活性炭吸附实验

合集下载

实验2_活性炭吸附

实验2_活性炭吸附

实验二 活性炭吸附1.实验目的(1) 通过实验进一步了解活性炭的吸附工艺及性能,并熟悉整个实验过程的操作。

(2) 掌握用“间歇”法确定活性炭处理污水的设计参数的方法。

2.原理活性炭吸附是目前国内外应用较多的一种水处理手段,由于活性炭对水中大部分污染物都有较好的吸附作用,因此活性炭吸附应用于水处理时往往具有出水水质稳定,适用于多种污水的优点。

活性炭吸附常用来处理某些工业污水,在有些特殊情况下也用于给水处理。

比如当给水水源中含有某些不易去除而且含量较少的污染物时,当某些偏远小居住区尚无自来水厂需临时安装一小型自来水生产装置时,往往使用活性吸附装置。

但由于活性炭的造价较高,再生过程较复杂,所以活性炭吸附的应用尚具有一定的局限性。

活性炭吸附就是利用活性炭的固体表面对水中一种或多种物质的吸附作用,以达到净化水质的目的。

活性炭的吸附作用产生于两个方面,一是由于活性炭内部分子在各个方向都受着同等大小的力而在表面的分子则受到不平衡的力,这就使其他分子吸附于其表面上,此为物理吸附;另一个是由于活性炭与被吸附物质之间的化学作用,此为化学吸附。

活性炭的吸附是上述二种吸附综合作用的结果。

当活性炭在溶液中的吸附速度和解吸速度相等时,达到了动平衡称为活性炭吸附平衡,此时被吸附物质在溶液中的浓度称为平衡浓度。

活性炭的吸附能力以吸附量q e 表示:)/()(0g mg m C C V q e e -= (1)q e ——活性炭吸附量,即单位重量的吸附剂所吸附的容质量,mg/g ; V ——污水体积,L ;C0、Ce ——分别为吸附前原水中容质浓度和吸附平衡时水中的容质浓度,mg /L ;m ——活性炭投量,g 。

在温度一定的条件下,活性炭的吸附量随被吸附物质平衡浓度的提高而提高,两者之间的变化曲线称为吸附等温线,通常用弗罗因德利希(F'reundLich)经验式加以表达:n e e C K q 1∙= (2)式中q e ——活性炭吸附容量,mg /g ;Ce ——被吸附物质平衡浓度,mg /L ;K 、n ——是与溶液的温度、pH 值以及吸附剂和被吸附物质的性质有关的常数。

