下结论:①SA →+SB →+SC →+SD →=0;②SA →+SB →-SC →-SD →=0;③SA →-SB →+SC →-SD →=0;④SA →·SB →=SC →·SD →;⑤SA →·SC →=0,其中正确结论的序号是________.【解析】 容易推出:SA →-SB →+SC →-SD →=BA →+DC →=0,所以③正确;又因为底面ABCD 是边长为1的正方形,SA =SB =SC =SD =2,所以SA →·SB →=2×2cos∠ASB ,SC →·SD →=2×2cos ∠CSD ,而∠ASB =∠CSD ,于是SA →·SB →=SC →·SD →,因此④正确;其余三个都不正确,故正确结论的序号是③④.【答案】 ③④三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)如图3,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .图3(1)证明:平面PQC ⊥平面DCQ ; (2)证明:PC ∥平面BAQ .【证明】 如图,以D 为坐标原点,线段DA 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系Dxyz .(1)依题意有Q (1,1,0),C (0,0,1),P (0,2,0),则DQ →=(1,1,0),DC →=(0,0,1),PQ →=(1,-1,0),所以PQ →·DQ →=0,PQ →·DC →=0,即PQ ⊥DQ ,PQ ⊥DC 且DQ ∩DC =D . 故PQ ⊥平面DCQ .又PQ ⊂平面PQC ,所以平面PQC ⊥平面DCQ .(2)根据题意,DA →=(1,0,0),AB →=(0,0,1),AQ →=(0,1,0),故有DA →·AB →=0,DA →·AQ →=0,所以DA →为平面BAQ 的一个法向量.又因为PC →=(0,-2,1),且DA →·PC →=0,即DA ⊥PC ,且PC ⊄平面BAQ ,故有PC ∥平面BAQ . 18. (本小题满分12分)如图4,在直三棱柱ABC ­A 1B 1C 1中,∠ABC =90°,AB =BC =1,AA 1=2,求异面直线BA 1与AC 所成角的余弦值.图4【解】 因为BA 1→=BA →+AA 1→ =BA →+BB 1→,AC →=BC →-BA →, 且BA →·BC →=BB 1→·BA → =BB 1→·BC →=0,所以BA 1→·AC →=(BA →+BB 1→)·(BC →-BA →) =BA →·BC →-BA →2+BB 1→·BC →-BB 1→·BA → =-1.又|AC →|=2,|BA 1→|=1+2=3, 所以cos 〈BA 1→,AC →〉=BA 1→·AC →|BA 1→||AC →|=-16=-66,则异面直线BA 1与AC 所成角的余弦值为66. 19.(本小题满分12分)如图5,AB 是圆的直径,PA 垂直圆所在的平面,C 是圆上的点.图5(1)求证:平面PBC ⊥平面PAC ;(2)若AB =2,AC =1,PA =1,求二面角C ­PB ­A 的余弦值. 【解】 (1)证明:由AB 是圆的直径,得AC ⊥BC , 由PA ⊥平面ABC ,BC ⊂平面ABC ,得PA ⊥BC . 又PA ∩AC =A ,PA ⊂平面PAC ,AC ⊂平面PAC , 所以BC ⊥平面PAC . 因为BC ⊂平面PBC . 所以平面PBC ⊥平面PAC .(2)过C 作CM ∥AP ,则CM ⊥平面ABC .如图,以点C 为坐标原点,分别以直线CB ,CA ,CM 为x 轴,y 轴,z 轴建立空间直角坐标系.在Rt △ABC 中,因为AB =2,AC =1,所以BC = 3. 又因为PA =1,所以A (0,1,0),B (3,0,0),P (0,1,1). 故CB →=(3,0,0),CP →=(0,1,1). 设平面BCP 的法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧ CB →·n 1=0,CP →·n 1=0,所以⎩⎨⎧3x 1=0,y 1+z 1=0,不妨令y 1=1,则n 1=(0,1,-1). 因为AP →=(0,0,1),AB →=(3,-1,0), 设平面ABP 的法向量为n 2=(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧AP →·n 2=0,AB →·n 2=0,所以⎩⎨⎧z 2=0,3x 2-y 2=0,不妨令x 2=1,则n 2=(1, 3,0). 于是cos 〈n 1,n 2〉=322=64. 由图知二面角C ­PB ­A 为锐角,故二面角C ­PB ­A 的余弦值为64.20. (本小题满分12分)如图6,在四棱锥P ­ABCD 中,AD ∥BC ,AB ⊥AD ,AB ⊥PA ,BC =2AB =2AD =4BE ,平面PAB ⊥平面ABCD .