相似三角形培优训练(含答案)

合集下载

相似三角形培优题

相似三角形培优题

相似三角形培优题(4,5),则△ABC和△ABD的面积比为()解析:本题需要注意格式错误,如“S△DEF:S△ABF=4:25”应该为“S△DEF:S△ABF=4:25”,“BG=,”应该为“BG=3”,“则EF等于()ABCD”应该为“则EF等于()”。

1、如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC 于点M,N。

下列结论:①△APE≌△AME;②PM+PN=AC;③PE²+PF²=PO²;④△POF∽△BNF;⑤当△PMN∽△AMP时,点P是AB的中点。

其中正确的结论有()2、如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(≤t<6),连接DE,当△BDE是直角三角形时,t的值为()4、如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=5、如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=3,则△EFC的周长为()7、如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S△CEF:S四边形BCED的值为()8、如图,D是△ABC的边BC上一点,已知AB=4,AD=2,∠DAC=∠B,若△ABD的面积为a,则△ACD的面积为9、如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()11、如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(4,5),则△ABC和△ABD的面积比为()23、为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B、C、D,使得AB⊥BC,CD⊥BC,点E在BC 上。

北师大版九年级数学上册 相似三角形解答题培优专题(含答案)

北师大版九年级数学上册  相似三角形解答题培优专题(含答案)

2019-2020相似三角形解答题培优专题(含答案)一、解答题1.如图,在Rt ABC ∆中,90B ︒∠=,6cm AB =,8cm BC =,点P 由点A 出发沿AB 方向向终点B 以每秒1cm 的速度匀速移动,点Q 由点B 出发沿BC 方向向终点C 以每秒2cm 的速度匀速移动,速度为2cm /s .如果动点同时从点A ,B 出发,当点P 或点Q 到达终点时运动停止.则当运动几秒时,以点Q ,B ,P 为顶点的三角形与ABC ∆相似?2.如图(1),已知点G 在正方形ABCD 的对角线AC 上,GE ⊥BC ,垂足为点E ,GF ⊥CD ,垂足为点F . (1)证明与推断:①求证:四边形CEGF 是正方形; ②推断:AGBE的值为 : (2)探究与证明:将正方形CEGF 绕点C 顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG 与BE 之间的数量关系,并说明理由: (3)拓展与运用:正方形CEGF 在旋转过程中,当B ,E ,F 三点在一条直线上时,如图(3)所示,延长CG 交AD 于点H .若AG=6,GH=22,则BC= .3.如图1,在Rt ABC 中,90,4,2B AB BC ∠︒===,点,D E 分别是边,BC AC 的中点,连接DE .将CDE △绕点C 逆时针方向旋转,记旋转角为α.1()问题发现①当0α=o 时,AE BD = ;②当180α=o 时,AEBD= . 2()拓展探究 试判断:当0360α︒≤︒<时,AEBD的大小有无变化?请仅就图2的情形给出证明. 3()问题解决 CDE △绕点C 逆时针旋转至,,A B E 三点在同一条直线上时,求线段BD 的长.4.在ABC ∆,CA CB =,ACB α∠=.点P 是平面内不与点A ,C 重合的任意一点.连接AP ,将线段AP 绕点P 逆时针旋转α得到线段DP ,连接AD ,BD ,CP . (1)观察猜想 如图1,当60α︒=时,BDCP的值是 ,直线BD 与直线CP 相交所成的较小角的度数是 . (2)类比探究如图2,当90α︒=时,请写出BDCP的值及直线BD与直线CP相交所成的小角的度数,并就图2的情形说明理由.(3)解决问题当90α︒=时,若点E,F分别是CA,CB的中点,点P在直线EF上,请直接写出点C,P,D在同一直线上时AD CP的值.5.如图1,在△ABC中,BA=BC,点D,E分别在边BC、AC上,连接DE,且DE=DC.(1)问题发现:若∠ACB=∠ECD=45°,则AEBD=.(2)拓展探究,若∠ACB=∠ECD=30°,将△EDC绕点C按逆时针方向旋转α度(0°<α<180°),图2是旋转过程中的某一位置,在此过程中AEBD的大小有无变化?如果不变,请求出AEBD的值,如果变化,请说明理由.(3)问题解决:若∠ACB=∠ECD=β(0°<β<90°),将△EDC旋转到如图3所示的位置时,则AEBD的值为.(用含β的式子表示)6.在矩形ABCD中,AB=4cm,BC=8cm,动点P从点A出发,以1cm/s的速度沿AB向点B运动,动点Q从点B出发,以2cm/s秒的速度沿BC向点C运动.P、Q分别从A、B同时出发,设运动时间为t秒.(如图1)(1)用含t 的代数式表示下列线段长度:①PB=__________cm,②QB=_____cm,③CQ=_________cm. (2)当△PBQ 的面积等于3 时,求t 的值.(3) (如图2),若E 为边CD 中点,连结EQ 、AQ.当以A 、B 、Q 为顶点的三角形与△EQC 相似时,直接写出满足条件的t 的所有值.7.如图l ,在ABCD 中,点M ,N 分别在边AD 和BC 上,点E ,F 在对角线BD 上,且AM CN =,12BE DF BD =<.(1)求证:四边形MENF 是平行四边形: (2)若6AB =,10BC =,8BD =.①当四边形MENF 是菱形时,AM 的长为______; ②当四边形MENF 是正方形时,BE 的长为______; ③当四边形MENF 是矩形且6AM =时,BE 的长为______.8.已知:如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB =90°,点A ,C 的坐标分别为A (﹣3,0),C (1,0),BC =34AC(1)求过点A,B的直线的函数表达式;(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m,使得△APQ与△ADB相似?如存在,请求出m的值;如不存在,请说明理由.9.已知:如图,正方形ABCD中,P是边BC上一点,BE⊥AP,DF⊥AP,垂足分别是点E、F.(1)求证:EF=AE﹣BE;(2)联结BF,如果AFBF=DFAD.求证:EF=EP.10.如图,在△ C中,过点C作CD,E是AC的中点,连接DE并延长,交AB于点F,交CB的延长线于点G,连接AD,CF.求证:四边形AFCD是平行四边形.若, C,,求AB的长.11.已知:如图,点A .F ,E .C 在同一直线上,AB ∥DC ,AB=CD ,∠B=∠D . (1)求证:△ABE ≌△CDF ;(2)若点E ,G 分别为线段FC ,FD 的中点,连接EG ,且EG=5,求AB 的长.12.如图,直线 AB 与坐标轴交与点(0,6),(8,0)A B , 动点P 沿路线O B A →→运动.(1)求直线AB 的表达式;(2)当点P 在OB 上,使得AP 平分OAB ∠时,求此时点P 的坐标;13.如图,将矩形ABCD 沿AF 折叠,使点D 落在BC 边的点E 处,过点E 作EG ∥CD 交AF 于点G ,连接DG . (1)求证:四边形EFDG 是菱形; (2) 求证:21=2EG AF GF ⋅; (3)若AG=6,EG=25,求BE 的长.14.如图,在△ABC 中.AC=BC=5.AB=6.CD 是AB 边中线.点P 从点C 出发,以每秒2.5个单位长度的速度沿C-D-C 运动.在点P 出发的同时,点Q 也从点C 出发,以每秒2个单位长度的速度沿边CA 向点A 运动.当一个点停止运动时,另一个点也随之停止,设点P 运动的时间为t 秒.(1)用含t 的代数式表示CP 、CQ 的长度. (2)用含t 的代数式表示△CPQ 的面积.(3)当△CPQ 与△CAD 相似时,直接写出t 的取值范围.15.如图,AB ⊥BC ,DC ⊥BC ,垂足分别为B.C ,且AB=8,DC=6,BC=14,BC 上是否存在点P 使△ABP 与△DCP 相似?若有,有几个?并求出此时BP 的长,若没有,请说明理由.16.如图,正方形ABCD ,点P 为射线DC 上的一个动点,点Q 为AB 的中点,连接,PQ DQ ,过点P 作PE DQ 于点E .(1)请找出图中一对相似三角形,并证明;(2)若4AB ,以点,,P E Q 为顶点的三角形与ADQ △相似,试求出DP 的长.17.如图,正方形 ABCD 的边长为 8,E 是 BC 边的中点,点 P 在射线 AD 上, 过 P 作 PF ⊥AE 于 F .(1)请判断△PFA 与△ABE 是否相似,并说明理由;(2)当点 P 在射线 AD 上运动时,设 PA =x ,是否存在实数 x ,使以 P ,F ,E 为顶 点的三角形也与△ABE 相似?若存在,请求出 x 的值;若不存在,说明理由.18.已知:如图,△ABC 是等边三角形,点D 、E 分别在BC ,AC 且BD =CE ,AD 、BE 相交于点M ,求证:(1)△AME ∽△BAE ;(2)BD 2=AD×DM . 19.△ABC 中,AB =AC =5,BC =6,过AB 上一点D 作DE‖ C ,D ‖ C 分别交AC 、BC 于点E 和F(1)如图1,证明:△ADE∽△DBF;(2)如图1,若四边形DECF是菱形,求DE的长;(3)如图2,若以D、E、F为顶点的三角形与△BDF相似,求AD的长.20.如图,在矩形ABCD中,点E是AD的中点,连结BE,且BE⊥AC交AC于点F.(1)求证:△EAB∽△ABC;(2)若AD=2,求AB的长;(3)在(2)的条件下,求DF的长.21.如图,正方形ABCD中,M为BC上一点,F是AM上一点,EF⊥AM,垂足为F,交AD延长线于点E,交DC 于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=6,F为AM的中点,求DN的长;(3)若AB =12,DE =1,BM =5,求DN 的长.22.如图,在△ABC 中,AD 平分∠BAC ,按如下步骤作图:第一步,分别以点A 、D 为圆心,以大于12AD 的长为半径在AD 两侧作弧,交于两点M 、N ; 第二步,连接MN 分别交AB 、AC 于点E 、F ; 第三步,连接DE 、DF .若BD =6,AF =4,CD =3,求线段BE 的长.23.教材呈现:如图是华师版九年级上册数学教材第78页的部分内容.例2 如图,在ABC ∆中,,D E 分别是边,BC AB 的中点,,AD CE 相交于点G ,求证:13GE GD CE AD ==, 证明:连结ED .请根据教材提示,结合图①,写出完整的证明过程.结论应用:在ABCD 中,对角线AC BD 、交于点O ,E 为边BC 的中点,AE 、BD 交于点F . (1)如图②,若ABCD 为正方形,且6AB =,则OF 的长为 . (2)如图③,连结DE 交AC 于点G ,若四边形OFEG 的面积为12,则ABCD 的面积为 .24.正方形ABCD的边长为4,M,N分别是BC,CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直.(1)证明:△ABM∽△MCN;(2)若△ABM的周长与△MCN周长之比是4:3,求NC的长.25.如图,在△ABC中,AB=8,BC=16,点P从点A开始沿AB向点B以2m/s的速度移动,点Q从点B开始沿BC向点C以4m/s的速度移动,如果P,Q分别从AB,BC同时出发,经过几秒△PBQ与△ABC相似?26.如图,矩形ABCD中,AB=20,BC=10,点P为AB边上一动点,DP交AC于点Q.(1)求证:△APQ∽△CDQ;(2)P点从A点出发沿AB边以每秒1个单位长度的速度向B点移动,移动时间为t秒.当t为何值时,DP⊥AC?27.如图,在Rt△ABC中,∠ACB=90°,BC mAC n,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.(1)探究发现:如图1,若m=n,点E在线段AC上,则DEDF=;(2)数学思考:①如图2,若点E在线段AC上,则DEDF=(用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否仍然成立?请仅就图3的情形给出证明;(3)拓展应用:若AC=,BC=2,DF=4,请直接写出CE的长.28.如图,已知△ABC是边长为6cm的等边三角形,动点P,Q同时从B,A两点出发,分别沿BA,AC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P,Q两点都停止运动,设运动时间为t(s),解答下列问题:(1)如图①,当t为何值时,AP=3AQ;(2)如图②,当t为何值时,△APQ为直角三角形;(3)如图③,作QD∥AB交BC于点D,连接PD,当t为何值时,△BDP与△PDQ相似?29.如图,在△ABC中,∠C=90°,点D是边AB上的动点,过点D作DE∥BC交AC于E,过E作EF∥AB交BC 于F,连结DF.(1)若点D是AB的中点,证明:四边形DFEA是平行四边形;(2)若AC=8,BC=6,直接写出当△DEF为直角三角形时AD的长.30.如图,四边形ABCD中,AC平分∠DAB,AC2=AB•AD,∠ADC=90°,E为AB的中点.(1)求证:△ADC∽△ACB;(2)CE与AD有怎样的位置关系?试说明理由;(3)若AD=4,AB=6,求的值.31.(1)观察发现:如图1,在Rt△ABC中,∠B=90°,点D在边AB上,过D作DE∥BC交AC于E,AB=5,AD =3,AE=4.填空:①△ABC与△ADE是否相似?(直接回答);②AC=;DE=.(2)拓展探究:将△ADE绕顶点A旋转到图2所示的位置,猜想△ADB与△AEC是否相似?若不相似,说明理由;若相似,请证明.(3)迁移应用:将△ADE绕顶点A旋转到点B、D、E在同一条直线上时,直接写出线段BE的长.32.如图1,一次函数y=12x+4与x轴、y轴分别交于A,B两点.P是x轴上的动点,设点P的横坐标为n.(1)当△BPO∽△ABO时,求点P的坐标;(2)如图2,过点P的直线y=2x+b与直线AB相交于C,求当△P AC的面积为20时,点P的坐标;(3)如图3,直接写出当以A,B,P为顶点的三角形为等腰三角形时,点P的坐标.33.如图,在平面直角坐标系中,△ABC的顶点A在x轴负半轴上,顶点C在x轴正半轴上,顶点B在第一象限,线段OA,OC的长是一元二次方程x2-12x+36=0的两根,BC=45,∠BAC=45°.(1)直接写出点A的坐标________点C的坐标________;(2)若反比例函数y=kx的图象经过点B,求k的值;(3)如图过点B作BD⊥y轴于点D;在y轴上是否存在点P,使以P,B,D为顶点的三角形与以P,O,A为顶点的三角形相似?若存在,直接写出满足条件的点P的坐标;若不存在,请说明理由.34.感知:如图①,在四边形ABCD中,AB∥CD,∠B=90°,点P在BC边上,当∠APD=90°时,可知△ABP∽△PCD.(不要求证明)探究:如图②,在四边形ABCD中,点P在BC边上,当∠B=∠C=∠APD时,求证:△ABP∽△PCD.拓展:如图③,在△ABC中,点P是边BC的中点,点D、E分别在边AB、AC上.若∠B=∠C=∠DPE=45°,BC=6 2,CE=4,则DE的长为______.35.已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A、C的横坐标是一元二次方程x2+2x-3=0的两根(AO>OC),直线AB与y轴交于D,D点的坐标为9 04⎛⎫ ⎪⎝⎭,(1)求直线AB的函数表达式;(2)在x轴上找一点E,连接EB,使得以点A、E、B为顶点的三角形与△ABC相似(不包括全等),并求点E的坐标;(3)在(2)的条件下,点P、Q分别是AB和AE上的动点,连接PQ,点P、Q分别从A、E同时出发,以每秒1个单位长度的速度运动,当点P到达点B时,两点停止运动,设运动时间为t秒,问几秒时以点A、P、Q为顶点的三角形与△AEB相似.参考答案1.当运动2.4秒或1811秒时,以点Q ,B ,P 为顶点的三角形与ABC ∆相似 【解析】 【分析】设t 秒后,以Q ,B ,P 为顶点的三角形与△ABC 相似;则PB =(6−t )cm ,BQ =2tcm ,分两种情况:①当PB BQAB BC=时;②当BP BQBC BA=时;分别解方程即可得出结果. 【详解】解:设(04)t t <…秒后,以点Q ,B ,P 为顶点的三角形与ABC ∆相似,则(6)cm PB t =-,2cm BQ t =.∵90B ︒∠=,∴分两种情况讨论:①当PBQ ABC ∆∆∽时,PB BQ AB BC =,即6268t t-=,解得 2.4t =; ②当QBP ABC ∆∆∽时,BP BQBC BA=,即6286t t -=,解得1811t =. 综上所述,当运动2.4秒或1811秒时,以点Q ,B ,P 为顶点的三角形与ABC ∆相似. 【点睛】本题考查了相似三角形的判定方法、解方程;熟练掌握相似三角形的判定方法,分两种情况进行讨论是解决问题的关键.2.(1)①四边形CEGF 是正方形;②2;(2)线段AG 与BE 之间的数量关系为AG=2BE ;(3)35 【解析】 【分析】(1)①由GE BC ⊥、GF CD ⊥结合BCD 90∠=可得四边形CEGF 是矩形,再由ECG 45∠=即可得证;②由正方形性质知CEG B 90∠∠==、ECG 45∠=,据此可得CG2CE=、GE //AB ,利用平行线分线段成比例定理可得;(2)连接CG ,只需证ACG ∽△BCE 即可得; (3)证AHG ∽CHA 得AG GH AH AC AH CH ==,设BC CD AD a ===,知AC 2a =,由AG GHAC AH=得2AH a 3=、1DH a 3=、10CH a 3=,由AG AH AC CH =可得a 的值. 【详解】(1)①∵四边形ABCD 是正方形, ∴∠BCD=90°,∠BCA=45°, ∵GE ⊥BC 、GF ⊥CD , ∴∠CEG=∠CFG=∠ECF=90°,∴四边形CEGF 是矩形,∠CGE=∠ECG=45°, ∴EG=EC ,∴四边形CEGF 是正方形; ②由①知四边形CEGF 是正方形, ∴∠CEG=∠B=90°,∠ECG=45°,∴2CGCE=,GE ∥AB , ∴2AG CGBE CE==, 故答案为:2; (2)连接CG ,由旋转性质知∠BCE=∠ C =α, 在Rt △CEG 和Rt △CBA 中,CE CG =22、CB CA =22, ∴CG CE =2CACB=, ∴△ACG ∽△BCE ,∴2AG CABE CB==, ∴线段AG 与BE 之间的数量关系为AG=2BE ; (3)∵∠CEF=45°,点B 、E 、F 三点共线, ∴∠BEC=135°, ∵△ACG ∽△BCE , ∴∠AGC=∠BEC=135°, ∴∠AGH=∠CAH=45°, ∵∠CHA=∠AHG , ∴△AHG ∽△CHA , ∴AG GH AHAC AH CH==, 设BC=CD=AD=a ,则AC=2a ,则由AG GHAC AH=得6222AHa=,∴AH=23 a,则DH=AD﹣AH=13a,CH=22CD DH+=103a,∴由AG AHAC CH=得2632103aaa=,解得:a=35,即BC=35,故答案为:35.【点睛】本题考查了正方形的性质与判定,相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线,熟练掌握正方形的判定与性质、相似三角形的判定与性质是解题的关键.3.(1)①5;②5;(2) 5;(3) 35 5【解析】【分析】(1)①根据勾股定理和三角形中位线的性质,即可得到答案;②根据平行线的性质即可得到答案;(2)根据相似三角形的性质和判定即可得到答案;(3) 根据勾股定理即可得到答案.【详解】解:()1①当0α︒=时,Rt ABC Q V 中,90B ∠︒=,22222425AC AB BC ∴++===,点,D E 分别是边,BC AC 的中点,115122AE AC BD BC ∴==,==,5AEBD∴=. ②如图1﹣1中,当180α︒=时, 可得//AB DE ,AC BCAE BD =Q , 5AE ACBD BC∴==. 故答案为:55①,②. 2()如图2,当0360α︒≤︒<时,AEBD的大小没有变化, ECD ACB ∠∠Q =, ECA DCB ∴∠∠=,又5EC ACDC BC==Q, ECA DCB ∴V V ∽,5AE ECED DC∴==. ()3①如图3﹣1中,当点E 在AB 的延长线上时,在Rt BCE V 中,5,2CE BC ==,22541BE EC BC ∴--===,5AE AB BE ∴+==,5AEBD=Q, 555BD ∴==.②如图3﹣2中,当点E 在AB 线段上时,易知1,413BE AE -===, 5AEBD=Q, 355BD ∴=, 综上所述,满足条件的BD 的长为355. 【点睛】本题考查勾股定理、三角形中位线的性质、平行线的性质和相似三角形的性质和判定,解题的关键熟练掌握勾股定理、三角形中位线的性质、平行线的性质和相似三角形的性质和判定. 4.(1)1,60︒(2)45°(3)22-,22+ 【解析】 【分析】(1)如图1中,延长CP 交BD 的延长线于E ,设AB 交EC 于点O .证明()CAP BAD SAS ∆≅∆,即可解决问题. (2)如图2中,设BD 交AC 于点O ,BD 交PC 于点E .证明DABPAC ∆∆,即可解决问题.(3)分两种情形:①如图3﹣1中,当点D 在线段PC 上时,延长AD 交BC 的延长线于H .证明AD DC =即可解决问题.②如图3﹣2中,当点P 在线段CD 上时,同法可证:DA DC =解决问题.【详解】解:(1)如图1中,延长CP 交BD 的延长线于E ,设AB 交EC 于点O .60PAD CAB ︒∠=∠=,CAP BAD ∴∠=∠,CA BA =,PA DA =,()CAP BAD SAS ∴∆≅∆, PC BD ∴=,ACP ABD ∠=∠, AOC BOE ∠=∠,60BEO CAO ︒∴∠=∠=,1BDPC∴=,线BD 与直线CP 相交所成的较小角的度数是60︒, 故答案为1,60︒.(2)如图2中,设BD 交AC 于点O ,BD 交PC 于点E .45PAD CAB ︒∠=∠=, PAC DAB ∴∠=∠,2AB ADAC AP ==, DABPAC ∴∆∆,PCA DBA ∴∠=∠,2BD ABPC AC==, EOC AOB ∠=∠,45CEO OAB ︒∴∠=∠=,∴直线BD 与直线CP 相交所成的小角的度数为45︒.(3)如图3﹣1中,当点D 在线段PC 上时,延长AD 交BC 的延长线于H .CE EA =,CF FB =,EF AB ∴∥,45∴∠=∠=,EFC ABC︒PAO︒∠=,45∴∠=∠,PAO OFH∠=∠,POA FOH∴∠=∠,H APO=,90∠=,EA ECAPC︒∴==,PE EA ECEPA EAP BAH∴∠=∠=∠,∴∠=∠,H BAH∴=,BH BA∠=∠=,ADP BDC︒45∴∠=,90ADB︒∴⊥,BD AHDBA DBC︒∴∠=∠=,22.5ADB ACB︒∠=∠=,90∴A,D,C,B四点共圆,DCA ABD︒∠=∠=,DAC DBC︒∠=∠=,22.522.5∴∠=∠=,22.5DAC DCA︒DA DC ∴=,设=AD a ,则DC AD a ==,22PD a =, 2222ADa CPa a∴==-+c .如图3﹣2中,当点P 在线段CD 上时,同法可证:=DA DC ,设=AD a ,则CD AD a ==,22PD a =,22PC a a ∴=-, 2222ADa PCa a∴==+-.【点睛】本题属于相似形综合题,考查了旋转变换,等边三角形的性质,等腰直角三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.5.(1)2;(2)此过程中AE BD 的大小有变化,3AEBD=(3)2 osβ 【解析】 【分析】1)如图1,过E 作EF ⊥AB 于F ,根据等腰三角形的性质得到∠A=∠C=∠DEC=45°,于是得到∠B=∠EDC=90°,推出四边形EFBD 是矩形,得到EF=BD ,推出△AEF 是等腰直角三角形,根据等腰直角三角形的性质得到结论; (2)根据等腰三角形的性质得到∠ACB=∠CAB=∠ECD=∠CED=30°,根据相似三角形的判定和性质即可得到结论; (3)根据等腰三角形的性质得到∠ACB=∠CAB=∠ECD=∠CED=β,根据相似三角形的性质得到BC ACDC CE=,即BC DCAC EC =,根据角的和差得到∠ACE=∠BCD ,求得△ACE ∽△BCD ,证得AE AC BD BC=,过点B 作BF ⊥AC 于点F ,则AC=2CF ,根据相似三角形的性质即可得到结论. 【详解】解:(1)如图1,过E 作EF ⊥AB 于F ,∵BA=BC ,DE=DC ,∠ACB=∠ECD=45°, ∴∠A=∠C=∠DEC=45°, ∴∠B=∠EDC=90°, ∴四边形EFBD 是矩形, ∴EF=BD , ∴EF ∥BC ,∴△AEF 是等腰直角三角形,∴2BD EFAE AE==, 故填:2,(2)此过程中AEBD的大小有变化, 由题意知,△ABC 和△EDC 都是等腰三角形, ∴∠ACB=∠CAB=∠ECD=∠CED=30°, ∴△ABC ∽△EDC ,∴BC AC DC CE =,即BC DCAC EC=, 又∠ECD+∠ECB=∠ACB+∠ECB , ∴∠ACE=∠BCD , ∴△ACE ∽△BCD ,∴AE ACBD BC=, 在△ABC 中,如图2,过点B 作BF ⊥AC 于点F ,则AC=2CF ,在Rt △BCF 中,3cos302CF BC BC ︒=⋅=, ∴AC=3BC .∴3AE ACBD BC==; (3)由题意知,△ABC 和△EDC 都是等腰三角形,且∠ACB=∠ECD=β, ∴∠ACB=∠CAB=∠ECD=∠CED=β, ∴△ABC ∽△EDC ,∴BC AC DC CE =,即BC DCAC EC=, 又∠ECD+∠ECB=∠ACB+∠ECB , ∴∠ACE=∠BCD ,∴△ACE∽△BCD,∴AE AC BD BC=,在△ABC中,如图3,过点B作BF⊥AC于点F,则AC=2CF,在Rt△BCF中,C = C• osβ,∴ C=2 C osβ.∴AE ACBD BC==2 osβ,故答案为2 osβ.【点睛】本题考查了相似形的综合题、等腰直角三角形的性质、等腰三角形的性质、锐角三角函数、相似三角形的判定和性质等知识,解题的关键是灵活运用相似三角形的判定和性质解决问题,属于中考常考题型.6.(1)PB=4-t;QB=2t;CQ=8-2t;(2)1或3;(3)或或.【解析】【分析】(1)根据题意写出结果即可;(2)利用三角形的面积公式列方程求解即可;(3)根据相似三角形的性质,分两种情况列式求解即可.【详解】(1)由题意得,①PB=4-t;②QB=2t;③CQ=8-2t;(2)∵△PBQ的面积等于3,∴2t(4-t)=3×2,解之得,t=1或3;(3)当△ABQ~△QCE时,,∴,解之得,x1=,x2=;当△ABQ~△ECQE时,,∴,解之得,t=.∴满足条件的t的所有值为或或.【点睛】本题考查了列代数式,一元二次方程的应用,相似三角形的性质及分类讨论的数学思想,熟练掌握分类讨论的数学思想是解答本题的关键. 相似三角形的性质:如果两个三角形相似,那么它们的对应角相等,对应边的比,对应高的比,对应中线的比,对应角平分线的比,对应周长的比都等于相似比;它们对应面积的比等于相似比的平方.7.(1)证明见解析,(2)①5.②1.③41045 .【解析】【分析】(1)如图1中,设BD 的中点为O .连接AC ,AN ,CM ,MN .利用对角线互相平分的四边形是平行四边形证明即可.(2)①如图21-中,连接MN 交BD 于点O ,当MN BD ⊥时,四边形MENF 是菱形.利用平行线等分线段定理即可解决问题.②在①的基础上,OE OM =时,四边形MENF 是正方形.③如图32-中,连接MN 交BD 于点O ,作MH BD ⊥于H .当OE OF OM ON ===时,四边形MENF 是矩形. 【详解】(1)证明:如图1中,设BD 的中点为O .连接AC ,AN ,CM ,MN .四边形ABCD 是平行四边形, AC ∴与BD 互相平分且交于点O ,//AMCN ,AM CN =,∴四边形ANCM 是平行四边形,AC ∴与MN 互相平分且交于点O ,OM ON ∴=,OB OD =,BE DF =,OE OF ∴=,∴四边形MENF 是平行四边形.(2)①如图21-中,连接MN 交BD 于点O ,当MN BD ⊥时,四边形MENF 是菱形.6AB CD ==,10AD BC ==,8BD =, 222AD AB BD ∴=+,90ABD ∴∠=︒,90MOF ABD ∴∠=∠=︒,//OM AB ∴, OB OD =, 5AM DM ∴==.②在①的基础上,满足OM OE =时,四边形MENF 是正方形, 易知132OM AB ==, 3OE OF ∴==, 8BD =,1·(86)12BE DF ∴==-=.③如图32-中,连接MN 交BD 于点O ,作MH BD ⊥于H .//MH AB ,:::MH AB DM DA DH DB ∴== :64:10:8MH DH ∴==,125MH ∴=,165DH =, 164455OH ∴=-=, 224105OM MH OH ∴=+=, 当OE OF OM ON ===时,四边形MENF 是矩形,1810410(8)4255BE DF ∴==-=-. 故答案为:5,1,41045-. 【点睛】本题属于四边形综合题,考查了平行四边形的性质,矩形的判定,菱形的判定,正方形的判定,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.8.(1)y =34x +94;(2)D 点位置见解析,D (134,0);(3)符合要求的m 的值为12536或259.【解析】 【分析】(1)先根据A(−3,1),C(1,0),求出AC进而得出BC=3求出B点坐标,利用待定系数法求出直线AB的解析式即可;(2)运用相似三角形的性质就可求出点D的坐标;(3)由于△APQ与△ADB已有一组公共角相等,只需分△APQ∽△ABD和△APQ∽△ADB两种情况讨论,然后运用相似三角形的性质建立关于m的方程,就可解决问题.【详解】解:(1)∵A(﹣3,0),C(1,0),∴AC=4,∵BC=34 AC,∴BC=34×4=3,∴B(1,3),设直线AB的解析式为y=kx+b,∴303k bk b-+=⎧⎨+=⎩,∴3494kb⎧=⎪⎪⎨⎪=⎪⎩,∴直线AB的解析式为y=34x+94;(2)若△ADB与△ABC相似,过点B作BD⊥AB交x轴于D,∴∠ABD=∠ACB=90°,如图1,此时ABAC=ADAB,即AB2= C• D.∵∠ACB=90°,AC=4,BC=3,∴AB=5,∴25=4AD,∴AD=25 4,∴OD=AD﹣AO=254﹣3=134,∴点D的坐标为(134,0);(3)∵AP=DQ=m,∴AQ=AD﹣QD=254﹣m.Ⅰ、若△APQ∽△ABD,如图2,则有APAB=AQAD,∴ P• D= • Q,∴254m=5(254﹣m),解得m=25 9;Ⅱ、若△APQ∽△ADB,如图3,则有APAD=AQAB,∴ P• = D• Q,∴5m=254(254﹣m),解得:m=125 36,综上所述:符合要求的m的值为12536或259.【点睛】此题是相似形综合题,主要考查了是待定系数法,相似三角形的判定与性质、勾股定理等知识,也考查了分类讨论的数学思想,属于中档题,解本题的关键是根据相似建立方程求解.9.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)利用正方形的性质得AB=AD ,∠BAD=90°,根据等角的余角相等得到∠1=∠3,则可判断△ABE ≌△DAF ,则BE=AF ,然后利用等线段代换可得到结论;(2)利用AF DF BF AD =和AF=BE 得到BE BFDF AD=,则可判定Rt △BEF ∽Rt △DFA ,所以∠4=∠3,再证明∠4=∠5,然后根据等腰三角形的性质可判断EF=EP .【详解】(1)∵四边形ABCD 为正方形,∴AB=AD ,∠BAD=90°, ∵BE ⊥AP ,DF ⊥AP , ∴∠BEA=∠AFD=90°, ∵∠1+∠2=90°,∠2+∠3=90°, ∴∠1=∠3, 在△ABE 和△DAF 中12BEA AFDAB DA ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△DAF , ∴BE=AF ,∴EF=AE ﹣AF=AE ﹣BE ;(2)如图,∵AF DFBF AD=, 而AF=BE ,∴BE DFBF AD =, ∴BE BFDF AD=, ∴Rt △BEF ∽Rt △DFA ,∴∠4=∠3,而∠1=∠3,∴∠4=∠1,∵∠5=∠1,∴∠4=∠5,即BE平分∠FBP,而BE⊥EP,∴EF=EP.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质,熟练掌握相关的性质与定理、正确添加辅助线是解题的关键.10.证明见解析;.【解析】【分析】由E是AC的中点知 E CE,由CD知 E CDE,据此根据“ S”即可证△ E ≌△CED,从而得CD,结合CD即可得证;证△∽△ CD得,据此求得CD,由CD及可得答案.C CD【详解】E是AC的中点,E CE , CD , E CDE , 在△ E 和△CED 中, ,△ E ≌△CED S , CD ,又 CD ,即 CD , 四边形AFCD 是平行四边形; CD , △ ∽△ CD ,CCD,即CD,解得:CD,四边形AFCD 是平行四边形, CD,. 【点睛】本题考查了平行四边形的判定与性质,全等三角形的判定与性质,相似三角形的判定与性质,熟练掌握相关的性质及定理是解题的关键.11.(1)证明见解析;(2)AB=10.【解析】分析:(1)根据平行线的性质得出∠A=∠C,进而利用全等三角形的判定证明即可;(2)利用全等三角形的性质和中点的性质解答即可.详解:(1)证明:∵AB∥DC,∴∠A=∠C,在△ABE与△CDF中===,∴△ABE≌△CDF(ASA);(2)∵点E,G分别为线段FC,FD的中点,∴ED=CD,∵EG=5,∴CD=10,∵△ABE≌△CDF,∴AB=CD=10.点睛:此题考查全等三角形的判定和性质,关键是根据平行线的性质得出∠A=∠C.12.(1)y=34x+6;(2)P(3,0).【解析】【分析】1)直接利用待定系数法即可得出结论;(2)方法1、利用角平分线判断出BC=AB=10,进而判断出△AOP∽△CBP,求出OP,即可得出结论;方法2、先判断出OP=PM,设OP=m,得出PM=m,BP=8-m,再求出AM=OA=6,进而得出BM=AB-AM=4,最后用勾股定理建立方程求解即可得出结论.【详解】解:(1)设直线AB的解析式为y=kx+b,∵A(0,6),B(8,0),∴680bk b⎧⎨+⎩==,∴346kb⎧=-⎪⎨⎪=⎩,∴直线AB的解析式为y=34-x+6;(2)方法1、如图1,∵A(0,6),B(8,0),∴OA=6,OB=8,AB=10,过点B作BC∥OA交AP的延长线于C,∴∠C=∠OAP,∵AP平分∠OAB,∴∠OAP=∠BAP,∴∠C=∠BAP,∴BC=AB=10,∵BC∥OA,∴△AOP∽△CBP,∴OP OA=BP BC=35,∴OP3=OB8,∴OP=3,∴P(3,0);方法2、如图3,过点P作PM⊥AB于M,∵AP是∠OAB的角平分线,∴OP=PM,设OP=m,∴PM=m,∴BP=OB-OP=8-m易知,△AOP≌△AMP,∴AM=OA=6,∴BM=AB-AM=4,在Rt△BMP中,根据勾股定理得,m2+16=(8-m)2,∴m=3,∴P(3,0).故答案为:(1)y=34x+6;(2)P(3,0).【点睛】本题是一次函数综合题,主要考查了待定系数法,角平分线的定义,相似三角形的判定和性质,正确作出辅助线构造出相似三角形是解题的关键.13.(1)证明见解析;(2)证明见解析;(3)BE的长为125 5.【解析】(1)先依据翻折的性质和平行线的性质证明∠DGF=∠DFG,从而得到GD=DF,接下来依据翻折的性质可证明DG=GE=DF=EF;(2)连接DE,交AF于点O.由菱形的性质可知GF⊥DE,OG=OF=12GF,接下来,证明△DOF∽△ADF,由相似三角形的性质可证明D 2= O• ,于是可得到GE、AF、FG的数量关系;(3)过点G作GH⊥DC,垂足为H.利用(2)的结论可求得FG=4,然后再△ADF中依据勾股定理可求得AD的长,然后再证明△FGH∽△FAD,利用相似三角形的性质可求得GH的长,最后依据BE=AD﹣GH求解即可.解:(1)证明:∵GE∥DF,∴∠EGF=∠DFG.∵由翻折的性质可知:GD=GE,DF=EF,∠DGF=∠EGF,∴∠DGF=∠DFG.∴GD=DF.∴DG=GE=DF=EF.∴四边形EFDG为菱形.“点睛”本题考查的是四边形与三角形的综合应用,解题应用了矩形的性质,菱形的性质和判定、相似三角形的判定和性质,掌握矩形的性质定理和相似三角形的判定定理、性质定理是解题的关键.14.(1)当0<t≤85时,CP=2.5t,CQ=2t;当8552t<≤时,CP=8-2.5t,CQ=2t.(2)当0<t≤85时,S△CPQ=12•PC•sin∠ CD•CQ=12×2.5t×35×2t=232t;当8552t<≤时,S△CPQ=12•PC•sin∠ CD•CQ=1 2×(8-2.5t)×35×2t=232425t t-+.(3)0<t≤85或80t41=s【解析】【分析】(1)分两种情形:当0<t≤85时,当85<t52≤时,分别求解即可.(2)分两种情形:当0<t≤85时,当85<t≤52时,根据S△CPQ=12•PC•sin∠ CD•CQ分别求解即可.(3)分两种情形:当0<t≤85,可以证明△QCP∽△DCA,当85<t52≤,∠QPC=90°时,△QPC∽△ADC,构建方程求解即可.【详解】解:(1)∵CA=CB,AD=BD=3,∴CD⊥AB,∴∠ADC=90°,∴CD=22AC AD-=2253-=4,当0<t≤85时,CP=2.5t,CQ=2t,当85t52<≤时,CP=8-2.5t,CQ=2t.(2)∵sin∠ACD=ADAC=35,∴当0<t≤85时,S△CPQ=12•PC•sin∠ CD•CQ=12×2.5t×35×2t=23t2当85t52<≤时,S△CPQ=12•PC•sin∠ CD•CQ=12×(8-2.5t)×35×2t=2324t t25-+.(3)①当0<t≤85时,∵CP=2.5t,CQ=2t,∴CQCP=45,∵CDCA=45,∴CQ CD CP CA=,∵∠PCQ=∠ACD,∴△QCP ∽△DCA ,∴0<t≤85时,△QCP ∽△DCA , ②当85t 52<≤时,当∠QPC=90°时,△QPC ∽△ADC , ∴CP CQ CD CA =, ∴8 2.5t 2t 45-=, 解得:80t 41=, 综上所述,满足条件的t 的值为:0<t≤85或80t 41=s 时,△QCP ∽△DCA . 【点睛】本题属于相似形综合题,考查了相似三角形的判定和性质,解直角三角形的应用等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.15.BC 上存在两个点P ,BP=6或8使△ABP 与△DCP 相似. 【解析】 【分析】设BP=x ,表示出PC=14-x ,然后分BP 与CP 是对应边,BP 与DC 是对应边两种情况,利用相似三角形对应边成比例列式求解即可. 【详解】设BP=x ,则PC=14−x ,BP 与CP 是对应边时,=BP ABCP DC, 即8146x x =-,解得x=8,BP 与DC 是对应边时,=BP ABDC CP, 即8=614x x-, 解得x1=6,x2=8,所以,BC 上存在两个点P ,BP=6或8使△ABP 与△DCP 相似. 【点睛】此题考查相似三角形的判定,解题关键在于根据相似三角形的性质对应边成比例列出方程. 16.(1)DPE QDA ∽,见解析;(2)2DP =或5DP =. 【解析】 【分析】(1)通过等角转换,可得出三角相等,即可判定DPE QDA ∽;(2)首先根据已知条件求出DQ ,由三角形相似的性质,列出方程,即可得解,注意分两种情况讨论. 【详解】(1)DPE QDA ∽根据已知条件,得∠DAQ=∠PED=90° 又∵∠ADQ+∠PDE=∠DPE+∠PDE=90° ∴∠ADQ =∠DPE ,∠AQD=∠PDE ∴DPE QDA ∽(2)由已知条件,得22224225DQ AD AQ =+=+=设DE 为x ∵DPE QDA ∽∴DA PEAQ DE= ∴PE 为2x ∵PEQADQ △△∴分两种情况:①AQ DAPE EQ = 即24225x x=- 解得255x =∴()2222DP x x =+=②AQ DAEQ PE= 即24225xx =- 解得5x =()2225DP x x =+=【点睛】此题主要考查三角形相似的性质,熟练掌握,即可解题.17.(1)见解析;(2)存在,x的值为2或5.【解析】【分析】(1)在△PFA与△ABE中,易得∠PAF=∠AEB及∠PFA=∠ABE=90°;故可得△PFA∽△ABE;(2)根据题意:若△EFP∽△ABE,则∠PEF=∠EAB;必须有PE∥AB;分两种情况进而列出关系式.【详解】(1)证明:∵AD∥BC,∴∠PAF=∠AEB.∵∠PFA=∠ABE=90°,∴△PFA∽△ABE.(2)若△EFP∽△ABE,则∠PEF=∠EAB.如图,连接PE,DE,∴PE∥AB.∴四边形ABEP为矩形.∴PA=EB=2,即x=2.如图,延长AD至点P,作PF⊥AE于点F,连接PE, 若△PFE∽△ABE,则∠PEF=∠AEB.∵∠PAF=∠AEB,∴∠PEF=∠PAF.∴PE=PA.∵PF⊥AE,∴点F为AE的中点.∵AE=22=25AB BE,∴EF=12AE=5.∵5==225,PE EF PEAE EB,即,∴PE=5,即x=5.∴满足条件的x的值为2或5.【点睛】此题考查正方形的性质,相似三角形的判定,解题关键在于作辅助线. 18.(1)见解析;(2)见解析.【解析】【分析】。

