2021-2022高二人教版数学选修1-1练习:2.1.1椭圆及其标准方程 Word版含答案

合集下载

人教新课标版(A)高二选修1-1 2.1.1椭圆及其标准方程(一)同步练习题

人教新课标版(A)高二选修1-1 2.1.1椭圆及其标准方程(一)同步练习题

人教新课标版(A )高二选修1-1 2.1.1 椭圆及其标准方程(一)同步练习题【基础演练】题型一:椭圆的定义平面内与两个定点1F 、2F 距离的和等于常数(大于|F F |21)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距,请根据以上知识解决以下1~4题。

1. 到两定点1F (-2,0)和2F (2,0)的距离之和为4的点M 的轨迹是A. 椭圆B. 线段C. 圆D. 以上都不对2. 椭圆125y 9x 22=+的焦点为1F 、2F ,AB 是椭圆过焦点1F 的弦,则△2ABF 的周长是A. 20B. 12C. 10D. 6 3. 椭圆1y 25x 22=+上一点P 到一个焦点的距离为2,则点P 到另一个焦点的距离为A. 5B. 6C. 7D. 84. 命题甲:动点P 到两定点A 、B 的距离之和()为常数且a ,0a a 2|PB ||PA |>=+; 命题乙:P 点的轨迹是椭圆,则命题甲是命题乙的A. 充分不必要条件B. 必要不充分条件C. 充分且必要条件D. 既不充分又不必要条件题型二:椭圆的标准方程椭圆的两种标准方程1b y a x 2222=+,1bx a y 2222=+中都有:(1)0b a >>;(2)222b a c -=或222c b a +=;(3)焦点坐标(c ±,0)或(0,c ±);(4)2x 与2y 所对应的分母,哪个大,焦点就在哪个轴上,请用以上知识解决以下5~8题。

5. 椭圆116y 32x 22=+的焦距等于A. 312B. 8C. 6D. 46. 若方程1a y ax 222=-表示焦点在y 轴上的椭圆,则a 的取值范围是A. 0a <B. 0a 1<<-C. 1a <D. 无法确定7. 椭圆0ab by ax 22=++(0b a <<)的焦点坐标是A. ()0,b a -±B. ()0,a b -±C. ()b a ,0-±D. ()a b ,0-±8. 椭圆112y 13x 22=+上一点到两个焦点的距离和为A. 26B. 24C.134D. 132题型三:椭圆的标准方程的应用 紧扣标准方程的两种方式,焦点位置取决于两个分母哪个大,特别注意看似非标准形式的标准形式,如11k y kx 222=--,这说明01k <-,另外注意c 2|PF ||PF |21>+的约束条件,请用以上知识解决以下9~10题。

20212022高中数学人教版选修21作业221椭圆及其标准方程系列一.docx

20212022高中数学人教版选修21作业221椭圆及其标准方程系列一.docx

2. 2. 1椭圆及其标准方程基础巩固—、选择题1-椭圆2^ + 3/=12的两焦点之间的距离是( )A.2拆B. y[\0C. «D. 2^2[答案]D[详细分析]椭圆方程2^ + 3/=12可化为:f+ f =1,a2 = 6,胪=4, <? = 6-4 = 2, :.2c = 2\fi.2.(2015-广东文)已知椭圆§ + 4=l(m>0)的左焦点为丹(-4,0),则〃7 =()A. 2B. 3C. 4D. 9[答案】B[详细分析]..•椭圆|| + 5=1(^>0)的左焦点为乩(-4,。

),:.c = 4 = yl25-m2, :.m2 =9,m = 3,选B .3.(2015•海南中学期中考试)已知Fi,形是椭圆+ f =1的两个焦点,过点儿的直线交椭圆于点A, B,若|AB| = 5,则|时i| + |BFi| = ()A. 11B. 10C. 9D. 16[答案〕A[详细分析]由方程知«2=16,...2a = 8,由椭圆定义知,|*肝|奶| = 8, \BF!\ + \BF2\ =8, .\|AFi| + |AF2| + |BFi| + \BF2\ = |AFi| + |BFi| + \AB\ = 16,.•.|AFi| + |BFi|=ll,故选A.4.设定点Fi(0, - 3), F2(0,3),动点F满足条件|职| + |华| =。

+戋?>0),则点F的轨迹是()A.椭圆B.线段C.不存在D.椭圆或线段[答案]D9[详细分析]I« + ->6, AlPFil + \PF2\>6 =|F I F2|,.••选D.5.设P是椭圆法+书=1上一点,P到两焦点F5 的距离之差为2,则△尸皿是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形[答案]B[详细分析]由椭圆定义,知|PF I|+|PF2|=2“=8.又|PF I|-|PF2|=2,...|PF I|=5,\PF2\ = 3.又|HF2| = 2c = 2 寸16 - 12 = 4,△PF1F2为直角三角形.6.已知椭圆的两个焦点分别是Fi、F2, P是椭圆上的一个动点,如果延长FiP到Q, 使得\PQ\ = \PF2\,那么动点。

【三维设计】人教版高中数学选修1-1练习:2.1.1 椭圆及其标准方程(含答案解析)

【三维设计】人教版高中数学选修1-1练习:2.1.1 椭圆及其标准方程(含答案解析)

