初三数学 相似三角形培优练习题(含答案)
北师大版九年级数学上册 相似三角形解答题培优专题(含答案)

2019-2020相似三角形解答题培优专题(含答案)一、解答题1.如图,在Rt ABC ∆中,90B ︒∠=,6cm AB =,8cm BC =,点P 由点A 出发沿AB 方向向终点B 以每秒1cm 的速度匀速移动,点Q 由点B 出发沿BC 方向向终点C 以每秒2cm 的速度匀速移动,速度为2cm /s .如果动点同时从点A ,B 出发,当点P 或点Q 到达终点时运动停止.则当运动几秒时,以点Q ,B ,P 为顶点的三角形与ABC ∆相似?2.如图(1),已知点G 在正方形ABCD 的对角线AC 上,GE ⊥BC ,垂足为点E ,GF ⊥CD ,垂足为点F . (1)证明与推断:①求证:四边形CEGF 是正方形; ②推断:AGBE的值为 : (2)探究与证明:将正方形CEGF 绕点C 顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG 与BE 之间的数量关系,并说明理由: (3)拓展与运用:正方形CEGF 在旋转过程中,当B ,E ,F 三点在一条直线上时,如图(3)所示,延长CG 交AD 于点H .若AG=6,GH=22,则BC= .3.如图1,在Rt ABC 中,90,4,2B AB BC ∠︒===,点,D E 分别是边,BC AC 的中点,连接DE .将CDE △绕点C 逆时针方向旋转,记旋转角为α.1()问题发现①当0α=o 时,AE BD = ;②当180α=o 时,AEBD= . 2()拓展探究 试判断:当0360α︒≤︒<时,AEBD的大小有无变化?请仅就图2的情形给出证明. 3()问题解决 CDE △绕点C 逆时针旋转至,,A B E 三点在同一条直线上时,求线段BD 的长.4.在ABC ∆,CA CB =,ACB α∠=.点P 是平面内不与点A ,C 重合的任意一点.连接AP ,将线段AP 绕点P 逆时针旋转α得到线段DP ,连接AD ,BD ,CP . (1)观察猜想 如图1,当60α︒=时,BDCP的值是 ,直线BD 与直线CP 相交所成的较小角的度数是 . (2)类比探究如图2,当90α︒=时,请写出BDCP的值及直线BD与直线CP相交所成的小角的度数,并就图2的情形说明理由.(3)解决问题当90α︒=时,若点E,F分别是CA,CB的中点,点P在直线EF上,请直接写出点C,P,D在同一直线上时AD CP的值.5.如图1,在△ABC中,BA=BC,点D,E分别在边BC、AC上,连接DE,且DE=DC.(1)问题发现:若∠ACB=∠ECD=45°,则AEBD=.(2)拓展探究,若∠ACB=∠ECD=30°,将△EDC绕点C按逆时针方向旋转α度(0°<α<180°),图2是旋转过程中的某一位置,在此过程中AEBD的大小有无变化?如果不变,请求出AEBD的值,如果变化,请说明理由.(3)问题解决:若∠ACB=∠ECD=β(0°<β<90°),将△EDC旋转到如图3所示的位置时,则AEBD的值为.(用含β的式子表示)6.在矩形ABCD中,AB=4cm,BC=8cm,动点P从点A出发,以1cm/s的速度沿AB向点B运动,动点Q从点B出发,以2cm/s秒的速度沿BC向点C运动.P、Q分别从A、B同时出发,设运动时间为t秒.(如图1)(1)用含t 的代数式表示下列线段长度:①PB=__________cm,②QB=_____cm,③CQ=_________cm. (2)当△PBQ 的面积等于3 时,求t 的值.(3) (如图2),若E 为边CD 中点,连结EQ 、AQ.当以A 、B 、Q 为顶点的三角形与△EQC 相似时,直接写出满足条件的t 的所有值.7.如图l ,在ABCD 中,点M ,N 分别在边AD 和BC 上,点E ,F 在对角线BD 上,且AM CN =,12BE DF BD =<.(1)求证:四边形MENF 是平行四边形: (2)若6AB =,10BC =,8BD =.①当四边形MENF 是菱形时,AM 的长为______; ②当四边形MENF 是正方形时,BE 的长为______; ③当四边形MENF 是矩形且6AM =时,BE 的长为______.8.已知:如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB =90°,点A ,C 的坐标分别为A (﹣3,0),C (1,0),BC =34AC(1)求过点A,B的直线的函数表达式;(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m,使得△APQ与△ADB相似?如存在,请求出m的值;如不存在,请说明理由.9.已知:如图,正方形ABCD中,P是边BC上一点,BE⊥AP,DF⊥AP,垂足分别是点E、F.(1)求证:EF=AE﹣BE;(2)联结BF,如果AFBF=DFAD.求证:EF=EP.10.如图,在△ C中,过点C作CD,E是AC的中点,连接DE并延长,交AB于点F,交CB的延长线于点G,连接AD,CF.求证:四边形AFCD是平行四边形.若, C,,求AB的长.11.已知:如图,点A .F ,E .C 在同一直线上,AB ∥DC ,AB=CD ,∠B=∠D . (1)求证:△ABE ≌△CDF ;(2)若点E ,G 分别为线段FC ,FD 的中点,连接EG ,且EG=5,求AB 的长.12.如图,直线 AB 与坐标轴交与点(0,6),(8,0)A B , 动点P 沿路线O B A →→运动.(1)求直线AB 的表达式;(2)当点P 在OB 上,使得AP 平分OAB ∠时,求此时点P 的坐标;13.如图,将矩形ABCD 沿AF 折叠,使点D 落在BC 边的点E 处,过点E 作EG ∥CD 交AF 于点G ,连接DG . (1)求证:四边形EFDG 是菱形; (2) 求证:21=2EG AF GF ⋅; (3)若AG=6,EG=25,求BE 的长.14.如图,在△ABC 中.AC=BC=5.AB=6.CD 是AB 边中线.点P 从点C 出发,以每秒2.5个单位长度的速度沿C-D-C 运动.在点P 出发的同时,点Q 也从点C 出发,以每秒2个单位长度的速度沿边CA 向点A 运动.当一个点停止运动时,另一个点也随之停止,设点P 运动的时间为t 秒.(1)用含t 的代数式表示CP 、CQ 的长度. (2)用含t 的代数式表示△CPQ 的面积.(3)当△CPQ 与△CAD 相似时,直接写出t 的取值范围.15.如图,AB ⊥BC ,DC ⊥BC ,垂足分别为B.C ,且AB=8,DC=6,BC=14,BC 上是否存在点P 使△ABP 与△DCP 相似?若有,有几个?并求出此时BP 的长,若没有,请说明理由.16.如图,正方形ABCD ,点P 为射线DC 上的一个动点,点Q 为AB 的中点,连接,PQ DQ ,过点P 作PE DQ 于点E .(1)请找出图中一对相似三角形,并证明;(2)若4AB ,以点,,P E Q 为顶点的三角形与ADQ △相似,试求出DP 的长.17.如图,正方形 ABCD 的边长为 8,E 是 BC 边的中点,点 P 在射线 AD 上, 过 P 作 PF ⊥AE 于 F .(1)请判断△PFA 与△ABE 是否相似,并说明理由;(2)当点 P 在射线 AD 上运动时,设 PA =x ,是否存在实数 x ,使以 P ,F ,E 为顶 点的三角形也与△ABE 相似?若存在,请求出 x 的值;若不存在,说明理由.18.已知:如图,△ABC 是等边三角形,点D 、E 分别在BC ,AC 且BD =CE ,AD 、BE 相交于点M ,求证:(1)△AME ∽△BAE ;(2)BD 2=AD×DM . 19.△ABC 中,AB =AC =5,BC =6,过AB 上一点D 作DE‖ C ,D ‖ C 分别交AC 、BC 于点E 和F(1)如图1,证明:△ADE∽△DBF;(2)如图1,若四边形DECF是菱形,求DE的长;(3)如图2,若以D、E、F为顶点的三角形与△BDF相似,求AD的长.20.如图,在矩形ABCD中,点E是AD的中点,连结BE,且BE⊥AC交AC于点F.(1)求证:△EAB∽△ABC;(2)若AD=2,求AB的长;(3)在(2)的条件下,求DF的长.21.如图,正方形ABCD中,M为BC上一点,F是AM上一点,EF⊥AM,垂足为F,交AD延长线于点E,交DC 于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=6,F为AM的中点,求DN的长;(3)若AB =12,DE =1,BM =5,求DN 的长.22.如图,在△ABC 中,AD 平分∠BAC ,按如下步骤作图:第一步,分别以点A 、D 为圆心,以大于12AD 的长为半径在AD 两侧作弧,交于两点M 、N ; 第二步,连接MN 分别交AB 、AC 于点E 、F ; 第三步,连接DE 、DF .若BD =6,AF =4,CD =3,求线段BE 的长.23.教材呈现:如图是华师版九年级上册数学教材第78页的部分内容.例2 如图,在ABC ∆中,,D E 分别是边,BC AB 的中点,,AD CE 相交于点G ,求证:13GE GD CE AD ==, 证明:连结ED .请根据教材提示,结合图①,写出完整的证明过程.结论应用:在ABCD 中,对角线AC BD 、交于点O ,E 为边BC 的中点,AE 、BD 交于点F . (1)如图②,若ABCD 为正方形,且6AB =,则OF 的长为 . (2)如图③,连结DE 交AC 于点G ,若四边形OFEG 的面积为12,则ABCD 的面积为 .24.正方形ABCD的边长为4,M,N分别是BC,CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直.(1)证明:△ABM∽△MCN;(2)若△ABM的周长与△MCN周长之比是4:3,求NC的长.25.如图,在△ABC中,AB=8,BC=16,点P从点A开始沿AB向点B以2m/s的速度移动,点Q从点B开始沿BC向点C以4m/s的速度移动,如果P,Q分别从AB,BC同时出发,经过几秒△PBQ与△ABC相似?26.如图,矩形ABCD中,AB=20,BC=10,点P为AB边上一动点,DP交AC于点Q.(1)求证:△APQ∽△CDQ;(2)P点从A点出发沿AB边以每秒1个单位长度的速度向B点移动,移动时间为t秒.当t为何值时,DP⊥AC?27.如图,在Rt△ABC中,∠ACB=90°,BC mAC n,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.(1)探究发现:如图1,若m=n,点E在线段AC上,则DEDF=;(2)数学思考:①如图2,若点E在线段AC上,则DEDF=(用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否仍然成立?请仅就图3的情形给出证明;(3)拓展应用:若AC=,BC=2,DF=4,请直接写出CE的长.28.如图,已知△ABC是边长为6cm的等边三角形,动点P,Q同时从B,A两点出发,分别沿BA,AC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P,Q两点都停止运动,设运动时间为t(s),解答下列问题:(1)如图①,当t为何值时,AP=3AQ;(2)如图②,当t为何值时,△APQ为直角三角形;(3)如图③,作QD∥AB交BC于点D,连接PD,当t为何值时,△BDP与△PDQ相似?29.如图,在△ABC中,∠C=90°,点D是边AB上的动点,过点D作DE∥BC交AC于E,过E作EF∥AB交BC 于F,连结DF.(1)若点D是AB的中点,证明:四边形DFEA是平行四边形;(2)若AC=8,BC=6,直接写出当△DEF为直角三角形时AD的长.30.如图,四边形ABCD中,AC平分∠DAB,AC2=AB•AD,∠ADC=90°,E为AB的中点.(1)求证:△ADC∽△ACB;(2)CE与AD有怎样的位置关系?试说明理由;(3)若AD=4,AB=6,求的值.31.(1)观察发现:如图1,在Rt△ABC中,∠B=90°,点D在边AB上,过D作DE∥BC交AC于E,AB=5,AD =3,AE=4.填空:①△ABC与△ADE是否相似?(直接回答);②AC=;DE=.(2)拓展探究:将△ADE绕顶点A旋转到图2所示的位置,猜想△ADB与△AEC是否相似?若不相似,说明理由;若相似,请证明.(3)迁移应用:将△ADE绕顶点A旋转到点B、D、E在同一条直线上时,直接写出线段BE的长.32.如图1,一次函数y=12x+4与x轴、y轴分别交于A,B两点.P是x轴上的动点,设点P的横坐标为n.(1)当△BPO∽△ABO时,求点P的坐标;(2)如图2,过点P的直线y=2x+b与直线AB相交于C,求当△P AC的面积为20时,点P的坐标;(3)如图3,直接写出当以A,B,P为顶点的三角形为等腰三角形时,点P的坐标.33.如图,在平面直角坐标系中,△ABC的顶点A在x轴负半轴上,顶点C在x轴正半轴上,顶点B在第一象限,线段OA,OC的长是一元二次方程x2-12x+36=0的两根,BC=45,∠BAC=45°.(1)直接写出点A的坐标________点C的坐标________;(2)若反比例函数y=kx的图象经过点B,求k的值;(3)如图过点B作BD⊥y轴于点D;在y轴上是否存在点P,使以P,B,D为顶点的三角形与以P,O,A为顶点的三角形相似?若存在,直接写出满足条件的点P的坐标;若不存在,请说明理由.34.感知:如图①,在四边形ABCD中,AB∥CD,∠B=90°,点P在BC边上,当∠APD=90°时,可知△ABP∽△PCD.(不要求证明)探究:如图②,在四边形ABCD中,点P在BC边上,当∠B=∠C=∠APD时,求证:△ABP∽△PCD.拓展:如图③,在△ABC中,点P是边BC的中点,点D、E分别在边AB、AC上.若∠B=∠C=∠DPE=45°,BC=6 2,CE=4,则DE的长为______.35.已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A、C的横坐标是一元二次方程x2+2x-3=0的两根(AO>OC),直线AB与y轴交于D,D点的坐标为9 04⎛⎫ ⎪⎝⎭,(1)求直线AB的函数表达式;(2)在x轴上找一点E,连接EB,使得以点A、E、B为顶点的三角形与△ABC相似(不包括全等),并求点E的坐标;(3)在(2)的条件下,点P、Q分别是AB和AE上的动点,连接PQ,点P、Q分别从A、E同时出发,以每秒1个单位长度的速度运动,当点P到达点B时,两点停止运动,设运动时间为t秒,问几秒时以点A、P、Q为顶点的三角形与△AEB相似.