数据挖掘总结

合集下载

数据挖掘实验报告结论(3篇)

数据挖掘实验报告结论(3篇)

第1篇一、实验概述本次数据挖掘实验以Apriori算法为核心,通过对GutenBerg和DBLP两个数据集进行关联规则挖掘,旨在探讨数据挖掘技术在知识发现中的应用。

实验过程中,我们遵循数据挖掘的一般流程,包括数据预处理、关联规则挖掘、结果分析和可视化等步骤。

二、实验结果分析1. 数据预处理在实验开始之前,我们对GutenBerg和DBLP数据集进行了预处理,包括数据清洗、数据集成和数据变换等。

通过对数据集的分析,我们发现了以下问题:(1)数据缺失:部分数据集存在缺失值,需要通过插补或删除缺失数据的方法进行处理。

(2)数据不一致:数据集中存在不同格式的数据,需要进行统一处理。

(3)数据噪声:数据集中存在一些异常值,需要通过滤波或聚类等方法进行处理。

2. 关联规则挖掘在数据预处理完成后,我们使用Apriori算法对数据集进行关联规则挖掘。

实验中,我们设置了不同的最小支持度和最小置信度阈值,以挖掘出不同粒度的关联规则。

以下是实验结果分析:(1)GutenBerg数据集在GutenBerg数据集中,我们以句子为篮子粒度,挖掘了林肯演讲集的关联规则。

通过分析挖掘结果,我们发现:- 单词“the”和“of”在句子中频繁出现,表明这两个词在林肯演讲中具有较高的出现频率。

- “and”和“to”等连接词也具有较高的出现频率,说明林肯演讲中句子结构较为复杂。

- 部分单词组合具有较高的置信度,如“war”和“soldier”,表明在林肯演讲中提到“war”时,很可能同时提到“soldier”。

(2)DBLP数据集在DBLP数据集中,我们以作者为单位,挖掘了作者之间的合作关系。

实验结果表明:- 部分作者之间存在较强的合作关系,如同一研究领域内的作者。

- 部分作者在多个研究领域均有合作关系,表明他们在不同领域具有一定的学术影响力。

3. 结果分析和可视化为了更好地展示实验结果,我们对挖掘出的关联规则进行了可视化处理。

通过可视化,我们可以直观地看出以下信息:(1)频繁项集的分布情况:通过柱状图展示频繁项集的分布情况,便于分析不同项集的出现频率。

数据挖掘实验心得7篇

数据挖掘实验心得7篇

数据挖掘实验心得7篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、工作计划、策划方案、合同协议、条据文书、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, work plans, planning plans, contract agreements, documentary evidence, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!数据挖掘实验心得7篇下面是本店铺整理的数据挖掘实验心得7篇数据挖掘实训心得,以供借鉴。

数据挖掘机器学习总结6篇

数据挖掘机器学习总结6篇

数据挖掘机器学习总结6篇第1篇示例:数据挖掘和机器学习是近年来备受关注的热门领域,随着大数据时代的到来,数据挖掘和机器学习的应用也变得越来越广泛。

它们通过分析大量的数据,从中提取有价值的信息和模式,帮助人们做出更加精准的决策。

本文将对数据挖掘和机器学习进行总结,包括其定义、应用、技术和发展趋势等方面,以期帮助读者更好地了解这一领域。

一、数据挖掘的定义与应用数据挖掘是一种从大量的数据中发现规律、模式和知识的过程,通过利用统计学、机器学习和数据库技术等方法,帮助人们从数据中挖掘出有用的信息。

数据挖掘的应用非常广泛,涉及到商业、金融、医疗、教育、交通等各个领域。

在商业领域,数据挖掘可以用于市场营销、客户关系管理、风险分析等方面;在医疗领域,数据挖掘可以用于疾病预测、药物研发等方面;在教育领域,数据挖掘可以用于学生成绩预测、教学优化等方面。