专题27.22 相似三角形的性质(培优篇)(专项练习)-2022-2023学年九年级数学下册基础知识

专题27.22 相似三角形的性质(培优篇)(专项练习)-2022-2023学年九年级数学下册基础知识

专题27.22 相似三角形的性质(培优篇)(专项练习)一、单选题1.如图,在平面直角坐标系中,已知点A 坐标(0,3),点B 坐标(4,0),将点O 沿直线34y x b =-+对折,点O 恰好落在∠OAB 的平分线上的O’处,则b 的值为( )A .12B .65C .98D .15162.如图,CD 是ABC 的高,2CD AD BD M =⋅,是CD 的中点,BM 交AC 于,E EF AB ⊥于F .若164,5EF CE ==,则AB 的长为( )A .485B .383C .413D .4153.如图,在Rt ABC ∆中,90C ∠=︒,6AC =,8BC =,点F 在边AC 上,并且2CF =,点E 为边BC 上的动点,将CEF ∆沿直线EF 翻折,点C 落在点P 处,则点P 到边AB 的距离的最小值是( )A .43B .1C .56D .654.如图,四边形ABCD 中,AB BC ⊥,AD CD ⊥,AB BC =,若2AD =,1CD =,则BD 的值为( )AB .2CD .5.如图,点E 从矩形ABCD 的顶点B 出发,沿射线BC 的方向以每秒1个单位的速度运动,过E 作EF ∠AE 交直线DC 于F 点,如图2 是点E 运动时CF 的长度y 随时间t 变化的图象,其中M 点是一段曲线(抛物线的一部分)的最高点,过M 点作MN ∠y 轴交图象于N 点,则N 点坐标是( )A .(5,2)B .(2)C .(2+2)D .(2+,2)6.如图,在直角坐标系xOy 中,A (﹣4,0),B (0,2),连结AB 并延长到C ,连结CO ,若∠COB∠∠CAO ,则点C 的坐标为( )A .(1,52)B .(43,83)C D7.如图,四边形ABCD 是边长为2的菱形,且有一个内角为72°,现将其绕点D 顺时针旋转得到菱形A 'B 'C 'D ,线段AB 与线段B 'C '交于点P ,连接BB '.当五边形A 'B 'BCD 为正五边形时,BPAP即长为( )A.1B C1D8.如图,将一个面积为24的正方形纸片沿图中的3条裁切线剪开后,恰好能拼成一个邻边不相等的矩形.若裁切线AB的长为6,则裁切线CD的长是()A.2B.6-C.D.49.如图,将矩形ABCD折叠,使点D落在AB上点D′处,折痕为AE;再次折叠,使点C落在ED′上点C′处,连接FC′并延长交AE于点G.若AB=8,AD=5,则FG长为()A.B C.203D.410.由四个全等的直角三角形和一个小正方形组成的大正方形ABCD如图所示,延长AH交CD于点P,若AP HF⊥,10AP=,则小正方形边长GF的长是()A .52B .C .3 D二、填空题11.如图,在△ABC 中,D 为BC 中点,将△ABD 沿AD 折叠得到△AED ,连接EC ,已知BC =6,AD =2,且S △CDE =2710,则点A 到DE 的距离为 _________.12.如图,E 、F 、G 、H 分别为矩形ABCD 的边AB 、BC 、CD 、DA 的中点,连接AC 、HE 、EC 、GA 、GF ,已知AG ∠GF ,AC =AB 的长为___.13.在平面直角坐标系中,如图,3==OB AB ,点(,0),33-<+A a a 点C 在y 轴上且OC OA =,连接BC .现给出以下结论:∠连接AC ,则AC =; ∠OAB 的周长是一个固定值; ∠BC 的最小值为1;∠当BC 取最小值时,OA其中正确的是_________(写出所有正确结论的序号)14.如图,在平面直角坐标系中,点A (0,1),点B 为直线y=12x 上的一个动点,∠ABC =90°,BC =2AB ,则OC 的最小值为____.15.已知ABC 是直角三角形,90,3,5,B AB BC AE ∠=︒===连接CE 以CE 为底作直角三角形CDE 且,CD DE =F 是AE 边上的一点,连接BD 和,BF BD 且45,FBD ∠=︒则AF 长为______.16.将矩形OABC 如图放置,O 为坐标原点,若点A (﹣1,2),点B 的纵坐标是72,则点C 的坐标是_________.17.如图,矩形ABCD 中,3AB =,4BC =.矩形ABCD 绕着点A 旋转,点B 、C 、D 的对应点分别是点B '、C '、D ,如果点B '恰好落在对角线BD 上,连接DD ',DD '与B C ''交于点E ,那么DE =___________.18.如图,正方形ABCD 的边长为2,E 是AB 的中点,连接ED ,延长EA 至F ,使EF =ED .以线段AF 为边作正方形AFGH ,点H 落在AD 边上,连接FH 并延长,交ED 于点M,则DMDE的值为_____.三、解答题19.已知矩形ABCD,点E在AD边上,连接BE、BD,∠BED=2∠BDC,BE=25,BC =32,则CD的长度为______.20.在正方形ABCD中,P为AB边上一点,将△BCP沿CP折叠,得到△FCP.(1)如图1,延长PF交AD于E,求证:EF=ED;(2)如图2,DF,CP的延长线交于点G,求DFAG的值.21.如图,在Rt∠ABC中,∠C=90°,AC=20cm,BC=15cm,现有动点P从点A出发,沿AC向点C方向运动,动点Q从点C出发,沿CB向点B方向运动,如果点P的速度是4cm/秒,点Q的速度是2cm/秒,它们同时出发,当有一点到达所在线段的端点时,就停止运动.设运动时间为t 秒.求:(1)当t=3秒时,这时,P ,Q 两点之间的距离是多少? (2)若∠CPQ 的面积为S ,求S 关于t 的函数关系式.(3)当t 为多少秒时,以点C ,P ,Q 为顶点的三角形与∠ABC 相似?22.如图1.已知四边形ABCD 是矩形.点E 在BA 的延长线上.. AE AD EC =与BD 相交于点G ,与AD 相交于点,.F AF AB =()1求证:BD EC ⊥;()2若1AB =,求AE 的长;()3如图2,连接AG ,求证:EG DG -=.23.如图,正方形ABCD 中,P 是对角线AC 上的一个动点(不与A 、C 重合),连结BP ,将BP 绕点B 顺时针旋转90︒到BQ ,连结QP 交BC 于点E ,QP 延长线与边AD 交于点F .(1)连结CQ ,求证:AP CQ =;(2)若14AP AC=,求:CE BC的值;(3)求证:PF EQ=.24.【操作发现】如图∠,在正方形ABCD中,点N、M分别在边BC、CD上,连结AM、AN、MN.∠MAN=45°,将△AMD绕点A顺时针旋转90°,点D与点B重合,得到△ABE.易证:△ANM≌△ANE,从而得DM+BN=MN.【实践探究】(1)在图∠条件下,若CN=3,CM=4,则正方形ABCD的边长是.(2)如图②,点M、N分别在边CD、AB上,且BN=DM.点E、F分别在BM、DN 上,∠EAF=45°,连接EF,猜想三条线段EF、BE、DF之间满足的数量关系,并说明理由.【拓展】(3)如图∠,在矩形ABCD中,AB=3,AD=4,点M、N分别在边DC、BC上,连结AM,AN,已知∠MAN=45°,BN=1,求DM的长.参考答案1.D【分析】假设直线与∠OAB的平分线交x轴点C,交y轴于D,易求得OA=3,OB=4,AB=5,OD=b,且直线与AB平行,利用角平分线性质可得35OC OACB AB==,再由平行线分线段成比例得,OD OC OA AB =即3353b =+,解得98b =,结合图象,1928﹤b ﹤,利用排除法即可得到答案.解:假设直线与∠OAB 的平分线交x 轴点C ,交y 轴于D ,如图:∠A(0,3),B(4,0),∠OA=3,OB=4,AB=5,且直线AB 斜率等于34-,由直线34y x b =-+知OD=b ,且直线与AB 平行,∠AC 平分∠OAB, ∠35OC OA CB AB ==, ∠直线与AB 平行, ∠,OD OC OA AB=即3353b =+,解得98b =, 结合图象直线34y x b =-+的位置,b 的范围为1928﹤b ﹤,利用排除法, 故选D.【点拨】本题考查了角平分线的性质和平行线分线段成比例,利用假设法和排除法解答是选择题的一种技巧.2.C 【分析】延长BC 交FE 的延长线于点H ,推出4EF EH ==,通过证明ACDCBD ,得出90ECH ∠=︒,继而得出 2.4CH =,再证明AEF HEC ,得出5AE =,再证明HECABC ,从而得出答案.解:延长BC 交FE 的延长线于点H ,∠,EF AB CD AB ⊥⊥∠//CD FH ∠,DM BM CM BM EF BE EH BE == ∠DM CM EF EH= ∠M 是CD 的中点∠DM CM =∠4EF EH ==∠ACD CBD∠A BCD ∠=∠∠90BCD ACD ∠+∠=︒∠90ACB ∠=︒∠90ECH ∠=︒∠222CH CE EH +=∠ 2.4CH =∠AEF HEC ∠,AE EF A EHC EH CE=∠=∠ ∠5AE =∠AC AE CE =+∠8.2AC =∠90,ACB HCE EHC A ∠=∠=︒∠=∠∠HEC ABC ∠HE HC AB AC=∠4 2.48.2 AB=∠413 AB=故选:C.【点拨】本题考查的知识点是相似三角形的判定及性质,作出辅助线后多次利用相似三角形的性质得出CH、AE的值是解此题的关键.3.D【分析】先依据勾股定理求得AB的长,然后依据翻折的性质可知PF FC=,故此点P在以F为圆心,以2为半径的圆上,依据垂线段最短可知当FP AB⊥时,点P到AB的距离最短,然后依据题意画出图形,最后,利用相似三角形的性质求解即可.解:如图所示:当//PE AB.由翻折的性质可知:2PF FC==,90FPE C∠=∠=︒.//PE AB,90PDB∴∠=︒.由垂线段最短可知此时FD有最小值.又FP为定值,PD∴有最小值.又A A∠=∠,ACB ADF∠=∠,AFD ABC∴∆∆∽.∠AF DF AB BC=,∠CF=2,AC=6,BC=8,∠AF=4,AB10,∠即4108DF=,∠ 3.2 DF=.3.22 1.2PD DF FP∴=-=-=.故选:D.【点拨】本题考查翻折变换、最短问题、相似三角形的判定和性质、勾股定理.垂线段最短等知识,解题的关键是正确找到点P位置,属于中考常考题型.4.C【分析】延长AD、BC交于点E,过点D作DF⊥BE,垂足为F,如图所示,易发现ABE CDE,通过对应边成比例,可求解出DE、CE,再利用ABE DFE即可求出DF、BF.解:延长AD、BC交于点E,过点D作DF⊥BE,垂足为F,如图所示,AB BC⊥,AD CD⊥,90ABE CDE∴∠=∠=︒,AC AB BC∴===,又,E E ABE CDE∠=∠∴,DE CE CDBE AE AB∴==,设DE=x,CE=y,2yx===+整理可得关于x,y的二元一次方程组,⎧=⎪=,解得3xy=⎧⎪⎨=⎪⎩,90,,ABE DFE E E∠=∠=︒∠=∠ABE DFE∴,35DF CE DE AB BE AE ∴===33225555DF AB BF BE ∴=====BD ∴=故选C.【点拨】利用三角形相似,找到边与边的比例关系,可以求出未知边长,再利用勾股定理即可求解.5.D【分析】当点E 运动到C 点位置时,0FC =,则4BC =,当E 点运动到BC 中点位置时,2FC =,即2CD =,证明ABE ECF ∽△△,当F 在DC 的延长线上时,且2FC =,根据相似三角形的性质求得BE 的长,即可求得点N 的横坐标解:根据函数图象可知,当点E 运动到C 点位置时,0FC =,则4BC =,当E 点运动到BC 中点位置时,2FC =,即2CD =,AE EF ⊥∠90AEB FEC ∠+∠=︒四边形ABCD 是矩形90B ∴∠=︒90AEB BAE ∴∠+∠=︒FEC BAE ∴∠=∠90ECF ABE ∠=∠=︒∴ABE ECF ∽△△,M N 的纵坐标相等,则当F 在DC 的延长线上时,2FC =,BE t =,4EC t =-,AB EC BE FC=, 即242t t -=解得12t =,22t =-即点N 的坐标为(2,2)故选:D【点拨】本题考查了动点问题函数图象,相似三角形的性质与判定,从函数图像获取信息是解题的关键.6.B解:根据相似三角形对应边成比例,由∠COB∠∠CAO求出CB、AC的关系AC=4CB,从而得到13CBAB=,过点C作CD∠y轴于点D,然后求出∠AOB和∠CDB相似,根据相似三角形对应边成比例求出CD=43、BD=23,再求出OD=83,最后写出点C的坐标为(43,83).故选:B.【点拨】本题考查了相似三角形的性质,坐标与图形性质,主要利用了相似三角形对应边成比例,求出13CBAB=是解题的关键,也是本题的难点.7.B【分析】先计算得出∠CDC'=∠ADA'=∠ADC'=36°,得到点C'在对角线BD上,再证明△BDA∠∠BAC',求得BP= C'A= C'B1,进一步计算即可求解.解:连接BC',AC',如图:∠五边形A'B'BCD为正五边形,∠∠CDA '=()521805-⨯︒=108°, ∠菱形ABCD 绕点D 顺时针旋转得到菱形A 'B 'C 'D ,且∠ADC =72°,∠∠A 'DC '=∠ADC =72°,∠∠CDC '=∠ADA '=108°-72°=36°,∠∠CDC '=∠ADA '=∠ADC '=36°,∠点C '在对角线BD 上,∠ABC '=36°,由旋转的性质知AD =AB = DC '=2,∠∠DC 'A =∠DAC '=72°,∠∠C 'AB =36°,∠C 'A = C 'B ,设C 'A = C 'B =x ,则BD = x +2,∠∠BDA =∠BAC '=36°,∠△BDA ∠∠BAC ',∠DA :AC '=BD :BA ,即2:x =( x +2):2,整理得:x 2+2x -4=0,解得x 1,(负值已舍)∠∠C 'BP =36°,∠BC 'P =72°,∠∠C 'PB =72°,∠BP = C 'A = C 'B 1,∠AP =3∠BP AP == 故选:B .【点拨】本题考查了正多边的性质,菱形的性质,相似三角形的判定和性质,二次根式的混合运算,解题的关键是学会利用参数构建方程解决问题.8.A【分析】画出裁切后的矩形,再利用相似求解即可.解:如图所示,四边形ABQN 是裁切后的矩形:∠ABG AHN HEQ ∠=∠=∠,CD QE =,6AB NQ ==∠ABGAHN HEQ ∠,,AH AN AN NH AB AG HQ QE== ∠正方形HFG 的面积是24∠AH AG === ∠4AN =∠NH∠6HQ NQ NH =-=-=解得2CD QE ==故选:A .【点拨】本题考查相似三角形的判定与性质、矩形的性质,解题的关键是正确的画出裁切后拼成的矩形.9.C【分析】过点G 作GI ∠AB ,GH ∠ED ',垂足分别为I 、H ,由折叠的性质可得C ′E =5-4=1,在Rt △EFC ′中,设FC′=x,则EF=3-x,由勾股定理得:12+(3-x)2=x2,解得:x=53,再证明△BC′D'∠∠C′GH,设C′H=3m,则GH=4m,C′G=5m,则HD'=GI=AI=4-3m,ID'=5-(4-3m)=1+3m=GH=4m,可得到C′G=5m=5,从而解决问题.解:由折叠的性质得,∠AD'E=∠D=90°,AD=AD',又∠∠DAB=90°,∠四边形ADED'是矩形,∠AD=AD',∠四边形ADED'是正方形,过点G作GI∠AB,GH∠ED',垂足分别为I、H,∠AD'ED是正方形,∠AD=DE=ED'=AD'=5,BC=BC′=5,∠C=∠BC′F=90°,FC=FC′,∠D'B=EC=8-5=3,在Rt∠C′BD'中,C′D'=4,∠C′E=5-4=1,在Rt∠EFC′中,设FC′=x,则EF=3-x,由勾股定理得:12+(3-x)2=x2,解得:x=53,∠∠BC′D'+∠GC′H=90°,∠GC′H+∠C′GH=90°,∠∠BC′D'=∠C′GH,又∠∠GHC′=∠BD'C′=90°,∠∠BC′D'∠∠C′GH,∠C′H:GH:C′G=BD':C′D':BC′=3:4:5,设C′H=3m,则GH=4m,C′G=5m,∠HD'=GI=AI=4-3m,ID'=5-(4-3m)=1+3m=GH=4m,解得:m=1,∠C′G=5m=5,∠FG=203;故选:C.【点拨】本题主要考查了矩形的性质,正方形的判定与性质,翻折的性质,勾股定理,相似三角形的判定与性质等知识,作辅助线构造三角形相似是解题的关键.10.B【分析】过点E作EM∠AB于点M,证明∠AED∠∠HMD,可得DH MH DMAD AE DE==,由MH∠DP,可得32AH AMHP DE==,从而可得结论.解:∠∠ADE∠∠DCH∠∠CBG∠∠BAF,∠AE=DH,DE=CH,∠四边形GFEH是正方形,∠EH=EF=HG=GF,∠HF A=45°=∠EHF,∠AP∠HF,∠∠F AH=∠AFH=45°=∠AHE,∠AH=FH,AE=HE,∠AF=2AE,设AE=a,则AF=DE=2a,如图过点H作HM∠AD于M,∠,AD=∠∠DMH=∠AED=90°,∠ADE=∠MDH,∠∠AED∠∠HMD,∠DH MH DM AD AE DE==,∠MH,DM=,∠AM AD DM=-==,∠AD∠CD,∠MH∠DP,∠ 32AH AM HP DE ==, ∠AP =10,∠AH =6,∠EH =GF ,故选:B .【点拨】本题考查了正方形的性质,勾股定理,相似三角形的判定和性质,添加恰当辅助线构造相似三角形是解题的关键.11. 【分析】过点E 作EF ∠BC 于F ,AG ∠DE 于G ,AH ∠BC 于H ,由将△ABD 沿AD 折叠得到△AED ,可得,BD DG BDA EDA =∠=∠,可证AH AG =,由D 为BC 中点,BC =6,可求132BD ED DC BC ====,由S △CDE =2710,可求95EF =,在Rt △EDF 中,由勾股定理125DF ,可求FC =35,在Rt △ECF 中,由勾股定理EC ==,可证AHD EFC ∆∆∽,可得AD AH EC EF = ,可求AH =即可 解:过点E 作EF ∠BC 于F ,AG ∠DE 于G ,AH ∠BC 于H ,∠将△ABD 沿AD 折叠得到△AED ,∠,BD DG BDA EDA =∠=∠,∠AD 为∠BDE 的平分线,∠EF ∠BC 于F ,AG ∠DE 于G ,∠AH AG =,∠D 为BC 中点,BC =6,∠132BD ED DC BC ====, ∠S △CDE =2710, ∠112732210DCE S DC EF EF ∆=⋅=⨯⨯=, ∠95EF =, 在Rt △EDF中,由勾股定理125DF =,∠FC =DC -DF =3-12355=, 在Rt △ECF中,由勾股定理EC =∠DE =DC , ∠DEC DCE ∠=∠,由外角性质,22BDE DEC DCE DCE BDA ∠=∠+∠=∠=∠, ∠DCE BDA ∠=∠,90AHD EFC ∠=∠=︒,∠AHD EFC ∆∆∽,∠AD AHEC EF =95AH=,∠AH =, ∠AG=AH =,.【点拨】本题考查折叠性质,角平分线性质,三角形面积,勾股定理,相似三角形判定与性质,掌握折叠性质,角平分线性质,三角形面积,勾股定理,相似三角形判定与性质,利用辅助线画出准去图形是解题关键.12.【分析】如图,连接BD .由∠ADG ∠∠GCF ,设CF =BF =a ,CG =DG =b ,可得AD GC =DGCF,推出2=a bb a,可得b a ,在Rt ∠GCF 中,利用勾股定理求出b ,即可解决问题; 解:如图,连接BD .∠四边形ABCD 是矩形,∠∠ADC =∠DCB =90°,AC =BD =∠CG =DG ,CF =FB , ∠GF =12BD∠AG ∠FG , ∠∠AGF =90°,∠∠DAG +∠AGD =90°,∠AGD +∠CGF =90°, ∠∠DAG =∠CGF , ∠∠ADG ∠∠GCF ,设CF =BF =a ,CG =DG =b , ∠AD GC =DGCF, ∠2=a b b a, ∠b 2=2a 2, ∠a >0.b >0, ∠b,在Rt ∠GCF 中,3a 2=3, ∠a =1,∠AB =2b =故答案为【点拨】本题考查三角形中位线定理、矩形的性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.13.∠∠∠【分析】∠利用勾股定理计算出AC的长,进行判断;∠表示出∠OAB的周长即可判断;∠利用图形变形,将BC放在三角形中根据三角形的三边关系进行判断;∠利用三垂直模型及三角形相似求出OA的长即可.解:∠∠A(a,0),OA=OC,a,∠AC∠C△OAB=OA+AB+OB=a∠3﹣a<∠C△OAB不是一个固定值,故∠错误;∠如图,将∠OBC绕点O顺时针旋转90°,得到∠ODA,则OB=OD,BC=AD,∠BOD=90°,∠BD4,在∠ABD中,AD>BD﹣AB,当B,A,D三点共线时,AD最短,即BC最短,此时BC=DA﹣AB=4﹣3=1,故∠正确;∠如图,当B,A,D三点共线时,作BE,DF垂直于x轴,垂足为E,F,则∠OEB =∠DFO =90°,∠1+∠2=90°, 又∠BOD =∠2+∠3=90°, ∠∠1=∠3, 又OB =OD ,∠∠BOE ∠∠ODF (AAS ),设B (x ,y ),则DF =OE =x ,OF =BE =y ,且x 2+y 2=()2=8, 由BE ∠x 轴,DF ∠x 轴得BE ∠DF , ∠∠ADF ∠∠ABE , ∠=DF ADBE AB,即13x y =,∠y =3x ,把y =3x 代入x 2+y 2=(2=8得, x 2+9x 2=8,解得x =(负值舍去),∠y =由∠ADF ∠∠ABE 得,13AF AD AE AB ==, ∠AE =3AF ,即a ﹣x =3(y ﹣a ), a ﹣x =3y ﹣3a ,∠a 35544x y +===即OA =故∠正确.故答案为:∠∠∠.【点拨】本题考查勾股定理,相似以及两点间的距离公式,熟练掌握勾股定理是解题关键.14【分析】分析求OC最小即求AC最小,求AC最小即求AB最小,根据点到直线的距离公式求AB最小,继而代换求出OC最小.解:连接OC,在∠AOC中,OC<OA+AC或OC>AC-OA故求OC最短,即求AC最短由题意知:∠ABC=90 ,BC=2AB且点A(0,1),设AB=m,BC=2m,AC=根据点到直线的距离可知,m最小= 1255.此时AB∠直线y=12x,点C在直线上作BD∠OA与点D,在∠ABD和∠BOD中(DOB AOBDBO OAB公共角)∠∠DOB∠∠OBA∠12 OD OB BD AB又.【点拨】本题主要考查了点到直线的距离公式及三角形相似的性质,正确掌握点到直线的距离公式及三角形相似的性质是解题的关键.15【分析】将线段BD 绕点D 顺时针旋转90︒,得到线段HD ,连接BH ,HE ,利用SAS 证明EDH CDB ∆≅∆,得5EH CB ==,ABF BHE ∠=∠,则ABF EHF ∆∆∽,即可解决问题.解:将线段BD 绕点D 顺时针旋转90︒,得到线段HD ,连接BH ,HE ,BDH ∴∆是等腰直角三角形, 又EDC ∆是等腰直角三角形,HD BD ∴=,EDH CDB ∠=∠,ED CD =,()EDH CDB SAS ∴∆≅∆,5EH CB ∴==,EHD DBC ∠=∠,9045ABF FBD DBC DBC ∠=︒-∠-∠=︒-∠ 45BHE EHD ∠=︒-∠ABF BHE ∴∠=∠ //AB HE ∴AFB HFE ∠=∠, ABF EHF ∴∆∆∽,∴==-AB AF AFEH EF AE AF, 2AE =∴35=AF ∴=,【点拨】本题主要考查了等腰直角三角形的性质,全等三角形的判定与性质,相似三角形的判定与性质等知识,解题的关键是作辅助线构造全等三角形.16.(3,32)【分析】过点A 作AD ∠x 轴,垂足为D ,过点B 作BF ∠x 轴,垂足为F ,过点C 作CG ∠x 轴,垂足为G ,过点B 作BE ∠CG ,交GC 的延长线于点E ,通过证明△ADO ∠△CEB ,△ADO ∠△OGC 即可.解:过点A 作AD ∠x 轴,垂足为D ,过点B 作BF ∠x 轴,垂足为F ,过点C 作CG ∠x 轴,垂足为G ,过点B 作BE ∠CG ,交GC 的延长线于点E ,∠四边形BFGE 是矩形,∠ADO =∠CBE =90°, ∠BF =EG ,∠四边形OABC 是矩形, ∠OA =CB ,∠BCO =90°,∠∠AOD =90°-∠COG =∠GCO =90°-∠BCE =∠CBE , ∠∠ADO ∠∠CEB ,∠ADO ∠∠OGC , ∠AD =CE ,AD DOOG CG=, ∠点A (﹣1,2),点B 的纵坐标是72,∠AD =CE =2,BF =EG =72,CG =EG -CE =72-2=32,∠2132OG =,解得OG =3,故点C 的坐标为(3,32),故答案为:(3,32).【点拨】本题考查了矩形的性质,三角形全等的判定和性质,三角形相似的判定和性质,坐标与线段的关系,熟练掌握矩形的性质,三角形的全等与系数是解题的关键.17.2120【分析】过A 点作AF ∠BD ,交BD 于点F ,利用勾股定理求出BD =5,在根据是矩形ABD 的面积求出AF ,进而可求出 1.8BF B F '==,进而求出BD ',再证明AB F B ED ''△∽△,即有AF B FB D DE''=,DE 可求. 解:过A 点作AF ∠BD ,交BD 于点F ,如图,∠矩形中AB =3,BC =AD =4,∠BAC =90°,∠5BD =, ∠1122ABDAB AD B SD AF ⨯⨯=⨯⨯=, ∠342.45AB AD AF BD ⨯⨯===,∠ 1.8BF =,根据旋转可知:AB AB '=,90ABC AB C '∠=∠=,AD AD =', ∠AF BD ⊥,∠ 1.8BF B F '==,即 3.6BB BF B F ''=+=, ∠5 3.6 1.4B D BD BB ''=-=-=,根据旋转可知:AB AB '=,AD AD =',BAB DAD ''∠=∠,∠根据两个等腰三角形中顶角相等,则其底角也相等,即ABD ADD '∠=∠, ∠90ABD ADB ∠+∠=︒,∠90ADB ADD BDD ∠+∠==∠'',∠90AB F DB E ''∠+∠=,90B ED DB E ''∠+∠=, ∠AB F DEB ''∠=∠, ∠90AFB B DE ''∠=∠=, ∠AB F B ED ''△∽△, ∠AF B F B D DE ''=, ∠2.4 1.81.4DE=, ∠2120DE =, 故答案为:2120. 【点拨】本题考查了旋转的性质,矩形的性质,勾股定理,等腰三角形的性质,相似三角形的判定与性质,求出BD '是解答本题的关键.18【分析】过点M 作MN ∠AD 于点N ,根据勾股定理可得DE =EF AFGH 是正方形,可得AF =AH =EF ﹣AE 1,根据//MN AE ,可得∠DMN ∠∠DEA ,所以MN DN DMAE DA DE==,即12MN DN ==MN =NH =x ,则DN =2x ,DM ,再根据DN +NH =AD ﹣AH ,列式)3213x =-=求出x 的值,进而可以解决问题.解:如图,过点M 作MN ∠AD 于点N ,∠正方形ABCD 的边长为2,E 是AB 的中点, ∠AD =AB =2,AE =1,∠EAD =90°,∠DE EF = ∠四边形AFGH 是正方形,∠AF =AH =EF ﹣AE 1, ∠∠AHF =∠NHM =45°, ∠MN =NH , ∠//MN AE , ∠∠DMN ∠∠DEA , ∠MN DN DMAE DA DE ==, ∠12MN DN == 设MN =NH =x ,则DN =2x ,DM , ∠DN +NH =AD ﹣AH ,∠)3213x =-=∠DM =,∠DM x DE ==【点拨】此题考察了正方形的性质和三角形相似的知识,解决本题的关键是找到相似三角形得出线段之间的关系.19.24【分析】过E 作EF ∠BD 于F ,根据矩形的性质得到∠C =∠ADC =90°,于是得到∠ADB +∠BDC =90°,根据已知条件推出180°-∠AEB =2(90°-∠ADB ),得到∠AEB =2∠EDB ,根据等腰三角形的性质得到BF =12BD ,由平行线的性质得到∠ADB =∠DBC ,等量代换得到∠EBF =∠DBC ,推出∠EBF ∠∠DBC ,根据相似三角形的性质,求得BD =40,由勾股定理即可得到结论.解:过E 作EF BD ⊥于F ,∠四边形ABCD 是矩形,∠90C ADC ∠=∠=︒,∠2BED BDC ∠=∠,∠()180290AEB ADB ︒-∠=︒-∠,∠2AEB EDB ∠=∠,∠,AEB ADB EBD ∠=∠+∠,∠EDB EBD ∠=∠,∠BE DE =, ∠12BF BD =, ∠AD BC ∥,∠ADB DBC ∠=∠,∠EBF DBC ∠=∠,∠EBF DBC ∽△△,BD BC∠2222253240BD BC BE =⋅=⨯⨯=,∠40BD =,∠24CD .故答案为:24.【点拨】本题考查了矩形的性质,相似三角形的判定和性质,平行线的性质,外角的性质,正确的作出辅助线构造相似三角形是解题的关键.20.(1)证明见解析(2【分析】(1)连接CE ,通过全等三角形的判定,得到Rt △CFE∠Rt △CDE ,进而得出结论; (2)连接BG 、BF 、BD ,作CH∠DF ,垂足为H .依据△CFG∠∠CBG ,可得GF=GB ,进而得出△GBF 是等腰直角三角形,故BF BG .再判定△BGA∠∠FBD ,即可得到DF BF AG BG= 解:(1)如图1,连接CE ,∠四边形ABCD 是正方形,∠BC=CD ,∠B=∠D=90°.∠∠PBC 和△FPC 关于PC 对称,∠BC=CF ,∠B=∠PFC=90°.∠∠EFC=90°.∠∠EFC=∠D=90°,CF=CD .∠CE=CE,∠Rt△EFC∠Rt△DFC(HL).∠EF=ED.(2)如图2,连接BG、BF、BD,作CH∠DF,垂足为H.∠四边形ABCD是正方形,∠BC=CD.∠CH∠DF,∠∠HCF=12DCF ∠,∠∠PBC和△FPC关于PC对称,∠BC=CF,∠FCG=∠BCG.∠EB∠CG.又∠CG=CG,∠∠CFG∠∠CBG.∠GF=GB.∠∠HCF=12DCF∠,∠FCG=∠BCG=12BCF∠,∠∠HCK=12BCD∠=45°.∠∠PFH=135°.∠∠GFB=45°.∠∠GBF=45°.∠∠GBF是等腰直角三角形.∠BF=.∠∠ABD=45°,∠∠GBA=∠FBD.∠BG BF AB BD=, ∠∠BGA∠∠FBD .∠DF BF AG BG== 【点拨】本题主要考查了全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,等腰直角三角形的判定与性质的综合运用,解决问题的关键是作辅助线构造等腰直角三角形,全等三角形以及相似三角形,利用相似三角形的对应边成比例得出结论.21.(1)10cm ;(2)2204=-S t t ;(3)t =3或t =4011 【分析】(1)在Rt∠CPQ 中,当t=3秒,可知CP 、CQ 的长,运用勾股定理可将PQ 的长求出;(2)由点P ,点Q 的运动速度和运动时间,又知AC ,BC 的长,可将CP 、CQ 用含t 的表达式求出,代入直角三角形面积公式CPQ S =12CP×CQ 求解; (3)应分两种情况:当Rt∠CPQ∠Rt∠CAB 时,根据CP CQ CA CB=,可将时间t 求出;当Rt∠CPQ∠Rt∠CBA 时,根据CP CQ CB CA =,可求出时间t . 解:由题意得AP=4t ,CQ=2t ,则CP=20﹣4t ,(1)当t=3秒时,CP=20﹣4t=8cm ,CQ=2t=6cm ,由勾股定理得10cm =;(2)由题意得AP=4t ,CQ=2t ,则CP=20﹣4t ,因此Rt∠CPQ 的面积为S=()21204t 22042t t t -⨯=-; (3)分两种情况:∠当Rt∠CPQ∠Rt∠CAB 时,CP CQ CA CB =,即204t 2t 2015-=, 解得:t=3秒;∠当Rt∠CPQ∠Rt∠CBA 时,CP CQ CB CA=,即204t 2t 1520-=, 解得:t=4011秒.因此t=3秒或t=4011秒时,以点C 、P 、Q 为顶点的三角形与∠ABC 相似 【点拨】本题主要考查了相似三角形性质以及勾股定理的运用,在解第三问时应分两种情况进行求解防止漏解或错解,注意方程思想与分类讨论思想的应用是解此题的关键.22.(1)见解析;(2;(3)见解析 【分析】(1)由矩形的形及已知证得∠EAF∠∠DAB ,则有∠E=∠ADB ,进而证得∠EGB=90º即可证得结论;(2)设AE=x ,利用矩形性质知AF∠BC ,则有EA AF EB BC=,进而得到x 的方程,解之即可;(3)在EF 上截取EH=DG ,进而证明∠EHA∠∠DGA ,得到∠EAH=∠DAG ,AH=AG ,则证得∠HAG 为等腰直角三角形,即可得证结论.解:(1)∠四边形ABCD 是矩形,∠∠BAD=∠EAD=90º,AO=BC ,AD∠BC ,在∠EAF 和∠DAB , AE AD EAF DAB AF AB =⎧⎪∠=∠⎨⎪=⎩,∠∠EAF∠∠DAB(SAS),∠∠E=∠BDA ,∠∠BDA+∠ABD=90º,∠∠E+∠ABD=90º,∠∠EGB=90º,∠BG∠EC ;(2)设AE=x ,则EB=1+x ,BC=AD=AE=x ,∠AF∠BC ,∠E=∠E ,∠∠EAF∠∠EBC , ∠EA AF EB BC =,又AF=AB=1, ∠11x x x=+即210x x --=,解得:x =x =(舍去) 即; (3)在EG 上截取EH=DG ,连接AH ,在∠EAH 和∠DAG ,AE AD HEA GDA EH DG =⎧⎪∠=∠⎨⎪=⎩,∠∠EAH∠∠DAG(SAS),∠∠EAH=∠DAG ,AH=AG ,∠∠EAH+∠DAH=90º,∠∠DAG+∠DAH=90º,∠∠HAG=90º,∠∠GAH 是等腰直角三角形,∠222AH AG GH +=即222AG GH =,,∠GH=EG -EH=EG -DG ,∠EG DG -=.【点拨】本题主要考查了矩形的性质、全等三角形的判定与性质、等腰三角形的判定与性质、直角定义、相似三角形的判定与性质、解一元二次方程等知识,涉及知识面广,解答的关键是认真审题,提取相关信息,利用截长补短等解题方法确定解题思路,进而推理、探究、发现和计算.23.(1)见解析;(2)38;(3)见解析 【分析】(1)由旋转知∠PBQ 为等腰直角三角形,得到PB=QB ,∠PBQ=90°,进而证明∠APB∠∠CQB 即可;(2)设AP=x ,则AC=4x ,PC=3x ,由(1)知CQ=AP=x ,又∠ABC 为等腰直角三角形,所以BC=2AC ,,再证明∠BQE∠∠BCQ ,由此求出BE ,进而求出CE:BC 的值;(3)在CE 上截取CG ,并使CG=FA ,证明∠PFA∠∠QGC ,进而得到PF=QG ,然后再证明∠QGE=∠QEG 即可得到QG=EQ ,进而求解.解:∠四边形ABCD 为正方形,∠AB=BC ,∠ABC=90°,∠BP 绕点B 顺时针旋转90︒到BQ ,∠BP=BQ ,∠PBQ=90°,∠∠ABC -∠PBC=∠PBQ -∠PBC,∠∠ABP=∠CBQ ,在∠APB 和∠CQB 中,=⎧⎪∠=∠⎨⎪=⎩AB BC ABP CBQ BP QB ,∠∠APB∠∠CQB(SAS),∠AP=CQ .(2) 设AP=x ,则AC=4x ,PC=3x ,由(1)知CQ=AP=x ,∠ABC 为等腰直角三角形,AC , 在Rt∠PCQ中,由勾股定理有:=PQ ,且∠PBQ 为等腰直角三角形,∠==BQ , 又∠BCQ=∠BAP=45°,∠BQE=45°,∠∠BCQ=∠BQE=45°,且∠CBQ=∠CBQ ,∠∠BQE∠∠BCQ , ∠=BQ BE BC BQ,x ,∠CE=BC -,∠3:8=CE BC , 故答案为:38.(3) 在CE 上截取CG ,并使CG=FA ,如图所示:∠∠FAP=∠GCQ=45°,且由(1)知AP=CQ ,且截取CG=FA ,故有∠PFA∠∠QGC(SAS),∠PF=QG ,∠PFA=∠CGQ ,又∠∠DFP=180°-∠PFA ,∠QGE=180°-∠CGQ ,∠∠DFP=∠QGE ,∠DA //BC ,∠∠DFP=∠CEQ ,∠∠QGE=∠CEQ ,∠∠QGE 为等腰三角形,∠GQ=QE ,故PF=QE .【点拨】本题考查了正方形的性质、旋转的性质、三角形全等的判定和性质、相似三角形判定和性质的综合,具有一定的综合性,本题第(3)问关键是能想到在CE 上截取CG ,并使CG=FA 这条辅助线.24.(1)6;(2)222EF BE FD =+,见解析;(3)2【分析】(1)根据旋转的性质证明∠ABE∠∠ADM 得到BE=DM ,又由∠ABE=∠D=90°,AE=AM ,∠BAE=∠DAM ,证出∠EAM=90°,得出∠MAN=∠EAN ,再证明∠AMN∠∠EAN (SAS ),得出MN=EN 最后证出MN=BN+DM .在Rt∠CMN 中,由勾股定理计算即可得到正方形的边长;(2 )先根据旋转的性质证明∠AEG ∠∠AEF (SAS ),再证明∠GBE=90°,再根据勾股定理即可得到;(3)在AB 上截取AP ,在BC 上截取BQ ,使AP =AB=BQ =3,连结PQ 交AM 于点R ,得到ABQP 为正方形,再根据操作发现以及勾股定理即可得到答案;(1)解:∠四边形ABCD 是正方形,∠AB=CD=AD ,∠BAD=∠C=∠D=90°,由旋转得:∠ABE∠∠ADM ,∠BE=DM ,∠ABE=∠D=90°,AE=AM ,∠BAE=∠DAM ,∠∠BAE+∠BAM=∠DAM+∠BAM=∠BAD=90°,即∠EAM=90°,∠∠MAN=45°,∠∠EAN=90°-45°=45°,∠∠MAN=∠EAN ,在∠AMN 和∠EAN 中,AM AE MAN EAN AN AN ⎧⎪∠∠⎨⎪=⎩==∠∠AMN∠∠EAN (SAS ),∠MN=EN .∠EN=BE+BN=DM+BN ,∠MN=BN+DM .在Rt∠CMN 中,5MN = ,则BN+DM=5,设正方形ABCD 的边长为x ,则BN=BC -CN=x -3,DM=CD -CM=x -4,∠x -3+x -4=5,解得:x=6,即正方形ABCD 的边长是6;故答案为:6;(2)数量关系为:222EF BE FD =+,证明如下:将∠AFD 绕点A 顺时针旋转90°,点D 与点B 重合,得到∠ABG ,连结EG .由旋转的性质得到:AF=AG ,DAF BAG ∠=∠又∠∠EAF =45°,∴904545GAE ∠=︒-︒=︒,且AE=AE ,∠∠AEG ∠∠AEF (SAS ),从而得EG =EF .(全等三角形对应边相等),又∠BN =DM ,BN∠DM ,∠四边形DMBN 是平行四边形(一组对边平行且相等的四边形是平行四边形), ∠DN∠BM ,∠AND ABM ∠=∠ (两直线平行,同位角相等),∠90AND ADN ∠+∠=︒,∠90ABG ABM ∠+∠=︒(等量替换),即:∠GBE=90°,则222EG BE GB =+,∠222EF BE FD =+;(3)在AD 上截取AP ,在BC 上截取BQ ,使AP =AB=BQ =3,连结PQ 交AM 于点R ,易证ABQP 为正方形,由操作与发现知:PR +BN =RN .设PR =x ,则RQ =3﹣x ,RN =1+x ,QN =3-1=2在Rt∠QRN 中,由勾股定理得:222RN NQ RQ =+,即222(1)2(3)x x +=+-解得:x =32, ∠PR =32∠PQ ∠DC ,∠∠APR ∠∠ADM , ∠PR AP DM AD= (相似三角形对应边成比例) ∠3234DM = ∠DM =2;【点拨】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、勾股定理、相似三角形的判定与性质等知识;本题综合性强,有一定难度,证明三角形全等和由勾股定理得出方程是解题的关键.。