课时跟踪检测(六) 椭圆及其标准方程层级一 学业水平达标1.设P 是椭圆x 225+y 216=1上的点,若F 1,F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于( )A .4B .5C .8D .10解析:选D 根据椭圆的定义知,|PF 1|+|PF 2|=2a =2×5=10,故选D .2.已知△ABC 的顶点B ,C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )A .2 3B .6C .4 3D .12解析:选C 由于△ABC 的周长与焦点有关,设另一焦点为F ,利用椭圆的定义,|BA|+|BF|=23,|CA|+|CF|=23,便可求得△ABC 的周长为43.3.命题甲:动点P 到两定点A ,B 的距离之和|PA|+|PB|=2a(a>0,常数);命题乙:P 点轨迹是椭圆.则命题甲是命题乙的( )A .充分不必要条件B .必要不充分条件C .充分且必要条件D .既不充分又不必要条件解析:选B 利用椭圆定义.若P 点轨迹是椭圆,则|PA|+|PB|=2a(a>0,常数),∴甲是乙的必要条件.反过来,若|PA|+|PB|=2a(a>0,常数)是不能推出P 点轨迹是椭圆的.这是因为:仅当2a>|AB|时,P 点轨迹才是椭圆;而当2a =|AB|时,P 点轨迹是线段AB ;当2a<|AB|时,P 点无轨迹,∴甲不是乙的充分条件.综上,甲是乙的必要不充分条件.4.如果方程x 2a 2+y 2a +6=1表示焦点在x 轴上的椭圆,则实数a 的取值范围是( )A .a>3B .a<-2C .a>3或a<-2D .a>3或-6<a<-2解析:选D 由a 2>a +6>0得⎩⎪⎨⎪⎧ a 2-a -6>0,a +6>0,所以⎩⎪⎨⎪⎧a<-2或a>3,a>-6,所以a>3或-6<a<-2.5.已知P 为椭圆C 上一点,F 1,F 2为椭圆的焦点,且|F 1F 2|=23,若|PF 1|与|PF 2|的等差中项为|F 1F 2|,则椭圆C 的标准方程为( )A .x 212+y 29=1B .x 212+y 29=1或x 29+y 212=1C .x 29+y 212=1D .x 248+y 245=1或x 245+y 248=1解析:选B 由已知2c =|F 1F 2|=23,∴c =3. ∵2a =|PF 1|+|PF 2|=2|F 1F 2|=43, ∴a =23.∴b 2=a 2-c 2=9.故椭圆C 的标准方程是x 212+y 29=1或x 29+y 212=1.6.椭圆x 2m +y 24=1的焦距是2,则m 的值是________.解析:当椭圆的焦点在x 轴上时,a 2=m ,b 2=4,c 2=m -4,又2c =2,∴c =1. ∴m -4=1,m =5.当椭圆的焦点在y 轴上时,a 2=4,b 2=m , ∴c 2=4-m =1, ∴m =3. 答案:3或57.已知椭圆C 经过点A(2,3),且点F(2,0)为其右焦点,则椭圆C 的标准方程为________________.解析:法一:依题意,可设椭圆C 的方程为x 2a 2+y 2b2=1(a>b>0),且可知左焦点为F′(-2,0).从而有⎩⎪⎨⎪⎧ c =2,2a =|AF|+|AF′|=3+5=8,解得⎩⎪⎨⎪⎧c =2,a =4.又a 2=b 2+c 2,所以b 2=12, 故椭圆C 的标准方程为x 216+y 212=1.法二:依题意,可设椭圆C 的方程为x 2a 2+y 2b2=1(a>b>0),则⎩⎪⎨⎪⎧4a 2+9b 2=1,a 2-b 2=4,解得b 2=12或b 2=-3(舍去),从而a 2=16.所以椭圆C 的标准方程为x 216+y 212=1.答案:x 216+y 212=18.椭圆的两焦点为F 1(-4,0),F 2(4,0),点P 在椭圆上,若△PF 1F 2的面积最大为12,则椭圆方程为__________.解析:如图,当P 在y 轴上时△PF1F 2的面积最大,∴12×8b =12,∴b =3. 又∵c =4,∴a 2=b 2+c 2=25. ∴椭圆的标准方程为x 225+y 29=1.答案:x 225+y 29=19.设F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a>b>0)的左、右焦点.设椭圆C 上一点⎝⎛⎭⎫3,32到两焦点F 1,F 2的距离和等于4,写出椭圆C 的方程和焦点坐标.解:由点⎝⎛⎭⎫3,32在椭圆上,得 3 2a 2+⎝⎛⎭⎫322b 2=1,又2a =4,所以椭圆C 的方程为x 24+y 23=1,焦点坐标分别为(-1,0),(1,0).10.已知椭圆C 与椭圆x 2+37y 2=37的焦点F 1,F 2相同,且椭圆C 过点⎝⎛⎭⎫572,-6.(1)求椭圆C 的标准方程;(2)若P ∈C ,且∠F 1PF 2=π3,求△F 1PF 2的面积.解:(1)因为椭圆x 237+y 2=1的焦点坐标为(-6,0),(6,0).所以设椭圆C 的标准方程为x 2a 2+y 2a 2-36=1(a 2>36).将点⎝⎛⎭⎫572,-6的坐标代入整理得4a 4-463a 2+6 300=0,解得a 2=100或a 2=634(舍去),所以椭圆C 的标准方程为x 2100+y 264=1.(2)因为P 为椭圆C 上任一点, 所以|PF 1|+|PF 2|=2a =20. 由(1)知c =6,在△PF 1F 2中,|F 1F 2|=2c =12, 所以由余弦定理得:|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|cos π3,即122=|PF 1|2+|PF 2|2-|PF 1|·|PF 2|.因为|PF 1|2+|PF 2|2=(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|, 所以122=(|PF 1|+|PF 2|)2-3|PF 1|·|PF 2|. 所以122=202-3|PF 1||PF 2|.所以|PF 1|·|PF 2|=202-1223=32×83=2563.S △PF 1F 2=12|PF 1|·|PF 2|sin π3=12×2563×32=6433.所以△F 1PF 2的面积为6433.层级二 应试能力达标1.下列说法中正确的是( )A .已知F 1(-4,0),F 2(4,0),平面内到F 1,F 2两点的距离之和等于8的点的轨迹是椭圆B .已知F 1(-4,0),F 2(4,0),平面内到F 1,F 2两点的距离之和等于6的点的轨迹是椭圆C .平面内到点F 1(-4,0),F 2(4,0)两点的距离之和等于点M(5,3)到F 1,F 2的距离之和的点的轨迹是椭圆D .平面内到点F 1(-4,0),F 2(4,0)距离相等的点的轨迹是椭圆解析:选C A 中,|F 1F 2|=8,则平面内到F 1,F 2两点的距离之和等于8的点的轨迹是线段,所以A 错误;B 中,到F 1,F 2两点的距离之和等于6,小于|F 1F 2|,这样的轨迹不存在,所以B 错误;C 中,点M(5,3)到F 1,F 2两点的距离之和为 5+4 2+32+ 5-4 2+32=410>|F 1F 2|=8,则其轨迹是椭圆,所以C 正确;D 中,轨迹应是线段F 1F 2的垂直平分线,所以D 错误.故选C .2.椭圆x 225+y 29=1的焦点为F 1,F 2,P 为椭圆上的一点,已知PF 1 ·PF 2 =0,则△F 1PF 2的面积为( )A .9B .12C .10D .8解析:选A ∵PF 1 ·PF 2=0,∴PF 1⊥PF 2.∴|PF 1|2+|PF 2|2=|F 1F 2|2且|PF 1|+|PF 2|=2a . 又a =5,b =3,∴c =4,∴⎩⎪⎨⎪⎧|PF 1|2+|PF 2|2=64, ①|PF 1|+|PF 2|=10. ② ②2-①,得2|PF 1|·|PF 2|=36, ∴|PF 1|·|PF 2|=18, ∴△F 1PF 2的面积为 S =12·|PF 1|·|PF 2|=9.3.若α∈⎝⎛⎭⎫0,π2,方程x 2sin α+y 2cos α=1表示焦点在y 轴上的椭圆,则α的取值范围是( )A .⎝⎛⎭⎫π4,π2B .⎝⎛⎦⎤0,π4 C .⎝⎛⎭⎫0,π4 D .⎣⎡⎭⎫π4,π2解析:选A 易知sin α≠0,cos α≠0,方程x 2sin α+y 2cos α=1可化为x 21sin α+y 21cos α=1.因为椭圆的焦点在y 轴上,所以1cos α>1sin α>0,即sin α>cos α>0.又α∈⎝⎛⎭⎫0,π2,所以π4<α<π2. 4.已知P 为椭圆x 225+y 216=1上的一点,M ,N 分别为圆(x +3)2+y 2=1和圆(x -3)2+y 2=4上的点,则|PM|+|PN|的最小值为( )A .5B .7C .13D .15解析:选B 由题意知椭圆的两个焦点F 1,F 2分别是两圆的圆心:且|PF 1|+|PF 2|=10,从而|PM|+|PN|的最小值为|PF 1|+|PF 2|-1-2=7.5.若椭圆2kx 2+ky 2=1的一个焦点为(0,-4),则k 的值为________.解析:易知k≠0,方程2kx 2+ky 2=1变形为y 21k +x 212k=1,所以1k -12k =16,解得k =132.答案:1326.已知椭圆C :x 29 +y 24=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则 |AN|+|BN|=________.解析:取MN 的中点G ,G 在椭圆C 上,因为点M 关于C 的焦点F 1,F 2的对称点分别为A ,B ,故有|GF 1|=12|AN|,|GF 2|=12|BN|,所以|AN|+|BN|=2(|GF 1|+|GF 2|)=4a =12.答案:127.已知点P 在椭圆上,且P 到椭圆的两个焦点的距离分别为5,3.过P 且与椭圆的长轴垂直的直线恰好经过椭圆的一个焦点,求椭圆的标准方程.解:法一:设所求的椭圆方程为x 2a 2+y 2b 2=1(a>b>0)或y 2a 2+x 2b2=1(a>b>0),由已知条件得⎩⎪⎨⎪⎧ 2a =5+3, 2c 2=52-32,解得⎩⎪⎨⎪⎧a =4,c =2, 所以b 2=a 2-c 2=12.于是所求椭圆的标准方程为x 216+y 212=1或y 216+x 212=1.法二:设所求的椭圆方程为x 2a 2+y 2b 2=1(a>b>0)或y 2a 2+x 2b 2=1(a>b>0),两个焦点分别为F 1,F 2.由题意知2a =|PF 1|+|PF 2|=3+5=8,所以a =4. 在方程x 2a 2+y 2b 2=1中,令x =±c ,得|y|=b 2a ;在方程y 2a 2+x 2b 2=1中,令y =±c ,得|x|=b 2a .依题意有b 2a=3,得b 2=12.于是所求椭圆的标准方程为x 216+y 212=1或y 216+x 212=1.8. 如图在圆C :(x +1)2+y 2=25内有一点A(1,0).Q 为圆C 上一点,AQ 的垂直平分线与C ,Q 的连线交于点M ,求点M 的轨迹方程.解:如图,连接MA .由题意知点M 在线段CQ 上,从而有|CQ|=|MQ|+|MC|.又点M 在AQ 的垂直平分线上,则|MA|=|MQ|,故|MA|+|MC|=|CQ|=5.又A(1,0),C(-1,0),故点M 的轨迹是以(1,0),(-1,0)为焦点的椭圆,且2a =5,故a =52,c =1,b 2=a 2-c 2=254-1=214.故点M 的轨迹方程为x 2254+y 2214=1.。