图6(1)求证:平面PED ⊥平面PAC ;(2)若直线PE 与平面PAC 所成的角的正弦值为55,求二面角A ­PC ­D 的余弦值. 【解】 (1)证明:∵平面PAB ⊥平面ABCD , 平面PAB ∩平面ABCD =AB ,AB ⊥PA , ∴PA ⊥平面ABCD ,又∵AB ⊥AD ,故可建立空间直角坐标系Oxyz 如图所示, 不妨设BC =4,AP =λ(λ>0),则有D (0,2,0),E (2,1,0),C (2,4,0),P (0,0,λ), ∴AC →=(2,4,0),AP →=(0,0,λ),DE →=(2,-1,0), ∴DE →·AC →=4-4+0=0,DE →·AP →=0,∴DE ⊥AC ,DE ⊥AP 且AC ∩AP =A , ∴DE ⊥平面PAC . 又DE ⊂平面PED , ∴平面PED ⊥平面PAC .(2)由(1)知,平面PAC 的一个法向量是DE →=(2,-1,0),PE →=(2,1,-λ), 设直线PE 与平面PAC 所成的角为θ,∴sin θ=|cos 〈PE →,DE →〉|=⎪⎪⎪⎪⎪⎪4-155+λ2=55,解得λ=±2.∵λ>0,∴λ=2,即P (0,0,2),设平面PCD 的一个法向量为n =(x ,y ,z ),DC →=(2,2,0),DP →=(0,-2,2), 由n ⊥DC →,n ⊥DP →,∴⎩⎪⎨⎪⎧2x +2y =0,-2y +2z =0,不妨令x =1,则n =(1,-1,-1).∴cos 〈n ,DE →〉=2+13 5=155,显然二面角A ­PC ­D 的平面角是锐角, ∴二面角A ­PC ­D 的余弦值为155. 21.(本小题满分12分)如图7,四棱锥P ­ABCD 的底面ABCD 为一直角梯形,其中BA ⊥AD ,CD ⊥AD ,CD =AD =2AB ,PA ⊥底面ABCD ,E 是PC 的中点.图7(1)求证:BE ∥平面PAD ; (2)若BE ⊥平面PCD ,①求异面直线PD 与BC 所成角的余弦值; ②求二面角E ­BD ­C 的余弦值.【解】 设AB =a ,PA =b ,建立如图的空间直角坐标系,则A (0,0,0),B (a,0,0),P (0,0,b ),C (2a,2a,0),D (0,2a,0),E ⎝ ⎛⎭⎪⎫a ,a ,b 2.(1)BE →=⎝⎛⎭⎪⎫0,a ,b 2,AD →=(0,2a,0),AP →=(0,0,b ),所以BE →=12AD →+12AP →,因为BE ⊄平面PAD ,所以BE ∥平面PAD .(2)因为BE ⊥平面PCD ,所以BE ⊥PC ,即BE →·PC →=0,PC →=(2a,2a ,-b ),所以BE →·PC →=2a 2-b 22=0,则b =2a . ①PD →=(0,2a ,-2a ),BC →=(a,2a,0),cos 〈PD →,BC →〉=4a 222a ·5a =105,所以异面直线PD 与BC 所成角的余弦值为105. ②在平面BDE 和平面BDC 中,BE →=(0,a ,a ),BD →=(-a ,2a,0),BC →=(a,2a,0),所以平面BDE 的一个法向量为n 1=(2,1,-1);平面BDC 的一个法向量为n 2=(0,0,1);cos 〈n 1,n 2〉=-16,所以二面角E ­BD ­C 的余弦值为66. 22.(本小题满分12分)如图8,在棱长为2的正方体ABCD ­A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP =BQ =λ(0<λ<2).图8(1)当λ=1时,证明:直线BC 1∥平面EFPQ ;(2)是否存在λ,使平面EFPQ 与平面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.【解】 以D 为原点,射线DA ,DC ,DD 1分别为x 轴,y 轴,z 轴的正半轴建立空间直角坐标系.由已知得B (2,2,0),C 1(0,2,2),E (2,1,0),F (1,0,0),P (0,0,λ),BC 1→=(-2,0,2),FP →=(-1,0,λ),FE →=(1,1,0).(1)当λ=1时,FP →=(-1,0,1),因为BC 1→=(-2,0,2).所以BC 1→=2FP →,可知BC 1∥FP ,而FP ⊂平面EFPQ ,且BC 1⊄平面EFPQ ,故直线BC 1∥平面EFPQ .(2)设平面EFPQ 的一个法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧ FE →·n =0,FP →·n =0,得⎩⎪⎨⎪⎧x +y =0,-x +λz =0, 于是可取n =(λ,-λ,1),同理可得平面PQMN 的一个法向量为m =(λ-2,2-λ,1),若存在λ,使得平面EFPQ 与平面PQMN 所在的二面角为直二面角, 则m·n =(λ-2,2-λ,1)·(λ,-λ,1)=0,即λ(λ-2)-λ(2-λ)+1=0,解得λ=1±22,故存在λ=1±22,使平面EFPQ 与平面PQMN 所成的二面角为直二面角.。