活性炭吸附法实验报告

活性炭吸附法实验报告

活性炭吸附法实验报告活性炭吸附法实验报告引言:活性炭是一种具有高度孔隙结构和吸附能力的材料,广泛应用于环境治理、水处理以及空气净化等领域。

本实验旨在探究活性炭吸附法在去除水中有机污染物方面的效果,并分析吸附过程中的影响因素。

实验方法:1. 实验材料准备:活性炭样品、去离子水、有机污染物溶液。

2. 实验仪器:烧杯、滴定管、磁力搅拌器、分光光度计等。

3. 实验步骤:a. 准备一定浓度的有机污染物溶液。

b. 在烧杯中加入一定量的活性炭样品。

c. 将有机污染物溶液加入烧杯中,并使用磁力搅拌器进行搅拌。

d. 在一定时间间隔内,取出一定量的溶液样品进行分析。

e. 使用分光光度计测定溶液中有机污染物的浓度。

实验结果:通过实验测定,我们得到了活性炭吸附有机污染物的吸附效果。

在一定时间范围内,随着活性炭样品的加入,有机污染物的浓度逐渐降低。

吸附效果与活性炭样品的质量、孔隙结构以及有机污染物的性质有关。

讨论:1. 活性炭的孔隙结构对吸附效果的影响:活性炭具有丰富的孔隙结构,包括微孔、介孔和宏孔。

微孔对小分子有机物具有较高的吸附能力,而介孔和宏孔则对大分子有机物具有较高的吸附能力。

因此,在选择活性炭样品时,需要考虑有机污染物的分子大小与活性炭孔隙结构的匹配程度。

2. 活性炭样品质量对吸附效果的影响:活性炭样品的质量与其表面积和孔隙体积密切相关。

表面积越大,孔隙体积越大,吸附效果越好。

因此,在实际应用中,选择具有较大表面积和孔隙体积的活性炭样品可以提高吸附效果。

3. 有机污染物性质对吸附效果的影响:不同的有机污染物具有不同的化学结构和性质,对活性炭的吸附能力也有所差异。

有机污染物的极性、分子大小以及溶解度等因素都会影响其与活性炭的相互作用。

因此,在实际应用中,需要根据有机污染物的性质选择合适的活性炭样品。

结论:通过本实验,我们验证了活性炭吸附法在去除水中有机污染物方面的有效性。

活性炭的孔隙结构、质量以及有机污染物的性质都对吸附效果有影响。

活性炭吸附实验

活性炭吸附实验

35.90
500
0.00
2.50
2.50
29.38
COD 去除量
mg 0.00 0.00 6.96 11.75 15.23 17.41 20.02
q
mg /g 0.00 0.00 69.63 58.75 50.77 43.52 40.04
其中,活性炭吸附量 q 的计算公式如下:
q
=
V(C0 − M
Ci )
3、Langmuir 方程拟合
Langmuir 方程基于单分子层吸附,也可用于描述活性炭的等温吸附曲线,其
方程式如下:
可变换为:
q
=
k1Cqm 1 + k1C
1 111
=
∙+
q k1qm C qm
由该式可见,1/q 与 1/C 呈直线关系,根据表 6-1 原始数据整理得到表 6-4
的相关数据;图 6-3 是基于表 6-4 相关数据而绘制得到的拟合曲线图。
表 6-4 Langmuir 拟合所用 1/q 与 1/C 数据
活性炭
1/C
1/q
mg
L/mg
g /mg
100
0.016
0.014
200
0.020
300
0.024
0.017 0.020
400
0.028
0.023
500
0.034
0.025
0.026 0.024
Equation Adj. R-Square
活性炭吸附实验Ⅰ——等温吸附曲线拟合
一、数据记录
1、基础数据:
水样体积:5.00 mL
重铬酸钾消解液体积:5.00 mL
室温:25℃