北师大版九年级数学上册 第四章 相似三角形培优专题 (含答案)

北师大版九年级数学上册 第四章 相似三角形培优专题 (含答案)

北师大版九年级上册 第四章 相似三角形培优专题 (含答案)一、单选题1.如图,过点0(0,1)A 作y 轴的垂线交直线:3l y x =于点1A ,过点1A 作直线l 的垂线,交y 轴于点2A ,过点2A 作y 轴的垂线交直线l 于点3A ,…,这样依次下去,得到012A A A ∆,234A A A ∆,4564A A ∆,…,其面积分别记为1S ,2 S ,3 S ,…,则100S ( )A .1002⎛⎫ ⎪ ⎪⎝⎭B .100C .1994D .39522.如图,在ABC ∆中,点D ,E 分别在AB ,AC 边上,//DE BC ,ACD B ∠=∠,若2A D B D=,6BC =,则线段CD 的长为( )A.B .C .D .53.如图,在正方形ABCD 的对角线AC 上取一点E .使得15CDE ︒∠=,连接BE 并延长BE 到F ,使CF CB =,BF 与CD 相交于点H ,若1AB =,有下列结论:①BE DE =;②CE DE EF +=;③1412DEC S ∆=-;④1DH HC =-.则其中正确的结论有( )A .①②③B .①②③④C .①②④D .①③④4.如图,在矩形ABCD 中,AB=3,BC=6,若点E ,F 分别在AB,CD 上,且BE=2AE ,DF=2FC ,G ,H 分别是AC 的三等分点,则四边形EHFG 的面积为( )A .1B .32C .2D .45.如图,在等腰三角形ABC ∆中,AB AC =,图中所有三角形均相似,其中最小的三角形面积为1,ABC ∆的面积为42,则四边形DBCE 的面积是( )A .20B .22C .24D .266.如图,矩形ABCD 中,AC 与BD 相交于点E ,:AD AB =,将ABD △沿BD 折叠,点A 的对应点为F ,连接AF 交BC 于点G ,且2BG =,在AD 边上有一点H ,使得BH EH +的值最小,此时BH CF=( )A .2B .3C .2D .327.如图,在平行四边形ABCD 中,E 为BC 的中点,BD ,AE 交于点O ,若随机向平行四边形ABCD 内投一粒米,则米粒落在图中阴影部分的概率为( )A .116B .112C .18D .168.如图,在平面直角坐标系中,已知()()()3,2,0,-2,3,0,A B C M ---是线段AB 上的一个动点,连接CM ,过点M 作MN MC ⊥交y 轴于点N ,若点M N 、在直线y kx b =+上,则b 的最大值是( )A .78-B .34-C .1-D .09.如图,平行四边形ABCD 中,对角线AC 、BD 相交于点O ,且AC =6,BD =8,P 是对角线BD 上任意一点,过点P 作EF ∥AC ,与平行四边形的两条边分别交于点E 、F .设BP =x ,EF =y ,则能大致表示y 与x 之间关系的图象为( )A .B .C .D .10.如图,正方形ABCD 的边长为2,点E 是BC 的中点,AE 与BD 交于点P ,F 是CD 上的一点,连接AF 分别交BD ,DE 于点M ,N ,且AF ⊥DE ,连接PN ,则下列结论中:①4ABM FDM S S =;②PN =;③tan ∠EAF=34;④.PMN DPE ∽正确的是()A .①②③B .①②④C .①③④D .②③④11.如图,在正方形ABCD 中,点O 是对角线,AC BD 的交点,过点O 作射线分别交,OM ON 于点,E F ,且90EOF ∠︒=,交,OC EF 于点G .给出下列结论:COE DOF V V ①≌;OGE FGC V V ②∽C ;③四边形CEOF 的面积为正方形ABCD 面积的14;22•DF BE OG OC +④=.其中正确的是( )A .①②③④B .①②③C .①②④D .③④12.如图,在ABC ∆中,D 在AC 边上,12AD DC :=:,O 是BD 的中点,连接AO 并延长交BC 于E ,则BE EC :=( )A .1:2B .1:3C .1:4D .2:313.矩形OABC 在平面直角坐标系中的位置如图所示,已知2)B ,点A 在x 轴上,点C 在y 轴上,P 是对角线OB 上一动点(不与原点重合),连接PC ,过点P 作PD PC ⊥,交x 轴于点D .下列结论:①OA BC ==②当点D 运动到OA 的中点处时,227PC PD +=;③在运动过程中,CDP ∠是一个定值;④当△ODP 为等腰三角形时,点D 的坐标为3⎛⎫ ⎪ ⎪⎝⎭.其中正确结论的个数是( )A .1个B .2个C .3个D .4个14.如图,在ABC △中,点D 为BC 边上的一点,且2AD AB ==,AD AB ⊥,过点D 作DE AD ⊥,DE 交AC 于点E ,若1DE =,则ABC △的面积为( )A .B .4C .D .8二、填空题 15.如图,在等腰Rt ABC ∆中, 90C =∠,15AC =,点E 在边CB 上, 2CE EB =,点D 在边AB 上,CD AE ⊥,垂足为F ,则AD 长为_____.16.如图,在正方形ABCD 中,AB=8,AC 与BD 交于点O ,N 是AO 的中点,点M 在BC 边上,且BM=6. P 为对角线BD 上一点,则PM —PN 的最大值为___.17.如图,平面直角坐标系中,矩形ABOC 的边,BO CO 分别在x 轴,y 轴上,A 点的坐标为(8,6)-,点P 在矩形ABOC 的内部,点E 在BO 边上,满足PBE ∆∽CBO ∆,当APC ∆是等腰三角形时,P 点坐标为_____.18.如图,正方形ABCD 的对角线AC 上有一点E ,且CE =4AE ,点F 在DC 的延长线上,连接EF ,过点E 作EG ⊥EF ,交CB 的延长线于点G ,连接GF 并延长,交AC 的延长线于点P ,若AB =5,CF =2,则线段EP 的长是_____.19.如图,ABC ∆和CDE ∆都是等边三角形,且点A 、C 、E 在同一直线上,AD 与BE 、BC 分别交于点F 、M ,BE 与CD 交于点N .下列结论正确的是_______(写出所有正确结论的序号).①AM BN =;②ABF DNF ∆∆≌;③180FMC FNC ︒∠+∠=;④111A C N C EM =+20.如图,正方形ABCD 中,1124AB AE AB ==,,点P 在BC 上运动(不与B 、C 重合),过点P 作PQ EP ⊥,交CD 于点Q ,则CQ 的最大值为_______.21.七巧板是我国祖先的一项卓越创造,被誉为“东方魔板”. 由边长为ABCD 可以制作一副如图1所示的七巧板,现将这副七巧板在正方形EFGH 内拼成如图2所示的“拼搏兔”造型(其中点Q R 、分别与图2中的点E G 、重合,点P 在边EH 上),则“拼搏兔”所在正方形EFGH 的边长是_____.22.如图,ABCD 的对角线,AC BD 交于点O ,CE 平分BCD ∠交AB 于点E ,交BD 于点F ,且60,2ABC AB BC ∠=︒=,连接OE .下列结论:①EO AC ⊥;②4AOD OCF S S =;③:7AC BD =;④2•FB OF DF =.其中正确的结论有__________(填写所有正确结论的序号)23.如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE.折叠该纸片,使点ADE ,则GE的长落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上.若5为__________.参考答案1.D【解析】【分析】本题需先求出OA 1和OA 2的长,再根据题意得出OA n =2n ,把纵坐标代入解析式求得横坐标,然后根据三角形相似的性质即可求得S 100.【详解】∵点0A 的坐标是(0,1),∴01OA =,∵点1A 在直线3y x =上, ∴12OA =,013A A = ∴24OA =,∴38OA =,∴416OA =,得出2n n OA =, ∴12·3n n n A A +=∴1981982OA =,19819819923A A = ∵113(41)3322S =-⋅= ∵21200199A A A A ∥,∴012198199200∆∆∽A A A A A A , ∴2198100133S S ⎛=, ∴396395332332S == 故选D .【点睛】本题主要考查了如何根据一次函数的解析式和点的坐标求线段的长度,以及如何根据线段的长度求出点的坐标,解题时要注意相关知识的综合应用.2.C【解析】【分析】设2AD x =,BD x =,所以3AB x =,易证ADEABC ∆∆,利用相似三角形的性质可求出DE 的长度,以及23AE AC =,再证明ADE ACD ∆∆,利用相似三角形的性质即可求出得出AD AE DE AC AD CD==,从而可求出CD 的长度. 【详解】解:设2AD x =,BD x =,∴3AB x =,∵//DE BC ,∴ADEABC ∆∆, ∴DE AD AE BC AB AC==, ∴263DE x x=, ∴4DE =,23AE AC =, ∵ACD B ∠=∠,ADE B ∠=∠,∴ADE ACD ∠=∠,∵A A ∠=∠,∴ADEACD ∆∆, ∴AD AE DE AC AD CD==, 设2AE y =,3AC y =, ∴23AD y y AD=, ∴6AD =,4CD=,∴26CD=故选:C.【点睛】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于中等题型. 3.A【解析】【分析】①由正方形的性质可以得出AB=AD,∠BAC=∠DAC=45°,通过证明△ABE≌△ADE,就可以得出BE=DE;②在EF上取一点G,使EG=EC,连结CG,再通过条件证明△DEC≌△FGC就可以得出CE+DE=EF;③过B作BM⊥AC交于M,根据勾股定理求出AC,根据三角形的面积公式即可求出高DM,根据三角形的面积公式即可求得13412DECS∆=-;④解直角三角形求得DE,根据等边三角形性质得到CG=CE,然后通过证得△DEH∽△CGH,求得31DH DEHC CG==.【详解】证明:①∵四边形ABCD是正方形,∴AB AD=,90ABC ADC︒∠=∠=,45BAC DAC ACB ACD︒∠=∠=∠=∠=.在ABE∆和ADE∆中,AB ADBAC DACAE AE=⎧⎪∠=∠⎨⎪=⎩,∴()ABE ADE SAS∆≅∆,∴BE DE=,故①正确;②在EF上取一点G,使EG EC=,连结CG,∵ABE ADE∆≅∆,∴ABE ADE∠=∠.∴CBE CDE∠=∠,∵BC CF =,∴CBE F ∠=∠,∴CBE CDE F ∠=∠=∠.∵15CDE ︒∠=,∴15CBE ︒∠=,∴60CEG ︒∠=.∵CE GE =,∴CEG ∆是等边三角形.∴60CGE ︒∠=,CE GC =,∴45GCF ︒∠=,∴ECD GCF ∠=.在DEC ∆和FGC ∆中,CE GC ECD GCF CD CF =⎧⎪∠=∠⎨⎪=⎩,∴()DEC EGC SAS ∆≅∆,∴DE GF =.∵EF EG GF =+,∴EF CE ED =+,故②正确;③过D 作DM AC ⊥交于M ,根据勾股定理求出2AC =, 由面积公式得:1122AD DC AC DM ⨯=⨯, ∴22DM =,∵45DCA ︒∠=,60AED ︒∠=, ∴22CM =,66EM =, ∴2626CE CM EM =-=- ∴1132412DEC S CE DM ∆=⨯=-,故③正确; ④在Rt DEM ∆中,623DE ME ==∵ECG ∆是等边三角形, ∴262CG CE ==- ∵60DEF EGC ︒∠=∠=,∴DE CG ∥,∴DEH CGH ∆∆∽, ∴633126DH DE HC CG ===+,故④错误; 综上,正确的结论有①②③,故选A .【点睛】本题主要考查对正方形的性质,全等三角形的性质和判定,三角形的面积,勾股定理,含30度角的直角三角形的性质等知识点的理解和掌握,综合运用这些性质进行证明是解此题的关键. 4.C【解析】【分析】如图,延长FH 交AB 于点M ,由BE =2AE ,DF =2FC ,G 、H 分别是AC 的三等分点,证明EG//BC ,FH//AD ,进而证明△AEG ∽△ABC ,△CFH ∽△CAD ,进而证明四边形EHFG 为平行四边形,再根据平行四边形的面积公式求解即可.【详解】如图,延长FH 交AB 于点M ,∵BE =2AE ,DF =2FC ,AB=AE+BE ,CD=CF+DF ,∴AE :AB=1:3,CF :CD=1:3,又∵G 、H 分别是AC 的三等分点,∴AG :AC=CH :AC=1:3,∴AE :AB=AG :AC ,CF :CD=CH :CA ,∴EG//BC ,FH//AD ,∴△AEG ∽△ABC ,△CFH ∽△CDA ,BM :AB=CF :CD=1:3,∠EMH=∠B ,∴EG :BC=AE :AB=1:3,HF :AD=CF :CD=1:3,∵四边形ABCD 是矩形,AB=3,BC=6,∴CD=AB=3,AD=BC=6,∠B=90°,∴AE=1,EG=2,CF=1,HF=2,BM=1,∴EM=3-1-1=1,EG=FH ,∴EG //FH ,∴四边形EHFG 为平行四边形,∴S 四边形EHFG =2×1=2,故选C.【点睛】本题考查了矩形的性质,相似三角形的判定与性质,平行四边形的判定与性质,熟练掌握和灵活运用相关内容是解题的关键.5.D【解析】【分析】利用AFH ADE ∆~∆得到2916AHF ADE S FH S DE ∆∆⎛⎫== ⎪⎝⎭,所以9,16,AFH ADE S x S x ∆∆==则1697x x -=,解得1x =,从而得到16ADE S ∆=,然后计算两个三角形的面积差得到四边形DBCE 的面积.【详解】如图,根据题意得AFH ADE ∆~∆, ∴2239416AHF ADE S FH S DE ∆∆⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ 设9AFH S x ∆=,则16ADE S x ∆=,∴1697x x -=,解得1x =,∴16ADE S ∆=,∴四边形DBCE 的面积421626=-=.故选D .【点睛】本题考查了相似三角形的判定:有两组角对应相等的两个三角形相似.也考查了相似三角形的性质.6.B【解析】【分析】设BD 与AF 交于点M .设AB=a ,3,根据矩形的性质可得△ABE 、△CDE 都是等边三角形,利用折叠的性质得到BM 垂直平分AF ,BF=AB=a ,3.解直角△BGM ,求出BM ,再表示DM ,由△ADM ∽△GBM ,求出3,再证明3B 点关于AD 的对称点B′,连接B′E ,设B′E 与AD 交于点H ,则此时BH+EH=B′E ,值最小.建立平面直角坐标系,得出B (3,3B′(3,3E (03B′E 的解析式,得到H (1,0),然后利用两点间的距离公式求出BH=4,进而求出23BH CF ==233. 【详解】如图,设BD 与AF 交于点M .设AB=a ,3,∵四边形ABCD是矩形,∴∠DAB=90°,tan∠ABD=3 ADAB=∴22AB AD+,∠ABD=60°,∴△ABE、△CDE都是等边三角形,∴BE=DE=AE=CE=AB=CD=a,∵将△ABD沿BD折叠,点A的对应点为F,∴BM垂直平分AF,BF=AB=a,3,在△BGM中,∵∠BMG=90°,∠GBM=30°,BG=2,∴GM=12BG=1,33,∴3∵矩形ABCD中,BC∥AD,∴△ADM∽△GBM,∴AD DMBG BM=3233a a-=,∴3∴3,AD=BC=6,3易证∠BAF=∠FAC=∠CAD=∠ADB=∠BDF=∠CDF=30°,∴△ADF是等边三角形,∵AC平分∠DAF,∴AC垂直平分DF,∴作B 点关于AD 的对称点B′,连接B′E ,设B′E 与AD 交于点H ,则此时BH+EH=B′E ,值最小. 如图,建立平面直角坐标系,则A (3,0),B (3,3B′(3,3E (03),易求直线B′E 的解析式为33∴H (1,0),∴22(31)(230)-+-, ∴23BH CF =23 故选:B .【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质,解直角三角形,等边三角形、垂直平分线、相似三角形的判定与性质,待定系数法求直线的解析式,轴对称-最短路线问题,两点间的距离公式等知识.综合性较强,有一定难度.分别求出BH 、CF 的长是解题的关键.7.B【解析】【分析】根据E 为BC 的中点,可得12BO OE BE OD AO AD ===,根据边长的比值即可计算出图阴影部分的面积与平行四边形面积的比值,由此即可求得答案.【详解】∵四边形ABCD 是平行四边形,∴BC//AD ,BC=AD ,∴△BOE ∽△DOA ,∴BO OE BE OD AO AD== 又∵E 为BC 的中点, ∴12BO OE BE OD AO AD ===, ∴13BO BD =, ∴BOE AOB 1S S 2=,AOB ABD 1S S 3=, ∴BOE ABD ABCD 11S S S 612==,∴米粒落在图中阴影部分的概率为112, 故选B .【点睛】 本题考查了平行四边形的性质,相似三角形的判定与性质,几何概率,熟练掌握相关知识是解题的关键.8.A【解析】【分析】当点M 在AB 上运动时,MN ⊥MC 交y 轴于点N ,此时点N 在y 轴的负半轴移动,定有△AMC ∽△NBM ;只要求出ON 的最小值,也就是BN 最大值时,就能确定点N 的坐标,而直线y=kx+b 与y 轴交于点N (0,b ),此时b 的值最大,因此根据相似三角形的对应边成比例,设未知数构造二次函数,通过求二次函数的最值得以解决.【详解】解:连接AC ,则四边形ABOC 是矩形,90A ABO ︒∴∠=∠=,又MN MC ⊥,90CMN ︒∴∠=,AMC MNB ∴∠=∠,~AMC NBM ∴∆∆,AC AM MB BN∴=, 设,BN y AM x ==.则3,2MB x ON y =-=-, 23x x y∴=-, 即:21322y x x =+ ∴当33212222b x a =-=-=⎛⎫⨯- ⎪⎝⎭时,21333922228y ⎛⎫=⨯+⨯= ⎪⎝⎭最大 直线y kx b =+与y 轴交于()0,N b当BN 最大,此时ON 最小,点()0,N b 越往上,b 的值最大,97288ON OB BN ∴=-=-=, 此时, 70,8N ⎛⎫- ⎪⎝⎭ b 的最大值为78-. 故选:A .【点睛】本题综合考查相似三角形的性质、二次函数的性质、二次函数的最值以及一次函数的性质等知识;构造相似三角形、利用二次函数的最值是解题的关键所在.9.A【解析】【分析】根据图形先利用平行线的性质求出△BEF ∽△BAC ,再利用相似三角形的性质得出x 的取值范围和函数解析式即可解答【详解】当0≤x ≤4时,∵BO为△ABC的中线,EF∥AC,∴BP为△BEF的中线,△BEF∽△BAC,∴BP EFBO AC=,即46x y=,解得32y x=y,同理可得,当4<x≤8时,3(8)2y x =-.故选:A.【点睛】此题考查动点问题的函数图象,解题关键在于利用三角形的相似10.A【解析】【分析】利用正方形的性质,得出∠DAN=∠EDC,CD=AD,∠C=∠ADF即可判定△ADF≌△DCE(ASA),再证明△ABM∽△FDM,即可解答①;根据题意可知:AF=DE=AE5得出③;作PH⊥AN于H.利用平行线的性质求出AH=24585453HN==,即可解答②;利用相似三角形的判定定理,即可解答④【详解】解:∵正方形ABCD的边长为2,点E是BC的中点,∴AB=BC=CD=AD=2,∠ABC=∠C=∠ADF=90°,CE=BE=1,∵AF⊥DE,∴∠DAF+∠ADN=∠ADN+∠CDE=90°,∴∠DAN=∠EDC,在△ADF与△DCE中,CAD CDCDE⎧⎪=⎨⎪⎩∠ADF=∠∠DAF=∠,∴△ADF≌△DCE(ASA),∴DF=CE=1,∵AB∥DF,∴△ABM∽△FDM,∴24S ABM ABS FDM DF∆⎛⎫==⎪∆⎝⎭,∴S△ABM=4S△FDM;故①正确;根据题意可知:AF =DE =AE ∵12 ×AD ×DF =12×AF ×DN , ∴DN 25 , ∴EN =355,AN =455, ∴tan ∠EAF =34EN AN =,故③正确, 作PH ⊥AN 于H .∵BE ∥AD , ∴2PA AD PE BE==, ∴P A 25 ∵PH ∥EN , ∴23AH PA AN AE ==, ∴AH =24585453HN ==, ∴2265PA AH -= ∴PN 22265PH HN +②正确, ∵PN ≠DN ,∴∠DPN ≠∠PDE ,∴△PMN 与△DPE 不相似,故④错误.故选:A .【点睛】此题考查三角函数,相似三角形的判定与性质,全等三角形的判定与性质,正方形的性质难度较大,解题关键在于综合掌握各性质11.B【解析】【分析】根据全等三角形的判定(ASA )即可得到①正确;根据相似三角形的判定可得②正确;根据全等三角形的性质可得③正确;根据相似三角形的性质和判定、勾股定理,即可得到答案.【详解】解:Q ①四边形ABCD 是正方形,,OC OD AC BD ∴⊥=,45ODF OCE ∠∠︒==,90MON ∠︒Q =,COM DOF ∴∠∠=,COE DOF ASA ∴V V ≌(), 故①正确;90EOF ECF ∠∠︒Q ②==,∴点,,,O E C F 四点共圆,∴,EOG CFG OEG FCG ∠∠∠∠==,∴OGE FGC V ∽,故②正确;③COE DOF QV V ≌,COE DOF S S ∴V V =,14OCD ABCDCEOF S S S ∴==V 正方形四边形, 故③正确; COE DOF QV V ④≌,OE OF ∴=,又90EOF ∠︒Q =,EOF ∴V 是等腰直角三角形,45OEG OCE ∴∠∠︒==,EOG COE ∠∠Q =,OEG OCE ∴V V ∽,::OE OC OG OE ∴=,2•OG OC OE ∴=,122OC AC OE EF Q =,=, 2•OG AC EF ∴=,,CE DF BC CD Q ==,BE CF ∴=,又Rt CEF Q V 中,222CF CE EF +=,222BE DF EF ∴+=,22•OG AC BE DF ∴+=,故④错误,故选:B .【点睛】本题考查全等三角形的判定(ASA )和性质、相似三角形的性质和判定、勾股定理,解题的关键是掌握全等三角形的判定(ASA )和性质、相似三角形的性质和判定.12.B【解析】【分析】过O 作BC 的平行线交AC 与G ,由中位线的知识可得出12AD DC :=:,根据已知和平行线分线段成比例得出2121AD DG GC AG GC AO OF ==,:=:,:=:,再由同高不同底的三角形中底与三角形面积的关系可求出BF FC :的比.【详解】解:如图,过O 作//OG BC ,交AC 于G ,∵O 是BD 的中点,∴G 是DC 的中点.又12AD DC :=:,AD DG GC ∴==,2121AG GC AO OE ∴:=:,:=:,2AOB BOE S S ∆∆∴:=设2BOE AOB S S S S ∆∆=,=,又BO OD =,24AOD ABD S S S S ∆∆∴=,=,12AD DC :=:,287BDC ABD CDOE S S S S S ∆∆∴四边形==,=,93AEC ABE S S S S ∆∆∴=,=,3193ABE AEC S BE S EC S S ∆∆∴=== 故选:B .【点睛】考查平行线分线段成比例及三角形的中位线的知识,难度较大,注意熟练运用中位线定理和三角形面积公式.13.D【解析】【分析】①根据矩形的性质即可得到23OA BC ==①正确;②由点D 为OA 的中点,得到132OD OA ==2222272(3)PC PD CD OC OD +==+=+=,故②正确;③如图,过点P 作PF OA ⊥于F ,FP 的延长线交BC 于E ,PE a =,则2P F E F P E a=-=-,根据三角函数的定义得到33BE PE a ==,求得2333(2)CE BC BE a a =-==-,根据相似三角形的性质得到3FD =,根据三角函数的定义得到60PDC ︒∠=,故③正确; ④当ODP ∆为等腰三角形时,Ⅰ、OD PD =,解直角三角形得到3333OD OC ==, Ⅱ、OP =OD ,根据等腰三角形的性质和四边形的内角和得到10590OCP ︒︒∠=>,故不合题意舍去;Ⅲ、OP PD =,根据等腰三角形的性质和四边形的内角和得到10590OCP ︒︒∠=>,故不合题意舍去;于是得到当ODP ∆为等腰三角形时,点D 的坐标为3⎛⎫ ⎪ ⎪⎝⎭.故④正确.【详解】解:①∵四边形OABC 是矩形,(23,2)B ,23OA BC ∴==①正确;②∵点D 为OA 的中点,132OD OA ∴==, 2222222237PC PD CD OC OD ∴+++===()=,故②正确;③如图,过点P 作PF OA ⊥ A 于F ,FP 的延长线交BC 于E ,PE BC ∴⊥,四边形OFEC 是矩形,2EF OC ∴==,设PE a =,则2PF EF PE a =﹣=﹣,在Rt BEP ∆中,PE OC 3BE BC 3tan CBO ∠===, 33BE PE a ∴==,2333(2)CE BC BE a a ∴=-==-,PD PC ⊥,90CPE FPD ︒∴∠∠=,90CPE PCE ︒∠+∠=,,FPD ECP ∴∠=∠,90CEP PFD ︒∠=∠=,CEP PFD ∴∆∆∽,PE CP FD PD∴=, 3(2)a a FD -∴=FD ∴=, tan 33PC a PDC a PD∴∠===, 60PDC ︒∴∠=,故③正确; ④(23,2)B ,四边形OABC 是矩形,3,2OA AB ∴==,3tan AB AOB OA ∠== 30AOB ︒∴∠=,当ODP ∆为等腰三角形时,Ⅰ、OD PD =,30DOP DPO ∴∠∠==, 60ODP ∴∠=, 60ODC ∴∠=, 3333OD ∴== Ⅱ、OP OD =75ODP OPD ∴∠∠==,90COD CPD ∠∠==,10590OCP ∴∠=>,故不合题意舍去;Ⅲ、OP PD =,30POD PDO ∴∠∠==, 15090OCP ∴∠=>故不合题意舍去,∴当ODP ∆为等腰三角形时,点D 的坐标为23⎫⎪⎪⎝⎭.故④正确,故选:D .【点睛】考查了矩形的性质,锐角三角函数的定义,相似三角形的判定和性质,勾股定理,等腰三角形的性质,构造出相似三角形表示出CP 和PD 是解本题的关键.14.B【解析】【分析】先证CDE CBA V :V ,利用相似三角形性质得到12DC DE BC BA ==,即12DC BD DC =+,在直角三角形ABD 中易得22BD =,从而解出DC ,得到△ABC 的高,然后利用三角形面积公式进行解题即可 【详解】AB AD DE AD ∴⊥⊥,90BAD ADE ∴∠=∠=o//AB DE ∴易证CDE CBA V :V12DC DE BC BA ∴== 即12DC BD DC =+ 由题得22BD =∴解得22DC =ABC △2112422422ABC S BC ∴=⨯=⨯=V 故选B【点睛】本题主要考查相似三角形的判定和性质、等腰直角三角形的高,本题关键在于找到相似三角形求出DC 的长度15.【解析】【分析】过D 作 DH AC ⊥于H ,则∠AHD=90°由等腰直角三角形的性质可得15AC BC ==,45CAD ∠=,进而可得AH DH =,由此得CH=15-DH ,再证明~ACE DHC ∆∆,由相似三角形的对应边成比例可得DH CH AC CE=,求出CE=10,代入相关数据可求得DH=9,继而根据勾股定理即可求得AD 长.【详解】过D 作 DH AC ⊥于H ,则∠AHD=90° 在等腰Rt ABC ∆中,90C =∠,15AC =, 15AC BC ∴==,45CAD ∠=,∴∠ADH=90°-∠CAD=45°=∠CAD ,AH DH ∴=,∴CH=AC-AH=15-DH ,CF AE ⊥,90DHA DFA ∴∠=∠=,又∵∠ANH=∠DNF ,HAF HDF ∴∠=∠,~ACE DHC ∴∆∆,DH CH AC CE∴=, 2CE EB =,CE+BE=BC=15,∴10CE =, ∴151510DH DH -=, 9DH ∴=,2292AD AH DH ∴=+=, 故答案为:92.【点睛】本题考查了等腰直角三角形的性质与判定,相似三角形的判定与性质等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.16.2.【解析】【分析】如图所示,以BD 为对称轴作N 的对称点N ',连接PN ',根据对称性质可知,PN PN =',由此可得PM PN MN '-≤',当,,P M N '三点共线时,取“=”,此时即PM —PN 的值最大,由正方形的性质求出AC 的长,继而可得22ON ON '==62AN '=,再证明13CM CN BM AN '='=,可得PM ∥AB ∥CD ,∠CMN '=90°,判断出△N CM '为等腰直角三角形,求得N M '长即可得答案. 【详解】如图所示,以BD 为对称轴作N 的对称点N ',连接PN ',根据对称性质可知,PN PN =',∴PM PN MN '-≤',当,,P M N '三点共线时,取“=”,∵正方形边长为8,∴282∵O 为AC 中点,∴AO=OC=2∵N 为OA 中点,∴ON=22 ∴22ON ON '== ∴62AN '=∵BM=6,∴CM=AB-BM=8-6=2, ∴13CM CN BM AN '='=, ∴PM ∥AB ∥CD ,∠CMN '=90°,∵∠N CM '=45°,∴△N CM '为等腰直角三角形,∴CM=N M '=2,故答案为:2.【点睛】本题考查了正方形的性质,平行线分线段成比例定理,等腰直角三角形的判定与性质,最值问题等,熟练掌握和灵活运用相关知识是解题的关键.17.326()55-,或(43)-, 【解析】【分析】根据题意分情况讨论:①当P 点在AC 的垂直平分线上时,点P 同时在BC 上,AC 的垂直平分线与BO 的交点即是E ,根据PBE ∆∽CBO ∆求出PE ,②P 点在以点C 为圆心AC 为半径的圆弧上,圆弧与BC 的交点为P ,过点P 作PE BO ⊥于E ,根据PBE ∆∽CBO ∆,求出PE ,BE ,则可得到OE ,故而求出点P 点坐标.【详解】解:∵点P 在矩形ABOC 的内部,且APC ∆是等腰三角形,∴P 点在AC 的垂直平分线上或在以点C 为圆心AC 为半径的圆弧上;①当P 点在AC 的垂直平分线上时,点P 同时在BC 上,AC 的垂直平分线与BO 的交点即是E ,如图1所示:∵PE BO ⊥,CO BO ⊥,∴//PE CO ,∴PBE ∆∽CBO ∆,∵四边形ABOC 是矩形,A 点的坐标为(8,6)-,∴点P 横坐标为﹣4,6OC =,8BO =,4BE =,∵PBE ∆∽CBO ∆,∴PE BE CO BO =,即468PE =, 解得:3PE =,∴点(4,3)P -;②P 点在以点C 为圆心AC 为半径的圆弧上,圆弧与BC 的交点为P ,过点P 作PE BO ⊥于E ,如图2所示:∵CO BO ⊥,∴//PE CO ,∴PBE ∆∽CBO ∆,∵四边形ABOC 是矩形,A 点的坐标为(-8,6),∴8AC BO ==,8CP =,6AB OC ==, ∴222208610BC BO C +=+=,∴2BP =,∵PBE ∆∽CBO ∆, ∴PE BE BP CO BO BC ==,即:26810PE BE ==, 解得:65PE =,85BE =, ∴832855OE =-=, ∴点326()55P -,; 综上所述:点P 的坐标为:326()55-,或(43)-,; 故答案为:326()55-,或(43)-,.【点睛】此题主要考查正方形的综合,解题的关键是熟知相似三角形的判定与性质、矩形的性质及圆的性质.13218【解析】【分析】如图,作FH⊥PE于H.利用勾股定理求出EF,再证明△CEF∽△FEP,可得EF2=EC•EP,由此即可解决问题.【详解】如图,作FH⊥PE于H.∵四边形ABCD是正方形,AB=5,∴AC=2∠ACD=∠FCH=45°,∵∠FHC=90°,CF=2,∴CH=HF2∵CE=4AE,∴EC=2,AE2,∴EH=2在Rt△EFH中,EF2=EH2+FH2=(2)2+2)2=52,∵∠GEF=∠GCF=90°,∴E,G,F,C四点共圆,∴∠EFG =∠ECG =45°,∴∠ECF =∠EFP =135°,∵∠CEF =∠FEP ,∴△CEF ∽△FEP , ∴EF EC EP EF=, ∴EF 2=EC•EP ,∴EP 132242= 故答案为:1322. 【点睛】本题考查正方形的性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考填空题中的压轴题.19.①③④【解析】【分析】①根据等边三角形性质得出AC BC =,CE CD =,60ACB ECD ︒∠=∠=,求出BCE ACD ∠=∠,根据SAS 推出两三角形全等即可;②根据60ABC BCD ︒∠==∠,求出//AB CD ,可推出ABF DNF ∆∆∽,找不出全等的条件; ③根据角的关系可以求得60AFB ︒∠=,可求得120MFN ︒=,根据60BCD ︒∠=可解题; ④根据CM CN =,60MCN ︒∠=,可求得60CNM ︒∠=,可判定//MN AE ,可求得N DN CD CN AC CD CDM -==,可解题. 【详解】明:①∵ABC ∆和CDE ∆都是等边三角形,∴AC BC =,CE CD =,60ACB ECD ︒∠=∠=,∴ACB ACE ECD ACE ∠+∠=∠+∠,即BCE ACD ∠=∠,在BCE ∆和ACD ∆中,BC AC BCE ACD CE CD =⎧⎪∠=∠⎨⎪=⎩,∴()BCE ACD SAS ∆∆≌,∴AD BE =,ADC BEC ∠∠=,CAD CBE ∠=∠,在DMC ∆和ENC ∆中,60MDC NEC DC BCMCD NCE ︒∠=∠⎧⎪=⎨⎪∠=∠=⎩, ∴()DMC ENC ASA ∆∆≌,∴DM EN =,CM CN =,∴AD DM BE EN -=-,即AM BN =;②∵60ABC BCD ︒∠==∠,∴//AB CD ,∴BAF CDF ∠=∠,∵AFB DFN ∠=∠,∴ABF DNF ∆∆∽,找不出全等的条件;③∵180AFB ABF BAF ︒∠+∠+∠=,FBC CAF ∠=∠,∴180AFB ABC BAC ︒∠+∠+∠=,∴60AFB ︒∠=,∴120MFN ︒∠=,∵60MCN ︒∠=,∴180FMC FNC ︒∠+∠=;④∵CM CN =,60MCN ︒∠=,∴MCN ∆是等边三角形,∴60MNC ︒∠=,∵60DCE ︒∠=,∴//MN AE ,∴MN DN CD CN AC CD CD-==, ∵CD CE =,MN CN =, ∴MN CE MN AC CE-=, ∴MN MN 1AC CE =-, 两边同时除MN 得111AC MN CE=-, ∴111MN AC CE=+. 故答案为①③④【点睛】本题考查了全等三角形的判定,考查了全等三角形的对应边、对应角相等的性质,考查了平行线的运用,考查了正三角形的判定,本题属于中档题.20.4【解析】【分析】先证明BPE CQP ∆∆∽,得到与CQ 有关的比例式,设CQ y BP x =,=,则12CP x =﹣,代入解析式,得到y 与x 的二次函数式,根据二次函数的性质可求最值.【详解】解:9090BEP BPE QPC BPE ∠+∠︒∠+∠︒=,=,BEP CPQ ∴∠∠=.又90B C ∠∠︒==,BPE CQP ∴∆∆∽.BE BP PC CQ∴= 设CQ y BP x =,=,则12CP x =﹣.912x x y ∴=-,化简得()21129y x x =--, 整理得21(6)49y x =--+,所以当6x =时,y 有最大值为4.故答案为4.【点睛】考查了正方形的性质、相似三角形的判定和性质,以及二次函数最值问题,几何最值用二次函数最值求解考查了树形结合思想.21.5【解析】【分析】如图3中,连接CE 交MN 于O ,先利用相似求出OM 、ON 的长,再利用勾股定理解决问题即可.【详解】如图3, 连结CE 交MN 于O .观察图1、图2可知, 4,8EN MN CM ===,90ENM CMN ∠=∠=︒.图3∴EON COM ∆∆∽, ∴12EN ON CN OM ==, ∴1428,3333ON MN OM MN ====. 在Rt ENO ∆中,224103OE ON EN =+= ,同理可求得103OG =, ∴2)2GF OE OG =+=,即“拼搏兔”所在正方形EFGH 的边长是5故答案为:5【点睛】本题考查正方形的性质,相似三角形的性质和判定,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.22.①③④【解析】【分析】①根据已知的条件首先证明ECB 是等边三角形,因此可得EA EB EC ==,所以可得90ACB ∠=︒,再根据O 、E 均为AC 和AB 的中点,故可得90AOE ACB ∠=∠=︒,便可证明EO AC ⊥;②首先证明OEF BCF ∽,因此可得12OE OF BC FB ==,故可得AOD S 和OCF S 的比. ③根据勾股定理可计算的AC :BD ;④根据③分别表示FB 、OF 、DF ,代入证明即可.【详解】解:∵四边形ABCD 是平行四边形,∴,,CD AB OD OB OA OC ==∥,∴180DCB ABC ∠+∠=︒,∵60ABC ∠=︒,∴120DCB ∠=︒,∵EC 平分DCB ∠, ∴1602ECB DCB ∠=∠=︒, ∴60EBC BCE CEB ∠=∠=∠=︒,∴ECB 是等边三角形,∴EB BC =,∵2AB BC =,∴EA EB EC ==,∴90ACB ∠=︒,∵,OA OC EA EB ==,∴OE BC ∥,∴90AOE ACB ∠=∠=︒,∴EO AC ⊥,故①正确,∵OE BC ∥,∴OEF BCF ∽, ∴12OE OF BC FB ==, ∴13OF OB =, ∴3AOD BOC OCF S S S ==,故②错误,设BC BE EC a ===,则2AB a =,3AC a =,22372OD OB a a ⎛⎫==+= ⎪ ⎪⎝⎭, ∴7BD a =, ∴:37217AC BD a a ==,故③正确, ∵1736OF OB a ==, ∴73BF a =, ∴22277777,99BF a OF DF a ⎫=⋅=⋅+=⎪⎪⎝⎭, ∴2BF OF DF =⋅,故④正确,故答案为①③④.【点睛】本题是一道平行四边形的综合性题目,难度系数偏大,但是是常考点的组合,应当熟练掌握. 23.4913【解析】【分析】先根据勾股定理得出AE 的长,然后根据折叠的性质可得BF 垂直平分AG ,再根据ABM ~ADE ,求出AM 的长,从而得出AG,继而得出GE 的长【详解】解:在正方形ABCD 中,∠BAD=∠D =090,∴∠BAM+∠FAM=090在Rt ADE中,2222+1DE2315=+=A ADE∵由折叠的性质可得ABF GBF≅∴AB=BG,∠FBA=∠FBG∴BF垂直平分AG,∴AM=MG,∠AMB=090∴∠BAM+∠ABM=090∴∠ABM=∠FAM∴ABM~ADE∴AM ABDE AE=,∴12513AM=∴AM=6013, ∴AG=12013∴GE=5-12049 1313=【点睛】本题考查了正方形与折叠,勾股定理,等腰三角形的性质,以及三角形相似的判定和性质,熟练掌握相关的知识是解题的关键。