高中数学 第一章 常用逻辑用语章末综合测评(含解析)新人教A版高二选修2-1数学试题

章末综合测评(一) 常用逻辑用语(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列语句中是命题的为()①x2-3=0;②与一条直线相交的两直线平行吗?③3+1=5;④∀x∈R,5x-3>6.A.①③B.②③C.②④D.③④D[①不能判断真假,②是疑问句,都不是命题;③④是命题.]2.命题“若△ABC不是等腰三角形,则它的任何两个内角不相等”的逆否命题是() A.若△ABC是等腰三角形,则它的任何两个内角相等B.若△ABC中任何两个内角不相等,则它不是等腰三角形C.若△ABC中有两个内角相等,则它是等腰三角形D.若△ABC中任何两个内角相等,则它是等腰三角形C[将原命题的条件否定作为结论,为“△ABC是等腰三角形”,结论否定作为条件,为“有两个内角相等”,再调整语句,即可得到原命题的逆否命题,为“若△ABC中有两个内角相等,则它是等腰三角形”,故选C.]3.命题“存在一个无理数,它的平方是有理数”的否定是()A.任意一个有理数,它的平方是有理数B.任意一个无理数,它的平方不是有理数C.存在一个有理数,它的平方是有理数D.存在一个无理数,它的平方不是有理数B[根据特称命题的否定是全称命题,先将存在量词改为全称量词,然后否定结论,故该命题的否定为“任意一个无理数,它的平方不是有理数”.故选B.]4.命题p:x+y≠3,命题q:x≠1或y≠2,则命题p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件A[命题“若p,则q”的逆否命题为:“若x=1且y=2,则x+y=3”,是真命题,故原命题为真,反之不成立.]5.“关于x的不等式f(x)>0有解”等价于()A.∃x0∈R,使得f(x0)>0成立B .∃x 0∈R ,使得f (x 0)≤0成立C .∀x ∈R ,使得f (x )>0成立D .∀x ∈R ,f (x )≤0成立A [“关于x 的不等式f (x )>0有解”等价于“存在实数x 0,使得f (x 0)>0成立”.故选A .]6.若命题(p ∨(q ))为真命题,则p ,q 的真假情况为( )A .p 真,q 真B .p 真,q 假C .p 假,q 真D .p 假,q 假C [由(p ∨(q ))为真命题知,p ∨(q )为假命题,从而p 与q 都是假命题,故p 假q 真.]7.已知命题p :∀x >0,总有(x +1)e x >1,则p 为( )A .∃x 0≤0,使得(x 0+1)e x 0≤1B .∃x 0>0,使得(x 0+1)e x 0≤1C .∀x >0,总有(x +1)e x ≤1D .∀x ≤0,使得(x +1)e x ≤1B [因为全称命题∀x ∈M ,p (x )的否定为∃x 0∈M ,p (x ),故p :∃x 0>0,使得(x 0+1)e x 0≤1.]8.已知命题p :若(x -1)(x -2)≠0,则x ≠1且x ≠2;命题q :存在实数x 0,使2x 0<0.下列选项中为真命题的是( )A .pB .p ∨qC .q ∧pD .qC [很明显命题p 为真命题,所以p 为假命题;由于函数y =2x ,x ∈R 的值域是(0,+∞),所以q 是假命题,所以q 是真命题.所以p ∨q 为假命题,q ∧p 为真命题,故选C .]9.条件p :x ≤1,且p 是q 的充分不必要条件,则q 可以是( )A .x >1B .x >0C .x ≤2D .-1<x <0B [∵p :x ≤1,∴p :x >1,又∵p 是q 的充分不必要条件,∴p ⇒q ,q 推不出p ,即p 是q 的真子集.]10.