参考答案1.当运动2.4秒或1811秒时,以点Q ,B ,P 为顶点的三角形与ABC ∆相似 【解析】 【分析】设t 秒后,以Q ,B ,P 为顶点的三角形与△ABC 相似;则PB =(6−t )cm ,BQ =2tcm ,分两种情况:①当PB BQAB BC=时;②当BP BQBC BA=时;分别解方程即可得出结果. 【详解】解:设(04)t t <…秒后,以点Q ,B ,P 为顶点的三角形与ABC ∆相似,则(6)cm PB t =-,2cm BQ t =.∵90B ︒∠=,∴分两种情况讨论:①当PBQ ABC ∆∆∽时,PB BQ AB BC =,即6268t t-=,解得 2.4t =; ②当QBP ABC ∆∆∽时,BP BQBC BA=,即6286t t -=,解得1811t =. 综上所述,当运动2.4秒或1811秒时,以点Q ,B ,P 为顶点的三角形与ABC ∆相似. 【点睛】本题考查了相似三角形的判定方法、解方程;熟练掌握相似三角形的判定方法,分两种情况进行讨论是解决问题的关键.2.(1)①四边形CEGF 是正方形;②2;(2)线段AG 与BE 之间的数量关系为AG=2BE ;(3)35 【解析】 【分析】(1)①由GE BC ⊥、GF CD ⊥结合BCD 90∠=可得四边形CEGF 是矩形,再由ECG 45∠=即可得证;②由正方形性质知CEG B 90∠∠==、ECG 45∠=,据此可得CG2CE=、GE //AB ,利用平行线分线段成比例定理可得;(2)连接CG ,只需证ACG ∽△BCE 即可得; (3)证AHG ∽CHA 得AG GH AH AC AH CH ==,设BC CD AD a ===,知AC 2a =,由AG GHAC AH=得2AH a 3=、1DH a 3=、10CH a 3=,由AG AH AC CH =可得a 的值. 【详解】(1)①∵四边形ABCD 是正方形, ∴∠BCD=90°,∠BCA=45°, ∵GE ⊥BC 、GF ⊥CD , ∴∠CEG=∠CFG=∠ECF=90°,∴四边形CEGF 是矩形,∠CGE=∠ECG=45°, ∴EG=EC ,∴四边形CEGF 是正方形; ②由①知四边形CEGF 是正方形, ∴∠CEG=∠B=90°,∠ECG=45°,∴2CGCE=,GE ∥AB , ∴2AG CGBE CE==, 故答案为:2; (2)连接CG ,由旋转性质知∠BCE=∠ C =α, 在Rt △CEG 和Rt △CBA 中,CE CG =22、CB CA =22, ∴CG CE =2CACB=, ∴△ACG ∽△BCE ,∴2AG CABE CB==, ∴线段AG 与BE 之间的数量关系为AG=2BE ; (3)∵∠CEF=45°,点B 、E 、F 三点共线, ∴∠BEC=135°, ∵△ACG ∽△BCE , ∴∠AGC=∠BEC=135°, ∴∠AGH=∠CAH=45°, ∵∠CHA=∠AHG , ∴△AHG ∽△CHA , ∴AG GH AHAC AH CH==, 设BC=CD=AD=a ,则AC=2a ,则由AG GHAC AH=得6222AHa=,∴AH=23 a,则DH=AD﹣AH=13a,CH=22CD DH+=103a,∴由AG AHAC CH=得2632103aaa=,解得:a=35,即BC=35,故答案为:35.【点睛】本题考查了正方形的性质与判定,相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线,熟练掌握正方形的判定与性质、相似三角形的判定与性质是解题的关键.3.(1)①5;②5;(2) 5;(3) 35 5【解析】【分析】(1)①根据勾股定理和三角形中位线的性质,即可得到答案;②根据平行线的性质即可得到答案;(2)根据相似三角形的性质和判定即可得到答案;(3) 根据勾股定理即可得到答案.【详解】解:()1①当0α︒=时,Rt ABC Q V 中,90B ∠︒=,22222425AC AB BC ∴++===,点,D E 分别是边,BC AC 的中点,115122AE AC BD BC ∴==,==,5AEBD∴=. ②如图1﹣1中,当180α︒=时, 可得//AB DE ,AC BCAE BD =Q , 5AE ACBD BC∴==. 故答案为:55①,②. 2()如图2,当0360α︒≤︒<时,AEBD的大小没有变化, ECD ACB ∠∠Q =, ECA DCB ∴∠∠=,又5EC ACDC BC==Q, ECA DCB ∴V V ∽,5AE ECED DC∴==. ()3①如图3﹣1中,当点E 在AB 的延长线上时,在Rt BCE V 中,5,2CE BC ==,22541BE EC BC ∴--===,5AE AB BE ∴+==,5AEBD=Q, 555BD ∴==.②如图3﹣2中,当点E 在AB 线段上时,易知1,413BE AE -===, 5AEBD=Q, 355BD ∴=, 综上所述,满足条件的BD 的长为355. 【点睛】本题考查勾股定理、三角形中位线的性质、平行线的性质和相似三角形的性质和判定,解题的关键熟练掌握勾股定理、三角形中位线的性质、平行线的性质和相似三角形的性质和判定. 4.(1)1,60︒(2)45°(3)22-,22+ 【解析】 【分析】(1)如图1中,延长CP 交BD 的延长线于E ,设AB 交EC 于点O .证明()CAP BAD SAS ∆≅∆,即可解决问题. (2)如图2中,设BD 交AC 于点O ,BD 交PC 于点E .证明DABPAC ∆∆,即可解决问题.(3)分两种情形:①如图3﹣1中,当点D 在线段PC 上时,延长AD 交BC 的延长线于H .证明AD DC =即可解决问题.②如图3﹣2中,当点P 在线段CD 上时,同法可证:DA DC =解决问题.【详解】解:(1)如图1中,延长CP 交BD 的延长线于E ,设AB 交EC 于点O .60PAD CAB ︒∠=∠=,CAP BAD ∴∠=∠,CA BA =,PA DA =,()CAP BAD SAS ∴∆≅∆, PC BD ∴=,ACP ABD ∠=∠, AOC BOE ∠=∠,60BEO CAO ︒∴∠=∠=,1BDPC∴=,线BD 与直线CP 相交所成的较小角的度数是60︒, 故答案为1,60︒.(2)如图2中,设BD 交AC 于点O ,BD 交PC 于点E .45PAD CAB ︒∠=∠=, PAC DAB ∴∠=∠,2AB ADAC AP ==, DABPAC ∴∆∆,PCA DBA ∴∠=∠,2BD ABPC AC==, EOC AOB ∠=∠,45CEO OAB ︒∴∠=∠=,∴直线BD 与直线CP 相交所成的小角的度数为45︒.(3)如图3﹣1中,当点D 在线段PC 上时,延长AD 交BC 的延长线于H .CE EA =,CF FB =,EF AB ∴∥,45∴∠=∠=,EFC ABC︒PAO︒∠=,45∴∠=∠,PAO OFH∠=∠,POA FOH∴∠=∠,H APO=,90∠=,EA ECAPC︒∴==,PE EA ECEPA EAP BAH∴∠=∠=∠,∴∠=∠,H BAH∴=,BH BA∠=∠=,ADP BDC︒45∴∠=,90ADB︒∴⊥,BD AHDBA DBC︒∴∠=∠=,22.5ADB ACB︒∠=∠=,90∴A,D,C,B四点共圆,DCA ABD︒∠=∠=,DAC DBC︒∠=∠=,22.522.5∴∠=∠=,22.5DAC DCA︒DA DC ∴=,设=AD a ,则DC AD a ==,22PD a =, 2222ADa CPa a∴==-+c .如图3﹣2中,当点P 在线段CD 上时,同法可证:=DA DC ,设=AD a ,则CD AD a ==,22PD a =,22PC a a ∴=-, 2222ADa PCa a∴==+-.【点睛】本题属于相似形综合题,考查了旋转变换,等边三角形的性质,等腰直角三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.5.(1)2;(2)此过程中AE BD 的大小有变化,3AEBD=(3)2 osβ 【解析】 【分析】1)如图1,过E 作EF ⊥AB 于F ,根据等腰三角形的性质得到∠A=∠C=∠DEC=45°,于是得到∠B=∠EDC=90°,推出四边形EFBD 是矩形,得到EF=BD ,推出△AEF 是等腰直角三角形,根据等腰直角三角形的性质得到结论; (2)根据等腰三角形的性质得到∠ACB=∠CAB=∠ECD=∠CED=30°,根据相似三角形的判定和性质即可得到结论; (3)根据等腰三角形的性质得到∠ACB=∠CAB=∠ECD=∠CED=β,根据相似三角形的性质得到BC ACDC CE=,即BC DCAC EC =,根据角的和差得到∠ACE=∠BCD ,求得△ACE ∽△BCD ,证得AE AC BD BC=,过点B 作BF ⊥AC 于点F ,则AC=2CF ,根据相似三角形的性质即可得到结论. 【详解】解:(1)如图1,过E 作EF ⊥AB 于F ,∵BA=BC ,DE=DC ,∠ACB=∠ECD=45°, ∴∠A=∠C=∠DEC=45°, ∴∠B=∠EDC=90°, ∴四边形EFBD 是矩形, ∴EF=BD , ∴EF ∥BC ,∴△AEF 是等腰直角三角形,∴2BD EFAE AE==, 故填:2,(2)此过程中AEBD的大小有变化, 由题意知,△ABC 和△EDC 都是等腰三角形, ∴∠ACB=∠CAB=∠ECD=∠CED=30°, ∴△ABC ∽△EDC ,∴BC AC DC CE =,即BC DCAC EC=, 又∠ECD+∠ECB=∠ACB+∠ECB , ∴∠ACE=∠BCD , ∴△ACE ∽△BCD ,∴AE ACBD BC=, 在△ABC 中,如图2,过点B 作BF ⊥AC 于点F ,则AC=2CF ,在Rt △BCF 中,3cos302CF BC BC ︒=⋅=, ∴AC=3BC .∴3AE ACBD BC==; (3)由题意知,△ABC 和△EDC 都是等腰三角形,且∠ACB=∠ECD=β, ∴∠ACB=∠CAB=∠ECD=∠CED=β, ∴△ABC ∽△EDC ,∴BC AC DC CE =,即BC DCAC EC=, 又∠ECD+∠ECB=∠ACB+∠ECB , ∴∠ACE=∠BCD ,∴△ACE∽△BCD,∴AE AC BD BC=,在△ABC中,如图3,过点B作BF⊥AC于点F,则AC=2CF,在Rt△BCF中,C = C• osβ,∴ C=2 C osβ.∴AE ACBD BC==2 osβ,故答案为2 osβ.【点睛】本题考查了相似形的综合题、等腰直角三角形的性质、等腰三角形的性质、锐角三角函数、相似三角形的判定和性质等知识,解题的关键是灵活运用相似三角形的判定和性质解决问题,属于中考常考题型.6.(1)PB=4-t;QB=2t;CQ=8-2t;(2)1或3;(3)或或.【解析】【分析】(1)根据题意写出结果即可;(2)利用三角形的面积公式列方程求解即可;(3)根据相似三角形的性质,分两种情况列式求解即可.【详解】(1)由题意得,①PB=4-t;②QB=2t;③CQ=8-2t;(2)∵△PBQ的面积等于3,∴2t(4-t)=3×2,解之得,t=1或3;(3)当△ABQ~△QCE时,,∴,解之得,x1=,x2=;当△ABQ~△ECQE时,,∴,解之得,t=.∴满足条件的t的所有值为或或.【点睛】本题考查了列代数式,一元二次方程的应用,相似三角形的性质及分类讨论的数学思想,熟练掌握分类讨论的数学思想是解答本题的关键. 相似三角形的性质:如果两个三角形相似,那么它们的对应角相等,对应边的比,对应高的比,对应中线的比,对应角平分线的比,对应周长的比都等于相似比;它们对应面积的比等于相似比的平方.7.(1)证明见解析,(2)①5.②1.③41045 .【解析】【分析】(1)如图1中,设BD 的中点为O .连接AC ,AN ,CM ,MN .利用对角线互相平分的四边形是平行四边形证明即可.(2)①如图21-中,连接MN 交BD 于点O ,当MN BD ⊥时,四边形MENF 是菱形.利用平行线等分线段定理即可解决问题.②在①的基础上,OE OM =时,四边形MENF 是正方形.③如图32-中,连接MN 交BD 于点O ,作MH BD ⊥于H .当OE OF OM ON ===时,四边形MENF 是矩形. 【详解】(1)证明:如图1中,设BD 的中点为O .连接AC ,AN ,CM ,MN .四边形ABCD 是平行四边形, AC ∴与BD 互相平分且交于点O ,//AMCN ,AM CN =,∴四边形ANCM 是平行四边形,AC ∴与MN 互相平分且交于点O ,OM ON ∴=,OB OD =,BE DF =,OE OF ∴=,∴四边形MENF 是平行四边形.(2)①如图21-中,连接MN 交BD 于点O ,当MN BD ⊥时,四边形MENF 是菱形.6AB CD ==,10AD BC ==,8BD =, 222AD AB BD ∴=+,90ABD ∴∠=︒,90MOF ABD ∴∠=∠=︒,//OM AB ∴, OB OD =, 5AM DM ∴==.②在①的基础上,满足OM OE =时,四边形MENF 是正方形, 易知132OM AB ==, 3OE OF ∴==, 8BD =,1·(86)12BE DF ∴==-=.③如图32-中,连接MN 交BD 于点O ,作MH BD ⊥于H .//MH AB ,:::MH AB DM DA DH DB ∴== :64:10:8MH DH ∴==,125MH ∴=,165DH =, 164455OH ∴=-=, 224105OM MH OH ∴=+=, 当OE OF OM ON ===时,四边形MENF 是矩形,1810410(8)4255BE DF ∴==-=-. 故答案为:5,1,41045-. 【点睛】本题属于四边形综合题,考查了平行四边形的性质,矩形的判定,菱形的判定,正方形的判定,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.8.(1)y =34x +94;(2)D 点位置见解析,D (134,0);(3)符合要求的m 的值为12536或259.