人教A版高中数学选修1-1课时自测 当堂达标:2.1.1 椭圆及其标准方程 精讲优练课型

人教A版高中数学选修1-1课时自测 当堂达标:2.1.1 椭圆及其标准方程 精讲优练课型

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

关闭Word文档返回原板块。

课时自测·当堂达标1.到两定点F1(-2,0)和F2(2,0)的距离之和为4的点的轨迹是( )A.椭圆B.线段C.圆D.以上都不对【解析】选B. |MF1|+|MF2|=|F1F2|=4,所以点M的轨迹为线段F1F2.2.设P是椭圆+=1上的一点,F1,F2是椭圆的两个焦点,则|PF1|+|PF2|等于( ) A.10 B.8 C.5 D.4【解析】选A.由标准方程得a2=25,所以2a=10,由椭圆定义知|PF1|+|PF2|=2a=10.3.椭圆4x2+9y2=1的焦点坐标是( )A.(±,0)B.(0,±)C. D.【解析】选C.椭圆化为标准形式为+=1,所以a2=,b2=,所以c2=a2-b2=-=,且焦点在x轴上,故焦点坐标为.4.已知椭圆+=1的左、右焦点分别为F1,F2,过点F1的直线l交椭圆于A,B两点,则△ABF2的周长是________________.【解析】由椭圆定义知,|AF1|+|AF2|=|BF1|+|BF2|=2a=8,又△ABF2的周长等于|AB|+|AF2|+|BF2|=|AF1|+|BF1|+|AF2|+|BF2|=16.答案:165.焦点在坐标轴上,且经过A(-,2)和B(,1)两点,求椭圆的标准方程.【解析】设所求椭圆方程为mx2+ny2=1(m>0,n>0,m≠n),由题意,得,解得所以所求椭圆方程为+=1.即+=1.关闭Word文档返回原板块小课堂:如何培养中学生的自主学习能力?自主学习是与传统的接受学习相对应的一种现代化学习方式。

在中学阶段,至关重要!!以学生作为学习的主体,学生自己做主,不受别人支配,不受外界干扰通过阅读、听讲、研究、观察、实践等手段使个体可以得到持续变化(知识与技能,方法与过程,情感与价值的改善和升华)的行为方式。