下列各组命题中,满足“p ∨q ”为真,且“p ”为真的是( )A .p :0=∅;q :0∈∅B .p :在△ABC 中,若cos 2A =cos 2B ,则A =B ;q :函数y =sin x 在第一象限是增函数C .p :a +b ≥2ab (a ,b ∈R );q :不等式|x |>x 的解集为(-∞,0)D .p :圆(x -1)2+(y -2)2=1的面积被直线x =1平分;q :过点M (0,1)且与圆(x -1)2+(y -2)2=1相切的直线有两条C [A 中,p 、q 均为假命题,故“p ∨q ”为假,排除A ;B 中,由在△ABC 中,cos 2A =cos 2B ,得1-2sin 2A =1-2sin 2B ,即(sin A +sin B )(sin A -sin B )=0,所以A -B =0,故p 为真,从而“p ”为假,排除B ;C 中,p 为假,从而“p ”为真,q 为真,从而“p ∨q ”为真;D 中,p 为真,故“p ”为假,排除D .故选C .] 11.已知p :∃x ∈R ,mx 2+1≤0,q :∀x ∈R ,x 2+mx +1>0,若“p ∨q ”为假命题,则实数m 的取值X 围为( )A .[2,+∞)B .(-∞,-2]C .(-∞,-2]∪[2,+∞)D .[-2,2]A [由题意知p ,q 均为假命题,则p ,q 为真命题.p :∀x ∈R ,mx 2+1>0,故m ≥0,q :∃x ∈R ,x 2+mx +1≤0,则Δ=m 2-4≥0,即m ≤-2或m ≥2,由⎩⎪⎨⎪⎧m ≥0,m ≤-2或m ≥2得m ≥2.故选A .] 12.设a ,b ∈R ,则“2a +2b =2a +b ”是“a +b ≥2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件A [利用基本不等式,知2a +b =2a +2b ≥22a ·2b ,化简得2a +b ≥22,所以a +b ≥2,故充分性成立;当a =0,b =2时,a +b =2,2a +2b =20+22=5,2a +b =22=4,即2a +2b ≠2a +b ,故必要性不成立.故选A .]二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.命题“不等式x 2+x -6>0的解为x <-3或x >2”的逆否命题是________.若-3≤x ≤2,则x 2+x -6≤0[“不等式x 2+x -6>0的解为x <-3或x >2”即为:“若x 2+x -6>0,则x <-3或x >2”,根据逆否命题的定义可得:若-3≤x ≤2,则x 2+x -6≤0.]14.写出命题“若x 2=4,则x =2或x =-2”的否命题为________.若x 2≠4,则x ≠2且x ≠-2 [命题“若x 2=4,则x =2或x =-2”的否命题为“若x 2≠4,则x ≠2且x ≠-2”.]15.若命题“∃t ∈R ,t 2-2t -a <0”是假命题,则实数a 的取值X 围是________. (-∞,-1][命题“∃t ∈R ,t 2-2t -a <0”是假命题.则∀t ∈R ,t 2-2t -a ≥0是真命题,∴Δ=4+4a ≤0,解得a ≤-1.∴实数a 的取值X 围是(-∞,-1].]16.已知p :-4<x -a <4,q :(x -2)(3-x )>0,若p 是q 的充分条件,则实数a 的取值X 围是________.[-1,6][p :-4<x -a <4⇔a -4<x <a +4,q :(x -2)(3-x )>0⇔2<x <3.因为p 是q 的充分条件,即p ⇒q ,所以q 是p 的充分条件,即q ⇒p ,所以⎩⎪⎨⎪⎧a -4≤2,a +4≥3,解得-1≤a ≤6.] 三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)将命题“一组对边平行且相等的四边形是平行四边形”改写成“若p ,则q ”的形式,并写出它的逆命题、否命题和逆否命题,同时判断它们的真假.[解]“若p ,则q ”的形式:若一个四边形的一组对边平行且相等,则这个四边形是平行四边形.(真命题)逆命题:若一个四边形是平行四边形,则这个四边形的一组对边平行且相等.(真命题) 否命题:若一个四边形的一组对边不平行或不相等,则这个四边形不是平行四边形.