【解析】 【分析】(1)先根据A(−3,1),C(1,0),求出AC进而得出BC=3求出B点坐标,利用待定系数法求出直线AB的解析式即可;(2)运用相似三角形的性质就可求出点D的坐标;(3)由于△APQ与△ADB已有一组公共角相等,只需分△APQ∽△ABD和△APQ∽△ADB两种情况讨论,然后运用相似三角形的性质建立关于m的方程,就可解决问题.【详解】解:(1)∵A(﹣3,0),C(1,0),∴AC=4,∵BC=34 AC,∴BC=34×4=3,∴B(1,3),设直线AB的解析式为y=kx+b,∴303k bk b-+=⎧⎨+=⎩,∴3494kb⎧=⎪⎪⎨⎪=⎪⎩,∴直线AB的解析式为y=34x+94;(2)若△ADB与△ABC相似,过点B作BD⊥AB交x轴于D,∴∠ABD=∠ACB=90°,如图1,此时ABAC=ADAB,即AB2= C• D.∵∠ACB=90°,AC=4,BC=3,∴AB=5,∴25=4AD,∴AD=25 4,∴OD=AD﹣AO=254﹣3=134,∴点D的坐标为(134,0);(3)∵AP=DQ=m,∴AQ=AD﹣QD=254﹣m.Ⅰ、若△APQ∽△ABD,如图2,则有APAB=AQAD,∴ P• D= • Q,∴254m=5(254﹣m),解得m=25 9;Ⅱ、若△APQ∽△ADB,如图3,则有APAD=AQAB,∴ P• = D• Q,∴5m=254(254﹣m),解得:m=125 36,综上所述:符合要求的m的值为12536或259.【点睛】此题是相似形综合题,主要考查了是待定系数法,相似三角形的判定与性质、勾股定理等知识,也考查了分类讨论的数学思想,属于中档题,解本题的关键是根据相似建立方程求解.9.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)利用正方形的性质得AB=AD ,∠BAD=90°,根据等角的余角相等得到∠1=∠3,则可判断△ABE ≌△DAF ,则BE=AF ,然后利用等线段代换可得到结论;(2)利用AF DF BF AD =和AF=BE 得到BE BFDF AD=,则可判定Rt △BEF ∽Rt △DFA ,所以∠4=∠3,再证明∠4=∠5,然后根据等腰三角形的性质可判断EF=EP .【详解】(1)∵四边形ABCD 为正方形,∴AB=AD ,∠BAD=90°, ∵BE ⊥AP ,DF ⊥AP , ∴∠BEA=∠AFD=90°, ∵∠1+∠2=90°,∠2+∠3=90°, ∴∠1=∠3, 在△ABE 和△DAF 中12BEA AFDAB DA ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△DAF , ∴BE=AF ,∴EF=AE ﹣AF=AE ﹣BE ;(2)如图,∵AF DFBF AD=, 而AF=BE ,∴BE DFBF AD =, ∴BE BFDF AD=, ∴Rt △BEF ∽Rt △DFA ,∴∠4=∠3,而∠1=∠3,∴∠4=∠1,∵∠5=∠1,∴∠4=∠5,即BE平分∠FBP,而BE⊥EP,∴EF=EP.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质,熟练掌握相关的性质与定理、正确添加辅助线是解题的关键.10.证明见解析;.【解析】【分析】由E是AC的中点知 E CE,由CD知 E CDE,据此根据“ S”即可证△ E ≌△CED,从而得CD,结合CD即可得证;证△∽△ CD得,据此求得CD,由CD及可得答案.C CD【详解】E是AC的中点,E CE , CD , E CDE , 在△ E 和△CED 中, ,△ E ≌△CED S , CD ,又 CD ,即 CD , 四边形AFCD 是平行四边形; CD , △ ∽△ CD ,CCD,即CD,解得:CD,四边形AFCD 是平行四边形, CD,. 【点睛】本题考查了平行四边形的判定与性质,全等三角形的判定与性质,相似三角形的判定与性质,熟练掌握相关的性质及定理是解题的关键.11.(1)证明见解析;(2)AB=10.【解析】分析:(1)根据平行线的性质得出∠A=∠C,进而利用全等三角形的判定证明即可;(2)利用全等三角形的性质和中点的性质解答即可.详解:(1)证明:∵AB∥DC,∴∠A=∠C,在△ABE与△CDF中===,∴△ABE≌△CDF(ASA);(2)∵点E,G分别为线段FC,FD的中点,∴ED=CD,∵EG=5,∴CD=10,∵△ABE≌△CDF,∴AB=CD=10.点睛:此题考查全等三角形的判定和性质,关键是根据平行线的性质得出∠A=∠C.12.(1)y=34x+6;(2)P(3,0).【解析】【分析】1)直接利用待定系数法即可得出结论;(2)方法1、利用角平分线判断出BC=AB=10,进而判断出△AOP∽△CBP,求出OP,即可得出结论;方法2、先判断出OP=PM,设OP=m,得出PM=m,BP=8-m,再求出AM=OA=6,进而得出BM=AB-AM=4,最后用勾股定理建立方程求解即可得出结论.【详解】解:(1)设直线AB的解析式为y=kx+b,∵A(0,6),B(8,0),∴680bk b⎧⎨+⎩==,∴346kb⎧=-⎪⎨⎪=⎩,∴直线AB的解析式为y=34-x+6;(2)方法1、如图1,∵A(0,6),B(8,0),∴OA=6,OB=8,AB=10,过点B作BC∥OA交AP的延长线于C,∴∠C=∠OAP,∵AP平分∠OAB,∴∠OAP=∠BAP,∴∠C=∠BAP,∴BC=AB=10,∵BC∥OA,∴△AOP∽△CBP,∴OP OA=BP BC=35,∴OP3=OB8,∴OP=3,∴P(3,0);方法2、如图3,过点P作PM⊥AB于M,∵AP是∠OAB的角平分线,∴OP=PM,设OP=m,∴PM=m,∴BP=OB-OP=8-m易知,△AOP≌△AMP,∴AM=OA=6,∴BM=AB-AM=4,在Rt△BMP中,根据勾股定理得,m2+16=(8-m)2,∴m=3,∴P(3,0).故答案为:(1)y=34x+6;(2)P(3,0).【点睛】本题是一次函数综合题,主要考查了待定系数法,角平分线的定义,相似三角形的判定和性质,正确作出辅助线构造出相似三角形是解题的关键.13.(1)证明见解析;(2)证明见解析;(3)BE的长为125 5.【解析】(1)先依据翻折的性质和平行线的性质证明∠DGF=∠DFG,从而得到GD=DF,接下来依据翻折的性质可证明DG=GE=DF=EF;(2)连接DE,交AF于点O.由菱形的性质可知GF⊥DE,OG=OF=12GF,接下来,证明△DOF∽△ADF,由相似三角形的性质可证明D 2= O• ,于是可得到GE、AF、FG的数量关系;(3)过点G作GH⊥DC,垂足为H.利用(2)的结论可求得FG=4,然后再△ADF中依据勾股定理可求得AD的长,然后再证明△FGH∽△FAD,利用相似三角形的性质可求得GH的长,最后依据BE=AD﹣GH求解即可.解:(1)证明:∵GE∥DF,∴∠EGF=∠DFG.∵由翻折的性质可知:GD=GE,DF=EF,∠DGF=∠EGF,∴∠DGF=∠DFG.∴GD=DF.∴DG=GE=DF=EF.∴四边形EFDG为菱形.“点睛”本题考查的是四边形与三角形的综合应用,解题应用了矩形的性质,菱形的性质和判定、相似三角形的判定和性质,掌握矩形的性质定理和相似三角形的判定定理、性质定理是解题的关键.14.(1)当0<t≤85时,CP=2.5t,CQ=2t;当8552t<≤时,CP=8-2.5t,CQ=2t.(2)当0<t≤85时,S△CPQ=12•PC•sin∠ CD•CQ=12×2.5t×35×2t=232t;当8552t<≤时,S△CPQ=12•PC•sin∠ CD•CQ=1 2×(8-2.5t)×35×2t=232425t t-+.(3)0<t≤85或80t41=s【解析】【分析】(1)分两种情形:当0<t≤85时,当85<t52≤时,分别求解即可.(2)分两种情形:当0<t≤85时,当85<t≤52时,根据S△CPQ=12•PC•sin∠ CD•CQ分别求解即可.(3)分两种情形:当0<t≤85,可以证明△QCP∽△DCA,当85<t52≤,∠QPC=90°时,△QPC∽△ADC,构建方程求解即可.【详解】解:(1)∵CA=CB,AD=BD=3,∴CD⊥AB,∴∠ADC=90°,∴CD=22AC AD-=2253-=4,当0<t≤85时,CP=2.5t,CQ=2t,当85t52<≤时,CP=8-2.5t,CQ=2t.(2)∵sin∠ACD=ADAC=35,∴当0<t≤85时,S△CPQ=12•PC•sin∠ CD•CQ=12×2.5t×35×2t=23t2当85t52<≤时,S△CPQ=12•PC•sin∠ CD•CQ=12×(8-2.5t)×35×2t=2324t t25-+.(3)①当0<t≤85时,∵CP=2.5t,CQ=2t,∴CQCP=45,∵CDCA=45,∴CQ CD CP CA=,∵∠PCQ=∠ACD,∴△QCP ∽△DCA ,∴0<t≤85时,△QCP ∽△DCA , ②当85t 52<≤时,当∠QPC=90°时,△QPC ∽△ADC , ∴CP CQ CD CA =, ∴8 2.5t 2t 45-=, 解得:80t 41=, 综上所述,满足条件的t 的值为:0<t≤85或80t 41=s 时,△QCP ∽△DCA . 【点睛】本题属于相似形综合题,考查了相似三角形的判定和性质,解直角三角形的应用等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.15.BC 上存在两个点P ,BP=6或8使△ABP 与△DCP 相似. 【解析】 【分析】设BP=x ,表示出PC=14-x ,然后分BP 与CP 是对应边,BP 与DC 是对应边两种情况,利用相似三角形对应边成比例列式求解即可. 【详解】设BP=x ,则PC=14−x ,BP 与CP 是对应边时,=BP ABCP DC, 即8146x x =-,解得x=8,BP 与DC 是对应边时,=BP ABDC CP, 即8=614x x-, 解得x1=6,x2=8,所以,BC 上存在两个点P ,BP=6或8使△ABP 与△DCP 相似. 【点睛】此题考查相似三角形的判定,解题关键在于根据相似三角形的性质对应边成比例列出方程. 16.(1)DPE QDA ∽,见解析;(2)2DP =或5DP =. 【解析】 【分析】(1)通过等角转换,可得出三角相等,即可判定DPE QDA ∽;(2)首先根据已知条件求出DQ ,由三角形相似的性质,列出方程,即可得解,注意分两种情况讨论. 【详解】(1)DPE QDA ∽根据已知条件,得∠DAQ=∠PED=90° 又∵∠ADQ+∠PDE=∠DPE+∠PDE=90° ∴∠ADQ =∠DPE ,∠AQD=∠PDE ∴DPE QDA ∽(2)由已知条件,得22224225DQ AD AQ =+=+=设DE 为x ∵DPE QDA ∽∴DA PEAQ DE= ∴PE 为2x ∵PEQADQ △△∴分两种情况:①AQ DAPE EQ = 即24225x x=- 解得255x =∴()2222DP x x =+=②AQ DAEQ PE= 即24225xx =- 解得5x =()2225DP x x =+=【点睛】此题主要考查三角形相似的性质,熟练掌握,即可解题.17.(1)见解析;(2)存在,x的值为2或5.【解析】【分析】(1)在△PFA与△ABE中,易得∠PAF=∠AEB及∠PFA=∠ABE=90°;故可得△PFA∽△ABE;(2)根据题意:若△EFP∽△ABE,则∠PEF=∠EAB;必须有PE∥AB;分两种情况进而列出关系式.【详解】(1)证明:∵AD∥BC,∴∠PAF=∠AEB.∵∠PFA=∠ABE=90°,∴△PFA∽△ABE.(2)若△EFP∽△ABE,则∠PEF=∠EAB.如图,连接PE,DE,∴PE∥AB.∴四边形ABEP为矩形.∴PA=EB=2,即x=2.如图,延长AD至点P,作PF⊥AE于点F,连接PE, 若△PFE∽△ABE,则∠PEF=∠AEB.∵∠PAF=∠AEB,∴∠PEF=∠PAF.∴PE=PA.∵PF⊥AE,∴点F为AE的中点.∵AE=22=25AB BE,∴EF=12AE=5.∵5==225,PE EF PEAE EB,即,∴PE=5,即x=5.∴满足条件的x的值为2或5.【点睛】此题考查正方形的性质,相似三角形的判定,解题关键在于作辅助线. 18.(1)见解析;(2)见解析.【解析】【分析】。
初三数学-相似三角形培优练习题(含答案)

(3题图)EDC B ADBCA NM O相似三角形练习题1、如图1,当四边形PABN 的周长最小时,a = .2、如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x ,那么x 的值( )A .只有1个B .可以有2个C .有2个以上但有限D .有无数个3、如图3,等腰ABC ∆中,底边BC=a ,A ∠=036,ABC ∠的平分线交AC 于D ,BCD ∠的平分线交BD 于E ,设512k =,则DE=( ) A 、2K a B 、3K a C 、2akD 、3a k4、如图4,菱形ABCD 中,对角线AC 、BD 相交于点O ,M 、N 分别是边AB 、AD 的中点,连接OM 、ON 、MN ,则下列叙述正确的是( )A .△AOM 和△AON 都是等边三角形B .四边形MBON 和四边形MODN 都是菱形C .四边形AMON 与四边形ABCD 是位似图形 D .四边形MBCO 和四边形NDCO 都是等腰梯形5、如图5将放置于平面直角坐标系中的三角板AOB 绕O 点顺时针旋转90°得△A′OB′.已知∠AOB =30°,∠B =90°,AB =1,则B′点的坐标为( ) A .33()22 B .33(22, C .13(22, D .31()226、如图小正方形的边长均为1,则下列图中的三角形(阴影部分)与ABC △相似的是( )y xP (a ,0) N (a +2,0)A (1,-3)(1题图) B (4,-1)O图 4 图 5FED CBA E FADCB7、如图7,梯形ABCD 中,AD BC ∥,点E 在BC 上,AE BE =,点F 是CD 的中点,且AF AB ⊥,若2.746AD AF AB ===,,,则CE 的长为 A .2231 C. 2.5 D. 2.3(7题图)8、如图8,在ABC △中,AB AC =,点E F 、分别在AB 和AC 上,CE 与BF 相交于点D ,若AE CF D =,为BF 的中点,AE AF :的值为___________.9、如图9,已知ABC ∆,延长BC 到D ,使CD=BC 取AB 的中点F,连接FD 交AC 于点E 。