活性炭吸附法实验报告

活性炭吸附法实验报告

活性炭吸附法实验报告1. 实验目的本实验旨在探究活性炭作为吸附剂在去除染料废水中的应用,通过实验验证活性炭的吸附性能。

2. 实验原理活性炭是一种具有大量微孔和孔隙的多孔性材料,具有较大的比表面积和吸附能力。

活性炭材料的孔隙结构可以吸附和储存多种气体、液体或溶质,并在一定的条件下释放出来。

本实验中,活性炭将吸附溶液中的染料分子,实现对染料的去除。

3. 实验步骤3.1 准备工作•准备所需材料:活性炭样品、染料溶液、试管、试管架、移液管等。

•将试管清洗干净,并晾干备用。

3.2 实验操作1.在试管中加入一定量的染料溶液。

2.取适量的活性炭样品,加入试管中。

3.用试管架将试管固定,并加热至一定温度。

4.观察试管中溶液的颜色变化,并记录下来。

5.将试管从加热源中取出,待其冷却至室温。

6.使用移液管将试管中的溶液转移至离心管中。

7.进行离心操作,分离出溶液中的活性炭样品。

8.观察离心管中的溶液,记录下其颜色变化。

4. 实验结果与分析根据实验步骤所得到的结果,我们可以观察到染料溶液在与活性炭接触后发生了颜色的变化。

这是因为活性炭的表面具有较大的吸附能力,能够有效吸附溶液中的染料分子。

通过离心操作,我们将溶液中的活性炭与染料分离,观察到离心管中的溶液颜色明显变浅,说明活性炭对染料的吸附效果良好。

5. 总结与展望通过本次实验,我们验证了活性炭作为吸附剂在去除染料废水中的有效性。

活性炭具有较大的比表面积和吸附能力,能够吸附溶液中的有害物质,实现净化水质的目的。

然而,本次实验仅是基于简单的染料溶液,后续可以进一步研究和探究活性炭在处理更为复杂的废水中的应用。

参考文献[1] Kim, J., Yun, S., & Park, S. (2015). Adsorption of dissolved organic matter onto activated carbon: Mechanisms and kinetic models. Chemical Engineering Journal, 279, 775-784.[2] Wang, S., & Li, H. (2019). Application of activated carbon in water treatment:A review. Journal of Environmental Sciences, 75, 123-135.。

活性碳吸附综合实验报告

活性碳吸附综合实验报告

1 实验目的(1) 通过实验进一步了解活性炭的吸附工艺及性能;(2) 熟悉整个实验过程的操作;(3) 掌握用“间歇法”、“连续流”法确定活性炭处理污水的设计参数的方法;(4) 学会使用一级动力学、二级动力学方程拟合分析,对 PAC 的吸附进行动力学分析研究;(5) 了解活性炭改性的方法以及其影响因素。

2 实验原理2.1 活性炭间隙性吸附实验原理活性炭吸附就是利用活性炭的固体表面对水中一种或多种物质的吸附作用,己达到净化水质的目的。

活性炭的吸附作用产生于两个方面,一是由于活性炭内部分子在各个方向都受到同等大小的力而在表面的分子则受到不平衡的力,这就使其他分子吸附于其表面上,此为物理吸附;另一个是由于活性炭与被吸附物质之间的化学作用,此为化学吸附。

活性炭的吸附是上述两种吸附综合的结果。

当活性炭在溶液中的吸附速度和解吸速度相等时,即单位时间内的活性炭的数量等于解吸的数量时,此时被吸附物质在溶液中的浓度和在活性炭表面的浓度均不在变化,而达到平衡,此时的动平衡称为活性炭吸附平衡而此时被吸附物质在溶液中的浓度称为平衡浓度。

活性炭的吸附能力以吸附量q表示。

式中:q ——活性炭吸附量,即单位重量的吸附剂所吸附的物质量,g/g;V ——污水体积,L;C0、C ——分别为吸附前原水及吸附平衡时污水中的物质浓度,g/L;X ——被吸附物质重量,g;M ——活性炭投加量,g。

在温度一定的条件下,活性炭的吸附量随被吸附物质平衡浓度的提高而提高,两者之间的变化称为吸附等温线,通常费用兰德里希经验公式加以表达。

式中:q ——活性炭吸附量,g/g ;C ——被吸附物质平衡浓度g/L;K、n ——溶液的浓度,pH值以及吸附剂和被吸附物质的性质有关的常数。

K、n值求法如下:通过间歇式活性炭吸附实验测得q、C相应之值,将式取对数后变换为下式:将q、C相应值点绘在双对数坐标纸上,所得直线的斜率为1/n,截距则为K。

此外,还有朗缪尔吸附等温式,它通常用来描述物质在均一表面上的单层吸附,表达式为:由于间歇式静态吸附法处理能力低、设备多,故在工程中多采用连续流活性炭吸附法,即活性炭动态吸附法。