(真命题)逆否命题:若一个四边形不是平行四边形,则这个四边形的一组对边不平行或不相等.(真命题)18.(本小题满分12分)写出下列命题的否定,并判断其真假,同时说明理由.(1)q :所有的矩形都是正方形;(2)r :∃x 0∈R ,x 20+2x 0+2≤0;(3)s :至少有一个实数x 0,使x 30+3=0.[解](1)q :至少存在一个矩形不是正方形,真命题.这是由于原命题是假命题. (2)r :∀x ∈R ,x 2+2x +2>0,真命题.这是由于∀x ∈R ,x 2+2x +2=(x +1)2+1≥1>0恒成立.(3)s :∀x ∈R ,x 3+3≠0,假命题.这是由于当x =-33时,x 3+3=0. 19.(本小题满分12分)(1)是否存在实数m ,使得2x +m <0是x 2-2x -3>0的充分条件?(2)是否存在实数m ,使得2x +m <0是x 2-2x -3>0的必要条件?[解](1)欲使得2x +m <0是x 2-2x -3>0的充分条件,则只要⎩⎨⎧⎭⎬⎫x ⎪⎪x <-m 2⊆{x |x <-1或x >3}, 则只要-m 2≤-1,即m ≥2, 故存在实数m ≥2,使2x +m <0是x 2-2x -3>0的充分条件.(2)欲使2x +m <0是x 2-2x -3>0的必要条件,则只要⎩⎨⎧⎭⎬⎫x ⎪⎪x <-m 2⊇{x |x <-1或x >3}, 则这是不可能的,故不存在实数m 使2x +m <0是x 2-2x -3>0的必要条件.20.(本小题满分12分)已知p :x 2-8x -33>0,q :x 2-2x +1-a 2>0(a >0),若p 是q 的充分不必要条件,求正实数a 的取值X 围.[解]解不等式x 2-8x -33>0,得p :A ={x |x >11或x <-3};解不等式x 2-2x +1-a 2>0,得q :B ={x |x >1+a 或x <1-a ,a >0}.依题意p ⇒q 但q p ,说明A B .于是有⎩⎪⎨⎪⎧ a >0,1+a ≤11,1-a >-3或⎩⎪⎨⎪⎧ a >0,1+a <11,1-a ≥-3,解得0<a ≤4,所以正实数a 的取值X 围是(0,4].21.(本小题满分12分)证明:函数f (x )=a ·2x +a -22x +1(x ∈R )是奇函数的充要条件是a =1. [证明](充分性)若a =1,则函数化为f (x )=2x -12x +1(x ∈R ).因为f (-x )=2-x -12-x +1=12x-112x +1=1-2x 1+2x=-2x -12x +1=-f (x ),所以函数f (x )是奇函数. (必要性)若函数f (x )是奇函数,则f (-x )=-f (x ),所以a ·2-x +a -22-x +1=-a ·2x +a -22x +1, 所以a +(a -2)·2x 2x +1=-a ·2x +a -22x +1, 所以a +(a -2)·2x =-a ·2x -a +2,所以2(a -1)(2x +1)=0,解得a =1.综上所述,函数f (x )=a ·2x +a -22x +1(x ∈R )是奇函数的充要条件是a =1. 22.(本小题满分12分)已知命题p :方程x 2+mx +1=0有两个不相等的实根;q :不等式4x 2+4(m -2)x +1>0的解集为R .若p ∨q 为真,q 为假,某某数m 的取值X 围.[解]由方程x 2+mx +1=0有两个不相等的实根,得Δ=m 2-4>0,解得m >2或m <-2. ∴命题p 为真时,m >2或m <-2;命题p 为假时,-2≤m ≤2.由不等式4x 2+4(m -2)x +1>0的解集为R ,得方程4x 2+4(m -2)x +1=0的根的判别式Δ′=16(m -2)2-16<0,解得1<m <3.∴命题q 为真时,1<m <3;命题q 为假时,m ≤1或m ≥3.∵p ∨q 为真,q 为假,∴p 真q 假,∴⎩⎪⎨⎪⎧m >2或m <-2,m ≤1或m ≥3,解得m <-2或m ≥3. ∴实数m 的取值X 围为(-∞,-2)∪[3,+∞).。