九年级数学相似三角形练习题及答案

相似三角形练习题1、如图,当四边形PABN 的周长最小时,a =.2、如图,等腰三角形 ABC 的边AB 长为2 ,DE 是它的中位线,那么下面四个结论: 〔1〕DE=1,〔2〕CDE ∆~CAB ∆,(3)CDE ∆的面积与CAB ∆面积之比为1:4,其中正确的有〔 〕A 、0个B 、1个C 、2个D 、3个 3、如图〔3〕,等腰ABC ∆中,底边BC=a ,A ∠=036,ABC ∠的平分线交AC 于D ,BCD ∠的512k -=,那么DE=( ) A 、2K a B 、3K a C 、2akD 、3a k4、:ABC ∆与DFE ∆相似且面积比为4:25,那么ABC ∆与DFE ∆的相似比为。
5、〔2021年滨州〕如下图,给出以下条件: ①B ACD ∠=∠;②ADC ACB ∠=∠;③AC AB CD BC=;④2AC AD AB =. 其中单独能够判定ABC ACD △∽△的个数为〔 〕 A .1B .2C .3D .4〔5题图〕〔6题图〕6、2021年XX 市)如图,AB CD EF ∥∥,那么以下结论正确的选项是〔 〕 A .AD BCDF CE=B .BC DFCE AD=C .CD BCEF BE=D .CD ADEF AF=7、(2021XX)△ABC ∽△DEF ,且AB :DE=1:2,那么△ABC 的面积与△DEF 的面积之比为 (A)1:2 (B)1:4 (C)2:1 (D)4:18、〔2021XX 綦江〕假设△ABC ∽△DEF, △ABC 与△DEF 的相似比为1∶2,那么△ABC 与△DEF 的周长比为〔 〕 A .1∶4B .1∶2C .2∶1D 2y P (a ,0) N (a +2,A (1,-3)〔1题图〕 B (4,-1)O9、〔2021年XX 市〕如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x ,那么x 的值〔 〕 A .只有1个 B .可以有2个 C .有2个以上但有限 D .有无数个10、(2021年XX 市〕如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,M 、N 分别是边AB 、AD 的中点,连接OM 、ON 、MN ,那么以下表达正确的选项是〔 〕A .△AOM 和△AON 都是等边三角形B .四边形MBON 和四边形MODN 都是菱形C .四边形AMON 与四边形ABCD 是位似图形 D .四边形MBCO 和四边形NDCO 都是等腰梯形11、〔2021年XX 省〕如图,在55 方格纸中,将图①中的三角形甲平移到图② 中所示的位置,与三角形乙拼成一个矩形,那么,下面的平 移方法中,正确的选项是〔 〕 A .先向下平移3格,再向右平移1格 B .先向下平移2格,再向右平移1格 C .先向下平移2格,再向右平移2格 D .先向下平移3格,再向右平移2格(11题图)〔13题图〕12、(2021年义乌)在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比。
初三数学相似三角形经典题(含答案)

相似三角形经典习题例1 从下面这些三角形中,选出相似的三角形.例2 已知:如图,ABCD 中,2:1:=EB AE ,求AEF ∆与CDF ∆的周长的比,若是2cm 6=∆AEF S ,求CDF S ∆.例3 如图,已知ABD ∆∽ACE ∆,求证:ABC ∆∽ADE ∆.例4 以下命题中哪些是正确的,哪些是错误的?(1)所有的直角三角形都相似. (2)所有的等腰三角形都相似.(3)所有的等腰直角三角形都相似. (4)所有的等边三角形都相似.例5 如图,D 点是ABC ∆的边AC 上的一点,过D 点画线段DE ,使点E 在ABC ∆的边上,而且点D 、点E 和ABC ∆的一个极点组成的小三角形与ABC ∆相似.尽可能多地画出知足条件的图形,并说明线段DE 的画法.例6 如图,一人拿着一支刻有厘米分画的小尺,站在距电线杆约30米的地址,把手臂向前伸直,小尺竖直,看到尺上约12个分画恰好遮住电线杆,已知手臂长约60厘米,求电线杆的高.例7 如图,小明为了测量一高楼MN 的高,在离N 点20m 的A 处放了一个平面镜,小明沿NA 后退到C 点,正好从镜中看到楼顶M 点,假设5.1=AC m ,小明的眼睛离地面的高度为,请你帮忙小明计算一下楼房的高度(精准到).例8 格点图中的两个三角形是不是是相似三角形,说明理由.例9 依照以下各组条件,判定ABC ∆和C B A '''∆是不是相似,并说明理由:(1),cm 4,cm 5.2,cm 5.3===CA BC AB cm 28,cm 5.17,cm 5.24=''=''=''A C C B B A .(2)︒='∠︒='∠︒=∠︒=∠35,44,104,35A C B A .(3)︒='∠=''=''︒=∠==48,3.1,5.1,48,6.2,3B C B B A B BC AB .例10 如图,以下每一个图形中,存不存在相似的三角形,若是存在,把它们用字母表示出来,并简要说明识别的依照.例11 已知:如图,在ABC ∆中,BD A AC AB ,36,︒=∠=是角平分线,试利用三角形相似的关系说明AC DC AD ⋅=2.例12 已知ABC ∆的三边长别离为五、1二、13,与其相似的C B A '''∆的最大边长为26,求C B A '''∆的面积S .例13 在一次数学活动课上,教师让同窗们到操场上测量旗杆的高度,然后回来交流各自的测量方式.小芳的测量方式是:拿一根高米的竹竿直立在离旗杆27米的C 处(如图),然后沿BC 方向走到D 处,这时目测旗杆顶部A 与竹竿顶部E 恰好在同一直线上,又测得C 、D 两点的距离为3米,小芳的目高为米,如此即可明白旗杆的高.你以为这种测量方式是不是可行?请说明理由.例14.如图,为了估算河的宽度,咱们能够在河对岸选定一个目标作为点A ,再在河的这一边选点B 和C ,使BC AB ⊥,然后再选点E ,使BC EC ⊥,确信BC 与AE 的交点为D ,测得120=BD 米,60=DC 米,50=EC 米,你能求出两岸之间AB 的大致距离吗?例15.如图,为了求出海岛上的山峰AB 的高度,在D 和F 处树立标杆DC 和FE ,标杆的高都是3丈,相隔1000步(1步等于5尺),而且AB 、CD 和EF 在同一平面内,从标杆DC 退后123步的G 处,可看到山峰A 和标杆顶端C 在一直线上,从标杆FE 退后127步的H 处,可看到山峰A 和标杆顶端E 在一直线上.求山峰的高度AB 及它和标杆CD 的水平距离BD 各是多少?(古代问题)例16 如图,已知△ABC 的边AB =32,AC =2,BC 边上的高AD =3.(1)求BC 的长;(2)若是有一个正方形的边在AB 上,另外两个极点别离在AC ,BC 上,求那个正方形的面积.。
北师大版九年级数学上册 第四章 相似三角形培优专题 (含答案)

北师大版九年级上册 第四章 相似三角形培优专题 (含答案)一、单选题1.如图,过点0(0,1)A 作y 轴的垂线交直线:3l y x =于点1A ,过点1A 作直线l 的垂线,交y 轴于点2A ,过点2A 作y 轴的垂线交直线l 于点3A ,…,这样依次下去,得到012A A A ∆,234A A A ∆,4564A A ∆,…,其面积分别记为1S ,2 S ,3 S ,…,则100S ( )A .1002⎛⎫ ⎪ ⎪⎝⎭B .100C .1994D .39522.如图,在ABC ∆中,点D ,E 分别在AB ,AC 边上,//DE BC ,ACD B ∠=∠,若2A D B D=,6BC =,则线段CD 的长为( )A.B .C .D .53.如图,在正方形ABCD 的对角线AC 上取一点E .使得15CDE ︒∠=,连接BE 并延长BE 到F ,使CF CB =,BF 与CD 相交于点H ,若1AB =,有下列结论:①BE DE =;②CE DE EF +=;③1412DEC S ∆=-;④1DH HC =-.则其中正确的结论有( )A .①②③B .①②③④C .①②④D .①③④4.如图,在矩形ABCD 中,AB=3,BC=6,若点E ,F 分别在AB,CD 上,且BE=2AE ,DF=2FC ,G ,H 分别是AC 的三等分点,则四边形EHFG 的面积为( )A .1B .32C .2D .45.如图,在等腰三角形ABC ∆中,AB AC =,图中所有三角形均相似,其中最小的三角形面积为1,ABC ∆的面积为42,则四边形DBCE 的面积是( )A .20B .22C .24D .266.如图,矩形ABCD 中,AC 与BD 相交于点E ,:AD AB =,将ABD △沿BD 折叠,点A 的对应点为F ,连接AF 交BC 于点G ,且2BG =,在AD 边上有一点H ,使得BH EH +的值最小,此时BH CF=( )A .2B .3C .2D .327.如图,在平行四边形ABCD 中,E 为BC 的中点,BD ,AE 交于点O ,若随机向平行四边形ABCD 内投一粒米,则米粒落在图中阴影部分的概率为( )A .116B .112C .18D .168.如图,在平面直角坐标系中,已知()()()3,2,0,-2,3,0,A B C M ---是线段AB 上的一个动点,连接CM ,过点M 作MN MC ⊥交y 轴于点N ,若点M N 、在直线y kx b =+上,则b 的最大值是( )A .78-B .34-C .1-D .09.如图,平行四边形ABCD 中,对角线AC 、BD 相交于点O ,且AC =6,BD =8,P 是对角线BD 上任意一点,过点P 作EF ∥AC ,与平行四边形的两条边分别交于点E 、F .设BP =x ,EF =y ,则能大致表示y 与x 之间关系的图象为( )A .B .C .D .10.如图,正方形ABCD 的边长为2,点E 是BC 的中点,AE 与BD 交于点P ,F 是CD 上的一点,连接AF 分别交BD ,DE 于点M ,N ,且AF ⊥DE ,连接PN ,则下列结论中:①4ABM FDM S S =;②PN =;③tan ∠EAF=34;④.PMN DPE ∽正确的是()A .①②③B .①②④C .①③④D .②③④11.如图,在正方形ABCD 中,点O 是对角线,AC BD 的交点,过点O 作射线分别交,OM ON 于点,E F ,且90EOF ∠︒=,交,OC EF 于点G .给出下列结论:COE DOF V V ①≌;OGE FGC V V ②∽C ;③四边形CEOF 的面积为正方形ABCD 面积的14;22•DF BE OG OC +④=.其中正确的是( )A .①②③④B .①②③C .①②④D .③④12.如图,在ABC ∆中,D 在AC 边上,12AD DC :=:,O 是BD 的中点,连接AO 并延长交BC 于E ,则BE EC :=( )A .1:2B .1:3C .1:4D .2:313.矩形OABC 在平面直角坐标系中的位置如图所示,已知2)B ,点A 在x 轴上,点C 在y 轴上,P 是对角线OB 上一动点(不与原点重合),连接PC ,过点P 作PD PC ⊥,交x 轴于点D .下列结论:①OA BC ==②当点D 运动到OA 的中点处时,227PC PD +=;③在运动过程中,CDP ∠是一个定值;④当△ODP 为等腰三角形时,点D 的坐标为3⎛⎫ ⎪ ⎪⎝⎭.其中正确结论的个数是( )A .1个B .2个C .3个D .4个14.如图,在ABC △中,点D 为BC 边上的一点,且2AD AB ==,AD AB ⊥,过点D 作DE AD ⊥,DE 交AC 于点E ,若1DE =,则ABC △的面积为( )A .B .4C .D .8二、填空题 15.如图,在等腰Rt ABC ∆中, 90C =∠,15AC =,点E 在边CB 上, 2CE EB =,点D 在边AB 上,CD AE ⊥,垂足为F ,则AD 长为_____.16.如图,在正方形ABCD 中,AB=8,AC 与BD 交于点O ,N 是AO 的中点,点M 在BC 边上,且BM=6. P 为对角线BD 上一点,则PM —PN 的最大值为___.17.如图,平面直角坐标系中,矩形ABOC 的边,BO CO 分别在x 轴,y 轴上,A 点的坐标为(8,6)-,点P 在矩形ABOC 的内部,点E 在BO 边上,满足PBE ∆∽CBO ∆,当APC ∆是等腰三角形时,P 点坐标为_____.18.如图,正方形ABCD 的对角线AC 上有一点E ,且CE =4AE ,点F 在DC 的延长线上,连接EF ,过点E 作EG ⊥EF ,交CB 的延长线于点G ,连接GF 并延长,交AC 的延长线于点P ,若AB =5,CF =2,则线段EP 的长是_____.19.如图,ABC ∆和CDE ∆都是等边三角形,且点A 、C 、E 在同一直线上,AD 与BE 、BC 分别交于点F 、M ,BE 与CD 交于点N .下列结论正确的是_______(写出所有正确结论的序号).①AM BN =;②ABF DNF ∆∆≌;③180FMC FNC ︒∠+∠=;④111A C N C EM =+20.如图,正方形ABCD 中,1124AB AE AB ==,,点P 在BC 上运动(不与B 、C 重合),过点P 作PQ EP ⊥,交CD 于点Q ,则CQ 的最大值为_______.21.七巧板是我国祖先的一项卓越创造,被誉为“东方魔板”. 由边长为ABCD 可以制作一副如图1所示的七巧板,现将这副七巧板在正方形EFGH 内拼成如图2所示的“拼搏兔”造型(其中点Q R 、分别与图2中的点E G 、重合,点P 在边EH 上),则“拼搏兔”所在正方形EFGH 的边长是_____.22.如图,ABCD 的对角线,AC BD 交于点O ,CE 平分BCD ∠交AB 于点E ,交BD 于点F ,且60,2ABC AB BC ∠=︒=,连接OE .下列结论:①EO AC ⊥;②4AOD OCF S S =;③:7AC BD =;④2•FB OF DF =.其中正确的结论有__________(填写所有正确结论的序号)23.如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE.折叠该纸片,使点ADE ,则GE的长落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上.若5为__________.参考答案1.D【解析】【分析】本题需先求出OA 1和OA 2的长,再根据题意得出OA n =2n ,把纵坐标代入解析式求得横坐标,然后根据三角形相似的性质即可求得S 100.【详解】∵点0A 的坐标是(0,1),∴01OA =,∵点1A 在直线3y x =上, ∴12OA =,013A A = ∴24OA =,∴38OA =,∴416OA =,得出2n n OA =, ∴12·3n n n A A +=∴1981982OA =,19819819923A A = ∵113(41)3322S =-⋅= ∵21200199A A A A ∥,∴012198199200∆∆∽A A A A A A , ∴2198100133S S ⎛=, ∴396395332332S == 故选D .【点睛】本题主要考查了如何根据一次函数的解析式和点的坐标求线段的长度,以及如何根据线段的长度求出点的坐标,解题时要注意相关知识的综合应用.2.C【解析】【分析】设2AD x =,BD x =,所以3AB x =,易证ADEABC ∆∆,利用相似三角形的性质可求出DE 的长度,以及23AE AC =,再证明ADE ACD ∆∆,利用相似三角形的性质即可求出得出AD AE DE AC AD CD==,从而可求出CD 的长度. 【详解】解:设2AD x =,BD x =,∴3AB x =,∵//DE BC ,∴ADEABC ∆∆, ∴DE AD AE BC AB AC==, ∴263DE x x=, ∴4DE =,23AE AC =, ∵ACD B ∠=∠,ADE B ∠=∠,∴ADE ACD ∠=∠,∵A A ∠=∠,∴ADEACD ∆∆, ∴AD AE DE AC AD CD==, 设2AE y =,3AC y =, ∴23AD y y AD=, ∴6AD =,4CD=,∴26CD=故选:C.【点睛】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于中等题型. 3.A【解析】【分析】①由正方形的性质可以得出AB=AD,∠BAC=∠DAC=45°,通过证明△ABE≌△ADE,就可以得出BE=DE;②在EF上取一点G,使EG=EC,连结CG,再通过条件证明△DEC≌△FGC就可以得出CE+DE=EF;③过B作BM⊥AC交于M,根据勾股定理求出AC,根据三角形的面积公式即可求出高DM,根据三角形的面积公式即可求得13412DECS∆=-;④解直角三角形求得DE,根据等边三角形性质得到CG=CE,然后通过证得△DEH∽△CGH,求得31DH DEHC CG==.【详解】证明:①∵四边形ABCD是正方形,∴AB AD=,90ABC ADC︒∠=∠=,45BAC DAC ACB ACD︒∠=∠=∠=∠=.在ABE∆和ADE∆中,AB ADBAC DACAE AE=⎧⎪∠=∠⎨⎪=⎩,∴()ABE ADE SAS∆≅∆,∴BE DE=,故①正确;②在EF上取一点G,使EG EC=,连结CG,∵ABE ADE∆≅∆,∴ABE ADE∠=∠.∴CBE CDE∠=∠,∵BC CF =,∴CBE F ∠=∠,∴CBE CDE F ∠=∠=∠.∵15CDE ︒∠=,∴15CBE ︒∠=,∴60CEG ︒∠=.∵CE GE =,∴CEG ∆是等边三角形.∴60CGE ︒∠=,CE GC =,∴45GCF ︒∠=,∴ECD GCF ∠=.在DEC ∆和FGC ∆中,CE GC ECD GCF CD CF =⎧⎪∠=∠⎨⎪=⎩,∴()DEC EGC SAS ∆≅∆,∴DE GF =.∵EF EG GF =+,∴EF CE ED =+,故②正确;③过D 作DM AC ⊥交于M ,根据勾股定理求出2AC =, 由面积公式得:1122AD DC AC DM ⨯=⨯, ∴22DM =,∵45DCA ︒∠=,60AED ︒∠=, ∴22CM =,66EM =, ∴2626CE CM EM =-=- ∴1132412DEC S CE DM ∆=⨯=-,故③正确; ④在Rt DEM ∆中,623DE ME ==∵ECG ∆是等边三角形, ∴262CG CE ==- ∵60DEF EGC ︒∠=∠=,∴DE CG ∥,∴DEH CGH ∆∆∽, ∴633126DH DE HC CG ===+,故④错误; 综上,正确的结论有①②③,故选A .【点睛】本题主要考查对正方形的性质,全等三角形的性质和判定,三角形的面积,勾股定理,含30度角的直角三角形的性质等知识点的理解和掌握,综合运用这些性质进行证明是解此题的关键. 4.C【解析】【分析】如图,延长FH 交AB 于点M ,由BE =2AE ,DF =2FC ,G 、H 分别是AC 的三等分点,证明EG//BC ,FH//AD ,进而证明△AEG ∽△ABC ,△CFH ∽△CAD ,进而证明四边形EHFG 为平行四边形,再根据平行四边形的面积公式求解即可.【详解】如图,延长FH 交AB 于点M ,∵BE =2AE ,DF =2FC ,AB=AE+BE ,CD=CF+DF ,∴AE :AB=1:3,CF :CD=1:3,又∵G 、H 分别是AC 的三等分点,∴AG :AC=CH :AC=1:3,∴AE :AB=AG :AC ,CF :CD=CH :CA ,∴EG//BC ,FH//AD ,∴△AEG ∽△ABC ,△CFH ∽△CDA ,BM :AB=CF :CD=1:3,∠EMH=∠B ,∴EG :BC=AE :AB=1:3,HF :AD=CF :CD=1:3,∵四边形ABCD 是矩形,AB=3,BC=6,∴CD=AB=3,AD=BC=6,∠B=90°,∴AE=1,EG=2,CF=1,HF=2,BM=1,∴EM=3-1-1=1,EG=FH ,∴EG //FH ,∴四边形EHFG 为平行四边形,∴S 四边形EHFG =2×1=2,故选C.【点睛】本题考查了矩形的性质,相似三角形的判定与性质,平行四边形的判定与性质,熟练掌握和灵活运用相关内容是解题的关键.5.D【解析】【分析】利用AFH ADE ∆~∆得到2916AHF ADE S FH S DE ∆∆⎛⎫== ⎪⎝⎭,所以9,16,AFH ADE S x S x ∆∆==则1697x x -=,解得1x =,从而得到16ADE S ∆=,然后计算两个三角形的面积差得到四边形DBCE 的面积.【详解】如图,根据题意得AFH ADE ∆~∆, ∴2239416AHF ADE S FH S DE ∆∆⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ 设9AFH S x ∆=,则16ADE S x ∆=,∴1697x x -=,解得1x =,∴16ADE S ∆=,∴四边形DBCE 的面积421626=-=.故选D .【点睛】本题考查了相似三角形的判定:有两组角对应相等的两个三角形相似.也考查了相似三角形的性质.6.B【解析】【分析】设BD 与AF 交于点M .设AB=a ,3,根据矩形的性质可得△ABE 、△CDE 都是等边三角形,利用折叠的性质得到BM 垂直平分AF ,BF=AB=a ,3.解直角△BGM ,求出BM ,再表示DM ,由△ADM ∽△GBM ,求出3,再证明3B 点关于AD 的对称点B′,连接B′E ,设B′E 与AD 交于点H ,则此时BH+EH=B′E ,值最小.建立平面直角坐标系,得出B (3,3B′(3,3E (03B′E 的解析式,得到H (1,0),然后利用两点间的距离公式求出BH=4,进而求出23BH CF ==233. 【详解】如图,设BD 与AF 交于点M .设AB=a ,3,∵四边形ABCD是矩形,∴∠DAB=90°,tan∠ABD=3 ADAB=∴22AB AD+,∠ABD=60°,∴△ABE、△CDE都是等边三角形,∴BE=DE=AE=CE=AB=CD=a,∵将△ABD沿BD折叠,点A的对应点为F,∴BM垂直平分AF,BF=AB=a,3,在△BGM中,∵∠BMG=90°,∠GBM=30°,BG=2,∴GM=12BG=1,33,∴3∵矩形ABCD中,BC∥AD,∴△ADM∽△GBM,∴AD DMBG BM=3233a a-=,∴3∴3,AD=BC=6,3易证∠BAF=∠FAC=∠CAD=∠ADB=∠BDF=∠CDF=30°,∴△ADF是等边三角形,∵AC平分∠DAF,∴AC垂直平分DF,∴作B 点关于AD 的对称点B′,连接B′E ,设B′E 与AD 交于点H ,则此时BH+EH=B′E ,值最小. 如图,建立平面直角坐标系,则A (3,0),B (3,3B′(3,3E (03),易求直线B′E 的解析式为33∴H (1,0),∴22(31)(230)-+-, ∴23BH CF =23 故选:B .【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质,解直角三角形,等边三角形、垂直平分线、相似三角形的判定与性质,待定系数法求直线的解析式,轴对称-最短路线问题,两点间的距离公式等知识.综合性较强,有一定难度.分别求出BH 、CF 的长是解题的关键.7.B【解析】【分析】根据E 为BC 的中点,可得12BO OE BE OD AO AD ===,根据边长的比值即可计算出图阴影部分的面积与平行四边形面积的比值,由此即可求得答案.【详解】∵四边形ABCD 是平行四边形,∴BC//AD ,BC=AD ,∴△BOE ∽△DOA ,∴BO OE BE OD AO AD== 又∵E 为BC 的中点, ∴12BO OE BE OD AO AD ===, ∴13BO BD =, ∴BOE AOB 1S S 2=,AOB ABD 1S S 3=, ∴BOE ABD ABCD 11S S S 612==,∴米粒落在图中阴影部分的概率为112, 故选B .【点睛】 本题考查了平行四边形的性质,相似三角形的判定与性质,几何概率,熟练掌握相关知识是解题的关键.8.A【解析】【分析】当点M 在AB 上运动时,MN ⊥MC 交y 轴于点N ,此时点N 在y 轴的负半轴移动,定有△AMC ∽△NBM ;只要求出ON 的最小值,也就是BN 最大值时,就能确定点N 的坐标,而直线y=kx+b 与y 轴交于点N (0,b ),此时b 的值最大,因此根据相似三角形的对应边成比例,设未知数构造二次函数,通过求二次函数的最值得以解决.【详解】解:连接AC ,则四边形ABOC 是矩形,90A ABO ︒∴∠=∠=,又MN MC ⊥,90CMN ︒∴∠=,AMC MNB ∴∠=∠,~AMC NBM ∴∆∆,AC AM MB BN∴=, 设,BN y AM x ==.则3,2MB x ON y =-=-, 23x x y∴=-, 即:21322y x x =+ ∴当33212222b x a =-=-=⎛⎫⨯- ⎪⎝⎭时,21333922228y ⎛⎫=⨯+⨯= ⎪⎝⎭最大 直线y kx b =+与y 轴交于()0,N b当BN 最大,此时ON 最小,点()0,N b 越往上,b 的值最大,97288ON OB BN ∴=-=-=, 此时, 70,8N ⎛⎫- ⎪⎝⎭ b 的最大值为78-. 故选:A .【点睛】本题综合考查相似三角形的性质、二次函数的性质、二次函数的最值以及一次函数的性质等知识;构造相似三角形、利用二次函数的最值是解题的关键所在.9.A【解析】【分析】根据图形先利用平行线的性质求出△BEF ∽△BAC ,再利用相似三角形的性质得出x 的取值范围和函数解析式即可解答【详解】当0≤x ≤4时,∵BO为△ABC的中线,EF∥AC,∴BP为△BEF的中线,△BEF∽△BAC,∴BP EFBO AC=,即46x y=,解得32y x=y,同理可得,当4<x≤8时,3(8)2y x =-.故选:A.【点睛】此题考查动点问题的函数图象,解题关键在于利用三角形的相似10.A【解析】【分析】利用正方形的性质,得出∠DAN=∠EDC,CD=AD,∠C=∠ADF即可判定△ADF≌△DCE(ASA),再证明△ABM∽△FDM,即可解答①;根据题意可知:AF=DE=AE5得出③;作PH⊥AN于H.利用平行线的性质求出AH=24585453HN==,即可解答②;利用相似三角形的判定定理,即可解答④【详解】解:∵正方形ABCD的边长为2,点E是BC的中点,∴AB=BC=CD=AD=2,∠ABC=∠C=∠ADF=90°,CE=BE=1,∵AF⊥DE,∴∠DAF+∠ADN=∠ADN+∠CDE=90°,∴∠DAN=∠EDC,在△ADF与△DCE中,CAD CDCDE⎧⎪=⎨⎪⎩∠ADF=∠∠DAF=∠,∴△ADF≌△DCE(ASA),∴DF=CE=1,∵AB∥DF,∴△ABM∽△FDM,∴24S ABM ABS FDM DF∆⎛⎫==⎪∆⎝⎭,∴S△ABM=4S△FDM;故①正确;根据题意可知:AF =DE =AE ∵12 ×AD ×DF =12×AF ×DN , ∴DN 25 , ∴EN =355,AN =455, ∴tan ∠EAF =34EN AN =,故③正确, 作PH ⊥AN 于H .∵BE ∥AD , ∴2PA AD PE BE==, ∴P A 25 ∵PH ∥EN , ∴23AH PA AN AE ==, ∴AH =24585453HN ==, ∴2265PA AH -= ∴PN 22265PH HN +②正确, ∵PN ≠DN ,∴∠DPN ≠∠PDE ,∴△PMN 与△DPE 不相似,故④错误.故选:A .【点睛】此题考查三角函数,相似三角形的判定与性质,全等三角形的判定与性质,正方形的性质难度较大,解题关键在于综合掌握各性质11.B【解析】【分析】根据全等三角形的判定(ASA )即可得到①正确;根据相似三角形的判定可得②正确;根据全等三角形的性质可得③正确;根据相似三角形的性质和判定、勾股定理,即可得到答案.