数据挖掘已经成为当今社会不可或缺的一部分,为各行各业的发展带来了巨大的推动力。

二、机器学习的定义与应用机器学习是人工智能的一个子领域,其主要目的是使机器能够通过学习数据来改善其性能。

通过对大量的数据进行分析和学习,机器可以不断提高其预测、识别和决策能力,从而实现自主智能的目标。

机器学习的应用也非常广泛,包括语音识别、图像识别、自然语言处理、智能推荐等领域。

在语音识别方面,机器学习可以帮助机器更准确地识别和理解人类语言;在图像识别方面,机器学习可以帮助机器识别图像中的物体和场景;在智能推荐方面,机器学习可以根据用户的历史行为和偏好,为其推荐个性化的产品和服务。

机器学习已经成为近年来人工智能发展的核心领域之一。

三、数据挖掘与机器学习的关系数据挖掘和机器学习有着密切的关系,它们可以相互促进,共同推动人工智能的发展。

数据挖掘可以为机器学习提供大量的训练数据,从而帮助机器学习算法更好地学习和模拟人类智慧;而机器学习可以为数据挖掘提供更加智能化的数据挖掘工具,使数据挖掘可以更快、更准确地发现数据中的规律和模式。

数据挖掘与业务洞察的工作总结

数据挖掘与业务洞察的工作总结

数据挖掘与业务洞察的工作总结在当今数字化的时代,数据已成为企业决策和发展的重要依据。

作为一名从事数据挖掘与业务洞察工作的人员,我在过去的一段时间里,致力于从海量的数据中挖掘有价值的信息,为企业的业务决策提供有力支持。

以下是我对这段工作的总结。

一、工作背景与目标随着市场竞争的加剧和企业业务的不断拓展,我们意识到单纯依靠传统的经验和直觉进行决策已经远远不够。

数据挖掘和业务洞察作为一种基于数据分析的决策支持手段,能够帮助我们更深入地了解客户需求、市场趋势以及企业内部运营状况,从而制定更加精准和有效的策略。

我的工作目标主要是通过运用各种数据挖掘技术和分析方法,对企业内部和外部的相关数据进行收集、整理、分析和挖掘,提取有价值的信息和知识,为业务部门提供决策支持,促进业务的增长和优化。

二、工作内容与方法(一)数据收集与整理数据是进行挖掘和洞察的基础。

我首先需要从多个渠道收集相关数据,包括企业内部的业务系统、数据库,以及外部的市场调研、行业报告等。

收集到的数据往往存在格式不一致、缺失值、重复等问题,因此需要进行数据清洗和预处理,使其达到可分析的状态。

(二)数据分析与挖掘运用多种数据分析和挖掘技术,如聚类分析、分类算法、关联规则挖掘等,对整理好的数据进行深入分析。

例如,通过聚类分析将客户分为不同的群体,以便针对性地制定营销策略;利用分类算法预测客户的购买行为,为销售团队提供潜在客户名单;通过关联规则挖掘发现产品之间的关联关系,优化产品组合。