人教版高中数学高二选修1-1 椭圆及其标准方程

人教版高中数学高二选修1-1 椭圆及其标准方程

2.1.1 椭圆及其标准方程问题导学一、椭圆的定义及应用活动与探究1(1)椭圆x 225+y 29=1上一点P 到一个焦点的距离为5,则P 到另一个焦点的距离为( )A .5B .6C .4D .10(2)已知F 1,F 2是椭圆x 216+y 29=1的两焦点,过点F 2的直线交椭圆于A ,B 两点,在△AF 1B中,若有两边之和是10,则第三边的长度为______.迁移与应用 设F 1,F 2分别是椭圆E :x 2+y 2b 2=1(0<b <1)的左、右焦点,过F 1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列,则|AB |=______.椭圆的定义能够对一些距离进行相互转化,简化解题过程.因此,解题过程中遇到涉及曲线上的点到焦点的距离问题时,应先考虑是否能够利用椭圆的定义求解.椭圆上一点P 与椭圆的两焦点F 1,F 2构成的△F 1PF 2称为焦点三角形,解关于椭圆中的焦点三角形问题时要充分利用椭圆的定义、三角形中的正弦定理、余弦定理等知识,对于求焦点三角形的面积,若已知∠F 1PF 2,可利用S =12ab sin C 把|PF 1||PF 2|看成一个整体,运用公式|PF 1|2+|PF 2|2=(|PF 1|+|PF 2|)2-2|PF 1||PF 2|及余弦定理求出|PF 1||PF 2|,而无需单独求出,这样可以减少运算量.二、椭圆的标准方程及应用活动与探究2求适合下列条件的椭圆的标准方程:(1)两个焦点的坐标分别为F 1(-4,0),F 2(4,0),并且椭圆上一点P 与两焦点的距离的和等于10;(2)焦点分别为(0,-2),(0,2),经过点(4,32); (3)经过两点(2,-2),⎝⎛⎭⎫-1,142.迁移与应用1.若方程x 25-k +y 2k -3=1表示焦点在x 轴上的椭圆,则k 的取值范围是__________.2.两焦点坐标分别为(3,0)和(-3,0)且经过点(5,0)的椭圆的标准方程为__________.(1)利用待定系数法求椭圆的标准方程的步骤可总结如下:①由焦点坐标确定方程是x 2a 2+y 2b 2=1(a >b >0),还是y 2a 2+x 2b2=1(a >b >0);②运用定义、平方关系等求出a ,b . (2)当焦点不确定时,可设方程为Ax 2+By 2=1(A >0,B >0,且A ≠B ),这样可以避免讨论.三、焦点三角形问题活动与探究3如图所示,已知椭圆的方程为x 24+y 23=1,若点P 在第二象限,且∠PF 1F 2=120°,求△PF 1F 2的面积.迁移与应用已知P 是椭圆x 225+y 29=1上一点,F 1,F 2是椭圆的两个焦点,∠F 1PF 2=60°,求△F 1PF 2的面积.四、与椭圆有关的轨迹问题活动与探究4(1)已知圆x 2+y 2=9,从这个圆上任意一点P 向x 轴作垂线段PP ′,点M 在PP ′上,并且PM →=2MP ′→,求点M 的轨迹.(2)已知在△ABC 中,|BC |=6,周长为16,那么顶点A 在怎样的曲线上运动?迁移与应用如图,在圆C :(x +1)2+y 2=25内有一点A (1,0),Q 为圆C 上一点,AQ 的垂直平分线与C ,Q 的连线交于点M ,求点M 的轨迹方程.解决与椭圆有关的轨迹问题,一般有两种方法: (1)定义法用定义法求椭圆方程的思路是:先观察、分析已知条件,看所求动点轨迹是否符合椭圆的定义.若符合椭圆的定义,则用待定系数法求解即可.(2)相关点法有些问题中的动点轨迹是由另一动点按照某种规律运动而形成的,只要把所求动点的坐标“转移”到另一个动点在运动中所遵循的条件中去,即可解决问题,这种方法称为相关点法.用相关点法求轨迹方程的步骤:①设所求轨迹上的动点P (x ,y ),再设具有某种运动规律f (x ,y )=0上的动点Q (x ′,y ′);②找出P ,Q 之间坐标的关系,并表示为⎩⎪⎨⎪⎧x ′=φ1x ,y ,y ′=φ2x ,y ;③将x ′,y ′代入f (x ,y )=0, 即得所求轨迹方程. 答案: 课前·预习导学 【预习导引】1.距离之和 常数 两个定点 两焦点间的距离 |MF 1|+|MF 2|=2a预习交流1 (1)提示:当2a =|F 1F 2|时,点M 的轨迹是线段F 1F 2;当2a <|F 1F 2|时,点M 的轨迹不存在.(2)提示:B2.x 2a 2+y 2b 2=1(a >b >0) y 2a 2+x 2b2=1(a >b >0) F 1(-c,0),F 2(c,0) F 1(0,-c ),F 2(0,c )a2=b2+c2预习交流2(1)提示:相同点:它们都有a>b>0,a2=b2+c2,焦距都是2c,椭圆上的点到两焦点距离的和均为2a.方程右边为1,左边是两个非负分式的和,并且分母不相等.不同点:两类椭圆的焦点位置不同,即焦点所在坐标轴不同,因此焦点坐标也不相同,焦点在x轴上的椭圆两焦点坐标分别为(-c,0)和(c,0),焦点在y轴上的椭圆两焦点坐标分别为(0,-c)和(0,c).当椭圆焦点在x轴上时,含x2项的分母大;当椭圆焦点在y轴上时,含y2项的分母大.(2)提示:534(4,0),(-4,0)课堂·合作探究【问题导学】活动与探究1(1)思路分析:求出a→|PF1|+|PF2|=2a>|F1F2|→求出P到另一个焦点的距离A解析:点P到椭圆的两个焦点的距离之和为2a=10,10-5=5.(2)思路分析:结合图形,利用定义求第三边.6解析:由已知a2=16,a=4.从而由椭圆定义得|AF1|+|AF2|=2a=8,|BF1|+|BF2|=2a=8,∴△AF1B的周长为|AF1|+|AB|+|BF1|=16.又知三角形有两边之和为10,∴第三边的长度为6.迁移与应用43解析:由椭圆定义知|AF2|+|AB|+|BF2|=4,又2|AB|=|AF2|+|BF2|,所以|AB|=43.活动与探究2思路分析:(1)由已知可得a,c的值,由b2=a2-c2可求出b,再根据焦点位置写出椭圆的方程.(2)利用两点间的距离公式求出2a ,再写方程;也可用待定系数法.(3)利用待定系数法,但需讨论焦点的位置.也可利用椭圆的一般方程Ax 2+By 2=1(A >0,B >0, A ≠B )直接求A ,B 得方程.解:(1)由题意可知椭圆的焦点在x 轴上,且c =4,2a =10, 所以a =5,b =a 2-c 2=25-16=3.