活性炭吸附实验报告

活性炭吸附实验报告

活性炭吸附实验报告一、实验目的活性炭处理工艺是运用吸附的方法来去除异味、色度、某些离子以及难生物降解的有机物。

在吸附过程中,活性炭的比表面积起着主要作用,同时被吸附物质在溶剂中的溶解度也直接影响吸附速率,被吸附物质浓度对吸附也有影响。

此外,PH值的高低、温度的变化和被吸附物质的分散程度也对吸附速率有一定的影响。

本实验采用活性炭间隙和连续吸附的方法确定活性炭对水中某些杂质的吸附能力。

通过本实验,希望达到以下目的:1、加深理解吸附的基本原理;2、掌握活性炭吸附设备操作步骤,包括吸附工作过程和再生过程。

二、实验原理吸附是发生在固-液(气)两相界面上的一种复杂的表面现象,它是一种非均相过程。

大多数的吸附过程是可逆的,液相或气相内的分子或原子转移到固相表面,使固相表面的物质浓度增高,这种现象就称为吸附;已被吸附的分子或原子离开固相表面,返回液相或气相中去,这种现象称为解吸或脱附。

在吸附过程中,被吸附到固体表面上的物质称为吸附质,吸附吸附质的固体物质称为吸附剂。

活性炭吸附就是利用活性炭的固体表面对水中一种或多种物质的吸附作用,以达到净化水质的目的。

活性炭吸附的作用产生于两个方面:一方面由于活性炭内部分子在各个方面都受着同等大小而在表面的分子则受到不平衡的力,这使其他分子吸附于其表面上,此过程为物理吸附;另一方面是由活性炭与被吸附物质之间的化学作用,此过程为化学吸附。

活性炭的吸附是上述两种吸附综合的结果。

当活性炭在溶液中吸附速度和解吸速度相等时,即单位时间内活性炭吸附的数量等于解吸的数量时,被吸附物质在溶液中的浓度和在活性炭表面的浓度均不再变化,而达到了平衡。

此时的动态平衡称为活性炭吸附平衡。

三、实验装置与设备(1) PH计或精密PH试纸、温度计;(2)大小烧杯、漏斗;(3)活性炭吸附柱;(4)自配废水;(5)恒位箱注:A、B都为活性炭活性炭吸附工艺流程图四、实验步骤1、配制水样,使其含COD50~100mg/L;2、用高锰酸盐指数法测定原水的COD含量,同时测水温和PH;3、在活性炭吸附柱中各装入活性炭并进行洗清,至出水不含炭粉为止;4、启动水泵,将配制好的水样连续不断地送入活性炭柱内,控制好流量;5、运行稳定5min后测定并记录各活性炭柱出水COD或浊度、色度;6、连续运行2~3h,并每隔60min取样测定和记录各活性炭柱出水COD、浊度或色度;7、停泵,关闭活性炭柱进、出水阀门,并进行活性炭再生;8、打开反冲洗阀门与反冲洗进水阀门;9、启动水泵,将清水以较大的速度送入活性炭柱内,带走活性炭中的杂质实现再生目的;10、运行5min后,停泵,关闭反冲洗阀门及进水阀门。

活性炭静态吸附实验报告

活性炭静态吸附实验报告活性炭吸附实验报告实验3 活性炭吸附实验报告一、研究背景:1.1、吸附法吸附法处理废水是利用多孔性固体(吸附剂)的表面吸附废水中一种或多种溶质(吸附质)以去除或回收废水中的有害物质,同时净化了废水。