2019_2020学年高中历史专题3第二次世界大战专题综合测评人民版选修3

专题综合测评三第二次世界大战(时间:90分钟满分:100分)温馨提示:1.第Ⅰ卷答案写在答题卡上,第Ⅱ卷书写在试卷上;交卷前请核对班级、姓名、考号。

2.本场考试时间为90分钟,注意把握好答题时间。

3.认真审题,仔细作答,永远不要以粗心为借口原谅自己。

第Ⅰ卷(选择题,共48分)一、选择题(共24小题,每小题2分,共48分)1.在西班牙内战时,英国的统治者说:“如果现在正在西班牙和法国流行的共产主义传染病传播到其他国家,那么已经在自己的国土上消灭了传染病的两个政府——德国和意大利政府就会是我们最有益的朋友。

”这段话表明( )A.英国资产阶级政府与法西斯主义没有利害冲突B.英国统治者企图利用法西斯力量削弱社会主义力量C.英国实际上与法西斯国家形成了反西班牙联盟D.英国实际上是西班牙内战的幕后操纵者解析:由于社会意识形态的影响,所有资本主义国家都仇视社会主义,在法西斯上台的当时,英美法等国的统治者并没有认识到法西斯主义对他们的威胁远远大于社会主义力量,故采取绥靖政策,后来由于法西斯的侵略,使美、英等国对他们认识变清楚,才决定联合社会主义国家苏联,共同反对法西斯暴政。

答案:B2.七三一等日军部队在中国实施人体细菌实验、细菌战和化学战的史实说明( ) A.为了争取战争胜利,可以不择手段B.日军处于战略防御阶段,被迫自保C.在战争期间,可以侵犯人权D.法西斯分子毫无人性,犯有反人道罪解析:本题适用排除法,A、B、C明显有错误,应排除。

答案:D3.“新帝国必须……用德国的剑为德国的犁取得土地,为德国人民取得每天的面包。

”根据这种思路,希特勒上台后( )A.疯狂扩军备战B.组织纳粹党C.剥夺犹太人的公民权力D.签订《苏德互不侵犯条约》解析:材料反映了德国对外侵略扩张的政策,希特勒上台后疯狂扩军备战,欧洲战争策源地形成。

答案:A4.有人说:“把纳粹的暴政加在自己身上的是德国人自己。

”此语依据的事实是( ) A.纳粹党通过议会选举成为国会第一大党B.纳粹党的对外政策得到德国人普遍支持C.迫害犹太人迎合了大多数德国人的心理D.法西斯主义给德国带来了实际利益解析:纳粹党是通过正常的议会选举上台的,这说明当时的大多数德国人支持纳粹党,也说明纳粹党欺骗人民的手段高明。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

综合测评(二) 恒定电流 (时间:60分钟 分值:100分) [命题报告] 简单 中等 较难 基本电路分析、应用 2 4、6 8

电功、电功率、焦耳定律 5 17

欧姆定律、闭合电路欧姆定律 1、3 13

实验 7 11、12 综合 9 14、15、16 一、选择题(本题共8个小题,每小题6分,共48分) 1.一根粗细均匀的导线,当其两端电压为U时,通过的电流是I,若将此导线均匀拉长到原来的2倍时,电流仍为I,导线两端所加的电压变为( ) A.U/2 B.U C.2U D.4U

【解析】 由电阻定律R=ρ1S,可知当导线拉长到原来的2倍时,横截面积

为原来的12,则电阻为原来的4倍,由欧姆定律I=UR,可知D选项正确. 【答案】 D 2.导体的电阻是导体本身的一种性质,对于同种材料的导体,下列表述正确的是( ) A.横截面积一定,电阻与导体的长度成正比 B.长度一定,电阻与导体的横截面积成正比 C.电压一定,电阻与通过导体的电流成反比 D.电流一定,电阻与导体两端的电压成正比 【解析】 对于同种材料的导体,电阻率可以认为是个定值,根据电阻定律