所以椭圆的标准方程为x 225+y 29=1.(2)(方法一)因为椭圆的焦点在y 轴上, 所以可设它的标准方程为y 2a 2+x 2b 2=1(a >b >0).由椭圆的定义知2a =(4-0)2+(32+2)2+(4-0)2+(32-2)2=12,所以a =6. 又c =2,所以b =a 2-c 2=42. 所以椭圆的标准方程为y 236+x 232=1.(方法二)因为椭圆的焦点在y 轴上, 所以可设其标准方程为y 2a 2+x 2b 2=1(a >b >0).由题意得⎩⎪⎨⎪⎧18a 2+16b 2=1,a 2=b 2+4,解得⎩⎪⎨⎪⎧a 2=36,b 2=32.所以椭圆的标准方程为y 236+x 232=1.(3)(方法一)若椭圆的焦点在x 轴上, 设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0).由已知条件得⎩⎨⎧4a 2+2b 2=1,1a 2+144b 2=1,解得⎩⎨⎧1a 2=18,1b 2=14.所以所求椭圆的标准方程为x 28+y 24=1.同理可得:焦点在y 轴上的椭圆不存在.综上,所求椭圆的标准方程为x 28+y 24=1.(方法二)设椭圆的一般方程为Ax 2+By 2=1(A >0,B >0,A ≠B ). 将两点(2,-2),⎝⎛⎭⎫-1,142代入, 得⎩⎪⎨⎪⎧4A +2B =1,A +144B =1,解得⎩⎨⎧A =18,B =14,所以所求椭圆的标准方程为x 28+y 24=1.迁移与应用1.(3,4) 解析:由已知得⎩⎪⎨⎪⎧5-k >k -3,k -3>0,解得3<k <4.2.x 225+y 216=1 解析:易知c =3,a =5,则b 2=a 2-c 2=16. 又椭圆的焦点在x 轴上, ∴所求椭圆的方程为x 225+y 216=1.活动与探究3 思路分析:由余弦定理和椭圆定义分别建立|PF 1|,|PF 2|的方程,求出|PF 1|,|PF 2|后,再求△PF 1F 2的面积.解:由已知a =2,b =3, 所以c =a 2-b 2=4-3=1,|F 1F 2|=2c =2,在△PF 1F 2中,由余弦定理,得|PF 2|2=|PF 1|2+|F 1F 2|2-2|PF 1||F 1F 2|cos 120°, 即|PF 2|2=|PF 1|2+4+2|PF 1|,① 由椭圆定义,得|PF 1|+|PF 2|=4, 即|PF 2|=4-|PF 1|,② 将②代入①解得|PF 1|=65.∴12PF F S ∆=12|PF 1|·|F 1F 2|·sin 120°=12×65×2×32=335,即△PF1F2的面积是353.迁移与应用解:在椭圆x225+y29=1中,a=5,b=3,c=4,则|F1F2|=8,|PF1|+|PF2|=10.①由余弦定理,得|PF1|2+|PF2|2-2|PF1||PF2|·cos 60°=64.②①2-②得|PF1||PF2|=12.∴S=12|PF1|·|PF2|·sin 60°=12×12×32=33.活动与探究4(1)思路分析:先设出M的坐标(x,y),用x,y表示出点P的坐标代入圆方程即可.解:设点M的坐标为(x,y),点P的坐标为(x0,y0),则x0=x,y0=3y.因为P(x0,y0)在圆x2+y2=9上,所以x20+y20=9.将x0=x,y0=3y代入圆方程,得x2+9y2=9.即x29+y2=1.又y≠0,所以点M的轨迹是一个椭圆,且除去(3,0)和(-3,0)两点.(2)思路分析:利用椭圆的定义解决,最后要注意检验.解:由|AB|+|BC|+|AC|=16,|BC|=6,可得|AB|+|AC|=10>6=|BC|,故顶点A在以B,C为焦点,到两焦点距离的和等于10的一个椭圆上运动,且除去BC 直线与椭圆的两个交点.迁移与应用解:由题意知M 在线段CQ 上,从而有|CQ |=|MQ |+|MC |. 又M 在AQ 的垂直平分线上,连接AM ,则|MA |=|MQ |, ∴|MA |+|MC |=|CQ |=5>|AC |=2.∴M 的轨迹是以C (-1,0),A (1,0)为焦点的椭圆,且2a =5, ∴a =52,c =1,b 2=a 2-c 2=214.∴M 的轨迹方程为x 2254+y 2214=1,即4x 225+4y 221=1.当堂检测1.设P 是椭圆22=12516x y +上的点,若F 1,F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于( ) A .4 B .5 C .8 D .10 答案:D 解析:由椭圆定义知|PF 1|+|PF 2|=2a . ∵a 2=25,∴2a =10. ∴|PF 1|+|PF 2|=10.2.椭圆22=1167x y +的焦点坐标为( ) A .(-4,0)和(4,0) B .(0,)和(0) C .(-3,0)和(3,0) D .(0,-9)和(0,9)答案:C 解析:由已知椭圆的焦点在x 轴上,且a 2=16,b 2=7, ∴c 2=9,c =3.∴椭圆的焦点坐标为(-3,0)和(3,0).3.已知椭圆的焦点是F 1,F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A .圆B .椭圆C .抛物线D .无法确定答案:A解析:由题意得|PF1|+|PF2|=2a(a为大于零的常数,且2a>|F1F2|),|PQ|=|PF2|,∴|PF1|+|PF2|=|PF1|+|PQ|=2a,即|F1Q|=2a.∴动点Q到定点F1的距离等于定长2a,故动点Q的轨迹是圆.4.已知P是椭圆22=12516x y+上一点,F1,F2为焦点,且∠F1PF2=90°,则△PF1F2的面积是______.答案:16解析:由椭圆定义知:|PF1|+|PF2|=2a=10,①又∵∠F1PF2=90°,∴|PF1|2+|PF2|2=|F1F2|2=4c2=36.②①2-②得|PF1|·|PF2|=32.∴S=12|PF1|·|PF2|=16.5.已知椭圆22=1259x y+上一点M到左焦点F1的距离为6,N是MF1的中点,则|ON|=______.答案:2解析:设右焦点为F2,连接F2M,∵O为F1F2的中点,N是MF1的中点,∴|ON|=12|MF2|.又∵|MF1|+|MF2|=2a=10,|MF1|=6,∴|MF2|=4,∴|ON|=2.。