相似三角形的判定培优训练题

相似三角形的判定培优训练题

PCBAM FDCBEAF E GDCBA相似三角形的判定培优训练题例1. 如图,ABC 中,60ABC ∠=︒,点P 是ABC 内一点,使得APB BPC CPA ∠=∠=∠,且8,6PA PC ==,则PB =________________.例2. 如图,四边形ABCD 的各边相等,且60ABC ∠=︒,直线l 过D 点,但与四边形ABCD 不相交,(D 点除外),l 与,BA BC 的延长线分别交于,E F ,点M 是CE 与AF 的交点,求证:2CA CM CE =∙例3. 如图,在ABC 中,AB AC =,AD BC ⊥于D . E G 、分别为,AD AC 的中点,DF BE ⊥于F ,求证:FG DG =.例4.已知ABC 中,BC AC >,CH 是AB 边上的高,且满足22AC AHBC BH=,试探讨 A ∠与B ∠的关系,并加以证明。

C BA DPCBA FED CBA例5. 设ABC 的三边为a b c 、、,求证: (1)若2A B ∠=∠,则()2a b b c =+(2)若3A B ∠=∠,则 ()()2221c a b a b b=--练习1. 如图,ABC 中,最大角A ∠是最小角C ∠的两倍,且7,8AB AC ==,则________BC =练习2. 如图,若PA PB =,2APB ACB ∠=∠,AC 与PB 交于点D ,且4,3PB PD ==,则_______AD CD =练习3. 如图,设AD BE CF 、、为ABC 的三条高,若6AB =,5BC =,3EF =,则线段BE 的长为_________DCBAFE DCBAPE DCBANM CBA练习4. 如图,在ABC 中,D 是边AC 上一点,下面四种情况中①AD BC AB BD = ,②2AB AD AC = , ③ABD ACB ∠=∠, ④AD BC AC BD = ,ABD ACB 不一定成立的情况是练习5. 如图,D 为等腰ABC 底边BC 的中点,E F 、分别为AC 及 其延长线的点,又90EDF ∠=︒,1,5,ED FD AD === 求线段BC 的长练习 6. 如图,在ABC 中,D E 、分别是,BC AC 的中点,,AD BE 相较于P ,若BPD ACB ∠=∠,求证:以ABC 三中线为边构成的三角形与ABC 相似练习7. 如图,在Rt ABC 中,90,C ∠=︒,AM AN 分别为BC 边上的中线和BAC ∠的角平分线,求证:()214MN MC AB AC =-ODCBA FEDCBA练习8. 如图,在梯形ABCD 中,//AD BC ,BD BC =,AB AC =,AB AC ⊥。