(三)业务洞察与报告在数据分析的基础上,结合业务知识和经验,进行业务洞察。

挖掘出的数据背后的意义和趋势,并将其转化为可操作的建议和决策支持。

同时,以清晰、简洁的方式撰写分析报告,向业务部门和管理层进行汇报和沟通。

(四)模型评估与优化建立的数据挖掘模型需要不断进行评估和优化,以确保其准确性和有效性。

通过使用测试数据集对模型进行验证,根据评估结果对模型的参数和算法进行调整和改进,提高模型的性能和预测能力。

数据挖掘导论知识点总结

数据挖掘导论知识点总结

数据挖掘导论知识点总结数据挖掘是一门综合性的学科,它涵盖了大量的知识点和技术。

在本文中,我将对数据挖掘的导论知识点进行总结,包括数据挖掘的定义、历史、主要任务、技术和应用等方面。

一、数据挖掘的定义数据挖掘是从大量的数据中发掘出有价值的信息和知识的过程。

它是一种将数据转换为有意义的模式和规律的过程,从而帮助人们进行决策和预测的技术。

数据挖掘能够帮助我们从海量的数据中找到潜在的关联、规律和趋势,从而为决策者提供更准确和具有实际意义的信息。

二、数据挖掘的历史数据挖掘的概念最早可追溯到20世纪60年代,当时统计学家和计算机科学家开始尝试使用计算机技术来处理和分析大量的数据。

随着计算机硬件和软件技术的不断发展,数据挖掘逐渐成为一门独立的学科,并得到了广泛应用。

三、数据挖掘的主要任务数据挖掘的主要任务包括分类、聚类、关联规则挖掘、异常检测和预测等。

分类是将数据划分为多个类别的过程,其目的是帮助我们将数据进行分组和识别。

聚类是将数据划分为多个簇的过程,其目的是发现数据中的潜在模式和规律。

关联规则挖掘是发现数据中的关联规则和频繁项集的过程,其目的是发现数据中的潜在关联和趋势。

异常检测是发现数据中的异常值和异常模式的过程,其目的是发现数据中的异常现象。

预测是使用数据挖掘技术对未来进行预测的过程,其目的是帮助我们做出更准确的决策。

四、数据挖掘的技术数据挖掘的技术包括统计分析、机器学习、人工智能、数据库技术和数据可视化等。

统计分析是数据挖掘的基础技术,它包括描述统计、推断统计和假设检验等方法。

机器学习是一种使用算法和模型来识别数据模式和规律的技术,常见的机器学习算法包括决策树、神经网络、支持向量机和朴素贝叶斯等。

人工智能是数据挖掘的前沿技术,它包括自然语言处理、图像识别和智能决策等方面。

数据库技术是数据挖掘的技术基础,包括数据存储、数据检索和数据管理等技术。

数据可视化是数据挖掘的重要技术,它能够帮助我们将数据呈现为可视化的图表和图形,从而更直观地理解数据。

数据挖掘与可视化工作总结

数据挖掘与可视化工作总结

数据挖掘与可视化工作总结在当今数字化时代,数据已经成为了企业和组织最宝贵的资产之一。

数据挖掘与可视化作为从海量数据中提取有价值信息并以直观方式呈现的重要手段,对于决策支持、业务优化和创新发展具有至关重要的意义。

在过去的一段时间里,我深入参与了数据挖掘与可视化相关的工作,取得了一些成果,也面临了一些挑战。

以下是我对这段工作的详细总结。

一、工作背景与目标随着公司业务的不断拓展和数据量的急剧增长,如何有效地利用这些数据来洞察市场趋势、优化业务流程、提升客户满意度成为了亟待解决的问题。

数据挖掘与可视化工作的开展旨在通过对内部业务数据和外部市场数据的整合分析,挖掘潜在的商业机会和风险,为管理层提供科学的决策依据,并以清晰易懂的可视化方式展示数据分析结果,促进跨部门的沟通与协作。