活性炭是由含碳物质(木炭、木屑、果核、硬果壳、煤等)作为原料,经高温脱水碳化和活化而制成的多孔性疏水性吸附剂。

活性炭具有比表面积大、高度发达的孔隙结构、优良的机械物理性能和吸附能力,因此被应用于多种行业。

在水处理领域,活性炭吸附通常作为饮用水深度净化和废水的三级处理,以除去水中的有机物。

除此之外,活性炭还被用于制造活性炭口罩、家用除味活性炭包、净化汽车或者室内空气等,以上都是基于活性炭优良的吸附性能。

将活性炭作为重要的净化剂,越来越受到人们的重视。

1.2、影响吸附效果的主要因素在吸附过程中,活性炭比表面积起着主要作用。

同时,被吸附物质在溶剂中的溶解度也直接影响吸附的速度。

此外,pH 的高低、温度的变化和被吸附物质的分散程度也对吸附速度有一定影响。

1.3、研究意义在水处理领域,活性炭吸附通常作为饮用水深度净化和废水的三级处理,以除去水中的有机物。

活性炭处理工艺是运用吸附的方法来去除异味、某些离子以及难以进行生物降解的有机污染物。

二、实验目的本实验采用活性炭间歇的方法,确定活性炭对水中所含某些杂质的吸附能力。

希望达到下述目的:(1)加深理解吸附的基本原理。

(2)掌握活性炭吸附公式中常数的确定方法。

(3)掌握用间歇式静态吸附法确定活性炭等温吸附式的方法。

(4)利用绘制的吸附等温曲线确定吸附系数:K、1/n。

K为直线的截距,1/n为直线的斜率三、主要仪器与试剂本实验间歇性吸附采用三角烧瓶内装人活性炭和水样进行振荡方法。

3.1仪器与器皿:恒温振荡器1台、分析天平1台、分光光度计1台、三角瓶5个、1000ml容量瓶1个、100ml容量瓶5个、移液管 3.2试剂:活性炭、亚甲基蓝四、实验步骤(1)、标准曲线的绘制1、配制100mg/L的亚甲基蓝溶液:称取0.1g亚甲基蓝,用蒸馏水溶解后移入1000ml容量瓶中,并稀释至标线。

活性炭吸附实验报告

活性炭吸附实验1.实验目的本实验用亚甲基蓝(C16H18ClN3S)代替工业废水中有机污染物,采用活性炭吸附法,探究活性炭投放量、吸附时间等因素对活性炭吸附性的影响,探究活性炭处理有机污染水体时的最优工艺参数。