2021年中考数学一轮复习《与相似三角形相关综合压轴题》培优提升专项训练【含答案】

2021年中考数学一轮复习《与相似三角形相关综合压轴题》培优提升专项训练【含答案】

2021 年中考数学一轮复习《与相似三角形相关综合压轴题》培优提升专项训练1.现有两块等腰直角形三角板,如图,把其中一块三角板A′B′C′的一个锐角顶点B'放在另一块三角板ABC 斜边AB 的中点处,并使三角板A′B′C′绕着点B′旋转.(1)当两块三角板相对位置如图①,即AC 与A′B′交于点D,BC 与B′C′交于点E 时,求证:△AB′D∽△BEB′:(2)当两块三角板相对位置如图②,即AC 边的延长线与A′B′交于点D,BC 与B′C′交于点E 时,△AB′D 与△BEB′还相似吗?(直接给出结论.不需证明)(3)在图②中,连结DE,试探究△AB′D 与△B′ED 是否相似,并说明理由或给出证明.(4)在图①中,若△ABC 改为角C 等于150°的等腰三角形,那么△A′B′C′只要满足∠A′B′C′=°时,仍有△AB′D∽△BEB′.2.已知Rt△ABC 中,AC=BC=2.一直角的顶点P 在AB 上滑动,直角的两边分别交线段AC,BC 于E.F 两点(1)如图1,当=且PE⊥AC 时,求证:=;(2)如图2,当=1 时(1)的结论是否仍然成立?为什么?(3)在(2)的条件下,将直角∠EPF 绕点P 旋转,设∠BPF=α(0°<α<90°).连结EF,当△CEF 的周长等于2+ 时,请直接写出α的度数.3.如图,在△ABC 中,∠B=90°,AB=6,BC=8,动点P 从A 点出发,沿AC 向点C移动,速度为每秒2 个单位长度,同时,动点Q 从C 点出发,沿CB 向点B 移动,速度为每秒1 个单位长度,当其中有一点到达终点时,它们都停止移动.设移动的时间为t 秒.(1)当t=2.5 秒时,求△CPQ 的面积;(2)求△CPQ 的面积S(平方米)关于时间t(秒)的函数解析式;(2)在P、Q 移动的过程中,当t 为何值时,△CPQ 是等腰三角形?4.如图,在Rt△ABC 中,∠C=90°,AB=10cm,AC:BC=4:3,点P 从点A 出发沿AB方向向点B 运动,速度为1cm/s,同时点Q 从点B 出发沿B→C→A 方向向点A 运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.(1)求AC、BC 的长;(2)当点Q 在BC 上运动时,若△PBQ 与△ABC 相似,求时间t 的值;(3)当点Q 在CA 上运动,使PQ⊥AB 时,△PBQ 与△ABC 是否相似,请说明理由.5.如图,在平面直角坐标系xOy 中,已知点B 的坐标为(2,0),点C 的坐标为(0,8),sin∠CAB=,E 是线段AB 上的一个动点(与点A、点B 不重合),过点E 作EF∥AC 交BC 于点F,连接CE.(1)求AC 和OA 的长;(2)设AE 的长为m,△CEF 的面积为S,求S 与m 之间的函数关系式;(3)在(2)的条件下试说明S 是否存在最大值?若存在,请求出S 的最大值,并求出此时点E 的坐标,判断此时△BCE 的形状;若不存在,请说明理由.6.如图1,等腰△ABC 中,AC=BC,DE∥AB,AD=DE=EB=5,AB=11.一个动点P从点A 出发,以每秒1 个单位长度的速度沿折线AD﹣DE﹣EC 方向运动,当点P 到达点C 时,运动结束,过点P 作PQ⊥AB 于点Q,以PQ 为斜边向右作等腰直角三角形PMQ,设点P 的运动时间为t 秒(t>0).(1)当t=时,点M 落在线段BD 上;当t=时,点P 到达点C;(2)在整个运动过程中,设△PMQ 与△ABD 重叠部分的面积为S,请直接写出S 与t的函数关系式和相应的自变量t 的取值范围;(3)如图2,当点P 在线段DE 上运动时,线段PQ 与对角线BD 交于点F,作点P 关于BD 的对称点G,连接FG、GQ,得到△FGQ.是否存在这样的t,使△FGQ 是等腰三角形?若存在,求出对应的t 的值;若不存在,请说明理由.7.如图,已知在等腰Rt△ABC 中,∠C=90°,斜边AB=2,若将△ABC 翻折,折痕EF分别交边AC、边BC 于点E 和点F(点E 不与A 点重合,点F 不与B 点重合),且点C 落在AB 边上,记作点D.过点D 作DK⊥AB,交射线AC 于点K,设AD=x,y=cot∠CFE,(1)求证:△DEK∽△DFB;(2)求y 关于x 的函数解析式并写出定义域;(3)联结CD,当=时,求x 的值.8.等边△ABC 的边长为2,P 是BC 边上的任一点(与B、C 不重合),连接AP,以AP 为边向两侧作等边△APD 和等边△APE,分别与边AB、AC 交于点M、N(如图1).(1)求证:AM=AN;(2)设BP=x.①若BM=,求x 的值;②记四边形ADPE 与△ABC 重叠部分的面积为S,求S 与x 之间的函数关系式,并写出自变量的取值范围;③如图2,当x 取何值时,∠BAD=15°?9.已知:如图①,△ABC 中,AI、BI 分别平分∠BAC、∠ABC.CE 是△ABC 的外角∠ACD 的平分线,交BI 延长线于E,联结CI.(1)设∠BAC=2α.如果用α表示∠BIC 和∠E,那么∠BIC=,∠E=;(2)如果AB=1,且△ABC 与△ICE 相似时,求线段AC 的长;(3)如图②,延长AI 交EC 延长线于F,如果∠α=30°,sin∠F=,设BC=m,试用m 的代数式表示BE.10.如图,已知△ABC 是等边三角形,AB=4,D 是AC 边上一动点(不与A、C 点重合),EF 垂直平分BD,分别交AB、BC 于点E、F,设CD=x,AE=y.(1)求证:△AED∽△CDF;(2)求y 关于x 的函数解析式.并写出定义域;(3)过点D 作DH⊥AB,垂足为点H,当EH=1 时,求线段CD 的长.11.(1)问题如图1,在四边形ABCD 中,点P 为AB 上一点,∠DPC=∠A=∠B=90°,求证:AD•BC=AP•BP.(2)探究如图2,在四边形ABCD 中,点P 为AB 上一点,当∠DPC=∠A=∠B=θ 时,上述结论是否依然成立?说明理由.(3)应用请利用(1)(2)获得的经验解决问题:如图3,在△ABD 中,AB=6,AD=BD=5,点P 以每秒1 个单位长度的速度,由点A 出发,沿边AB 向点B 运动,且满足∠DPC=∠A,设点P 的运动时间为t(秒),当以D 为圆心,以DC 为半径的圆与AB 相切时,求t 的值.12.已知△ABC 中,∠ABC=90°,点M 为BC 上一点,点E、N 在AC 上,且EB=EM,NM=NC,(1)求证:∠EMN=∠BEC;(2)探究:AE、EN、CN 之间的数量关系,并给出证明;(3)如图2,过点B 作BH∥EM 交NM 的延长线于H,当=n 时,求的值.13.(1)操作发现:如图①,D 是等边△ABC 边BA 上一动点(点D 与点B 不重合),连接DC,以DC 为边在BC 上方作等边△DCF,连接AF.直接写出线段AF 与BD 之间的数量关系.(2)类比猜想:如图②,当△ABC 为以BC 为斜边的等腰直角三角形,D 是△ABC 边BA 上一动点(点D 与点B 不重合),连接DC,以DC 为斜边在BC 上方作等腰直角△FDC,连接AF.请直接写出它们的数量关系.(3)深入探究:Ⅰ.如图③,当△ABC 为以BC 为底边的等腰三角形,D 是△ABC 边BA 上一动点(点D 与点B 不重合),连接DC,以DC 为底边在BC 上方作等腰△FDC,∠BC A=∠DCF,且∠BAC=α,连接AF.线段AF 与BD 之间的有什么数量关系?证明你发现的结论;Ⅱ.如图④,当△ABC 为任意三角形,D 是△ABC 边BA 上一动点(点D 与点 B 不重合),连接DC,以DC 为边在BC 上方作△FDC∽△ABC,且=k,连接AF.线段AF 与BD 之间的有什么数量关系?直接写出你发现的结论.14.已知矩形ABCD 的一条边AD=8cm,将矩形ABCD 折叠,使得顶点B 落在CD 边上的P 点处,已知折痕与边BC 交于点O,连结AP、OP、OA.(1)如图1,若点P 恰好是CD 边的中点,①判断△ADP 与△APO 是否相似,并说明理由;②求边AB 的长;(2)如图2,若△OCP 与△PDA 的面积比为1:4,动点G 从点D 出发以每秒1cm 的速度沿DP 向终点P 运动,同时动点H 从点P 出发以每秒2cm 的速度沿PA 向终点A 运动,运动的时间为t(0<t<5),①求边AB 的长;②问是否存在某一时刻t,使四边形ADGH 的面积S 有最小值?若存在,求出S 的最小值;若不存在,请说明理由.15.在△ABC 中,∠ACB=90°,BE 是AC 边上的中线.(1)如图1,点D 在BC 边上,=,AD 与BE 相交于点P,则的值为;(2)如图2,点D 在BC 的延长线上,BE 的延长线与AD 交于点P,DC:BC:AC=1:2:3.①求的值;②若CD=2,则BP=.16.如图所示,E 是正方形ABCD 的边AB 上的动点,正方形的边长为4,EF⊥DE 交BC于点F.(1)求证:△ADE∽△BEF;(2)AE=x,BF=y.当x 取什么值时,y 有最大值?并求出这个最大值;(3)已知D、C、F、E 四点在同一个圆上,连接CE、DF,若sin∠CEF=,求此圆直径.答案1.证明:(1)由等腰直角三角形的性质可知:∠A=∠B=∠A′B′C′=45°,∵∠BB′D=∠ADB′+∠A,∠BB′D=∠A′B′C′+∠EB′B,∴∠ADB′=∠BB′D﹣∠A=∠BB′D﹣45°,∠EB′B=∠BB′D﹣∠A′B′C′=∠BB′D﹣45°.∴∠ADB′=∠EB′B.又∵∠A=∠B,∴△AB′D∽△BEB′.(2)相似.如图:理由:由等腰直角三角形的性质可知:∠A=∠B=∠A′B′C′=45°,∵∠BB′D=∠ADB′+∠A,∠BB′D=∠A′B′C′+∠EB′B,∴∠ADB′=∠BB′D﹣∠A=∠BB′D﹣45°,∠EB′B=∠BB′D﹣∠A′B′C′=∠BB′D﹣45°.∴∠ADB′=∠EB′B.又∵∠A=∠B,∴△AB′D∽△BEB′.(3)由(2)可知∴△AB′D∽△BEB′,∴,又∵BB′=AB′,∴,又∵∠A=∠A′B′C′=45°.∴△AB′D∽△B′ED.(4)当∠A′B′C′=15°时,△AB′D∽△BEB′.理由:∵∠C=150°,AC=BC,∴∠A=∠B=15°.∵∠BB′D=∠ADB′+∠A,∠BB′D=∠A′B′C′+∠EB′B,∴∠ADB′=∠BB′D﹣∠A=∠BB′D﹣15°,∠EB′B=∠BB′D﹣∠A′B′C′=∠BB′D﹣15°.∴∠ADB′=∠EB′B.又∵∠A=∠B,∴△AB′D∽△BEB′.2.解:(1)如图1,∵PE⊥AC,∴∠AEP=∠PEC=90°.又∵∠EPF=∠ACB=90°,∴四边形PECF 为矩形,∴∠PFC=90°,∴∠PFB=90°,∴∠AEP=∠PFB.∵AC=BC,∠C=90°,∴∠A=∠B=45°,∴∠FPB=∠B=45°,△AEP∽△PFB,∴PF=BF,=,∴==;(2)(1)的结论不成立,理由如下:连接PC,如图2.∵=1,∴点P 是AB 的中点.又∵∠ACB=90°,CA=CB,∴CP=AP=AB.∠ACP=∠BCP=∠ACB=45°,CP⊥AB,∴∠APE+∠CPE=90°.∵∠CPF+∠CPE=90°,∴∠APE=∠CPF.在△APE 和△CPF 中,,∴△APE≌△CPF,∴AE=CF,PE=PF.故(1)中的结论=不成立;(3)当△CEF 的周长等于2+ 时,α的度数为75°或15°.提示:在(2)的条件下,可得AE=CF(已证),∴EC+CF=EC+AE=AC=2.∵EC+CF+EF=2+ ,∴EF=.设CF=x,则有CE=2﹣x,在Rt△CEF 中,根据勾股定理可得x2+(2﹣x)2=()2,整理得:3x2﹣6x+2=0,解得:x1=,x2=.①若CF=,如图3,过点P 作PH⊥BC 于H,易得PH=HB=CH=1,FH=1﹣=,在Rt△PHF 中,tan∠FPH==,∴∠FPH=30°,∴α=∠FPB=30+45°=75°;②若CF=,如图4,过点P 作PG⊥AC 于G,同理可得:∠APE=75°,∴α=∠FPB=180°﹣∠APE﹣∠EPF=15°.3.解:(1)如图1,过点P,作PD⊥BC 于D.在Rt△ABC 中,AB=6 米,BC=8 米,由勾股定理得:AC=10 米由题意得:AP=2t,则CQ=t,则PC=10﹣2t∵t=2.5 秒时,AP=2×2.5=5 米,QC=2.5 米∴PD=AB=3 米.∴S=QC•PD=3.75 平方米;(2)如图1 过点Q,作QE⊥PC 于点E,∵∠C=∠C,∠QEC=∠ABC,∴Rt△QEC∽Rt△ABC.∴.解得:QE=,∴S=PC•QE=(10﹣2t)•=﹣t2+3t(0<t<5)(3)①当PC=QC 时,PC=10﹣2t,QC=t,即10﹣2t=t,解得t=秒;②当PQ=CQ 时,如图1,过点Q 作QE⊥AC,则CE==5﹣t,CQ=t,由(2)可知△CEQ∽△CBA,故,即,解得t=秒;③当PC=PQ 时,如图2,过点P 作PE⊥BC.∵PQ=PC,PE⊥QC,∴EC=.∴CE=.∵PE⊥QC,∴∠PEC=90°.∴∠PEC=∠ABC.∵∠C=∠C,∠PEC=∠ABC,∴△PCE∽△ACB.∴,即=,解得t=秒.4.解:(1)设AC=4x,BC=3x,在Rt△ABC 中,AC2+BC2=AB2,即:(4x)2+(3x)2=102,解得:x=2,∴AC=8cm,BC=6cm;(2)若△PBQ 与△ABC 相似,由已知条件得:AP=t,BQ=2t,∴PB=10﹣t,①如图1,∠PQB=∠C=90°,∴,即,解得:t=;②如图2,∠QPB=∠C=90°,∴,即,解得:t=>3.综上所述:当t=时,△PBQ 与△ABC 相似;(3)如图3,当点Q 在CA 上运动,使PQ⊥AB 时,以点B、P、Q 为顶点的三角形与△ABC 不相似.理由如下:∵AP=x,∴AQ=14﹣2x,∵PQ⊥AB,∴△APQ∽△ACB,∴=,即:,解得:x=,PQ=,∴PB=10﹣x=,∴==≠,∴当点Q 在CA 上运动,使PQ⊥AB 时,以点B、P、Q 为顶点的三角形与△ABC 不相似.5.解:(1)∵点B 的坐标为(2,0),点C 的坐标为(0,8),∴OB=2,OC=8,在Rt△AOC 中,sin∠CAB==,∴.∴AC=10,∴.(2)依题意,AE=m,则BE=8﹣m,∵EF∥AC,∴△BEF∽△BAC.∴=.即=,∴EF=,过点F 作FG⊥AB,垂足为G,则sin∠FEG=sin∠CAB=,∴=,∴FG=×=8﹣m,∴S=S△BCE﹣S△BFE==﹣m2+4m,自变量m 的取值范围是0<m<8.(3)S 存在最大值.∵S=﹣m2+4m=,且﹣<0,∴当m=4 时,S 有最大值,S 最大值=8,∵m=4,∴点E 的坐标为(﹣2,0),∴△BCE 为等腰三角形.6.解:(1)如图1 中,作DT⊥AB 于T,EN⊥AB 于N,CH⊥AB 于H,MK⊥PQ 于K,则四边形DENT 是矩形,由△DTA≌△ENB,可得DE=NT=PQ=5,AT=BN=3,∵AD=EB=5,∴DT=EN=4,当点M 在BD 上时,∵PK=KQ,KM∥AB,∴DM=MB,易知KM=PK=KQ=2,DP=2,∴t=7 秒时,点M 在BD 上,∵EN∥CH,∴△ENB∽△CHB,∴=,∴=,∴BC=,EC=,∴点P 到达点C 时间为:5+5+ =秒.故答案为7 秒,秒.(2)①如图2 中,作DT⊥AB 于T,当0<t≤5 时,重叠部分是△PQM,∵sin A==,∴PQ=t,∴S=S△PQM=•t•t=t2.②如图3 中,当5<t≤7 时,重叠部分是四边形QMHK.取BD 的中点M′,作M′P′∥PM 交DE 于P′∵KQ∥DT,∴=,∴=,∴KQ=,PK=4﹣=,∵P′M′∥PH,∴=,∴=,∴DH=(t﹣5),∵DK=,∴HK=DH﹣DK=(t﹣5),∴S=S△PMQ﹣S△PKH=4﹣××=﹣t2+t+.③如图4 中,当7<t≤10 时,重叠部分是△QHK.GK,M′G′分别是△QHK、△Q′H′M′的高.由△QHK∽△Q′H′M′,得到,=,∴=,∴GK=,∴S=××=t2﹣t+.④如图5 中,10<t≤时,重叠部分是△QKH.由△QHK∽△Q′H′M′,得=,可得GK={5﹣,∴S=•HQ•GK=•{5﹣2=﹣t+ .综上所述,S=.(3)存在.①如图6 中,当FG=FQ 时,∵PF=FG=FQ=2,∴DP=4,∴t=5+4=9.②如图7 中,当GF=GQ 时,作GK⊥PQ,DN⊥AB 于N.由△DAN∽△GFK,得=,∴=,∴FK=(t﹣5),∵GF=GQ,GK⊥FQ,∴FQ=2FK=,∵PF+FQ=4,∴(t﹣5)+ (t﹣5)=4,∴t=.③如图8 中,当QF=QG 时,作QK⊥GF 于K.DN⊥AB 于N.由△ADN∽△FQK,得到=,∴=,∴FQ=(t﹣5),∵PF+FQ=4,∴(t﹣5)+ (t﹣5)=4,∴t=,综上所述,当△FGQ 是等腰三角形时,t 的值为9s 或s 或s.7.(1)证明:如图1,由折叠可得:∠EDF=∠C=90°,∠DFE=∠CFE.∵△ABC 是等腰直角三角形,∠C=90°,∴∠A=∠B=45°.∵DK⊥AB,∴∠ADK=∠BDK=90°,∴∠AKD=45°,∠EDF=∠KDB=90°,∴∠EKD=∠FBD,∠EDK=∠FDB,∴△DEK∽△DFB;(2)解:∵∠A=∠AKD=45°,∴DK=DA=x.∵AB=2,∴DB=2﹣x.∵△DFB∽△DEK,∴=,∴y=cot∠CFE=cot∠DFE===.当点F 在点B 处时,DB=BC=AB•sin A=2×=,AD=AB﹣BD=2﹣;当点E 在点A 处时,AD=AC=AB•cos A=2×=;∴该函数的解析式为y=,定义域为2﹣<x<;(3)取线段EF 的中点O,连接OC、OD,∵∠ECF=∠EDF=90°,∴OC=OD=EF.设EF 与CD 交点为H,根据轴对称的性质可得EF⊥CD,且CH=DH=CD.∵=,∴sin∠HOC==,∴∠HOC=60°①若点K 在线段AC 上,如图2,∵CO=EF=OF,∴∠OCF=∠OFC=∠HOC=30°,∴y=cot30°=,∴=,解得:x=﹣1;②若点K 在线段AC 的延长线上,如图3,∵OC=OF,∠FOC=60°,∴△OFC 是等边三角形,∴∠OFC=60°,∴y=cot60°=,∴=,解得:x=3﹣;综上所述:x 的值为﹣1 或3﹣.8.(1)证明:∵△ABC、△APD 和△APE 是等边三角形,∴AD=AP,∠DAP=∠BAC=60°,∠ADM=∠APN=60°,∴∠DAM=∠PAN.在△ADM 和△APN 中,,∴△ADM≌△APN(ASA),∴AM=AN.(2)解:①∵△ABC、△ADP 是等边三角形,∴∠B=∠C=∠DAP=∠BAC=60°,∴∠DAM=∠PAC,∵∠ADM=∠B,∠DMA=∠BMP,∴180°﹣∠ADM﹣∠DMA=180°﹣∠B﹣∠BMP,∴∠DAM=∠BPM ,∴∠BPM=∠NAP,∴△BPM∽△CAP,∴,∵BM=,AC=2,CP=2﹣x,∴4x2﹣8x+3=0,解得x1=,x2=.②∵四边形AMPN 的面积即为四边形ADPE 与△ABC 重叠部分的面积,△ADM≌△APN,∴S△ADM=S△APN,∴S 四边形AMPN=S△APM+S△APN=S△AMP+S△ADM=S△ADP.过点P 作PS⊥AB,垂足为S,在Rt△BPS 中,∵∠B=60°,BP=x,∴PS=BP sin60°=x,BS=BP cos60°=x,∵AB=2,∴AS=AB﹣BS=2﹣x,∴AP2=AS2+PS2=(x)2+(2﹣x)2=x2﹣2x+4(0<x<2);∴S=PA2=x2﹣x+(0<x<2).③连接PG,设DE 交AP 于点O.若∠BAD=15°,∵∠DAP=60°.∴∠PAG=45°.∵△APD 和△APE 都是等边三角形.∴AD=DP=AP=PE=EA.∴四边形ADPE 是菱形.∴DO 垂直平分AP.∴AG=GP.∴∠APG=∠PAG=45°.∴∠PAG=90°.设BG=t,在Rt△BPG 中,∠B=60°.∴BP=2t,PG=t.∴AG=PG=t.∴t+t=2.解得t=﹣1.∴BP=2t=2 ﹣2.故,当x=2﹣2 时,∠BAD=15°.9.解:(1)在△BCE 中有:∠E=180°﹣∠BCE﹣∠CBE,又∵AI、BI 分别平分∠BAC、∠ABC.∴CI 是∠ACB 的平分线,∵CE 是∠ACD 的平分线,∴∠ECI 是平角∠BCD 的一半,∴∠ECI=90°,∴∠E=90°﹣∠BCI﹣∠CBI,在△ABC 中,∠BAC=(180°﹣∠ABC﹣∠ACB)=90°﹣∠BCI﹣∠CBE=α,即∠E=α.在三角形BIC 中,由外角性质得到:∠BIC=90°+α,综上所述,∠BIC=90°+α,∠E=α.故填:90°+α,α;(2)由题意易证得△ICE 是直角三角形,且∠E=α.当△ABC∽△ICE 时,可得△ABC 是直角三角形,有下列三种情况:①当∠ABC=90° 时,∵∠BAC=2α,∠E=α;∴只能∠E=∠BCA,可得∠BAC=2∠BCA.∴∠BAC=60°,∠BCA=30°.∴AC=2 AB.∵AB=1,∴AC=2.②当∠BCA=90° 时,∵∠BAC=2α,∠E=α;∴只能∠E=∠ABC,可得∠BAC=2∠ABC.∴∠BAC=60°,∠ABC=30°.∴AB=2 AC.∵AB=1,∴AC=.③当∠BAC=90° 时,∵∠BAC=2α,∠E=α;∴∠E=∠BAI=∠CAI=45°.∴△ABC 是等腰直角三角形.即AC=AB.∵AB=1,∴AC=1.∴综上所述,当△ABC∽△ICE 时,线段AC 的长为1 或2 或.(3)∵∠E=∠CAI,由三角形内角和可得∠AIE=∠ACE.∴∠AIB=∠ACF.又∵∠BAI=∠CAI,∴∠ABI=∠F.又∵BI 平分∠ABC,∴∠ABI=∠F=∠EBC.又∵∠E 是公共角,∴△EBC∽△EFI.在Rt△ICF 中,sin∠F=,设IC=3k,那么CF=4k,IF=5k.在Rt△ICE 中,∠E=30°,设IC=3k,那么CE=3k,IE =6k.∵△EBC∽△EFI.∴==.又∵BC=m,∴BE=m.10.解:(1)证明:如图1,∵EF 垂直平分BD,∴EB=ED,FB=FD.在△BEF 和△DEF 中,,∴△BEF≌△DEF(SSS),∴∠EBF=∠EDF.∵△ABC 是等边三角形,∴∠A=∠ABC=∠C=60°,∴∠EDF=60°,∴∠ADE+∠FDC=180°﹣60°=120°.又∵∠AED+∠ADE=180°﹣60°=120°,∴∠AED=∠FDC,∴△AED∽△CDF;(2)∵△ABC 是等边三角形,∴AC=BC=AB=4.∵CD=x,AE=y,∴AD=4﹣x,ED=EB=4﹣y.∵△AED∽△CDF,∴==,∴==,∴DF=,CF=.∵DF+CF=BF+CF=BC=4,∴+=4,整理得:y=(0<x<4);(3)如图2,①H 在线段AE 上时,在Rt△AHD 中,∵AH=AE﹣EH=y﹣1,AD=4﹣x,∠A=60°,∴cos A===,∴y=3﹣x,∴=3﹣x,整理得:x2﹣14x+24=0,解得:x1=2,x2=12,∵0<x<4,∴x=2,②当H 在线段BE 上时,同理可求得x=9﹣即CD 的长为2 或9﹣.11.解:(1)如图1,∵∠DPC=∠A=∠B=90°,∴∠ADP+∠APD=90°,∠BPC+∠APD=90°,∴∠ADP=∠BPC,∴△ADP∽△BPC,∴=,∴AD•BC=AP•BP;(2)结论AD•BC=AP•BP 仍然成立.理由:如图2,∵∠BPD=∠DPC+∠BPC,∠BPD=∠A+∠ADP,∴∠DPC+∠BPC=∠A+∠ADP.∵∠DPC=∠A=∠B=θ,∴∠BPC=∠ADP,∴△ADP∽△BPC,∴=,∴AD•BC=AP•BP;(3)如图3,过点D 作DE⊥AB 于点E.∵AD=BD=5,AB=6,∴AE=BE=3.由勾股定理可得DE=4.∵以点D 为圆心,DC 为半径的圆与AB 相切,∴DC=DE=4,∴BC=5﹣4=1.∴∠A=∠B,∴∠DPC=∠A=∠B.由(1)、(2)的经验可知AD•BC=AP•BP,∴5×1=t(6﹣t),解得:t1=1,t2=5,∴t 的值为1 秒或5秒.12.解:(1)∵EB=EM,NM=NC,∴∠EBM=∠EMB,∠NMC=∠NCM,∴∠EMB+∠NCM+∠EMN=180°,∵∠EBM+∠NCM+∠BEC=180°,∴∠EMN=∠BEC;(2)如图1,作DE⊥BC,NF⊥BC 分别交BC 于D,F,作GM⊥BC,交AC 于点G,∵EB=EM,∠ABC=90°,∴BD=MD,∴DE 为梯形ABMG 的中位线,∴AE=EG,同理可得CN=NG,∴EG+GN=AE+CN,即EN=AE+CN;(3)如图2,作GM⊥BC,交AC 于点G,作NF∥EM,∴==n,∵AE=EG,CN=NG,∴=n,即NG=CN=nEG,∵NF∥EM,∴=,即=,∴CF=MC,∴MF=MC﹣MC=MC,∵BH∥EM,NF∥EM,∴BH∥NF,∴=,∵=n,即BM=CM,∴==.13.解:(1)∵等边△ABC,等边△DCF,∴FC=DC,AC=BC,∠FCA+∠ACD=∠BCD+∠ACD=60°,∴∠FCA=∠DCB,在△FCA 和△DCB 中,,∴△FCA≌△DCB,∴BD=AF;(2)∵(1)∵△ABC 是等腰直角三角形,△DCF 是等腰直角三角形,∴=,=,∴=,∠FCA+∠ACD=∠BCD+∠ACD=45°,∴∠FCA=∠DCB,∴△FCA∽△DCB,∴=;(3)Ⅰ.∵△ABC 为以BC 为底边的等腰三角形,△FDC 为以DC 为底边的等腰三角形,∠BCA=∠DCF,∴△ABC∽△FDC,∴=,∠ACF=∠BCD,∴△BCD∽△ACF,∴=,如图③,作AP⊥BC,==2sin∠BAC=2sin α,∴=2sinα;Ⅱ、∵△FDC∽△ABC,∴,∠FCA+∠ACD=∠BCD+∠ACD,∴∠FCA=∠DCB,∴△FCA∽△DCB,∴==k.14.解:(1)①∵点P 恰好是CD 边的中点,设DP=PC=y,则DC=AB=AP=2y,在Rt△ADP 中,AD2+DP2=AP2,即:82+y2=(2y)2,解得:y=,∵∠OPA=∠B=90°,∴△ADP∽△PCO,∴AD:PC=DP:CO,∴8:y=y:CO,则AC==,∴OB=8﹣=,∵AB=2y=,∴tan∠OAB==,∴∠OAB=30°;∴∠OAP=∠DAP=30°,∵∠OPA=∠D=90°,∴△ADP∽△APO;②由①可知AB=,(2)∵△ADP∽△PCO,△OCP 与△PDA 的面积比为1:4,∴=,即DP=2CO,=.AD=2PC,∵AD=8,∴PC=4,在RT△ADP 中,AP2=AD2+DP2,∵AP=DC=AB,∴AB2=64+(AB﹣4)2,解得AB=10.②∵GP=6﹣t,PH=2t,设△GPH 的高为h,则有h=•2t=.∴S 四边形ADGH=S△ADP﹣S△GHP=DP•DA﹣GP•h=×8×6﹣×(6﹣t)×t=(t﹣3)2+,∴当t=3 时,四边形ADGH 的面积S 有最小值为.15.解:(1)如图1,作DF∥AC 交BE 于F,∴==,∴===,故答案为:;(2)①如图2,作CH∥AD 交BP 于H,∴=,又AE=EC,∴CH=AP,∵CH∥AD,∴==,∴=;②∵DC:BC:AC=1:2:3,CD=2,∴BC=4,AC=6,EC=AC=3,由勾股定理得,BE=5,∵CH∥AD,AE=EC,∴HE=EP,设HE=EP=x,则BH=5﹣x,BP=5+x,∵CH∥AD,∴=,即=,解得x=1,则BP=5+x=6.16.(1)证明:∵∠DEF=90°,∴∠AED+∠BEF=90°,又∠AED+∠ADE=90°,∴∠ADE=∠BEF,又∠A=∠B,∴△ADE∽△BEF;(2)解:∵△ADE∽△BEF,∴=,又AE=x,BF=y,AD=4,∴=,解得,y=﹣x2+x=﹣(x﹣2)2+1,∴当x=2 时,y 有最大值,最大值为1;(3)解:∵D、C、F、E 四点共圆,∴∠CEF=∠CDF,∴sin∠CEF=sin∠CDF==,又CD=4,∴DF=5,∵∠DCF=90°,∴DF 为此圆直径,∴此圆直径为5.。