【详解】解:Q ①四边形ABCD 是正方形,,OC OD AC BD ∴⊥=,45ODF OCE ∠∠︒==,90MON ∠︒Q =,COM DOF ∴∠∠=,COE DOF ASA ∴V V ≌(), 故①正确;90EOF ECF ∠∠︒Q ②==,∴点,,,O E C F 四点共圆,∴,EOG CFG OEG FCG ∠∠∠∠==,∴OGE FGC V ∽,故②正确;③COE DOF QV V ≌,COE DOF S S ∴V V =,14OCD ABCDCEOF S S S ∴==V 正方形四边形, 故③正确; COE DOF QV V ④≌,OE OF ∴=,又90EOF ∠︒Q =,EOF ∴V 是等腰直角三角形,45OEG OCE ∴∠∠︒==,EOG COE ∠∠Q =,OEG OCE ∴V V ∽,::OE OC OG OE ∴=,2•OG OC OE ∴=,122OC AC OE EF Q =,=, 2•OG AC EF ∴=,,CE DF BC CD Q ==,BE CF ∴=,又Rt CEF Q V 中,222CF CE EF +=,222BE DF EF ∴+=,22•OG AC BE DF ∴+=,故④错误,故选:B .【点睛】本题考查全等三角形的判定(ASA )和性质、相似三角形的性质和判定、勾股定理,解题的关键是掌握全等三角形的判定(ASA )和性质、相似三角形的性质和判定.12.B【解析】【分析】过O 作BC 的平行线交AC 与G ,由中位线的知识可得出12AD DC :=:,根据已知和平行线分线段成比例得出2121AD DG GC AG GC AO OF ==,:=:,:=:,再由同高不同底的三角形中底与三角形面积的关系可求出BF FC :的比.【详解】解:如图,过O 作//OG BC ,交AC 于G ,∵O 是BD 的中点,∴G 是DC 的中点.又12AD DC :=:,AD DG GC ∴==,2121AG GC AO OE ∴:=:,:=:,2AOB BOE S S ∆∆∴:=设2BOE AOB S S S S ∆∆=,=,又BO OD =,24AOD ABD S S S S ∆∆∴=,=,12AD DC :=:,287BDC ABD CDOE S S S S S ∆∆∴四边形==,=,93AEC ABE S S S S ∆∆∴=,=,3193ABE AEC S BE S EC S S ∆∆∴=== 故选:B .【点睛】考查平行线分线段成比例及三角形的中位线的知识,难度较大,注意熟练运用中位线定理和三角形面积公式.13.D【解析】【分析】①根据矩形的性质即可得到23OA BC ==①正确;②由点D 为OA 的中点,得到132OD OA ==2222272(3)PC PD CD OC OD +==+=+=,故②正确;③如图,过点P 作PF OA ⊥于F ,FP 的延长线交BC 于E ,PE a =,则2P F E F P E a=-=-,根据三角函数的定义得到33BE PE a ==,求得2333(2)CE BC BE a a =-==-,根据相似三角形的性质得到3FD =,根据三角函数的定义得到60PDC ︒∠=,故③正确; ④当ODP ∆为等腰三角形时,Ⅰ、OD PD =,解直角三角形得到3333OD OC ==, Ⅱ、OP =OD ,根据等腰三角形的性质和四边形的内角和得到10590OCP ︒︒∠=>,故不合题意舍去;Ⅲ、OP PD =,根据等腰三角形的性质和四边形的内角和得到10590OCP ︒︒∠=>,故不合题意舍去;于是得到当ODP ∆为等腰三角形时,点D 的坐标为3⎛⎫ ⎪ ⎪⎝⎭.故④正确.【详解】解:①∵四边形OABC 是矩形,(23,2)B ,23OA BC ∴==①正确;②∵点D 为OA 的中点,132OD OA ∴==, 2222222237PC PD CD OC OD ∴+++===()=,故②正确;③如图,过点P 作PF OA ⊥ A 于F ,FP 的延长线交BC 于E ,PE BC ∴⊥,四边形OFEC 是矩形,2EF OC ∴==,设PE a =,则2PF EF PE a =﹣=﹣,在Rt BEP ∆中,PE OC 3BE BC 3tan CBO ∠===, 33BE PE a ∴==,2333(2)CE BC BE a a ∴=-==-,PD PC ⊥,90CPE FPD ︒∴∠∠=,90CPE PCE ︒∠+∠=,,FPD ECP ∴∠=∠,90CEP PFD ︒∠=∠=,CEP PFD ∴∆∆∽,PE CP FD PD∴=, 3(2)a a FD -∴=FD ∴=, tan 33PC a PDC a PD∴∠===, 60PDC ︒∴∠=,故③正确; ④(23,2)B ,四边形OABC 是矩形,3,2OA AB ∴==,3tan AB AOB OA ∠== 30AOB ︒∴∠=,当ODP ∆为等腰三角形时,Ⅰ、OD PD =,30DOP DPO ∴∠∠==, 60ODP ∴∠=, 60ODC ∴∠=, 3333OD ∴== Ⅱ、OP OD =75ODP OPD ∴∠∠==,90COD CPD ∠∠==,10590OCP ∴∠=>,故不合题意舍去;Ⅲ、OP PD =,30POD PDO ∴∠∠==, 15090OCP ∴∠=>故不合题意舍去,∴当ODP ∆为等腰三角形时,点D 的坐标为23⎫⎪⎪⎝⎭.故④正确,故选:D .【点睛】考查了矩形的性质,锐角三角函数的定义,相似三角形的判定和性质,勾股定理,等腰三角形的性质,构造出相似三角形表示出CP 和PD 是解本题的关键.14.B【解析】【分析】先证CDE CBA V :V ,利用相似三角形性质得到12DC DE BC BA ==,即12DC BD DC =+,在直角三角形ABD 中易得22BD =,从而解出DC ,得到△ABC 的高,然后利用三角形面积公式进行解题即可 【详解】AB AD DE AD ∴⊥⊥,90BAD ADE ∴∠=∠=o//AB DE ∴易证CDE CBA V :V12DC DE BC BA ∴== 即12DC BD DC =+ 由题得22BD =∴解得22DC =ABC △2112422422ABC S BC ∴=⨯=⨯=V 故选B【点睛】本题主要考查相似三角形的判定和性质、等腰直角三角形的高,本题关键在于找到相似三角形求出DC 的长度15.【解析】【分析】过D 作 DH AC ⊥于H ,则∠AHD=90°由等腰直角三角形的性质可得15AC BC ==,45CAD ∠=,进而可得AH DH =,由此得CH=15-DH ,再证明~ACE DHC ∆∆,由相似三角形的对应边成比例可得DH CH AC CE=,求出CE=10,代入相关数据可求得DH=9,继而根据勾股定理即可求得AD 长.【详解】过D 作 DH AC ⊥于H ,则∠AHD=90° 在等腰Rt ABC ∆中,90C =∠,15AC =, 15AC BC ∴==,45CAD ∠=,∴∠ADH=90°-∠CAD=45°=∠CAD ,AH DH ∴=,∴CH=AC-AH=15-DH ,CF AE ⊥,90DHA DFA ∴∠=∠=,又∵∠ANH=∠DNF ,HAF HDF ∴∠=∠,~ACE DHC ∴∆∆,DH CH AC CE∴=, 2CE EB =,CE+BE=BC=15,∴10CE =, ∴151510DH DH -=, 9DH ∴=,2292AD AH DH ∴=+=, 故答案为:92.【点睛】本题考查了等腰直角三角形的性质与判定,相似三角形的判定与性质等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.16.2.【解析】【分析】如图所示,以BD 为对称轴作N 的对称点N ',连接PN ',根据对称性质可知,PN PN =',由此可得PM PN MN '-≤',当,,P M N '三点共线时,取“=”,此时即PM —PN 的值最大,由正方形的性质求出AC 的长,继而可得22ON ON '==62AN '=,再证明13CM CN BM AN '='=,可得PM ∥AB ∥CD ,∠CMN '=90°,判断出△N CM '为等腰直角三角形,求得N M '长即可得答案. 【详解】如图所示,以BD 为对称轴作N 的对称点N ',连接PN ',根据对称性质可知,PN PN =',∴PM PN MN '-≤',当,,P M N '三点共线时,取“=”,∵正方形边长为8,∴282∵O 为AC 中点,∴AO=OC=2∵N 为OA 中点,∴ON=22 ∴22ON ON '== ∴62AN '=∵BM=6,∴CM=AB-BM=8-6=2, ∴13CM CN BM AN '='=, ∴PM ∥AB ∥CD ,∠CMN '=90°,∵∠N CM '=45°,∴△N CM '为等腰直角三角形,∴CM=N M '=2,故答案为:2.【点睛】本题考查了正方形的性质,平行线分线段成比例定理,等腰直角三角形的判定与性质,最值问题等,熟练掌握和灵活运用相关知识是解题的关键.17.326()55-,或(43)-, 【解析】【分析】根据题意分情况讨论:①当P 点在AC 的垂直平分线上时,点P 同时在BC 上,AC 的垂直平分线与BO 的交点即是E ,根据PBE ∆∽CBO ∆求出PE ,②P 点在以点C 为圆心AC 为半径的圆弧上,圆弧与BC 的交点为P ,过点P 作PE BO ⊥于E ,根据PBE ∆∽CBO ∆,求出PE ,BE ,则可得到OE ,故而求出点P 点坐标.【详解】解:∵点P 在矩形ABOC 的内部,且APC ∆是等腰三角形,∴P 点在AC 的垂直平分线上或在以点C 为圆心AC 为半径的圆弧上;①当P 点在AC 的垂直平分线上时,点P 同时在BC 上,AC 的垂直平分线与BO 的交点即是E ,如图1所示:∵PE BO ⊥,CO BO ⊥,∴//PE CO ,∴PBE ∆∽CBO ∆,∵四边形ABOC 是矩形,A 点的坐标为(8,6)-,∴点P 横坐标为﹣4,6OC =,8BO =,4BE =,∵PBE ∆∽CBO ∆,∴PE BE CO BO =,即468PE =, 解得:3PE =,∴点(4,3)P -;②P 点在以点C 为圆心AC 为半径的圆弧上,圆弧与BC 的交点为P ,过点P 作PE BO ⊥于E ,如图2所示:∵CO BO ⊥,∴//PE CO ,∴PBE ∆∽CBO ∆,∵四边形ABOC 是矩形,A 点的坐标为(-8,6),∴8AC BO ==,8CP =,6AB OC ==, ∴222208610BC BO C +=+=,∴2BP =,∵PBE ∆∽CBO ∆, ∴PE BE BP CO BO BC ==,即:26810PE BE ==, 解得:65PE =,85BE =, ∴832855OE =-=, ∴点326()55P -,; 综上所述:点P 的坐标为:326()55-,或(43)-,; 故答案为:326()55-,或(43)-,.【点睛】此题主要考查正方形的综合,解题的关键是熟知相似三角形的判定与性质、矩形的性质及圆的性质.13218【解析】【分析】如图,作FH⊥PE于H.利用勾股定理求出EF,再证明△CEF∽△FEP,可得EF2=EC•EP,由此即可解决问题.【详解】如图,作FH⊥PE于H.∵四边形ABCD是正方形,AB=5,∴AC=2∠ACD=∠FCH=45°,∵∠FHC=90°,CF=2,∴CH=HF2∵CE=4AE,∴EC=2,AE2,∴EH=2在Rt△EFH中,EF2=EH2+FH2=(2)2+2)2=52,∵∠GEF=∠GCF=90°,∴E,G,F,C四点共圆,∴∠EFG =∠ECG =45°,∴∠ECF =∠EFP =135°,∵∠CEF =∠FEP ,∴△CEF ∽△FEP , ∴EF EC EP EF=, ∴EF 2=EC•EP ,∴EP 132242= 故答案为:1322. 【点睛】本题考查正方形的性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考填空题中的压轴题.19.①③④【解析】【分析】①根据等边三角形性质得出AC BC =,CE CD =,60ACB ECD ︒∠=∠=,求出BCE ACD ∠=∠,根据SAS 推出两三角形全等即可;②根据60ABC BCD ︒∠==∠,求出//AB CD ,可推出ABF DNF ∆∆∽,找不出全等的条件; ③根据角的关系可以求得60AFB ︒∠=,可求得120MFN ︒=,根据60BCD ︒∠=可解题; ④根据CM CN =,60MCN ︒∠=,可求得60CNM ︒∠=,可判定//MN AE ,可求得N DN CD CN AC CD CDM -==,可解题. 【详解】明:①∵ABC ∆和CDE ∆都是等边三角形,∴AC BC =,CE CD =,60ACB ECD ︒∠=∠=,∴ACB ACE ECD ACE ∠+∠=∠+∠,即BCE ACD ∠=∠,在BCE ∆和ACD ∆中,BC AC BCE ACD CE CD =⎧⎪∠=∠⎨⎪=⎩,∴()BCE ACD SAS ∆∆≌,∴AD BE =,ADC BEC ∠∠=,CAD CBE ∠=∠,在DMC ∆和ENC ∆中,60MDC NEC DC BCMCD NCE ︒∠=∠⎧⎪=⎨⎪∠=∠=⎩, ∴()DMC ENC ASA ∆∆≌,∴DM EN =,CM CN =,∴AD DM BE EN -=-,即AM BN =;②∵60ABC BCD ︒∠==∠,∴//AB CD ,∴BAF CDF ∠=∠,∵AFB DFN ∠=∠,∴ABF DNF ∆∆∽,找不出全等的条件;③∵180AFB ABF BAF ︒∠+∠+∠=,FBC CAF ∠=∠,∴180AFB ABC BAC ︒∠+∠+∠=,∴60AFB ︒∠=,∴120MFN ︒∠=,∵60MCN ︒∠=,∴180FMC FNC ︒∠+∠=;④∵CM CN =,60MCN ︒∠=,∴MCN ∆是等边三角形,∴60MNC ︒∠=,∵60DCE ︒∠=,∴//MN AE ,∴MN DN CD CN AC CD CD-==, ∵CD CE =,MN CN =, ∴MN CE MN AC CE-=, ∴MN MN 1AC CE =-, 两边同时除MN 得111AC MN CE=-, ∴111MN AC CE=+. 故答案为①③④【点睛】本题考查了全等三角形的判定,考查了全等三角形的对应边、对应角相等的性质,考查了平行线的运用,考查了正三角形的判定,本题属于中档题.20.4【解析】【分析】先证明BPE CQP ∆∆∽,得到与CQ 有关的比例式,设CQ y BP x =,=,则12CP x =﹣,代入解析式,得到y 与x 的二次函数式,根据二次函数的性质可求最值.【详解】解:9090BEP BPE QPC BPE ∠+∠︒∠+∠︒=,=,BEP CPQ ∴∠∠=.又90B C ∠∠︒==,BPE CQP ∴∆∆∽.BE BP PC CQ∴= 设CQ y BP x =,=,则12CP x =﹣.912x x y ∴=-,化简得()21129y x x =--, 整理得21(6)49y x =--+,所以当6x =时,y 有最大值为4.