2.实验原理2.1活性炭特性活性炭是水处理吸附法中广泛应用的吸附剂之一,有粒状和粉状两种。

其中粉末活性炭应用于水处理在国内外已有较长的历史。

活性炭是一种暗黑色含炭物质,具有发达的微孔构造和巨大的比表面积。

它化学性质稳定,可耐强酸强碱,具有良好吸附性能,是多孔的疏水性吸附剂。

活性炭最初用于制糖业,后来广泛用于去除受污染水中的有机物和某些无机物。

它几乎可以用含有碳的任何物质做原材料来制造,活性炭在制造过程中,其挥发性有机物被去除,晶格间生成空隙,形成许多形状各异的细孔。

其孔隙占活性炭总体积的 70%~ 80%,每克活性炭的表面积可高达 500 ~ 1700 平方米,但 99.9%都在多孔结构的内部。

活性炭的极大吸附能力即在于它具有这样大的吸附面积[1,2]。

2.2活性炭吸附特征活性炭的孔隙大小分布很宽,从 10-1nm 到104nm 以上,一般按孔径大小分为微孔、过渡孔和大孔。

在吸附过程中,真正决定活性炭吸附能力的是微孔结构。

活性炭的全部比表面几乎都是微孔构成的,粗孔和过渡孔只起着吸附通道作用,但它们的存在和分布在相当程度上影响了吸附和脱附速率。

研究表明,活性炭吸附同时存在着物理吸附、化学吸附和离子交换吸附。

在活性炭吸附法水处理过程中,利用3种吸附的综合作用达到去除污染物的目的。

对于不同的吸附物质,3种吸附所起的作用不同。

(1)物理吸附分子力产生的吸附称为物理吸附,它的特点是被吸附的分子不是附着在吸附剂表面固定点上,而稍能在界面上作自由移动。

物理吸附可以形成单分子层吸附,又可形成多分子层吸附。

由于分子力的普遍存在, 一种吸附剂可以吸附多种物质,但由于吸附物质不同,吸附量也有所差别。

这种吸附现象与吸附剂的表面积、细孔分布有着密切关系,也和吸附剂表面力有关。

2(专)活性炭吸附实验

实验二 活性炭吸附实验一 实验目的本实验采用活性炭间歇和连续吸附的方法通过本实验确定活性炭对水中所含某些杂质的吸附能力。

通过实验希望达到下述目的: (1)加深理解吸附的基本原理;(2)巩固标准曲线的绘制方法,掌握间歇式活性炭吸附的实验操作。

二 实验原理活性炭处理工艺是运用吸附的方法来去除异味、某些离子以及难以进行生物降解的有机污染物。

在吸附过程中,活性炭比表面积起着主要作用。

同时,被吸附物质在溶剂中的溶解度也直接影响吸附的速度。

此外,pH 的高低、温度的变化和被吸附物质的分散程度也对吸附速度有一定影响。

活性炭吸附过程包括物理吸附和化学吸附。

其基本原理就是利用活性炭固体表面对水中一种或多种物质的吸附作用,以达到净化水质的目的。

活性炭的吸附作用产生于两个方面,一是由于活性炭内部分子在各个方向都受着同等大小的力而在表面的分子则受到不平衡的力,这就使其分子吸附于其表面上,此为物理吸附;另一个是由于活性炭与被吸附物质之间的化学作用,此为化学吸附。

活性炭的吸附是上述二种吸附综合作用的结果。

当活性炭在溶液中的吸附速度和解吸速度相等时,即单位时间内活性炭吸附的数量等于解吸的数量时,此时被吸附物质在溶液中的浓度和在活性炭表面的浓度均不再变化,而达到了平衡,此时的动平衡称为活性炭吸附平衡,而此时被吸附物质在溶液中的浓度称为平衡浓度。

活性炭吸附能力以吸附容量表示。

()0mg e C C Vx q m m-==(/g ) (2-1) 式中 q e —活性炭吸附量,即单位重量的吸附剂所吸附的物质量,单位mg/g ;V —污水体积,单位L ;c 0、c —分别为吸附前原水及吸附平衡时污水中的物质浓度,单位mg/L ; m —活性炭投加量,单位g ;q e 的大小除了取决于活性炭的品种之外,还与被吸附物质的性质、浓度、水的温度及pH 值有关。

一般来说,当被吸附物质能够与活性炭发生结合反应、被吸附物质不易溶于水而受到水的排斥作用、活性炭对被吸附物质的亲和力强、被吸附物质的浓度又较大时,q e 值就比较大。

最新活性炭吸附实验报告

最新活性炭吸附实验报告
实验目的:
本实验旨在探究活性炭对水中有机污染物的吸附能力,以及影响吸附效果的各种因素,如活性炭的类型、粒径、吸附时间、污染物浓度和pH值等。

实验方法:
1. 材料准备:选取两种不同来源的活性炭样品,分别为木质活性炭和果壳活性炭。

2. 仪器设备:电子天平、恒温水浴、磁力搅拌器、pH计、紫外分光光度计等。

3. 实验步骤:
a. 配制一定浓度的目标污染物溶液。

b. 称取一定质量的活性炭样品,加入到含有污染物的溶液中。

c. 在设定的pH值和温度条件下,使用磁力搅拌器进行搅拌,使活性炭充分吸附。

d. 经过一定时间后,使用离心机分离活性炭和溶液。

e. 采用紫外分光光度计测定上清液中污染物的浓度,从而计算吸附率。

f. 改变实验条件(如活性炭粒径、pH值、吸附时间等),重复上述步骤,获取不同条件下的吸附数据。

实验结果:
实验数据显示,木质活性炭和果壳活性炭对目标污染物均有一定的吸附效果,但木质活性炭的吸附容量略高于果壳活性炭。

吸附效果随活性炭粒径的减小而增加,且在pH值为7左右时达到最佳。

随着吸附时间的延长,吸附率逐渐增加,但在达到某个时间点后,吸附率的提升趋于平缓。

污染物初始浓度的增加会导致吸附率的下降。

结论:
通过本次实验,我们得出了活性炭对水中有机污染物的吸附特性,并找到了优化吸附效果的条件。

这些发现对于实际的水处理工艺具有重要的参考价值。

未来的工作可以进一步探索其他影响因素,如共存污染物的影响、活性炭的再生能力等,以提高活性炭在水处理领域的应用效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验五 活性炭吸附实验
一 实验目的
本实验采用活性炭间歇和连续吸附的方法通过本实验确定活性炭对水中所含某些杂质的吸附能力。