二、数据挖掘工作内容1、数据收集与预处理首先,需要从多个数据源收集相关数据,包括数据库、Excel 文件、网络爬虫获取的数据等。

这些数据往往存在格式不一致、缺失值、重复值等问题。

因此,数据预处理成为了关键的一步。

通过数据清洗、转换和集成等操作,将原始数据转化为可供分析的结构化数据。

2、特征工程在数据预处理的基础上,进行特征工程。

这包括特征选择、特征提取和特征构建。

通过选择与业务目标相关的特征,提取有代表性的特征,以及构建新的特征,为后续的建模工作提供有力支持。

3、建模与算法选择根据具体的业务问题和数据特点,选择合适的数据挖掘算法进行建模。

例如,对于分类问题,采用决策树、随机森林、支持向量机等算法;对于预测问题,使用线性回归、时间序列预测等方法。

在建模过程中,不断调整参数,进行模型评估和优化,以提高模型的准确性和泛化能力。

4、模型评估与验证使用多种评估指标,如准确率、召回率、F1 值、均方误差等,对模型进行评估。

同时,采用交叉验证等技术,确保模型的稳定性和可靠性。

对于重要的模型,还会在实际业务数据上进行验证,以观察其实际效果。

三、可视化工作内容1、数据可视化工具选择根据数据类型和展示需求,选择合适的可视化工具。

数据挖掘知识点归纳总结

数据挖掘知识点归纳总结

数据挖掘知识点归纳总结一、数据挖掘概述数据挖掘是通过分析大量数据,发现其中隐藏的规律、趋势和模式,从而得出有用的信息和知识。

数据挖掘可以帮助企业做出更明智的决策,提高生产效率,降低成本,增加收入。

数据挖掘技术包括数据预处理、特征选择、模型构建和评估等步骤。

二、数据挖掘的基本过程1. 数据采集:从各种数据源中收集数据,可以是数据库、文本文件、传感器数据等。

2. 数据预处理:清洗数据、处理缺失值、去除噪声、数据标准化等,使得数据适合进行挖掘分析。

3. 数据挖掘:应用各种数据挖掘技术和算法,寻找模式、规律和趋势。

4. 模型评估:评估挖掘模型的性能,选择最优的模型。

5. 模型部署:将优化的模型应用到实际业务中,产生价值。

三、数据挖掘的主要技术和算法1. 分类算法:用于对数据进行分类,如决策树、支持向量机、朴素贝叶斯、逻辑回归等。

2. 聚类算法:将数据集中的对象划分为不同的组,如K均值聚类、DBSCAN、层次聚类等。

3. 关联规则挖掘:寻找数据项之间的关联关系,如Apriori算法、FP-Growth算法。

4. 强化学习:通过智能体与环境的交互学习,以达到某种目标,如Q学习、策略梯度方法等。

5. 文本挖掘:用于从大量文本数据中提取有用信息,如情感分析、主题模型、关键词提取等。

四、数据挖掘的应用领域1. 金融领域:用于信用评分、欺诈检测、股票预测等。

2. 零售行业:用于市场营销、销售预测、商品推荐等。

3. 医疗健康:用于疾病预测、基因识别、医疗影像分析等。

4. 社交网络:用于用户推荐、社交关系分析、舆情监测等。

5. 制造业:用于质量控制、生产优化、设备预测维护等。

五、数据挖掘的挑战和解决方案1. 大数据处理:随着数据量的增加,数据挖掘面临着大规模数据的处理和分析问题,需要使用并行计算、分布式计算等技术。

2. 数据质量:数据质量差会影响挖掘结果的准确性,需要进行数据清洗、去重和统一化。

3. 模型解释:一些数据挖掘模型缺乏解释性,如深度学习模型,需要提供解释性的方法来解释模型的结果。

数据挖掘实训课程学习总结

数据挖掘实训课程学习总结

数据挖掘实训课程学习总结在数据挖掘实训课程中,我从中获得了许多宝贵的经验和技能。

通过实际项目的参与和完成,我对数据挖掘的概念、方法和工具有了更深入的理解。

在这篇文章中,我将总结我在数据挖掘实训课程中的学习体会和收获。

首先,我学会了如何提取和清洗数据。

在实际项目中,原始数据往往是杂乱无章且不完整的。

要进行数据挖掘分析,首先需要对数据进行预处理,包括缺失值处理、异常值检测和数据转换等。

通过实训课程,我学会了使用数据处理软件和编程工具来提取和清洗数据,从而使得数据集更加准确和可靠。

其次,我了解了不同的数据挖掘算法和技术。

数据挖掘是一门复杂的学科,其中涉及到许多算法和技术,如关联规则挖掘、分类、聚类和预测等。

在实训课程中,我研究了各种数据挖掘算法,并学习了它们的原理和应用场景。