R=ρlS可知横截面积一定,电阻与导体的长度成正比,A正确;长度一定,电阻与导体的横截面积成反比,B错误;由欧姆定律知R=U/I,此式是电阻的定义式,电阻R与电压U、电流I无正反比关系,故C、D错误. 【答案】 A 3.如图1所示为将不同电压加在一段金属导体两端,在温度不变的情况下所测得的I-U图线.试根据图线回答:若将这段金属导体在保持长度不变的前提下增大其横截面积,则这段导体的电阻( )

图1 A.等于4.0 Ω B.大于2.0 Ω C.小于2.0 Ω D.等于2.0 Ω 【解析】 由图象知R=2 Ω,若保持长度不变,增大横截面积,则电阻要变小,故选项C正确. 【答案】 C 4.一电压表由电流表G与电阻R串联而成,如图2所示,若在使用中发现此电压表的读数总比准确值稍小一些,采用下列哪种措施可能加以改进( )

图2 A.在R上串联一比R小得多的电阻 B.在R上串联一比R大得多的电阻 C.在R上并联一比R小得多的电阻 D.在R上并联一比R大得多的电阻 【解析】 电压表的读数总是比准确值稍小一些,说明改装时串联的电阻偏大了.故应该在R上并联一比R大得多的电阻. 【答案】 D 5.一白炽灯泡的额定功率与额定电压分别为36 W与36 V.若把此灯泡接到输出电压为18 V的电源两端,则灯泡消耗的电功率( ) A.等于36 W B.小于36 W,大于9 W C.等于9 W D.小于9 W

【解析】 若白炽灯泡的电阻不变,由P=U2R得电压减小一半,灯泡消耗的电功率为原来的14,即P=9 W,实际上电阻减小,则灯泡消耗的实际电功率应大于9 W,故选项B正确. 【答案】 B 6.如图3所示电路中,R0为定值电阻,当滑片P向右移动过程中,下列判断正确的是( )

图3 A.电压表V1、电流表A的读数都增大 B.电压表V1与电流表A读数的比值保持不变 C.电压表V2与电流表A读数的比值变大 D.电压表V1、电流表A读数变化量的比值保持不变 【解析】 滑片P向右移动,R接入电路中的电阻增大,总电阻增大,由闭合电路欧姆定律可知干路电流I减小,内电压U内=Ir减小,外电压U外=E-U

内增大,R0的电压V2减小,R的电压V1增大,故选项A错误;R0为定值电阻,电压表V2与电流表A读数的比值保持不变,R接入电路中的电阻增大,电压表V1与电流表A读数变化量的比值增大,故选项B错误,C错误;电压表V1、电流表A读数变化量的比值为内阻与R0之和,选项D正确. 【答案】 D 7. (2015·东营市高二检测)在如图4所示的电路中,电源电动势为E,内电阻为r,闭合开关S,待电流达到稳定后,电流表示数为I,电压表示数为U,电容器C所带电荷量为Q将滑动变阻器的滑动触头P从图示位置向a端移动一些,待电流达到稳定后,则与P移动前相比( ) 图4 A.U变小 B.I变小 C.Q不变 D.Q减小 【解析】 当电流稳定时,电容器可视为断路,当P向左滑时,滑动变阻

器连入电路的阻值R增大,根据闭合电路欧姆定律得,电路中的电流I=ER+R2+r

减小,电压表的示数U=E-I(R2+r)增大,A错B对;对于电容器,电荷量Q=CU增大,C、D均错. 【答案】 B 8.(多选)已知如图5,电源内阻不计.为使电容器的带电量增大,可采取以下那些方法( )

图5 A.增大R1 B.增大R2 C.增大R3 D.减小R1 【解析】 由于稳定后电容器相当于断路,因此R3上无电流,电容器相当于和R2并联.只有增大R2或减小R1才能增大电容器C两端的电压,从而增大其带电量.改变R3不能改变电容器的带电量. 【答案】 BD 二、填空题(共2小题,每小题2分,共23分) 9. (11分)(1)某同学使用多用电表粗略测量一定值电阻的阻值,先把选择开关旋到“×1 k”档位,测量时针偏转如图6甲所示.请你简述接下来的测量过程: 甲 图6 ①___________________________________________________________; ②__________________________________________________________; ③___________________________________________________________; ④测量结束后,将选择开关旋到“OFF”档. (2)接下来采用“伏安法”较准确地测量该电阻的阻值,所用实验器材如图乙所示.