希望达到下述目的:(1)加深理解吸附的基本原理;(2)掌握活性炭吸附公式中常数的确定方法.
二 实验原理
活性炭处理工艺是运用吸附的方法来去除异味、某些离子以及难以进行生物降解的有机污染物。

在吸附过程中,活性炭比表面积起着主要作用。

同时,被吸附物质在溶剂中的溶解度也直接影响吸附的速度。

此外,pH 的高低、温度的变化和被吸附物质的分散程度也对吸附速度有一定影响。

活性炭对水中所含杂质的吸附既有物理吸附现象,也有化学吸着作用。

有一些被吸附物质先在活性炭表面上积聚浓缩,继而进入固体晶格原子或分子之间被吸附,还有一些特殊物质则与活性炭分子结合而被吸着。

当活性炭对水中所含杂质吸附时,水中的溶解性杂质在活性炭表面积聚而被吸附,同时也有一些被吸附物质由于分子的运动而离开活性炭表面,重新进入水中即同时发生解吸现象。

当吸附和解吸处于动态平衡状态时,称为吸附平衡。

这时活性炭和水(即固相和液相)之间的溶质浓度,具有一定的分布比值。

如果在一定压力和温度条件下,用m 克活性炭吸附溶液中的溶质,被吸附的溶质为x 毫克,则单位重量的活性炭吸附溶质的数量e q ,即吸附容量可按下式计算
m
x q e = (1) e q 的大小除了决定于活性炭的品种之外,还与被吸附物质的性质、浓度、水的温度及pH 值有关。

一般说来,当被吸附的物质能够与活性炭发生结合反应、被吸附物质又不容易溶解于水而受到水的排斥作用,且活性炭对被吸附物质的亲和作用力强、被吸附物质的浓度又较大时,e q 值就比较大。

描述吸附容量e q 与吸附平衡时溶液浓度C 的关系有Langmuir 、BET 和Fruendlieh 吸附等温式。

在水和污水处理中通常用Fruendlich 表达式来比较不同温度和不同溶液浓度时的活性炭的吸附容量,即
n
e KC q 1= (2) 式中:e q ——吸附容量(mg/g);
K ——与吸附比表面积、温度有关的系数;
n ——与温度有关的常数,n>1;
C ——吸附平衡时的溶液浓度(mg/L)。

这是一个经验公式,通常用图解方法求出K ,n 的值.为了方便易解,往往将式(2)变换成线性对数关系式
C n
K m C C q e lg 1lg )(lg lg 0+=−= (3) 式中:C 0——水中被吸附物质原始浓度(mg/L);
C ——被吸附物质的平衡浓度(mg/L);
m ——活性炭投加量(g/L)。

连续流活性炭的吸附过程同间歇性吸附有所不同,这主要是因为前者被吸附的杂质来不及达到平衡浓度C ,因此不能直接应用上述公式。

这时应对吸附柱进行被吸附杂质泄漏和活性炭耗竭过程实验,也可简单地采用Bohart-Adams 关系式
⎥⎦
⎤⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛−−=1ln 0000B C C KN v D v C N T (4) 式中:T ——工作时间(h);
v 一—吸附柱中流速(m /h);
D 一一活性炭层厚度(m);
K —一流速常数(m 3/s ·h);
N 0——吸附容量(g /m 3);
C 0一—入流溶质浓度(mg/L);
C B ——容许出流溶质浓度(mg/L)。