高中数学人教A选修1-1同步辅导与检测:2.1.1椭圆及其标准方程

高中数学人教A选修1-1同步辅导与检测:2.1.1椭圆及其标准方程

圆锥曲线与方程2. 12. 1. 1椭圆及其标准方程1.平面内与两个定点",心的距离之和等于常数(大于巧耳)的点的轨迹叫做___________ ,这两个定点叫做_______ ,两点间的距离叫做_________ ・2.椭圆的标准方程(请同学们自己填写表中空白的内容)1.椭圆椭圆的焦点椭圆的焦距2.务+$= 1 (°>/?>0) 士 + 話=1 (a>Z?>0)1.正确理解椭圆的定义只有当1"]1 + 1“21 = 2心尸占21时,点P的轨迹才是椭圆;(±c,0) (0,土c) a^—b2当1"]1 + 1“21 = 20 = 1尸尸21时,点P的轨迹是线段F1F2;当IP" I + \PF^ = 2此尸占21时,点P的轨迹不存在.2.正确理解椭圆的两种标准形式(1)要熟记a, b, c三个量的关系椭圆方程中,d表示椭圆上的点M到两焦点间距离和的一半,正数°, b, c 恰构成一个直角三角形的三条边,。

是斜边,所以d>4 a>c,且0=夕+。

2,其中c是焦距的一半,叫做半焦距.(2)通过标准方程可以判断焦点的位置,其方法是:看兀2,护的分母大小, 哪个分母大,焦点就在哪个坐标轴上.3.用待定系数法求椭圆标准方程的步骤(1)作判断:依据条件判断椭圆的焦点在兀轴上还是在y轴上,还是坐标上都有可能.(2)设方程①依据上述判断设方程为②在不能确定焦点位置的情况下也刊2设"诡+ ◎ 2 = 1创 > 芈料> 0且加咖. 与+与=1 或牛+与=1・③找关系:根据已知条件,建立关牛°,伏c或打,勺的芳程组「④解方程组,代入所设方程即为所求.2 2知椭圆方程为 丄#]人虽伞别为它的左、右焦且与X 轴成G 角(0<C^7T )?则的周长是A. 10B. 12C. 16 D ・与么角有关解析「・・C 、D 为椭圆上的点,根据椭圆的定义:ICFJ + \CF 2\ = 2a = 8 z \DF }\ + \DF 2\ = 2a = S ,:.、F£D 的周长为ICF]I + ICF 2I + IDF,I + \DF 2\ = 4a =16. 答案:C点,CD 黑X 的弦, ()n 变式迁移1.设F],佗是椭圆 的周长为()A. 16 B ・ 18 解析:d 二5 , b = 3 , c = 4 ,易知△PFf?的周长为2a + 2c = 18. 答案:B 2 2 詰厝邑]P 为椭圆上一点,则PF X F 2 C ・20 D ・不确定写出适合下列条件的椭圆的标准方程: (l)u=4, c=3,焦点在y轴上;(2)a + b = 8, c=4;(3)已知椭圆经过点(2,—迈)和点(一1,分析:求椭圆的标准方程时,要先判断焦点位置,确定出适合题意的椭圆标准方程的形式,最后由条件确定d z b即可;如果不能确定焦点所在轴,那么就要分焦点在X轴和在y轴讨论,或者可设椭圆方程为皿2十呼二1 (m > 0 z /? > 0 z m^n).解析:(1)由焦点在y轴上,可设椭圆的标准方程为: / x2京+护=1 (a>b>0),则/=16, b2=a2~c22 2 丁丄*T6+7-Ld+/?=8 (2)因为v ci2—b2= 16卫>0,b>07,椭圆的标准方程为: b=32所以椭圆的标准方程为:吉2 21或去+令=1.(3)法一:当焦点在兀轴上时,可设椭圆1(a>b>0),的标准方程为:将点(2, —血)和点(-1,2丿代入, 可得:椭圆的标准方程为:当焦点在y轴上时,可设椭圆的标准方程为: 将点(2,—迈)和点(一1, 代入,可得:综上所述,(«2<Z?2,舍去)•椭圆的标准方程为:=1(a>Z?>0),法二:设椭圆的方程为: 2 2 | [ mx -\~ny^= l(m>0, n>0, M4m+2n=l12 2 所以椭圆的标准方程为:令+±T ・ 点评:对比两种方法,我们发现如果不知道焦点在那条轴上的情况 下/可将椭圆的方程设为fnx 2 + ny 2 = 1 (m>0 ,n>0 ,且加力7),更简单,快 速・n 变式迁移将点(2,—返)和点代入,可得:7加+尹=12. (1)若椭圆长轴长与短轴长之比为2,它的一个焦点是(2, 0),求椭圆的标准方程.(2)求经过点(2 , —3)且与椭圆9界+4护=36有共同焦点的椭圆。