人教中考数学 相似 培优练习(含答案)及答案

人教中考数学 相似 培优练习(含答案)及答案

一、相似真题与模拟题分类汇编(难题易错题)1.如图,△ABC是一锐角三角形余料,边BC=16cm,高AD=24cm,要加工成矩形零件,使矩形的一边在BC上,其余两个顶点E、F分别在AB、AC上.求:(1)AK为何值时,矩形EFGH是正方形?(2)若设AK=x,S EFGH=y,试写出y与x的函数解析式.(3)x为何值时,S EFGH达到最大值.【答案】(1)解:设边长为xcm,∵矩形为正方形,∴EH∥AD,EF∥BC,根据平行线的性质可以得出: = 、 = ,由题意知EH=x,AD=24,BC=16,EF=x,即 = , = ,∵BE+AE=AB,∴ + = + =1,解得x= ,∴AK= ,∴当时,矩形EFGH为正方形(2)解:设AK=x,EH=24-x,∵EHGF为矩形,∴ = ,即EF= x,∴S EFGH=y= x•(24-x)=- x2+16x(0<x<24)(3)解:y=- x2+16x配方得:y= (x-12)2+96,∴当x=12时,S EFGH有最大值96【解析】【分析】(1)设出边长为xcm,由正方形的性质得出,EH∥AD,EF∥BC,根据平行线的性质,可以得对应线段成比例,代入相关数据求解即可。

(2)设AK=x,则EH=16-x,根据平行的两三角形相似,再根据相似三角形的对应边上的高之比等于相似比,用含x的代数式表示出EF的长,根据矩形面积公式即可得出y与x的函数解析式。

(3)将(2)中的函数解析式转化为顶点式,利用二次函数的性质可得出矩形EFGH的面积取最大值时的x的值。

2.如图,在一个长40 m、宽30 m的矩形小操场上,王刚从A点出发,沿着A→B→C的路线以3 m/s的速度跑向C地.当他出发4 s后,张华有东西需要交给他,就从A地出发沿王刚走的路线追赶,当张华跑到距B地2 m的D处时,他和王刚在阳光下的影子恰好落在一条直线上.(1)此时两人相距多少米(DE的长)?(2)张华追赶王刚的速度是多少?【答案】(1)解:在Rt△ABC中:∵AB=40,BC=30,∴AC=50 m.由题意可得DE∥AC,∴Rt△BDE∽Rt△BAC,∴ = ,即 = .解得DE= m.答:此时两人相距 m.(2)解:在Rt△BDE中:∵DB=2,DE=,∴BE=2 m.∴王刚走的总路程为AB+BE=42 m.∴王刚走这段路程用的时间为 =14(s).∴张华用的时间为14-4=10(s),∵张华走的总路程为AD=AB-BD=40-2=37(m),∴张华追赶王刚的速度是37÷10≈3.7(m/s).答:张华追赶王刚的速度约是3.7m/s.【解析】【分析】(1)在Rt△ABC中,根据勾股定理得AC=50 m,利用平行投影的性质得DE∥AC,再利用相似三角形的性质得出对应边的比相等可求得DE长.(2)在Rt△BDE中,根据勾股定理得BE=2 m,根据题意得王刚走的总路程为42 m,根据时间=路程÷速度求得王刚用的时间,减去4即为张华用的时间,再根据速度=路程÷时间解之即可得出答案.3.已知在△ABC中,∠ABC=90°,AB=3,BC=4.点Q是线段AC上的一个动点,过点Q作AC的垂线交线段AB(如图1)或线段AB的延长线(如图2)于点P.(1)当点P在线段AB上时,求证:△APQ∽△ABC;(2)当△PQB为等腰三角形时,求AP的长.【答案】(1))证明:∵∠A+∠APQ=90°,∠A+∠C=90°,∴∠APQ=∠C.在△APQ与△ABC中,∵∠APQ=∠C,∠A=∠A,∴△APQ∽△ABC.(2)解:在Rt△ABC中,AB=3,BC=4,由勾股定理得:AC=5.∵∠BPQ为钝角,∴当△PQB为等腰三角形时,只可能是PB=PQ.(I)当点P在线段AB上时,如题图1所示,由(1)可知,△APQ∽△ABC,∴,即,解得: .∴ .(II)当点P在线段AB的延长线上时,如题图2所示,∵BP=BQ,∴∠BQP=∠P.∵∠BQP+∠AQB=90°,∠A+∠P=90°,∴∠AQB=∠A。

专题2.14相似三角形的性质与判定大题专练

专题2.14相似三角形的性质与判定大题专练

2023-2024学年九年级数学上学期复习备考高分秘籍【人教版】专题2.14相似三角形的性质与判定大题专练(期末培优30题)班级:_____________ 姓名:_____________ 得分:_____________本试卷满分120分,试题共23题,其中选择10道、填空6道、解答7道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一.解答题(共30小题)1.(2022秋•茌平区校级期末)如图,Rt△ABC中,∠B=90°,点D在边AC上,且DE⊥AC交BC于点E.(1)求证:△CDE∽△CBA;(2)若AB=3,AC=5,E是BC中点,求DE的长.【答案】见试题解答内容【分析】(1)由DE⊥AC,∠B=90°可得出∠CDE=∠B,再结合公共角相等,即可证出△CDE∽△CBA;(2)在Rt△ABC中,利用勾股定理可求出BC的长,结合点E为线段BC的中点可求出CE的长,再利用相似三角形的性质,即可求出DE的长.【解答】(1)证明:∵DE⊥AC,∠B=90°,∴∠CDE=90°=∠B.又∵∠C=∠C,∴△CDE∽△CBA.(2)解:在Rt△ABC中,∠B=90°,AB=3,AC=5,∴BC=4.∵E是BC中点,∴CE=12BC=2.∵△CDE∽△CBA,∴DEBA=CECA,即DE3=25,∴DE=2×35=65.【点评】本题考查了相似三角形的判定与性质以及勾股定理,解题的关键是:(1)利用“两角对应相等两三角形相似”证出两三角形相似;(2)利用相似三角形的性质求出DE的长.2.(2022秋•大连期末)如图,在△ABC中,点D在BC边上,∠ADC=∠BAC,CD=1,BD=3,求AC 的长.【答案】AC=2.【分析】由题意可得BC=BD+CD=4,根据∠ADC=∠BAC,公共角∠C=∠C,即可证明△ADC∽△BAC,根据相似三角形的性质即可得到结果.【解答】解:∵CD=1,BD=3,∴BC=BD+CD=4,∵∠ADC=∠BAC,∠C=∠C,∴△ADC∽△BAC,∴CDAC=ACBC,即AC2=CD•BC=4,∴AC=2(负值舍去).【点评】本题主要考查相似三角形的判定与性质,熟练掌握相似三角形的性质和判定方法是解题关键.3.(2022秋•黄埔区期末)如图,已知AB⊥BC,EC⊥BC,垂足分别为B、C,AE交BC于点D,AB=12,BD=15,DC=5,求EC的长.【答案】EC=4.【分析】根据AB⊥BC,EC⊥BC可得∠C=∠B=90°,由对顶角相等得∠CDE=∠BDA,则△DCE∽△DBA,根据相似三角形的性质即可求解.【解答】解:∵AB⊥BC,EC⊥BC,∴∠C=∠B=90°,∵∠CDE=∠BDA,∴△DCE∽△DBA,∴DCBD=ECAB,∵AB=12,BD=15,DC=5,∴515=EC12,∴EC=4.【点评】本题主要考查相似三角形的判定与性质,熟知两个三角形相似,对应边的比相等是解题关键.4.(2022秋•济南期末)如图:点D在△ABC的边AB上,连接CD,∠1=∠B,AD=4,AC=6,求:AB的长.【答案】见试题解答内容【分析】由条件可证明△ACD∽△ABC,于是可得AC2=AD•AB,再代入已知数据即可求出AB的长.【解答】解:∵∠1=∠B,∠A=∠A∴△ACD∽△ABC∴ADAC=ACAB∴AC2=AD•AB而AD=4,AC=6∴AB=9故AB的长为9.【点评】本题考查的是相似三角形的判定与性质,根据对应边成比例由已知线段求未知线段是基本思路.5.(2021秋•蓝田县期末)如图,在△ABC与△ADE中,ABAD=ACAE,且∠EAC=∠DAB.求证:△ABC∽△ADE.【答案】见试题解答内容【分析】根据相似三角形的判定即可求出答案.【解答】解:∵∠EAC=∠DAB,∴∠EAC+∠BAE=∠DAB+∠BAE,∴∠BAC=∠DAE,∵ABAD=ACAE,∴△ABC∽△ADE.【点评】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于中等题型.6.(2022秋•启东市校级期末)如图,在△ABC中,点D在BC边上,点E在AC边上,且AD=AB,∠DEC =∠ADB.(1)求证:△AED∽△ADC;(2)若AE=1,EC=3,求AB的长.【答案】见试题解答内容【分析】(1)利用三角形外角的性质及∠DEC=∠ADB可得出∠ADE=∠C,结合∠DAE=∠CAD即可证出△AED∽△ADC;(2)利用相似三角形的性质可求出AD的长,再结合AD=AB即可得出AB的长.【解答】(1)证明:∵∠DEC=∠DAE+∠ADE,∠ADB=∠DAE+∠C,∠DEC=∠ADB,∴∠ADE=∠C.又∵∠DAE=∠CAD,∴△AED∽△ADC.(2)∵△AED∽△ADC,∴ADAC=AEAD,即AD13=1AD,∴AD=2或AD=﹣2(舍去).又∵AD=AB,∴AB=2.【点评】本题考查了相似三角形的判定与性质,解题的关键是:(1)利用“两角对应相等,两三角形相似”证出△AED∽△ADC;(2)利用相似三角形的性质,求出AD的长.7.(2021秋•连平县校级期末)如图,点D,E分别是△ABC的边AC,AB上的点,且∠ADE=∠B,其中AE=1.5,AC=2,BC=2,求DE的长.【答案】见试题解答内容【分析】先判断△ADE∽△ABC,然后利用相似比可计算出DE的长.【解答】解:∵∠ADE=∠B,∠EAD=∠CAB,∴△ADE∽△ABC,∴AEAC=DEBC,即1.52=DE2,∴DE=1.5.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相似三角形的性质表示线段之间的关系.8.(2021秋•临湘市期末)如图,△ABC中,DE∥BC,EF∥AB.(1)求证:△ADE∽△EFC;(2)若AD=4,DE=6,AEEC=2,求EF和FC的值.【答案】见试题解答内容【分析】(1)由DE∥BC可得出△ADE∽△ABC,由EF∥AB可得出△EFC∽△ABC,再利用相似于同一三角形的两三角形相似可证出△ADE∽△EFC;(2)由△ADE∽△EFC,利用相似三角形的性质可求出EF和FC的值.【解答】(1)证明:∵DE∥BC,∴△ADE∽△ABC;∵EF∥AB,∴△EFC∽△ABC,∴△ADE∽△EFC.(2)解:∵△ADE∽△EFC,∴EFAD=ECAE=FCDE,即EF4=12=FC6,∴EF=2,FC=3.【点评】本题考查了相似三角形的判定与性质,解题的关键是:(1)牢记“相似于同一三角形的两三角形相似”;(2)利用相似三角形的性质,求出EF和FC的值.9.(2022秋•北碚区校级期末)如图,在平行四边形ABCD中,E为BC边上一点,连接DE,F为线段DE 上一点,且∠AFD=∠C.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=AF=DE的长.【答案】(1)证明过程见解答;(2)DE的长为12.【分析】(1)利用平行四边形的性质可得AD∥BC,从而得∠ADE=∠DEC,然后根据两角相等的两个三角形相似证明即可解答;(2)根据(1)的结论利用相似三角形的性质即可求出DE=12.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADE=∠DEC,∵∠AFD=∠C,∴△ADF∽△DEC;(2)解:∵四边形ABCD是平行四边形,∴AB=CD=8,∵△ADF∽△DEC,∴ADDE=AFDC,∴DE=12.【点评】本题考查了相似三角形的判定与性质,平行四边形的性质,熟练掌握相似三角形的判定与性质是解题的关键.10.(2022秋•长安区期末)如图,在平行四边形ABCD中,AB=8.在BC的延长线上取一点B,使CE=1 3BC,连接AE,AE与CD交于点F.(1)求证:△ADF∽△ECF;(2)求DF的长.【答案】见试题解答内容【分析】(1)由平行四边形的性质可得出AD∥BE,从而得出∠DAF=∠CEF,∠ADF=∠ECF,即证明△ADF∽△ECF;(2)由平行四边形的性质可得出AD=BC,AB=CD=8,即得出ADCE=3,再根据相似三角形的性质可得出ADCE=DFCF,即DFCF=3,最后结合CD=DF+CF,即可求出DF的长.【解答】(1)证明:∵四边形ABCD为平行四边形,∴AD∥BC,即AD∥BE,∴∠DAF=∠CEF,∠ADF=∠ECF,∴△ADF∽△ECF;(2)解:∵四边形ABCD为平行四边形,∴AD=BC,AB=CD=8,∴CE=13AD,即ADCE=3.∵△ADF∽△ECF,∴ADCE=DFCF,即DFCF=3.∵CD=DF+CF,∴DF=34CD=6.【点评】本题考查平行四边形的性质,三角形相似的判定和性质.熟练掌握三角形相似的判定定理及其性质是解题关键.11.(2022秋•内江期末)如图,已知△ABC中,AB=AC,点D、E分别在边BC、AC上,∠ADE=∠B.(1)求证:△ABD∽△DCE;(2)若AB=5,BC=6,BD=2,求点E到BC的距离.【答案】(1)见解析过程;(2)3225.【分析】(1)由等腰三角形的性质可得∠B =∠C ,由外角的性质可得∠BAD =∠CDE ,可得结论;(2)由相似三角形的性质可求解.【解答】(1)证明:∵AB =AC ,∴∠B =∠C ,∵∠ADC =∠B +∠BAD =∠ADE +∠CDE ,∴∠BAD =∠CDE ,∴△ABD ∽△DCE ;(2)如图,过点A 作AH ⊥BC 于H ,过点E 作EM ⊥BC 于M ,∵AB =AC ,AH ⊥BC ,∴BH =CH =3,∴AH ==4,∵BD =2,BC =6,∴DC =4,S △ABD =12×BD •AH =4,∵△ABD ∽△DCE ,∴S △ABD S △CDE =(AB CD )2=2516,∴S △CDE =6425,∴12×4×EM =6425,∴EM =3225,∴点E 到BC 的距离为3225.【点评】本题考查了相似三角形的判定和性质,勾股定理,掌握相似三角形的性质是解题的关键.12.(2023春•太仓市期末)如图,在△ABC 中,点D 在BC 边上,点E 在AC 边上,且AD =AB ,∠DEC =∠B .(1)求证:△AED ∽△ADC ;(2)若AE =1,EC =3,求AB 的长.【答案】(1)证明见解答.(2)AB =2.【分析】(1)利用三角形外角的性质及∠DEC =∠ADB 可得出∠ADE =∠C ,结合∠DAE =∠CAD 即可证出△AED ∽△ADC ;(2)利用相似三角形的性质可求出AD 的长,再结合AD =AB 即可得出AB 的长.【解答】(1)证明:∵AD =AB ,∴∠ADB =∠B ,∵∠DEC =∠B ,∴∠DEC =∠ADB ,又∵∠DEC +∠AED =180°,∠ADB +∠ADC =180°,∴∠AED =∠ADC ,又∵∠EAD =∠DAC ,∴△AED ∽△ADC .(2)解:由(1)可知,△AED ∽△ADC ,∴AE AD =AD AC ,∵AE =1,CE =3,∴AC =4,将AE 、AC 的值代入上式,得:AD 2=AE ×AC =4,故AD =2,又∵AB =AD ,∴AB =2.【点评】本题考查了相似三角形的判定与性质,解题的关键是:(1)利用“两角对应相等,两三角形相似”证出△AED ∽△ADC ;(2)利用相似三角形的性质,求出AD 的长.13.(2022秋•路北区期末)如图,AB =4,CD =6,F 在BD 上,BC 、AD 相交于点E ,且AB ∥CD ∥EF .(1)若AE =3,求ED 的长.(2)求EF 的长.【答案】(1)92;(2)125.【分析】(1)证明△AEB ∽△DEC ,得到AE DE =AB CD ,把已知数据代入计算即可;(2)根据△BEF ∽△BCD ,得到EF CD =BF BD ,同理得到EF AB =DF BD,两个比例式相加再代入计算,得到答案.【解答】解:(1)∵AB ∥CD ,∴△AEB ∽△DEC ,∴AE DE =AB CD ,∵AB =4,CD =6,AE =3,∴3DE =46,解得:DE =92;(2)∵CD ∥EF ,∴△BEF∽△BCD,∴EFCD=BFBD,同理:EFAB=DFBD,∴EFCD+EFAB=BFBD+DFBD=1,∴EF6+EF4=1,解得:EF=12 5.【点评】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.14.(2022秋•增城区校级期末)如图,在△ABC中,D,E分别是边AB,AC上的点,连接DE,且∠ADE =∠ACB.(1)求证:△ADE∽△ACB;(2)如果E是AC的中点,AD=8,AB=10,求AE的长.【答案】见试题解答内容【分析】(1)根据相似三角形的判定即可求出证.(2)由于点E是AC的中点,设AE=x,根据相似三角形的性质可知ADAC=AEAB,从而列出方程解出x的值.【解答】解:(1)∵∠ADE=∠ACB,∠A=∠A,∴△ADE∽△ACB;(2)由(1)可知:△ADE∽△ACB,∴ADAC=AEAB,∵点E是AC的中点,设AE=x,∴AC=2AE=2x,∵AD=8,AB=10,∴82x=x10,解得:x=∴AE=【点评】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于中等题型.15.(2022秋•藁城区期末)如图,等边三角形△ACB的边长为3,点P为BC上的一点,点D为AC上的一点,连接AP、PD,∠APD=60°.(1)求证:△ABP∽△PCD;(2)若PC=2,求CD的长.【答案】(1)见解析;(2)2 3.【分析】(1)由△ABC为等边三角形,易得∠B=∠C=60°,又∠APD=60°,由外角性质可得∠DPC =∠PAB,利用相似三角形的判定定理(AA)可得△ABP∽△PCD;(2)利用相似三角形的性质可得ABPC=BPCD,易得CD,可得AD,再利用AP2=AD•AC,可得AP,从而可得答案.【解答】(1)证明:①在等边三角形△ACB中,∠B=∠C=60°,∵∠APD=60°,∠APC=∠PAB+∠B,∴∠DPC=∠PAB,∴△ABP∽△PCD;(2)解:∵△ABP∽△PCD,AB=AC=3,∴ABPC=BPCD,∴CD=BP⋅PCAB=2×13=23.【点评】本题主要考查了相似三角形的性质及判定,由条件证得△ABP∽△PCD,△ADP∽△APC是解答此题的关键.16.(2023春•钢城区期末)如图,已知等腰△ABC,AB=AC,点D、E分别在BC、AB上,且∠BDE=∠CAD.(1)求证:△BDE∽△CAD;(2)如果BE=3,BD=4,DC=9,求AB的长.【答案】(1)证明见解析;(2)12.【分析】(1)先利用等腰三角形的性质得出∠B=∠C,再由∠BDE=∠CAD可证得△BDE∽△CAD;(2)由相似三角形的性质可得出答案.【解答】(1)证明:∵AB=AC,∴∠B=∠C,又∵∠BDE=∠CAD,∴△BDE∽△CAD;(2)解:∵△BDE∽△CAD,∴BECD=BDAC,∴39=4AC,∴AC=12,∴AB=12.【点评】本题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定方法是解题的关键.17.(2022秋•丛台区校级期末)如图,在△ABC中,AB=AC=20,BC=32,点D,E分别在近BC,AC 上,且∠ADE=∠B.(1)求证:△ABD∽△DCE;(2)当DE∥AB时,求AE的长.【答案】(1)见解答;(2)AE=125 16.【分析】(1)根据两角对应相等的两个三角形相似即可判断.(2)利用相似三角形的判定和性质,列出比例式,求解即可.【解答】(1)证明:∵AB=AC,∴∠B=∠C,∵∠ADE=∠B,∠ADC=∠ADE+∠EDC=∠B+∠BAD,∴∠BAD=∠EDC,∴△ABD∽△DCE.(2)解:∵△ABD∽△DCE,∴∠BAD=∠CDE,∵DE∥AB,∴∠B=∠CDE=∠C,∴△ABD∽△CBA,∴ABBC=BDAB,即2032=BD20,解得:BD=12.5,∴CD=BC﹣BD=32﹣12.5=19.5,∵DE∥AB,∴BDBC=AEAC,即12.532=AEAC,解得:AE=125 16.【点评】本题考查相似三角形的判定和性质,解题的关键是正确记忆三角形相似的条件和性质.18.(2022秋•杭州期末)如图,在等腰三角形ABC 中,AB =AC ,点D 是BC 的中点,点E ,F 分别在线段BD ,AC 上,连结AD ,EF 交于点G ,∠CEF =2∠CAD .(1)求证:△ABC ∽△EFC .(2)若BE =2DE ,AF CF =32,求FG GE 的值.【答案】(1)证明见解析;(2)FG GE =95.【分析】(1)根据等腰三角形的性质可得∠B =∠C ,∠CAB =2∠CAD ,根据题意不难证明△ABC ∽△EFC ;(2)过点F 作FH ∥BC ,交AD 于点H ,)根据等腰三角形的性质可得BD =CD ,则DE =13CD ,易证明△AHF ∽△ADC ,则HF CD =AF AC =35,易证明△HFG ∽△DEG ,则FG GE =HF DE ,将DE =13CD ,HF CD =35代入即可求解.