故答案为4.【点睛】考查了正方形的性质、相似三角形的判定和性质,以及二次函数最值问题,几何最值用二次函数最值求解考查了树形结合思想.21.5【解析】【分析】如图3中,连接CE 交MN 于O ,先利用相似求出OM 、ON 的长,再利用勾股定理解决问题即可.【详解】如图3, 连结CE 交MN 于O .观察图1、图2可知, 4,8EN MN CM ===,90ENM CMN ∠=∠=︒.图3∴EON COM ∆∆∽, ∴12EN ON CN OM ==, ∴1428,3333ON MN OM MN ====. 在Rt ENO ∆中,224103OE ON EN =+= ,同理可求得103OG =, ∴2)2GF OE OG =+=,即“拼搏兔”所在正方形EFGH 的边长是5故答案为:5【点睛】本题考查正方形的性质,相似三角形的性质和判定,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.22.①③④【解析】【分析】①根据已知的条件首先证明ECB 是等边三角形,因此可得EA EB EC ==,所以可得90ACB ∠=︒,再根据O 、E 均为AC 和AB 的中点,故可得90AOE ACB ∠=∠=︒,便可证明EO AC ⊥;②首先证明OEF BCF ∽,因此可得12OE OF BC FB ==,故可得AOD S 和OCF S 的比. ③根据勾股定理可计算的AC :BD ;④根据③分别表示FB 、OF 、DF ,代入证明即可.【详解】解:∵四边形ABCD 是平行四边形,∴,,CD AB OD OB OA OC ==∥,∴180DCB ABC ∠+∠=︒,∵60ABC ∠=︒,∴120DCB ∠=︒,∵EC 平分DCB ∠, ∴1602ECB DCB ∠=∠=︒, ∴60EBC BCE CEB ∠=∠=∠=︒,∴ECB 是等边三角形,∴EB BC =,∵2AB BC =,∴EA EB EC ==,∴90ACB ∠=︒,∵,OA OC EA EB ==,∴OE BC ∥,∴90AOE ACB ∠=∠=︒,∴EO AC ⊥,故①正确,∵OE BC ∥,∴OEF BCF ∽, ∴12OE OF BC FB ==, ∴13OF OB =, ∴3AOD BOC OCF S S S ==,故②错误,设BC BE EC a ===,则2AB a =,3AC a =,22372OD OB a a ⎛⎫==+= ⎪ ⎪⎝⎭, ∴7BD a =, ∴:37217AC BD a a ==,故③正确, ∵1736OF OB a ==, ∴73BF a =, ∴22277777,99BF a OF DF a ⎫=⋅=⋅+=⎪⎪⎝⎭, ∴2BF OF DF =⋅,故④正确,故答案为①③④.【点睛】本题是一道平行四边形的综合性题目,难度系数偏大,但是是常考点的组合,应当熟练掌握. 23.4913【解析】【分析】先根据勾股定理得出AE 的长,然后根据折叠的性质可得BF 垂直平分AG ,再根据ABM ~ADE ,求出AM 的长,从而得出AG,继而得出GE 的长【详解】解:在正方形ABCD 中,∠BAD=∠D =090,∴∠BAM+∠FAM=090在Rt ADE中,2222+1DE2315=+=A ADE∵由折叠的性质可得ABF GBF≅∴AB=BG,∠FBA=∠FBG∴BF垂直平分AG,∴AM=MG,∠AMB=090∴∠BAM+∠ABM=090∴∠ABM=∠FAM∴ABM~ADE∴AM ABDE AE=,∴12513AM=∴AM=6013, ∴AG=12013∴GE=5-12049 1313=【点睛】本题考查了正方形与折叠,勾股定理,等腰三角形的性质,以及三角形相似的判定和性质,熟练掌握相关的知识是解题的关键。
初三数学相似三角形测试题及答案

(完整word版)初三数学相似三角形测试题及答案亲爱的读者:本文内容由我和我的同事精心收集整理后编辑发布到文库,发布之前我们对文中内容进行详细的校对,但难免会有错误的地方,如果有错误的地方请您评论区留言,我们予以纠正,如果本文档对您有帮助,请您下载收藏以便随时调用。
下面是本文详细内容。
最后最您生活愉快 ~O(∩_∩)O ~初三数学相似三角形测试题及答案 1、若b m m a 2,3==,则_____:=b a 。
2、已知653z y x ==,且623+=z y ,则__________,==y x 。
3、在等腰Rt △ABC 中,斜边长为c ,斜边上的中线长为m ,则______:=c m 。
4、反向延长线段AB 至C ,使2AC =AB ,那么BC :AB = 。
5、△ABC ∽△A ′B ′C ′,相似比为3:2,它们周长的差为40厘米,则△A ′B ′C ′的周长为 厘米。
7、如图,△ABC 中,∠ACB =90°,CD ⊥AB 于D ,若∠A =30°,则BD :BC= 。
若BC =6,AB =10,则BD = ,CD = 。
8、如图,梯形ABCD 中,DC ∥AB ,DC =2cm ,AB =3.5cm ,且MN ∥PQ ∥AB , DM =MP =PA ,则MN = ,PQ = 。
9、如图,四边形ADEF 为菱形,且AB =14,BC =12,AC =10,那BE = 。
10、梯形的上底长1.2厘米,下底长1.8厘米,高1厘米,延长两腰后与下底所成的三角形的高为 厘米。
11、下面四组线段中,不能成比例的是( )A 、4,2,6,3====d c b aB 、3,6,2,1====d c b aC 、10,5,6,4====d c b aD 、32,15,5,2====d c b a 12、等边三角形的中线与中位线长的比值是( )CB DAD C NPN QABA 、1:3B 、2:3C 、23:21 D 、1:314、已知直角三角形三边分别为b a b a a 2,,++,()0,0>>b a ,则=b a :( ) A 、1:3 B 、1:4 C 、2:1 D 、3:115、△ABC 中,AB =12,BC =18,CA =24,另一个和它相似的三角形最长的一边是36,则最短的一边是( ) A 、27 B 、12 C 、18 D 、20 16、已知c b a ,,是△ABC 的三条边,对应高分别为cb a h h h ,,,且6:5:4::=c b a ,那么cb a h h h ::等于( )A 、4:5:6 B 、6:5:4 C 、15:12:10 D 、10:12:1517、一个三角形三边长之比为4:5:6,三边中点连线组成的三角形的周长为30cm ,则原三角形最大边长为( ) A 、44厘米 B 、40厘米 C 、36厘米 D 、24厘米18、下列判断正确的是( )A 、不全等的三角形一定不是相似三角形B 、不相似的三角形一定不是全等三角形C 、相似三角形一定不是全等三角形D 、全等三角形不一定是相似三角形 19、如图,△ABC 中,AB =AC ,AD 是高,EF ∥BC ,则图中与△ADC 相似的三角形共有( ) A 、1个 B 、2个 C 、3个 D 、多于3个20、如图,在平行四边形ABCD 中,E 为BC 边上的点,若BE :EC =4:5,AE 交BD 于F ,则BF :FD 等于( ) A 、4:5 B 、3:5 C 、4:9 D 、3:821、已知()3:2:=-y y x ,求y x yx 2352-+的值。
2022-2023学年人教版九年级数学下册《28-2相似三角形》同步培优提升训练题(附答案)

2022-2023学年人教版九年级数学下册《28.2相似三角形》同步培优提升训练题(附答案)一.选择题1.如图,在△ABC中,点P在边AB上,则在下列四个条件中:①∠ACP=∠B;②∠APC =∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,不能判定△APC与△ACB相似的是()A.①B.②C.③D.④2.如图,在△ABC中,点D在AB边上,若BC=3,BD=2,且∠BCD=∠A,则线段AD 的长为()A.2B.C.3D.3.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,下列结论中错误的是()A.∠ACD=∠B B.CD2=AD•BDC.AC•BC=AB•CD D.BC2=AD•AB4.如图,在▱ABCD中,AB=10,AD=15,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE于点G,若BG=8,则△CEF的周长为()A.16B.17C.24D.255.如图,在一斜边长30cm的直角三角形木板(即Rt△ACB)中截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC=1:3,则这块木板截取正方形CDEF后,剩余部分的面积为()A.200cm2B.170cm2C.150cm2D.100cm26.如图:在△ABC中,点D为BC边上的一点,且AD=AB=5,AD⊥AB于点A,过点D 作DE⊥AD,DE交AC于点E,若DE=2,则△ADC的面积为()A.B.4C.D.7.在平面直角坐标系中,等边△AOB如图放置,点A的坐标为(1,0),每一次将△AOB 绕着点O逆时针方向旋转60°,同时每边扩大为原来的2倍,第一次旋转后得到△A1OB1,第二次旋转后得到△A2OB2,…,以此类推,则点A2021的坐标为()A.(﹣22020,﹣×22020)B.(22021,﹣×22021)C.(22020,﹣×22020)D.(﹣22021,﹣×22021)二.填空题8.在△ABC中,D为AB边上一点,且∠BCD=∠A,已知BC=2,AB=3,则AD=.9.如图,在△ABC中,AB=15,AC=18,D为AB上一点,且AD=AB,在AC边上取一点E,便以A,D,E为顶点的三角形与△ABC相似,则AE等于.10.如图,线段AB=9,AC⊥AB于点A,BD⊥AB于点B,AC=2,BD=4,点P为线段AB上一动点,且以A、C、P为顶点的三角形与以B、D、P为顶点的三角形相似,则AP 的长为.11.如图,在等腰Rt△ABC中,∠C=90°,AC=15,点E在边CB上,CE=2EB,点D 在边AB上,CD⊥AE,垂足为F,则AD的长为.12.如图,在平面直角坐标系中,有一个Rt△OAB,∠ABO=90°,∠AOB=30°,直角边OB在y轴正半轴上,点A在第一象限,且OA=1,将Rt△OBA绕原点O逆时针旋转30°,同时把各边长扩大为原来的2倍(即OA1=2OA),得到Rt△OA1B1,同理,将Rt△OA1B1绕原点O逆时针旋转30°,同时把各边长扩大为原来的2倍,得到Rt△OA2B2,…,依此规律,得到Rt△OA2021B2021,则点B2021的纵坐标为.三.解答题13.如图,在△ABC中,AB=AC,AD为BC边上的中线,DE⊥AB于点E.(1)求证:△AED∽△ADC;(2)若AB=13,BC=10,求线段DE的长.14.如图,在矩形ABCD中,AB=6,AD=12,点E在AD边上,且AE=8,EF⊥BE交CD于F.(1)求证:△ABE∽△DEF;(2)求EF的长.15.如图,AB∥CD,AC与BD交于点E,且∠ACB=90°,AB=6,BC=6,CE=3.(1)求CD的长;(2)求证:△CDE∽△BDC.16.如图:在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC上,∠EDF=∠B.求证:BD•CD=BE•CF.17.如图,已知正方形ABCD的边长为4,点E在AD上(不与点A,D重合),EF⊥BE交CD于点F.(1)求证:△ABE∽△DEF;(2)连接BF,设AE的长为x,DF的长为y,求y与x之间的函数表达式,并求函数y 的最大值.18.如图,在正方形ABCD中,点E在AD上,EF⊥BE交CD于点F.(1)求证:△ABE∽△DEF;(2)连接BF,若△ABE∽△EBF,试确定点E的位置并说明理由.19.如图,已知正方形ABCD中,BE平分∠DBC且交CD边于点E,将△BCE绕点C顺时针旋转到△DCF的位置,并延长BE交DF于点G.(1)求证:△BDG∽△DEG;(2)若EG•BG=4,求BE的长.20.已知:如图,△ABC中,AB=AC,AD是中线,P是AD上一点,过C作CF∥AB,延长BP交AC于E,交CF于F、求证:BP2=PE•PF.21.如图,CD是Rt△ABC斜边AB上的高,E为BC的中点,ED的延长线交CA于F.求证:AC•CF=BC•DF.22.在Rt△ABC中,∠C=90°,AC=20cm,BC=15cm,现有动点P从点A出发,沿AC 向点C方向运动,动点Q从点C出发,沿线段CB向点B方向运动,如果点P的速度是4cm/s,点Q的速度是2cm/s,它们同时出发,当有一点到达所在线段的端点时,就停止运动.设运动时间为t秒.求:(1)当t=3时,这时,P,Q两点之间的距离是多少.(2)当t为多少时,PQ的长度等于4?(3)当t为多少时,以点C,P,Q为顶点的三角形与ABC相似?23.如图,平面直角坐标系中,四边形OABC为矩形,点A,B的坐标分别为(4,0),(4,3),动点M,N分别从O,B同时出发.以每秒1个单位的速度运动.其中,点M沿OA 向终点A运动,点N沿BC向终点C运动.过点M作MP⊥OA,交AC于P,连接NP,已知动点运动了x秒.(1)P点的坐标为(,)(用含x的代数式表示);(2)试求△NPC面积S的表达式,并求出面积S的最大值及相应的x值;(3)设四边形OMPC的面积为S1,四边形ABNP的面积为S2,请你就x的取值范围讨论S1与S2的大小关系并说明理由;(4)当x为何值时,△NPC是一个等腰三角形?参考答案一.选择题1.解:①、当∠ACP=∠B,∵∠A=∠A,∴△APC∽△ACB,∴①不符合题意;②、当∠APC=∠ACB,∵∠A=∠A,∴△APC∽△ACB,∴②不符合题意;③、当AC2=AP•AB,即AC:AB=AP:AC,∵∠A=∠A∴△APC∽△ACB,∴③不符合题意;④、∵当AB•CP=AP•CB,即PC:BC=AP:AB,而∠P AC=∠CAB,∴不能判断△APC和△ACB相似,∴④符合题意;故选:D.2.解:∵∠BCD=∠A,∠B=∠B,∴△BCD∽△BAC,∴=,∵BC=3,BD=2,∴=,∴BA=,∴AD=BA﹣BD=﹣2=.故选:B.3.