乙 图6 其中电压表内阻约为5 kΩ,电流表内阻约为5 Ω.图中部分电路已经连接好,请完成实验电路的连接. (3)图丙是一个多量程多用电表的简化电路图,测量电流、电压和电阻各有两个量程.当转换开关S旋到位置3时,可用来测量________;当S旋到位置________时,可用来测量电流,其中S旋到位置________时量程较大. 丙 图6 【答案】 (1)①断开待测电阻,将选择开关旋到“×100”档 ②将两表笔短接,调整“欧姆调零旋钮”,使指针指向“0” ③再接入待测电阻,将指针示数×100,即为待测电阻阻值 (2)如图所示

(3)电阻 1、2 1 10.(12分)测金属电阻率实验 (1)测长度时,金属丝的起点、终点位置如图(a),则长度为:__________cm; (2)用螺旋测微器测金属丝直径,示数如图(b),则直径为:__________mm; (3)用多用表“Ω×1”档估测其电阻,示数如图(c),则阻值为:__________Ω; (4)在图(d)中完成实物连线; (5)闭合开关前应将滑动变阻器的滑片P移至最__________(填“左”或“右”)端.

(a)

(b) (c) (d) 图7 【解析】 (1)(a)图需往下估读一位,大约为60.48 cm(60.45~60.50 cm都可以). (2)读数=固定刻度示数+可动刻度示数=1.5 mm+0.480 mm=1.980 mm. (3)由题可知,阻值为5 Ω. (4)电流表外接,滑动变阻器采用分压、限流接法均可,采用限流接法时如图所示.

(5)无论限流接法,还是分压接法,将滑片P移至最左端时,待测金属丝上的电压和电流最小. 三、计算题(共2小题,共29分) 11.(14分)一个允许通过最大电流为2 A的电源和一个滑动变阻器,接成如图8甲所示的电路.滑动变阻器最大阻值为R0=22 Ω,电源路端电压U随外电阻R变化的规律如图乙所示,图中U=12 V的直线为图线的渐近线,试求:

甲 乙 图8 (1)电源电动势E和内阻r; (2)A、B空载时输出电压的范围; (3)若要保证滑动变阻器的滑片任意滑动时,干路电流不能超过2 A,A、B两端所接负载电阻至少多大. 【解析】 (1)由乙图可知,当R→∞时,E=12 V而当U=6 V时,应有r=R=2 Ω.

(2)当滑片滑至上端时,UAB最大Umax=R0R0+rE=11 V 当滑片滑至下端时,UAB为零,因此,A、B空载时输出电压范围为0~11 V. (3)A、B两端接某一负载电阻后,滑动变阻器滑片移至上端时,干路电流最大.

此时I=ER0RxR0+Rx+r为了电源不过载,应保证I≤2 A

代入数据得Rx≥4.9 Ω即所接负载电阻最小值为4.9 Ω. 【答案】 (1)12 V 2 Ω (2)0~11 V (3)4.9 12.(15分)电路如图9所示,电源电动势E=28 V,内阻r=2 Ω,电阻R1

=12 Ω,R2=R4=4 Ω,R3=8 Ω,C为平行板电容器,其电容C=3.0 pF,虚线

到两极板距离相等,极板长l=0.20 m,两极板的间距d=1.0×10-2 m.

图9 (1)若开关S处于断开状态,则当其闭合后,求流过R4的总电量为多少? (2)若开关S断开时,有一带电微粒沿虚线方向以v0=2.0 m/s的初速度射入C的电场中,刚好沿虚线匀速运动,问:当开关S闭合后,此带电微粒以相同初速度沿虚线方向射入C的电场中,能否从C的电场中射出?(要求写出计算和分析过程,g取10m/s2)

【解析】 (1)S断开时,电阻R3两端电压为U3=R3R2+R3+rE=16 V

相关文档
最新文档