通过实践项目,我掌握了如何选择适当的算法,并将其应用于解决实际问题。

此外,我也学到了数据可视化的重要性。

数据可视化是将复杂的数据转化为可视化图形的过程,它能够帮助我们更好地理解和分析数据。

在实习课程中,我学会了使用数据可视化工具,如Tableau和Matplotlib等,将挖掘得到的结果以图表的形式展示出来,从而更好地向他人展示和解释数据。

除了理论知识和技能的学习,实际项目的参与也让我体验到了团队合作的重要性。

在实训课程中,我们被分配到小组中,与队友共同完成一个数据挖掘项目。

通过与队友的合作,我了解到在团队中分工合作、沟通协作的重要性。

每个人都有自己的专长和能力,能够在不同方面为项目做出贡献。

总的来说,通过参与数据挖掘实训课程,我不仅学到了一系列数据挖掘的基本知识和技能,还锻炼了自己的动手能力和解决问题的思维方式。

这门课程不仅为我今后从事相关工作打下了坚实的基础,而且也培养了我对数据科学的热情和兴趣。

我相信,在今后的学习和工作中,我会继续努力,不断提升自己的数据挖掘能力,并将其应用于实际生活和工作中,为社会做出更多的贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数据挖掘总结(职业篇)数据分析微信公众号datadw——关注你想了解的,分享你需要的。

前面对数据挖掘相关资源等等进行了总结。

但是,很多人不明白学习数据挖掘以后干什么,这个问题也经常被问到。

记得刚学数据挖掘的时候,有一个老师说学数据挖掘有什么用,你以后咋找工作。

当时听了,觉得很诧异,不知道他为何有此一问。

数据挖掘在国外是一份很不错的工作。

我喜欢数据挖掘,因为它很有趣。

很高兴以后就从事这方面的工作啦。

写论文之余,也考虑一下数据挖掘工程师的职业规划。

以下是从网上找的一些相关资料介绍,和即将走上数据挖掘岗位或是想想这方面发展的朋友共享:BI职业发展方向:数据分析师---商业分析师--管理者但是在每个公司,可能有不同的发展方向,但是大致上是从数据挖掘工程师起步。

DMFighter:数据挖掘从业人员工作分析1.数据挖掘从业人员的愿景:数据挖掘就业的途径从我看来有以下几种,(注意:本文所说的数据挖掘不包括数据仓库或数据库管理员的角色)。

A:做科研(在高校、科研单位以及大型企业,主要研究算法、应用等)B:做程序开发设计(在企业做数据挖掘及其相关程序算法的实现等)C:数据分析师(在存在海量数据的企事业单位做咨询、分析等)2.数据挖掘从业人员切入点:根据上面的从业方向倒序并延伸来说说需要掌握的技能。

C,数据分析师:需要有深厚的数理统计基础,可以不知道人工智能和计算机编程等相关技术,但是需要熟练使用主流的数据挖掘(或统计分析)工具。

从这个方面切入数据挖掘领域的话你需要学习《数理统计》、《概率论》、《统计学习基础:数据挖掘、推理与预测》、《金融数据挖掘》,《业务建模与数据挖掘》、《数据挖掘实践》等,当然也少不了你使用的工具的对应说明书了,如SPSS、SAS等厂商的《SAS数据挖掘与分析》、《数据挖掘Clementine应用实务》、《EXCEL 2007数据挖掘完全手册》等,如果多看一些如《中文版数据挖掘原理》等书籍那就更好了。

B,程序设计开发:主要是实现数据挖掘现有的算法和研发新的算法以及根据实际需要结合核心算法做一些程序开发实现工作。

要想扮演好这个角色,你不但需要熟悉至少一门编程语言如(C,C++,Java,Delphi等)和数据库原理和操作,对数据挖掘基础课程有所了解,读过《数据挖掘概念与技术》(韩家炜著)、《人工智能及其应用》。

有一点了解以后,如果对程序比较熟悉的话并且时间允许,可以寻找一些开源的数据挖掘软件研究分析,也可以参考如《数据挖掘:实用机器学习技术及Java实现》等一些教程。

A.做科研:这里的科研相对来说比较概括,属于技术型的相对高级级别,也是B,C的归宿,那么相应的也就需要对B、C的必备基础知识了。

--------------------------------------------------------------------------------------------------------数据挖掘人员需具备以下基本条件,才可以完成数据挖掘项目中的相关任务。