解:∵∠ACB=90°,∴∠ACD+∠BCD=90°,∵CD⊥AB,∴∠B+∠BCD=90°,∴∠ACD=∠B,A正确,不符合题意;∵∠ACB=90°,CD⊥AB,∴CD2=AD•BD,B正确,不符合题意;由三角形的面积公式得,•AC•BC=AB•CD,∴AC•BC=AB•CD,C正确,不符合题意;∵∠ACB=90°,CD⊥AB,∴BC2=BD•AB,D错误,符合题意;故选:D.4.解:∵在▱ABCD中,CD=AB=10,BC=AD=15,∠BAD的平分线交BC于点E,∴AB∥DC,∠BAF=∠DAF,∴∠BAF=∠F,∴∠DAF=∠F,∴DF=AD=15,同理BE=AB=10,∴CF=DF﹣CD=15﹣10=5;∴在△ABG中,BG⊥AE,AB=10,BG=8,在Rt△ABG中,AG===6,∴AE=2AG=12,∴△ABE的周长等于10+10+12=32,∵四边形ABCD是平行四边形,∴AB∥CF,∴△CEF∽△BEA,相似比为5:10=1:2,∴△CEF的周长为16.故选:A.5.解:设AF=x,则AC=3x,∵四边形CDEF为正方形,∴EF=CF=2x,EF∥BC,∵EF∥BC,∴△AEF∽△ABC,∴==,∴BC=6x,在Rt△ABC中,AB==3x,∴3x=30,解得x=2,∴AC=6,BC=12,∴剩余部分的面积=×6×12﹣(4)2=100(cm2).故选:D.6.解:作CF⊥AD交AD的延长线于点F,∵AD=AB=5,AD⊥AB,∴∠B=∠ADB=45°,∵∠ADB=∠CDF,CF⊥AD,∴∠CDF=45°,∠CFD=90°,∴∠DCF=∠CDF=45°,∴CF=DF,∵AD⊥DE,AF⊥FC,∴DE∥FC,∴△ADE∽△AFC,∴,∵AD=5,DE=2,DF=CF,∴,∴,解得,CF=,∴△ADC的面积是:==,故选:D.7.解:由已知可得:第一次旋转后,A1在第一象限,OA1=2,第二次旋转后,A2在第二象限,OA2=22,第三次旋转后,A3在x轴负半轴,OA3=23,第四次旋转后,A4在第三象限,OA4=24,第五次旋转后,A5在第四象限,OA5=25,第六次旋转后,A6在x轴正半轴,OA6=26,......如此循环,每旋转6次,A的对应点又回到x轴正半轴,而2021=6×336+5,∴A2021在第四象限,且OA2021=22021,示意图如下:OH=OA2021=22020,A2021H=OH=×22020,∴A2021(22020,﹣×22020),故选:C.二.填空题8.解:∵∠BCD=∠A,∠B=∠B,∴△DCB∽△CAB,∴,∴=,∴BD=,∴AD=AB﹣BD=,故答案为:.9.解:∵△ABC∽△ADE或△ABC∽△AED,∴=或=,∵AD=AB,AB=15,∴AD=10,∵AC=18,∴=或=,解得:AE=12或.故答案为:12或.10.解:设AP=x.∵以A、C、P为顶点的三角形与以B、D、P为顶点的三角形相似,①当时,,解得x=3.②当时,,解得x=1或8,∴当以A、C、P为顶点的三角形与以B、D、P为顶点的三角形相似时,AP的长为1或3或8,故答案为1或3或8.11.解:过D作DH⊥AC于H,∵在等腰Rt△ABC中,∠C=90°,AC=15,∴AC=BC=15,∴∠CAD=45°,∴AH=DH,∴CH=15﹣DH,∵CF⊥AE,∴∠DHA=∠DF A=90°,∴∠HAF=∠HDF,∴△ACE∽△DHC,∴=,∵CE=2EB,∴CE=10,∴=,∴DH=9,∴AD=9,故答案为:9.12.解:在Rt△AOB中,∠AOB=30°,OA=1,∴OB=OA•cos∠AOB=,由题意得,OB1=2OB=×2,OB2=2OB1=×22,……OB n=2OB1=×2n=×2n﹣1,∵2021÷12=168……5,∴点B2021的纵坐标为:﹣×22020×cos30°=﹣×22020×=﹣3×22019,故答案为:﹣3×22019.三.解答题13.(1)证明:∵AB=AC,AD为BC边上的中线,∴∠BAD=∠CAD,AD⊥BC,∵AD⊥BC,DE⊥AB,∴∠AED=∠ADC=90°,∴△AED∽△ADC.(2)解:∵AD为BC边上的中线,∴BD=DC=BC=5,∵在Rt△ADB中∴AD==12,由(1)得△AED∽△ADC,∴=,∴=,∴DE=.14.(1)证明:∵四边形ABCD是矩形,∴∠D=∠A=90°,∵EF⊥BE,∴∠FEB=90°,∴∠DEF+∠AEB=90°,∠DEF+∠DFE=90°,∴∠DFE=∠AEB,∴△ABE∽△DEF.(2)在Rt△AEB中,BE==10,∵AD=12,AE=8,∴DE=4,∵△ABE∽△DEF,∴=∴=,∴EF=.15.(1)解:∵∠ACB=90°AB=6,BC=6,∴AC==12;∴AE=AC﹣CE=9,∵AB∥CD,∴△CDE∽△ABE;∴,∴CD===2,(2)证明:∵∠ACB=90°,CE=3,BC=6,∴BE==3,∵AB∥CD,∴△CDE∽△ABE,∴,∴DE=,∴BD=4,∵,,∴,∵∠D=∠D,∴△CDE∽△BDC.16.证明:∵△ABC中,AB=AC,∴∠B=∠C.∵∠B+∠BDE+∠DEB=180°,∠BDE+∠EDF+∠FDC=180°,∠EDF=∠B,∴∠FDC=∠DEB,∴△BDE∽△CFD,∴=,即BD•CD=BE•CF.17.证明:(1)∵四边形ABCD是正方形,∴∠A=∠D=90°,∴∠ABE+∠AEB=90°,∵EF⊥BC,∴∠AEB+∠DEF=90°,∴∠ABE=∠DEF,又∵∠A=∠D,∴△ABE∽△DEF;(2)∵△ABE∽△DEF,∴,∴,∴y=﹣(x﹣2)2+1,∴当x=2时,y有最大值为1.18.(1)证明∵四边形ABCD是正方形,∴∠A=∠D=90°.∴∠AEB+∠ABE=90°.∵EF⊥BE,∴∠AEB+∠DEF=90°.∴∠ABE=∠DEF.在△ABE和△DEF中,∠ABE=∠DEF,∠A=∠D,∴△ABE∽△DEF;(2)解:点E为AD的中点时,△ABE∽△EBF,理由如下:∵△ABE∽△DEF,∴.∵△ABE∽△EBF,∴.∴.∴DE=AE.∴点E为AD的中点.19.(1)证明:∵将△BCE绕点C顺时针旋转到△DCF的位置,∴△BCE≌△DCF,∴∠FDC=∠EBC,∵BE平分∠DBC,∴∠DBE=∠EBC,∴∠FDC=∠EBD,∵∠DGE=∠DGE,∴△BDG∽△DEG.(2)解:∵△BCE≌△DCF,∴∠F=∠BEC,∠EBC=∠FDC,∵四边形ABCD是正方形,∴∠DCB=90°,∠DBC=∠BDC=45°,∵BE平分∠DBC,∴∠DBE=∠EBC=22.5°=∠FDC,∴∠BEC=67.5°=∠DEG,∴∠DGE=180°﹣22.5°﹣67.5°=90°,即BG⊥DF,∵∠BDF=45°+22.5°=67.5°,∠F=90°﹣22.5°=67.5°,∴∠BDF=∠F,∴BD=BF,∴DF=2DG,∵△BDG∽△DEG,BG×EG=4,∴=,∴BG×EG=DG×DG=4,∴DG2=4,∴DG=2,∴BE=DF=2DG=4.20.证明:连接PC,∵AB=AC,AD是中线,∴AD是△ABC的对称轴.∴PC=PB,∠PCE=∠ABP.∵CF∥AB,∴∠PFC=∠ABP(两直线平行,内错角相等),∴∠PCE=∠PFC.又∵∠CPE=∠EPC,∴△EPC∽△CPF.∴(相似三角形的对应边成比例).∴PC2=PE•PF.∵PC=BP∴BP2=PE•PF.21.证明:∵∠ACB=90°,CD⊥AB,∴∠DAC+∠B=∠B+∠DCB=90°,∴∠DAC=∠DCB,且∠ACD=∠CDB,∴△ADC∽△CDB,∴=,∵E为BC中点,∴DE=CE,∴∠EDC=∠DCE=∠DAC,∴∠FDC=∠F AD,且∠F=∠F,∴△FDC∽△F AD,∴=,∴=,∴AC•CF=BC•DF.22.解:由运动知,AP=4tcm,CQ=2tcm,∵AC=20cm,∴CP=(20﹣4t)cm,∵点P在AC上运动,∴4t≤20,∴t≤5,∵点Q在BC运动,∴2t≤15,∴t≤7.5,∴0≤t≤5,(1)当t=3时,CP=8cm,CQ=6cm,在Rt△PCQ中,根据勾股定理得,PQ==10(cm);(2)在Rt△PCQ中,根据勾股定理得,PQ2=CP2+CQ2,∵PQ=4,∴(4)2=(20﹣4t)2+(2t)2,解得,t=2或t=6(舍去),即当t为2时,PQ的长度等于4;(3)∵以点C,P,Q为顶点的三角形与ABC相似,且∠C=∠C=90°,∴①△CPQ∽△CAB,∴,∴,∴t=3,②△CPQ∽△CBA,∴,∴,∴t=,即当t为3或时,以点C,P,Q为顶点的三角形与ABC相似.23.解:(1)由题意可知,C(0,3),M(x,0),N(4﹣x,3),∴点P坐标为(2)设△NPC的面积为S,在△NPC中,NC=4﹣x,NC边上的高为,其中,0≤x≤4,∴S=(4﹣x)×=﹣(x﹣2)2+,∴S的最大值为,此时x=2(3)由图形知,S1=S2=S△ABC﹣S△PCN=;当0<x<2时,S1<S2;当x=2时,S1=S2;当2<x<4时,S1>S2;(4)延长MP交CB于Q,则有PQ⊥BC.①若NP=CP,∵PQ⊥BC,∴NQ=CQ=x.∴3x=4,∴x=.②若CP=CN,则,CN=4﹣x,PQ=x,CP=x,4﹣x=x∴x=.③若CN=NP,则CN=4﹣x.∵PQ=x,NQ=4﹣2x,在Rt△PNQ中,PN2=NQ2+PQ2∴(4﹣x)2=(4﹣2x)2+(x)2,∴x=.综上所述,x=,或x=,或x=.。
相似三角形专题练习(培优)附答案

相似三角形专题练习(培优)附答案一、基础知识(不局限于此)(一).比例1.第四比例项、比例中项、比例线段;2.比例性质:(1)基本性质:bc ad d c b a =⇔= ac b c bb a =⇔=2 (2)合比定理:d dc b b ad c b a ±=±⇒= (3)等比定理:)0.(≠+++=++++++⇒==n d b ban d b m c a n m d c b a3.黄金分割:如图,若AB PB PA ⋅=2,则点P 为线段AB 的黄金分割点.4.平行线分线段成比例定理(二)相似1.定义:我们把具有相同形状的图形称为相似形.2.相似多边形的特性:相似多边的对应边成比例,对应角相等.3.相似三角形的判定● (1)平行于三角形一边的直线与其它两边相交,所构成的三角形与原三角形相似。
● (2)如果两个三角形的三组对应边的比相等,那么这两个三角形相似。
● (3)如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。
● (4)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
4.相似三角形的性质● (1)对应边的比相等,对应角相等. ● (2)相似三角形的周长比等于相似比.● (3)相似三角形的面积比等于相似比的平方.● (4)相似三角形的对应边上的高、中线、角平分线的比等于相似比. 5.三角形中位线定义:连接三角形两边中点的线段 叫做三角形的中位线. 三角形中位线性质: 三角形的中位线平行于第三边,并且等于它的一半。
6.梯形的中位线定义:梯形两腰中点连线叫做梯形的中位线.梯形的中位线性质: 梯形的中位线平行于两底并且等于两底和的一半. 7.相似三角形的应用:1、利用三角形相似,可证明角相等;线段成比例(或等积式); 2、利用三角形相似,求线段的长等3、利用三角形相似,可以解决一些不能直接测量的物体的长度。
如求河的宽度、求建筑物的高度等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3题图)E
D
C B A
D
B
C
A N
M O
相似三角形练习题
1、如图1,当四边形PABN 的周长最小时,a = .
2、如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x ,那么x 的值( )
A .只有1个
B .可以有2个
C .有2个以上但有限
D .有无数个
3、如图3,等腰ABC ∆中,底边BC=a ,A ∠=0
36,ABC ∠的平分线交AC 于D ,BCD ∠的平分线交BD 于E ,设k =
DE=( ) A 、2
K a B 、3
K a C 、2a
k
D 、
3
a k
4、如图4,菱形ABCD 中,对角线AC 、BD 相交于点O ,M 、N 分别是边AB 、AD 的中点,连接
OM 、ON 、MN ,则下列叙述正确的是( )
A .△AOM 和△AON 都是等边三角形
B .四边形MBON 和四边形MODN 都是菱形
C .四边形AMON 与四边形ABC
D 是位似图形 D .四边形MBCO 和四边形NDCO 都是等腰梯形 5、如图5将放置于平面直角坐标系中的三角板AOB 绕O 点顺时针旋转90°得△A′OB′.已知∠AOB =30°,∠B =90°,AB =1,则B′点的坐标为( ) A .3)22 B .3(22 C .1(22 D .1)22
x
(1题图) 图 4 图 5
F
E
D C
B
A E F
A
D
C
B 6、如图小正方形的边长均为1,则下列图中的三角形(阴影部分)与AB
C △相似的是( )
7、如图7,梯形ABCD 中,AD BC ∥,点E 在BC 上,AE BE =,点F 是CD 的中点,且AF AB ⊥,
若 2.746AD AF AB ===,,,则CE 的长为 A
.
1 C. 2.5 D. 2.3
(7题图)
8、如图8,在ABC △中,AB AC =,点E F 、分别在AB 和AC 上,CE 与BF 相交于点D ,若AE CF D =,为BF 的中点,AE AF :的值为___________.
9、如图9,已知ABC ∆,延长BC 到D ,使CD=BC 取AB 的中点F,连接FD 交AC 于点E 。
(1)求AE
AC
的值;(2)若AB=a ,FB=EC ,求AC 的长。
1、4
7
9、B 3、A 10、C 14、A 16、A 17、D 18
、12
23、解:(1)过点F 作FM//AC ,交BC 于点M , F 为AB 的中点,∴M 为BC 的中点,FM=2
1
AC ,由FM//AC ,得,,F M D E C D MFD CED ∠=∠∠=∠ FMD ∆∴~ ,ECD ∆ 3
2
==∴
FM EC DM DC , 3
231
,31213232=-
=-=∴=⨯==
∴AC AC
AC AC
EC AC AC AE AC AC FM EC .
(2),
2
1
21,a AB FB a AB ==∴= 又FB=EC ,
a EC 2
1
=
∴。
.23
3,31a EC AC AC EC ==∴=。