根据入流,出流溶质浓度,可用式(5)估算活性炭柱吸附层的临界厚度,即保持出流溶质浓度不超过C B 的炭层理论厚度。

⎟⎟⎠⎞⎜⎜⎝⎛−=1ln 000B
C C KN v
D (5) 式中D 0为临界厚度,其余符号同上面。

在实验时如果原水样溶质浓度为C 01,用三个活性炭柱串联,则第一个活性炭柱的出流浓度C B1,即为第二个活性炭柱的入流浓度C 02,第二个活性炭柱的出流浓度C B2即为第三个活性炭柱的入流浓度C 03。

由各炭柱不同的入流、出流浓度C 0,C B 便可求出流速常数K 值。

三 实验装置与设备
(一)实验装置
本实验间歇性吸附采用三角烧杯内装入活性炭和水样进行振荡方法,连续流式采用有机玻璃柱内装活性炭、水流自上而下连续进出方法,图(1)是连续流吸附实验装置示意图。

(二)实验设备及仪器仪表
(一)实验装置
本实验间歇性吸附采用三角烧杯内装入活性炭和水样进行振荡方法,连续流式采用有机玻璃柱内装活性炭、水流自上而下连续进出方法.图(1)是连续流吸附实验装置示意图。

(二)实验设备及仪器仪表
1.振荡器THZ—82型1台
2.pH计pHS型1台
3.活性炭柱d25×1000mm有机玻璃管3根
4.活性炭上海15号2kg
5.水样调配箱硬塑料焊制长×宽×高0.5×0.5×0.6m31个
6.恒位箱硬塑料焊制长×宽×高0.3×0.3×0.4m 1个
7.测COD仪器1套
8.温度计刻度0~100℃1支
9.水泵CHB31台
四实验步骤
(一)画出标准曲线
1 配置10mg/L的亚甲兰溶液。

2 用分光光度计得出吸收与波长的关系。

3 确定产生最大吸收时的波长(给出最大吸收波长660nm)。

4 将1准备的亚甲兰稀释,取0ml、2ml、6ml、10ml、14ml、18ml、22ml的10mg/L 亚甲兰,用比色管定容到25ml,用分光光度计从3所得波长测得吸光度。

5 画出吸收量与亚甲兰浓度(克分子/升)的关系曲线,即标准曲线。

(二)吸附等温线间歇式吸附实验步骤
1 将活性炭粉末,用蒸馏水洗去细粉,并在105℃温度下烘至恒重。

2 在三角玻璃瓶中,装入以下重量的已准备好的活性炭粉末:0、10、20、40、60、80、100、120毫克。

3 准备浓度为100mg/L的亚甲兰溶液一升。

4 在三角烧瓶各注入100毫升100mg/L的亚甲兰溶液。

5 将锥性瓶置于恒温振荡器上震动1小时,然后用静沉法或滤纸过滤法移除活性炭。

6 测定每个瓶中溶液的吸收量,并用标准图交换为浓度单位。

7 计算每个瓶中转移到活性炭表面上的亚甲兰的量,以克分子(活性炭)表示。

(三)连续流吸附实验步骤
1 在管中装入活性炭,活性炭必须用蒸馏水彻底浸透,以防止在实验中截留空气;
2 用自来水配制0.0004M的亚甲兰投配溶液;
3 调整通过吸入的流量至25毫升/分钟/厘米;
4 将调好流量的投配溶液与吸附管接通,开始由0开始记录时间;
5 开始投配1小时后,取样并测定亚甲兰的浓度,此后每日起码取样并测定五次,直至整个管子穿透。

五实验结果分析
1 吸附等温线
1)根据测定数据绘制吸附等温线
2)确定常数K、n
3)讨论实验数据与吸附等温线的关系。

2 连续流系统
1)绘制穿透曲线
2)计算亚甲兰在不同时间内转移到活性炭表面的量。

计算法可以采用图解面积分法(矩形法或梯形法),求得吸附管进水或出水曲线与时间的面积;
3)画出去除量与时间的关系线。

六实验结果讨论
1 活性碳投加量对于吸附平衡浓度的测定有什么影响,该如何控制?
2 实验结果受哪些因素影响较大,该如何控制?。

相关文档
最新文档