人教课标版高中数学选修1-1同步练习:椭圆及其标准方程1

人教课标版高中数学选修1-1同步练习:椭圆及其标准方程1

2.1.1椭圆及其标准方程1.设F 1、F 2为定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则动点M 的轨迹是 ( )A.椭圆B.直线C.圆D.线段2.椭圆171622=+y x 的左右焦点为F 1、F 2,一直线过F 1交椭圆于A 、B 两点,则△ABF 2的周长为( )A.32B.16C.8D.43.设α∈(0,2π),方程1cos sin 22=+ααy x 表示焦点在x 轴上的椭圆,则α∈ ( ) A.(0,4π] B.(4π,2π) C.(0,4π) D.[4π,2π) 4.已知椭圆1162522=+y x 上一点P 到椭圆的一个焦点的距离为3,则P 到另一个焦点的距离是( )A.2B.3C.5D.75.已知椭圆方程为1112022=+y x ,那么它的焦距是 ( ) A.6 B.3 C.331 D.316.已知椭圆的两个焦点坐标是F 1(-2,0),F 2(2,0),并且经过点P (23,25-),则椭圆标准方程是 .7.过点A (-1,-2)且与椭圆19622=+y x 的两个焦点相同的椭圆标准方程是 . 8.过点P (3,-2),Q (-23,1)两点的椭圆标准方程是 .9. 过椭圆4x 2+y 2=1的一个焦点F 1的直线与椭圆交于A 、B 两点,则A 、B 与椭圆的另一个焦点F 2构成△ABF 2的周长是多少?参考答案1. C2. C3. C4. 17922=-x y 5. 1573722=-y x 6. 37.(6,362±) 8. 18 9. 54810.(6,2),(-6,2),(6,-2),(-6,-2)11.∵P 为双曲线1422=-y x 上的一个点且F 1、F 2为焦点.∴||PF 1|-|PF 2||=2a=4,|F 1F 2|=2c=25∵∠F 1PF 2=90°∴在Rt △PF 1F 2中,|PF 1|2+|PF 2|2=|F 1F 2|2=20∵(|PF 1|-|PF 2|)2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|=16∴20-2|PF 1||PF 2|=16∴|PF 1|·|PF 2|=2∴S 2121=∆PF F |PF 1|·|PF 2|=1由此题可归纳出S △F 1PF 2=b 2cot ∠221PF F。