一、专业技能硕士以上学历,数据挖掘、统计学、数据库相关专业,熟练掌握关系数据库技术,具有数据库系统开发经验熟练掌握常用的数据挖掘算法具备数理统计理论基础,并熟悉常用的统计工具软件二、行业知识具有相关的行业知识,或者能够很快熟悉相关的行业知识三、合作精神具有良好的团队合作精神,能够主动和项目中其他成员紧密合作四、客户关系能力具有良好的客户沟通能力,能够明确阐述数据挖掘项目的重点和难点,善于调整客户对数据挖掘的误解和过高期望具有良好的知识转移能力,能够尽快地让模型维护人员了解并掌握数据挖掘方法论及建模实施能力进阶能力要求数据挖掘人员具备如下条件,可以提高数据挖掘项目的实施效率,缩短项目周期。

具有数据仓库项目实施经验,熟悉数据仓库技术及方法论熟练掌握SQL语言,包括复杂查询、性能调优熟练掌握ETL开发工具和技术熟练掌握Microsoft Office软件,包括Excel和PowerPoint中的各种统计图形技术善于将挖掘结果和客户的业务管理相结合,根据数据挖掘的成果向客户提供有价值的可行性操作方案五、应用及就业领域当前数据挖掘应用主要集中在电信(客户分析),零售(销售预测),农业(行业数据预测),网络日志(网页定制),银行(客户欺诈),电力(客户呼叫),生物(基因),天体(星体分类),化工,医药等方面。

当前它能解决的问题典型在于:数据库营销(Database Marketing)、客户群体划分(Customer Segmentation &Classification)、背景分析(Profile Analysis)、交叉销售(Cross-selling)等市场分析行为,以及客户流失性分析(Churn Analysis)、客户信用记分(Credit Scoring)、欺诈发现(Fraud Detection)等等,在许多领域得到了成功的应用。

如果你访问著名的亚马逊网上书店(),会发现当你选中一本书后,会出现相关的推荐数目“Customers who bought this book alsobought”,这背后就是数据挖掘技术在发挥作用。

数据挖掘的对象是某一专业领域中积累的数据;挖掘过程是一个人机交互、多次反复的过程;挖掘的结果要应用于该专业。

因此数据挖掘的整个过程都离不开应用领域的专业知识。

“Business First, techniquesecond”是数据挖掘的特点。

因此学习数据挖掘不意味着丢弃原有专业知识和经验。

相反,有其它行业背景是从事数据挖掘的一大优势。

如有销售,财务,机械,制造,call center 等工作经验的,通过学习数据挖掘,可以提升个人职业层次,在不改变原专业的情况下,从原来的事务型角色向分析型角色转变。

从80年代末的初露头角到90年代末的广泛应用,以数据挖掘为核心的商业智能(BI)已经成为IT及其它行业中的一个新宠。

数据采集分析专员职位介绍:数据采集分析专员的主要职责是把公司运营的数据收集起来,再从中挖掘出规律性的信息来指导公司的战略方向。

这个职位常被忽略,但相当重要。

由于数据库技术最先出现于计算机领域,同时计算机数据库具有海量存储、查找迅速、分析半自动化等特点,数据采集分析专员最先出现于计算机行业,后来随着计算机应用的普及扩展到了各个行业。

该职位一般提供给懂数据库应用和具有一定统计分析能力的人。

有计算机特长的统计专业人员,或学过数据挖掘的计算机专业人员都可以胜任此工作,不过最好能够对所在行业的市场情况具有一定的了解。

求职建议:由于很多公司追求短期利益而不注重长期战略的现状,目前国内很多企业对此职位的重视程度不够。

但大型公司、外企对此职位的重视程度较高,随着时间的推移该职位会有升温的趋势。

另外,数据采集分析专员很容易获得行业经验,他们在分析过程中能够很轻易地把握该行业的市场情况、客户习惯、渠道分布等关键情况,因此如果想在某行创业,从数据采集分析专员干起是一个不错的选择。