【解答】(1)证明:∵△ABC 为等腰三角形,AB =AC ,∴∠B =∠C ,∵点D 是BC 的中点,∴∠CAB =2∠CAD ,∵∠CEF =2∠CAD ,∴∠CEF =∠CAB ,在△ABC 和△EFC 中,∠ACB =∠ECF ∠CAB =CEF ,∴△ABC ∽△EFC ;(2)过点F 作FH ∥BC ,交AD 于点H ,∵△ABC 为等腰三角形,AB =AC ,点D 是BC 的中点,∴BD =CD ,∵BE =2DE ,∴DE BD =DE CD =13,即DE =13CD ,∵HF ∥BC ,∴△AHF ∽△ADC ,∴HF CD =AF AC,∵AF CF =32,∴AF AC =35,∴HF CD =AF AC =35,∵HF ∥BC ,∴△HFG ∽△DEG ,∴FG GE =HF DE,由上述知,DE =13CD ,HF CD =35,∴FG GE =HF DE =HF 13CD =3×35=95.【点评】本题主要考查等腰三角形的性质、相似三角形的判定与性质,正确作出辅助线,根据相似三角形的对应边成比例答题时解题关键.19.(2022秋•金山区校级期末)已知:如图,在△ABC 中,点D 在边BC 上,AE ∥BC ,BE 与AD 、AC 分别相交于点F 、G ,AF 2=FG •FE .(1)求证:△CAD ∽△CBG ;(2)联结DG ,求证:DG •AE =AB •AG .【答案】(1)(2)证明见解析.【分析】(1)通过证明△FAG∽△FEA,可得∠FAG=∠E,由平行线的性质可得∠E=∠EBC=∠FAG,且∠ACD=∠BCG,可证△CAD∽△CBG;(2)由相似三角形的性质可得CACB=CDCG,且∠DCG=∠ACB,可证△CDG∽△CAB,可得DGAB=CGCB,由平行线分线段成比例可得AECB=AGCG,可得结论.【解答】证明:(1)∵AF2=FG⋅FE.∴AFFG=EFAF,∵∠AFG=∠EFA,∴△FAG∽△FEA,∴∠FAG=∠E,∵AE∥BC,∴∠E=∠EBC,∴∠EBC=∠FAG,∵∠ACD=∠BCG,∴△CAD∽△CBG;(2)∵△CAD∽△CBG,∴CACB=CDCG,∵∠DCG=∠ACB,∴△CDG∽△CAB,∴DGAB=CGCB,∵AE∥BC,∴AEBC=AGGC,∴AGAE=GCBC,∴DG AB =AG AE,∴DG •AE =AB •AG .【点评】本题考查了相似三角形的判定和性质,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.20.(2022秋•永丰县期末)如图所示,点B ,C ,D 在同一条直线上,且BC =CD ,点A 和点E 在BD 的同侧,且∠ACE =∠B =∠D .(1)证明:△ABC ∽△CDE ;(2)若BC =2,AB =3,求DE 的长度.【答案】(1)见解析;(2)43.【分析】(1)根据三角形内角和定理与平角的定义得出∠A =∠ECD ,即可推出结论;(2)根据相似三角形的性质得出比例式求解即可.【解答】(1)证明:∵∠A =180°﹣∠B ﹣∠ACB ,∠ECD =180°﹣∠ACE ﹣∠ACB ,∠ACE =∠B ,∴∠A =∠ECD ,∵∠B =∠D ,∴△ABC ∽△CDE ;(2)解:∵△ABC ∽CDE ,∴AB CD =BC DE,∵BC =CD ,BC =2,∴CD =2,∵AB =3,∴32=2DE,∴DE =43.【点评】本题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.21.(2021秋•杨浦区期末)已知,如图,在四边形ABCD 中,∠ABC =∠BCD ,点E 在边BC 上,AE ∥CD ,DE ∥AB ,过点C 作CF ∥AD ,交线段AE 于点F ,联结BF .(1)求证:△ABF ≌△EAD ;(2)如果射线BF 经过点D ,求证:BE 2=EC •BC .【答案】(1)见解析过程;(2)见解析过程.【分析】(1)先证AB =AE ,DE =DC ,再证四边形ADCF 是平行四边形,得出AF =CD ,进而得出AF =DE ,再由平行线性质得∠AED =∠BAF ,进而证得结论;(2)通过证明△BEF ∽△BCD ,△DEF ∽△BAF ,可得BE BC =EF CD =EF AF =EC BE,即可得结论.【解答】证明:(1)∵AE ∥CD ,∴∠AEB =∠BCD ,∵∠ABC =∠BCD ,∴∠ABC =∠AEB ,∴AB =AE ,∵DE ∥AB ,∴∠DEC =∠ABC ,∠AED =∠BAF ,∵∠ABC =∠BCD ,∴∠DEC =∠BCD ,∴DE =DC ,∵CF ∥AD ,AE ∥CD ,∴四边形ADCF是平行四边形,∴AF=CD,∴AF=DE,在△ABF和△EAD中,AB=EA∠BAF=∠AEDAF=ED,∴△ABF≌△EAD(SAS);(2)如图,连接FD,∵射线BF经过点D,∴点B,点F,点D三点共线,∵AE∥DC,∴△BEF∽△BCD,∴BEBC=EFCD,ECBE=DFBF,∵DE∥AB,∴△DEF∽△BAF,∴EFAF=DFBF,∴ECBE=EFAF,∵CD=AF,∴BEBC=EFCD=EFAF=ECBE,∴BE2=EC•BC.【点评】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,平行四边形的判定和性质,利用相似三角形的性质得到线段的关系是解题的关键.22.(2022秋•扶沟县校级期末)如图,已知锐角△ABC中,边BC为12,高AD长为8.矩形EFGIH的边GH 在BC 边上,其余两个顶点E ,F 分别在AB ,AC 边上,EF 交AD 于点K .(1)求的EF AK的值;(2)设EH =x ,矩形EFGH 的面积为S ,求S 与x 的函数关系式,并求S 的最大值.【答案】(1)32;(2)S 有最大值,最大值为24.【分析】(1)由EF ∥BC ,推出△AEF ∽△ABC ,推出EF BC =AK AD,由此即解决问题.(2)用类似(1)的方法求出EF ,构建二次函数,利用二次函数的性质即可解决问题.【解答】解:(1)∵EF ∥BC ,∴△AEF ∽△ABC ,∴EF BC =AK AD ,∴EF AK =BC AD =128=32;(2)∵EF ∥BC ,∴△AEF ∽△ABC ,∴EF BC =AK AD ,∴EF 12=8x 8,∴EF =32(8﹣x ),∴S =x •32(8﹣x )=―32x 2+12x =―32(x ﹣4)2+24.∵―32<0,∴S 有最大值,最大值为24.【点评】本题考查相似三角形的判定和性质、矩形的性质等知识,解题的关键是构建二次函数解决最值问题,属于中考常考题型.23.(2022秋•信都区校级期末)如图,在△ABC 中,∠B =∠C ,点P 从B 运动到C ,且∠APD =∠C .(1)求证:AB •CD =CP •BP ;(2)若AB =6,BC =10,求P 到什么位置时,PD ∥AB .【答案】(1)见解析;(2)BP =185.【分析】(1)先根据得出∠B =∠APD ,证明∠DPC =∠BAP ,得出△ABP ∽△PCD ,根据相似三角形性质得出AB CP =BP CD,即可证明结论;(2)根据平行线的性质得出∠BAP =∠APD =∠C ,证明△BAP ∽△BCA ,得出AB BC =BP AB ,根据AB =6,BC =10,求出BP =185,即可得出当BP =185时,PD ∥AB .【解答】(1)证明:∵∠B =∠C ,∠APD =∠C ,∴∠B =∠APD ,∵∠APC =∠APD +∠DPC ,∠APC =∠B +∠BAP ,∴∠DPC =∠BAP ,∴△ABP ∽△PCD ,∴AB CP =BP CD,∴AB ⋅CD =CP ⋅BP .(2)解:如图,PD ∥AB ,∴∠BAP=∠APD=∠C,又∵∠B=∠B,∴△BAP∽△BCA,∴ABBC=BPAB,∵AB=6,BC=10,∴610=BP6,∴BP=18 5,即当BP=185时,PD∥AB.【点评】本题主要考查了相似三角形的判定和性质,等腰三角形的性质,平行线的性质,三角形外角的性质,解题的关键是熟练掌握相似三角形的判定,证明△ABP∽△PCD.24.(2022秋•叙州区期末)已知:如图,△ABC与△ADE均为等腰三角形,BA=BC,DA=DE,如果点D 在BC上,且∠EDC=∠BAD,点O为AC与DE的交点.求证:(1)△ABC∽△ADE;(2)DA•OE=OA•CE.【答案】见试题解答内容【分析】(1)由相似三角形的判定定理可得结论;(2)由相似三角形的性质可得∠BAC=∠DAE,通过证明△COD∽△EOA,可得OCOE=ODOA,通过证明△AOD∽△EOC,可得DACE=OAOE,即可得结论.【解答】证明:(1)∵BA=BC,DA=DE,∴BABC=DADE=1,∵∠EDC=∠BAD,∠ADC=∠ABC+∠BAD=∠ADE+∠EDC,∴∠ABC=∠ADE,∴△ABC∽△ADE;(2)∵△ABC∽△ADE,∴∠BAC=∠DAE,∴∠BAD=∠CAE=∠CDE,∵∠COD=∠EOA,∴△COD∽△EOA,∴OCOE=ODOA又∵∠AOD=∠EOC,∴△AOD∽△EOC,∴DACE=OAOE,即DA•OE=OA•CE.【点评】本题考查了相似三角形的判定和性质,三角形的外角的性质,熟练掌握相似三角形的判定定理是解题的关键.25.(2023春•文山州期末)如图,平行四边形ABCD的对角线AC,BD交于点O,AE平分∠BAD,交BC 于点E,且∠ADC=60°.(1)求证:△ABE是等边三角形;(2)若ABBC=m(0<m<1),连接OE,设S四边形OECDS△AOD=k,试求k与m满足的关系.【答案】(1)答案见解答过程;(2)m+k=2.【分析】(1)先由平行四边形的性质得∠ABC=∠ADC=60°,AD∥BC,进而得∠DAB=120°,再根据角平分线的定义得∠BAE=60°,据此可得出结论;(2)由(1)可知△ABE是等边三角形,则AB=BE,由AB/BC=m得AB=BE=mBC,过点O作OM⊥AD于M,MO的延长线∠BC于N,先证OM=ON,然后设OM=ON=a,BC=AD=b,则AB=BE=mBC=mb,分别求出S△BOE =12•mab,S△OBC=12•ab,S△OCD=S△OBC=12•ab,则S△BCD=ab,S△AOD=12•ab,进而得S四边形OECD =12ab(2﹣m),最后再根据已知条件即可得出k与m满足的关系.【解答】(1)证明:∵四边形ABCD为平行四边形,且∠ADC=60°,∴∠ABC=∠ADC=60°,AD∥BC,∴∠ABC+∠DAB=180°,∴∠DAB=180°﹣∠ABC=180°﹣60°=120°,∵AE平分∠DAB,∴∠BAE=12∠DAB=12×120°=60°,∴△ABE是等边三角形;(2)解:由(1)可知:△ABE是等边三角形,∴AB=BE,∵ABBC=m,∴AB=BE=mBC,过点O作OM⊥AD于M,MO的延长线∠BC于N,如图:∵四边形ABCD为平行四边形,∴OA=OC,OB=OD,AD∥BC,∴∠MAO=∠NCO,ON⊥BC,在△AOM和△CNO中,∠MAO=∠NCO∠AMO=∠CNO=90°OA=OC,∴△AOM≌△CNO(AAS),∴OM=ON,设OM=ON=a,BC=AD=b,则AB=BE=mBC=mb,∴S△BOE =12BE•ON=12mab,S△OBC=12BC•ON=12ab,S△AOD=12AD•OM=12ab,∵OB=OD,∴△OBC和△OCD等底同高,∴S△OCD =S△OBC=12ab,∴S△BCD =S△OCD+S△OBC=ab,∴S四边形OECD =S△BCD﹣S△BOE=ab―12mab=12ab(2﹣m),∴S四边形OECDS△AOD=12ab(2m)12ab=k,∴2﹣m=k,∴m+k=2.即:k与m满足的关系是:m+k=2.【点评】此题主要考查了平行四边形的性质,等边三角形的判定及性质,三角形的面积等,熟练掌握平行四边形的性质和等边三角形的判定方法,灵活运用三角形的面积公式进行计算是解答此题的关键.26.(2022秋•怀化期末)如图,在△ABC中,D,E分别是边AB,AC上的点,连接DE,且∠ADE=∠ACB.(1)求证:△ADE∽△ACB;(2)若AD=2DB,AE=4,AC=9,求BD的长.【答案】见试题解答内容【分析】(1)根据相似三角形的判定即可求出证.(2)设BD=x,则AD=2x,AB=3x,根据相似三角形的性质可知ADAC=AEAB,从而列出方程解出x的值.【解答】(1)证明:∵∠ADE=∠ACB,∠A=∠A,∴△ADE∽△ACB;(2)解:由(1)可知:△ADE ∽△ACB ,∴AD AC =AE AB,设BD =x ,则AD =2x ,AB =3x ,∵AE =4,AC =9,∴2x 9=43x ,解得:x =,∴BD 【点评】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于中等题型.27.(2022秋•兴化市期末)如图,已知∠BAC =∠EAF ,∠ABE =∠ACF ,若B ,E ,F 三点共线,线段EF 与AC 交于点O .(1)求证:△ABE ∽△ACF ;(2)若AB =3,CF =4,△AOB 的面积为9,求△COF 的面积.【答案】(1)见解答;(2)△COF 的面积是16.【分析】(1)由△ABC ∽△AEF ,可得∠BAC =∠EAF ,AB :AE =AC :AF ,可得∠BAE =∠CAF ,所以AB :AC =AE :AF ,由两边对应成比例且夹角相等的三角形相似可得结论;(2)由∠ABE =∠ACF ,易证△AOB ∽△FOC ,所以S △BOA :S △COF =(AB CF )2=916,由此可得结论.【解答】(1)证明:∵∠ABE =∠ACF ,∴A 、B 、C 、D 四点共圆,∴∠AFB =∠BCA ,∵∠ABC =∠EAF ,∴△ABC ∽△AEF ,∴∠BAC =∠EAF ,AB :AE =AC :AF ,∴∠BAC ﹣∠EAC =∠EAF ﹣∠EAC ,即∠BAE =∠CAF ,∴AB:AC=AE:AF,∴△ABE∽△ACF;(2)解:∵∠ABE=∠ACF,∵∠AOB=∠COF,∴△AOB∽△FOC,∴S△AOB :S△FOC=(ABCF)2=916,∵S△AOB=9,∴S△FOC=16.【点评】本题主要考查相似三角形的性质与判定,掌握相似三角形的面积比等于相似比的平方是解题关键.28.(2023春•普陀区校级期末)已知:如图,在△ABC中,点D,E分别在边AB,BC上,BA•BD=BC•BE.(1)求证:△BDE∽△BCA;(2)如果AE=AC,求证:AC2=AD•AB.【答案】见试题解答内容【分析】(1)根据两边成比例夹角相等判定两三角形相似即可;(2)只要证明△ADC∽△ACB,即可解决问题;【解答】(1)证明:∵BA•BD=BC•BE.∴BDBC=BEBA,∵∠B=∠B,∴△BDE∽△BCA.(2)证明:∵BA•BD=BC•BE.∴BDBE=BCBA,∵∠B=∠B,∴△BAE∽△BCD,∴∠BAE=∠BCD,∵AE=AC,∴∠AEC=∠ACE,∵∠AEC=∠B+∠BAE,∠ACE=∠ACD+∠BCD,∴∠B=∠ACD,∵∠BAC=∠BAC,∴△ADC∽△ACB,∴ADAC=ACAB,∴AC2=AD•AB.【点评】本题考查相似三角形的性质,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.29.(2022秋•细河区期末)如图,平行四边形ABCD,DE交BC于F,交AB的延长线于E,且∠EDB=∠C.(1)求证:△ADE∽△DBE;(2)若DC=7cm,BE=9cm,求DE的长.【答案】见试题解答内容【分析】(1)由平行四边形的对角相等,可得∠A=∠C,即可求得∠A=∠EDB,又由公共角∠E=∠E,可证得△ADE∽△DBE;(2)根据相似三角形的对应边成比例,进而解答即可.【解答】(1)证明:平行四边形ABCD中,∠A=∠C,∵∠EDB=∠C,∴∠A=∠EDB,又∠E=∠E,∴△ADE ∽△DBE ;(2)平行四边形ABCD 中,DC =AB ,由(1)得△ADE ∽△DBE ,∴DE AE =BE DE,∵DC =7cm ,BE =9cm ,∴AB =7cm ,AE =16cm ,∴DE =12cm .【点评】此题考查了相似三角形的判定与性质,以及平行四边形的性质.解题的关键是数形结合思想的应用,要注意仔细识图.30.(2022秋•如皋市期末)如图,在△ABC 中,∠C =90°,AC =BC =12,M 为AC 上一点,AM =4,D 为AB 边上一点(不与A ,B 重合),作∠MDN =45°,使DN 交△ABC 的边于点N .(1)如图1,点N 在BC 上时,①求证:△AMD ∽△DBN ;②若BD AD =15,求BN 的长;(2)若AD BD =13,请直接写出CN 的长.【答案】(1)①证明见解答;②BN 的长为10;(2)CN 的长为3或212.【分析】(1)①由∠C =90°,AC =BC ,得∠A =∠B =45°,再证明∠AMD =∠BDE =135°﹣∠ADM ,即可由“两角分别相等的两个三角形相似”证明△AMD ∽△DBN ;②由∠C =90°,AC =BC =12,根据勾股定理得AB =则AD =56AB =BD =BN =10;(2)当点N 在线段CM 上,作DF ∥AC 交BC 于点F ,由AD BD =13,求得AD =14AB =BD =设DN 与射线BC 交于点E ,由△AMD ∽△BDE ,可求得BE =272,可知点E 在BC 的延长线上,此时,DE 与AC 交于点N ,EC =BE ﹣BC =32,由CF BF =AD BD =13,求得BF =34BC =9,则EF =BE ﹣BF =92,而FD =BF =9,即可由△ECN ∽△EFD ,求得CN =3;当点N 在线段AM 上,作ML ∥BC 交AB 于点L ,可证明△LDM ∽△AND ,得LD AN =LM AD ,求得AN =32,则CN =12―32=212.【解答】(1)①证明:如图1,∵∠C =90°,AC =BC ,∴∠A =∠B =45°,∴∠AMD =180°﹣∠A ﹣∠ADM =135°﹣∠ADM ,∵∠MDN =45°,∴∠BDN =180°﹣∠MDN ﹣∠ADM =135°﹣∠ADM ,∴∠AMD =∠BDN ,∴△AMD ∽△DBN .②解:如图1,∵∠C =90°,AC =BC =12,AM =4,∴AB =∵BD AD =15,∴AD =56AB =56×=BD =―∵△AMD ∽△DBN ,∴AM BD =AD BN ,∴BN =AD⋅BD AM =10,∴BN 的长为10.(2)解:如图2,点N 在线段CM 上,作DF ∥AC 交BC 于点F ,∵ADBD =13,∴AD =14AB =14×=BD =―设DN 与射线BC 交于点E ,∵∠A =∠B ,∠AMD =∠BDE =135°﹣∠ADM ,∴△AMD ∽△BDE ,∴AMBD=ADBE,∴BE=AD⋅BDAM=272,∴点E在BC的延长线上,此时,DE与AC交于点N,EC=BE﹣BC=272―12=32,∵CFBF=ADBD=13,∴BF=34BC=34×12=9,∴EF=BE﹣BF=272―9=92,∵∠BDF=∠A=∠B,∴FD=BF=9,∵CN∥DF,∴△ECN∽△EFD,∴CNFD=ECEF,∴CN=EC⋅FDEF=32×992=3;如图3,点N在线段AM上,作ML∥BC交AB于点L,∵ALAB=AMAC=412=13,∴AL=13AB=13×∴LD=AL﹣AD=―∵∠DLM=∠B=∠A=45°,∠MDN=45°,∴∠LDM=∠AND=135°﹣∠ADN,LM=AM=4,∴△LDM∽△AND,∴LDAN=LMAD,∴AN=LD⋅ADLM==32,∴CN=12―32=212,综上所述,CN的长是3或21 2.【点评】此题重点考查等腰直角三角形的性质、三角形内角和定理、相似三角形的性质、勾股定理、平行线分线段成比例定理等知识,证明∠AMD=∠BDE=135°﹣∠ADM,进而证明△AMD∽△BDN是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似三角形分类提高训练一、相似三角形中的动点问题1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.(1)当t为何值时,AD=AB,并求出此时DE的长度;(2)当△DEG与△ACB相似时,求t的值.2.如图,在△ABC中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒.(1)①当t=2.5s时,求△CPQ的面积;②求△CPQ的面积S(平方米)关于时间t(秒)的函数解析式;(2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值.3.如图1,在Rt△ABC中,ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分CDB交边BC于点E,EM⊥BD,垂足为M,EN⊥CD,垂足为N.(1)当AD=CD时,求证:DE∥AC;(2)探究:AD为何值时,△BME与△CNE相似?4.如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x.(1)当x为何值时,PQ∥BC?(2)△APQ与△CQB能否相似?若能,求出AP的长;若不能说明理由.5.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从A开始向点B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0<t<6)。