市场/数据分析师1. 市场数据分析是现代市场营销科学必不可少的关键环节: Marketing/Data Analyst从业最多的行业: Direct Marketing (直接面向客户的市场营销) 吧,自90年代以来,Direct Marketing越来越成为公司推销其产品的主要手段。

根据加拿大市场营销组织(Canadian MarketingAssociation)的统计数据: 仅1999年一年Direct Marketing就创造了470000 个工作机会。

从1999至2000,工作职位又增加了30000个。

为什么Direct Marketing 需要这么多Analyst呢? 举个例子, 随着商业竞争日益加剧,公司希望能最大限度的从广告中得到销售回报, 他们希望能有更多的用户来响应他们的广告。

所以他们就必需要在投放广告之前做大量的市场分析工作。

例如,根据自己的产品结合目标市场顾客的家庭收入,教育背景和消费趋向分析出哪些地区的住户或居民最有可能响应公司的销售广告,购买自己的产品或成为客户,从而广告只针对这些特定的客户群。

这样有的放矢的筛选广告的投放市场既节省开销又提高了销售回报率。

但是所有的这些分析都是基于数据库,通过数据处理,挖掘,建模得出的,其间,市场分析师的工作是必不可少的。

2. 行业适应性强: 几乎所有的行业都会应用到数据, 所以作为一名数据/市场分析师不仅仅可以在华人传统的IT行业就业,也可以在政府,银行,零售,医药业,制造业和交通传输等领域服务。

现状与前景数据挖掘是适应信息社会从海量的数据库中提取信息的需要而产生的新学科。

它是统计学、机器学习、数据库、模式识别、人工智能等学科的交叉。

在中国各重点院校中都已经开了数据挖掘的课程或研究课题。

比较著名的有中科院计算所、复旦大学、清华大学等。

另外,政府机构和大型企业也开始重视这个领域。

据IDC对欧洲和北美62家采用了商务智能技术的企业的调查分析发现,这些企业的3年平均投资回报率为401%,其中25%的企业的投资回报率超过600%。

调查结果还显示,一个企业要想在复杂的环境中获得成功,高层管理者必须能够控制极其复杂的商业结构,若没有详实的事实和数据支持,是很难办到的。

因此,随着数据挖掘技术的不断改进和日益成熟,它必将被更多的用户采用,使更多的管理者得到更多的商务智能。

根据IDC(International DataCorporation)预测说2004年估计BI行业市场在140亿美元。

现在,随着我国加入WTO,我国在许多领域,如金融、保险等领域将逐步对外开放,这就意味着许多企业将面临来自国际大型跨国公司的巨大竞争压力。

国外发达国家各种企业采用商务智能的水平已经远远超过了我国。

美国Palo Alto 管理集团公司1999年对欧洲、北美和日本375家大中型企业的商务智能技术的采用情况进行了调查。

结果显示,在金融领域,商务智能技术的应用水平已经达到或接近70%,在营销领域也达到50%,并且在未来的3年中,各个应用领域对该技术的采纳水平都将提高约50%。

现在,许多企业都把数据看成宝贵的财富,纷纷利用商务智能发现其中隐藏的信息,借此获得巨额的回报。

国内暂时还没有官方关于数据挖掘行业本身的市场统计分析报告,但是国内数据挖掘在各个行业都有一定的研究。

据国外专家预测,在今后的5—10年内,随着数据量的日益积累以及计算机的广泛应用,数据挖掘将在中国形成一个产业。

众所周知,IT就业市场竞争已经相当激烈,而数据处理的核心技术---数据挖掘更是得到了前所未有的重视。

数据挖掘和商业智能技术位于整个企业IT-业务构架的金字塔塔尖,目前国内数据挖掘专业的人才培养体系尚不健全,人才市场上精通数据挖掘技术、商业智能的供应量极小,而另一方面企业、政府机构和和科研单位对此类人才的潜在需求量极大,供需缺口极大。

相关文档
最新文档