(1)当t为何值时,△QAP为等腰直角三角形?(2)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?二、构造相似辅助线——双垂直模型6.在平面直角坐标系xOy中,点A的坐标为(2,1),正比例函数y=kx的图象与线段OA的夹角是45°,求这个正比例函数的表达式.7.在△ABC中,AB=,AC=4,BC=2,以AB为边在C点的异侧作△ABD,使△ABD为等腰直角三角形,求线段CD的长.8.在△ABC中,AC=BC,∠ACB=90°,点M是AC上的一点,点N是BC上的一点,沿着直线MN折叠,使得点C恰好落在边AB上的P点.求证:MC:NC=AP:PB.9.如图,在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折B点落在D点的位置,且AD交y轴于点E.那么D点的坐标为()A. B. C. D.10..已知,如图,直线y=﹣2x+2与坐标轴交于A、B两点.以AB为短边在第一象限做一个矩形ABCD,使得矩形的两边之比为1﹕2。

求C、D两点的坐标。

三、构造相似辅助线——A、X字型11.如图:△ABC中,D是AB上一点,AD=AC,BC边上的中线AE交CD于F。

求证:12.四边形ABCD中,AC为AB、AD的比例中项,且AC平分∠DAB。

求证:13.在梯形ABCD中,AB∥CD,AB=b,CD=a,E为AD边上的任意一点,EF∥AB,且EF交BC于点F,某同学在研究这一问题时,发现如下事实:(1)当时,EF=;(2)当时,EF=;(3)当时,EF=.当时,参照上述研究结论,请你猜想用a、b和k表示EF的一般结论,并给出证明.14.已知:如图,在△ABC中,M是AC的中点,E、F是BC上的两点,且BE=EF=FC。

求BN:NQ:QM.15.证明:(1)重心定理:三角形顶点到重心的距离等于该顶点对边上中线长的.(注:重心是三角形三条中线的交点)(2)角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两邻边对应成比例.四、相似类定值问题16.如图,在等边△ABC中,M、N分别是边AB,AC的中点,D为MN上任意一点,BD、CD的延长线分别交AC、AB于点E、F.求证:.17.已知:如图,梯形ABCD中,AB//DC,对角线AC、BD交于O,过O作EF//AB分别交AD、BC于E、F。

求证:.18.如图,在△ABC中,已知CD为边AB上的高,正方形EFGH的四个顶点分别在△ABC上。

求证:.19.已知,在△ABC中作内接菱形CDEF,设菱形的边长为a.求证:.五、相似之共线线段的比例问题20.(1)如图1,点在平行四边形ABCD的对角线BD上,一直线过点P分别交BA,BC的延长线于点Q,S,交于点.求证:(2)如图2,图3,当点在平行四边形ABCD的对角线或的延长线上时,是否仍然成立?若成立,试给出证明;若不成立,试说明理由(要求仅以图2为例进行证明或说明);21.已知:如图,△ABC中,AB=AC,AD是中线,P是AD上一点,过C作CF∥AB,延长BP交AC于E,交CF于F.求证:BP2=PE·PF .22.如图,已知△ABC中,AD,BF分别为BC,AC边上的高,过D作AB的垂线交AB于E,交BF于G,交AC延长线于H。

求证:DE2=EG•EH23.已知如图,P为平行四边形ABCD的对角线AC上一点,过P的直线与AD、BC、CD的延长线、AB的延长线分别相交于点E、F、G、H. 求证:24.已知,如图,锐角△ABC中,AD⊥BC于D,H为垂心(三角形三条高线的交点);在AD上有一点P,且∠BPC为直角.求证:PD2=AD·DH 。

六、相似之等积式类型综合25.已知如图,CD是Rt△ABC斜边AB上的高,E为BC的中点,ED的延长线交CA于F。

求证:26如图,在Rt△ABC中,CD是斜边AB上的高,点M在CD上,DH⊥BM且与AC的延长线交于点E. 求证:(1)△AED∽△CBM;(2)27.如图,△ABC是直角三角形,∠ACB=90°,CD⊥AB于D,E是AC的中点,ED的延长线与CB的延长线交于点 F. (1)求证:. (2)若G是BC的中点,连接GD,GD与EF垂直吗?并说明理由.28.如图,四边形ABCD、DEFG都是正方形,连接AE、CG,AE与CG相交于点M,CG与AD相交于点N.求证:.29.如图,BD、CE分别是△ABC的两边上的高,过D作DG⊥BC于G,分别交CE及BA的延长线于F、H。

求证:(1)DG2=BG·CG;(2)BG·CG=GF·GH七、相似基本模型应用30.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.31.如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC、CD于点P、Q.(1)请写出图中各对相似三角形(相似比为1除外);(2)求BP:PQ:QR.32.如图,在△ABC中,AD⊥BC于D,DE⊥AB于E,DF⊥AC于F。

求证:答案: 1.答案:解:(1)∵∠ACB=90°,AC=3,BC=4 ∴AB=5又∵AD=AB,AD=5t∴t=1,此时CE=3,∴DE=3+3-5=1(2)如图当点D在点E左侧,即:0≦t≦时,DE=3t+3-5t=3-2t.若△DEG与△ACB相似,有两种情况:①△DEG∽△ACB,此时,即:,求得:t=;②△DEG∽△BCA,此时,即:,求得:t=;如图,当点D在点E右侧,即:t>时,DE=5t-(3t+3)=2t-3.若△DEG与△ACB相似,有两种情况:③△DEG∽△ACB,此时,即:,求得:t=;④△DEG∽△BCA,此时,即:,求得:t=.综上,t的值为或或或.3.答案:解:(1)证明:∵AD=CD ∴∠A=∠ACD∵DE平分CDB交边BC于点 E ∴∠CDE=∠BDE∵∠CDB为△CDB的一个外角∴∠CDB=∠A+∠ACD=2∠ACD∵∠CDB=∠CDE+∠BDE=2∠CDE∴∠ACD=∠CDE∴DE∥AC(2)①∠NCE=∠MBE ∵EM⊥BD,EN⊥CD,∴△BME∽△CNE,如图∵∠NCE=∠MBE∴BD=CD又∵∠NCE+∠ACD=∠MBE+∠A=90°∴∠ACD=∠A∴AD=CD∴AD=BD=AB∵在Rt△ABC中,ACB=90°,AC=6,BC=8 ∴AB=10∴AD=5②∠NCE=∠MEB∵EM⊥BD,EN⊥CD,∴△BME∽△ENC,如图∵∠NCE=∠MEB∴EM∥CD∴CD⊥AB∵在Rt△ABC中,ACB=90°,AC=6,BC=8 ∴AB=10∵∠A=∠A,∠ADC=∠ACB ∴△ACD∽△ABC∴∴综上:AD=5或时,△BME与△CNE相似.4.答案:解(1)由题意:AP=4x,CQ=3x,AQ=30-3x,当PQ∥BC时,,即:解得:(2)能,AP=cm或AP=20cm①△APQ∽△CBQ,则,即解得:或(舍)此时:AP=cm ②△APQ∽△CQB,则,即解得:(符合题意)此时:AP=cm故AP=cm或20cm时,△APQ与△CQB能相似.5.答案:解:设运动时间为t,则DQ=t,AQ=6-t,AP=2t,BP=12-2t.(1)若△QAP为等腰直角三角形,则AQ=AP,即:6-t=2t,t=2(符合题意)∴t=2时,△QAP为等腰直角三角形.(2)∠B=∠QAP=90°①当△QAP∽△ABC时,,即:,解得:(符合题意);②当△PAQ∽△ABC时,,即:,解得:(符合题意).∴当或时,以点Q、A、P为顶点的三角形与△ABC相似.6.答案:解:分两种情况第一种情况,图象经过第一、三象限过点A作AB⊥OA,交待求直线于点B,过点A作平行于y轴的直线交x轴于点C,过点B作BD⊥AC 则由上可知:=90°由双垂直模型知:△OCA∽△ADB ∴∵A(2,1),=45°∴OC=2,AC=1,AO=AB ∴AD=OC=2,BD=AC= 1 ∴D点坐标为(2,3)∴B点坐标为(1,3)∴此时正比例函数表达式为:y=3x 第二种情况,图象经过第二、四象限过点A作AB⊥OA,交待求直线于点B,过点A作平行于x轴的直线交y轴于点C,过点B作BD⊥AC 则由上可知:=90°由双垂直模型知:△OCA∽△ADB ∴∵A(2,1),=45°∴OC=1,AC=2,AO=AB ∴AD=OC=1,BD=AC= 2 ∴D点坐标为(3,1)∴B点坐标为(3,﹣1)∴此时正比例函数表达式为:y=x7.答案:解:情形一:情形二:情形三:8.答案:证明:方法一:连接PC,过点P作PD⊥AC于D,则PD//BC 根据折叠可知MN⊥CP ∵∠2+∠PCN=90°,∠PCN+∠CNM=90°∴∠2=∠CNM∵∠CDP=∠NCM=90°∴△PDC∽MCN∴MC:CN=PD:DC∵PD=DA∴MC:CN=DA:DC ∵PD//BC∴DA:DC=PA:PB ∴MC:CN=PA:PB 方法二:如图,过M作MD⊥AB于D,过N作NE⊥AB于 E 由双垂直模型,可以推知△PMD∽NPE,则,根据等比性质可知,而MD=DA,NE=EB,PM=CM,PN=CN,∴MC:CN=PA:PB9.答案:A解题思路:如图过点D作AB的平行线交BC的延长线于点M,交x轴于点N,则∠M=∠DNA=90°,由于折叠,可以得到△ABC≌△ADC,又由B(1,3)∴BC=DC=1,AB=AD=MN=3,∠CDA=∠B=90°∴∠1+∠2=90°∵∠DNA=90°∴∠3+∠2=90°∴∠1=∠3 ∴△DMC∽△AND,∴设CM=x,则DN=3x,AN=1+x,DM=∴3x+= 3 ∴x=∴,则。

相关文档
最新文档