人教新课标版数学高二选修1-1练习 椭圆及其标准方程

人教新课标版数学高二选修1-1练习  椭圆及其标准方程

第二章 圆锥曲线与方程§2.1 椭 圆2.1.1 椭圆及其标准方程 课时目标 1.了解椭圆的实际背景,经历从具体情境中抽象出椭圆的过程、椭圆标准方程的推导与化简过程.2.掌握椭圆的定义、标准方程及几何图形.1.椭圆的概念:平面内与两个定点F 1,F 2的距离的和等于________(大于|F 1F 2|)的点的轨迹叫做________.这两个定点叫做椭圆的________,两焦点间的距离叫做椭圆的________.当|PF 1|+|PF 2|=|F 1F 2|时,轨迹是__________,当|PF 1|+|PF 2|<|F 1F 2|时__________轨迹.2.椭圆的方程:焦点在x 轴上的椭圆的标准方程为________________,焦点坐标为________________,焦距为________;焦点在y 轴上的椭圆的标准方程为________________.一、选择题1.设F 1,F 2为定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则动点M 的轨迹是( )A .椭圆B .直线C .圆D .线段2.椭圆x 216+y 27=1的左右焦点为F 1,F 2,一直线过F 1交椭圆于A 、B 两点,则△ABF 2的周长为( )A .32B .16C .8D .43.椭圆2x 2+3y 2=1的焦点坐标是( )A.⎝⎛⎭⎫0,±66 B .(0,±1) C .(±1,0) D.⎝⎛⎭⎫±66,0 4.方程x 2|a |-1+y 2a +3=1表示焦点在x 轴上的椭圆,则实数a 的取值范围是( ) A .(-3,-1) B .(-3,-2)C .(1,+∞)D .(-3,1)5.若椭圆的两焦点为(-2,0),(2,0),且该椭圆过点⎝⎛⎭⎫52,-32,则该椭圆的方程是( ) A.y 28+x 24=1 B.y 210+x 26=1 C.y 24+x 28=1 D.y 26+x 210=1 6.设F 1、F 2是椭圆x 216+y 212=1的两个焦点,P 是椭圆上一点,且P 到两个焦点的距离之差为2,则△PF 1F 2是( )A .钝角三角形B .锐角三角形C .斜三角形D .直角三角形题号 1 2 3 4 5 6 答案7.椭圆x 29+y 22=1的焦点为F 1、F 2,点P 在椭圆上.若|PF 1|=4,则|PF 2|=________,∠F 1PF 2的大小为________.8.P 是椭圆x 24+y 23=1上的点,F 1和F 2是该椭圆的焦点,则k =|PF 1|·|PF 2|的最大值是______,最小值是______.9.“神舟六号”载人航天飞船的运行轨道是以地球中心为一个焦点的椭圆,设其近地点距地面n 千米,远地点距地面m 千米,地球半径为R ,那么这个椭圆的焦距为________千米.三、解答题10.根据下列条件,求椭圆的标准方程.(1)两个焦点的坐标分别是(-4,0),(4,0),椭圆上任意一点P 到两焦点的距离之和等于10;(2)两个焦点的坐标分别是(0,-2),(0,2),并且椭圆经过点⎝⎛⎭⎫-32,52.11.已知点A (0,3)和圆O 1:x 2+(y +3)2=16,点M 在圆O 1上运动,点P 在半径O 1M 上,且|PM |=|P A |,求动点P 的轨迹方程.能力提升12.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP ·FP →的最大值为( )A .2B .3C .6D .813.如图△ABC 中底边BC =12,其它两边AB 和AC 上中线的和为30,求此三角形重心G 的轨迹方程,并求顶点A 的轨迹方程.1.椭圆的定义中只有当距离之和2a >|F 1F 2|时轨迹才是椭圆,如果2a =|F 1F 2|,轨迹是线段F 1F 2,如果2a <|F 1F 2|,则不存在轨迹.2.椭圆的标准方程有两种表达式,但总有a >b >0,因此判断椭圆的焦点所在的坐标轴要看方程中的分母,焦点在分母大的对应轴上.3.求椭圆的标准方程常用待定系数法,一般是先判断焦点所在的坐标轴进而设出相应的标准方程,然后再计算;如果不能确定焦点的位置,有两种方法求解,一是分类讨论,二是设椭圆方程的一般形式,即mx 2+ny 2=1 (m ,n 为不相等的正数).第二章 圆锥曲线与方程§2.1 椭 圆2.1.1 椭圆及其标准方程答案知识梳理1.常数 椭圆 焦点 焦距 线段F 1F 2 不存在 2.x 2a 2+y 2b 2=1 (a >b >0) F 1(-c ,0),F 2(c ,0) 2c y 2a 2+x 2b2=1 (a >b >0) 作业设计1.D [∵|MF 1|+|MF 2|=6=|F 1F 2|,∴动点M 的轨迹是线段.]2.B [由椭圆方程知2a =8,由椭圆的定义知|AF 1|+|AF 2|=2a =8,|BF 1|+|BF 2|=2a =8,所以△ABF 2的周长为16.]3.D4.B [|a |-1>a +3>0.]5.D [椭圆的焦点在x 轴上,排除A 、B ,又过点⎝⎛⎭⎫52,-32验证即可.] 6.D [由椭圆的定义,知|PF 1|+|PF 2|=2a =8.由题可得||PF 1|-|PF 2||=2,则|PF 1|=5或3,|PF 2|=3或5.又|F 1F 2|=2c =4,∴△PF 1F 2为直角三角形.]7.2 120°解析∵|PF 1|+|PF 2|=2a =6,∴|PF 2|=6-|PF 1|=2.在△F 1PF 2中,cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=16+4-282×4×2=-12,∴∠F 1PF 2=120°.8.4 3解析 设|PF 1|=x ,则k =x (2a -x ),因a -c ≤|PF 1|≤a +c ,即1≤x ≤3.∴k =-x 2+2ax =-x 2+4x =-(x -2)2+4,∴k max =4,k min =3.9.m -n解析 设a ,c 分别是椭圆的长半轴长和半焦距,则⎩⎪⎨⎪⎧a +c =m +Ra -c =n +R,则2c =m -n . 10.解 (1)∵椭圆的焦点在x 轴上,∴设椭圆的标准方程为x 2a 2+y 2b 2=1 (a >b >0).∵2a =10,∴a =5,又∵c =4.∴b 2=a 2-c 2=52-42=9.故所求椭圆的标准方程为x 225+y 29=1.(2)∵椭圆的焦点在y 轴上,∴设椭圆的标准方程为y 2a 2+x 2b 2=1 (a >b >0).由椭圆的定义知,2a = ⎝⎛⎭⎫-322+⎝⎛⎭⎫52+22+⎝⎛⎭⎫-322+⎝⎛⎭⎫52-22=3102+102=210,∴a =10.又∵c =2,∴b 2=a 2-c 2=10-4=6.故所求椭圆的标准方程为y 210+x 26=1.11.解 ∵|PM |=|P A |,|PM |+|PO 1|=4,∴|PO 1|+|P A |=4,又∵|O 1A |=23<4,∴点P 的轨迹是以A 、O 1为焦点的椭圆,∴c =3,a =2,b =1,∴动点P 的轨迹方程为x 2+y 24=1. 12.C [由椭圆方程得F (-1,0),设P (x 0,y 0),则 OP →·FP →=(x 0,y 0)·(x 0+1,y 0)=x 20+x 0+y 20.∵P 为椭圆上一点,∴ x 204+y 203=1.∴ OP →·FP →=x 20+x 0+3(1-x 24)=x 204+x 0+3=14(x 0+2)2+2. ∵-2≤x 0≤2,∴ OP →·FP →的最大值在x 0=2时取得,且最大值等于6.]13.解 以BC 边所在直线为x 轴,BC 边中点为原点,建立如图所示坐标系, 则B (6,0),C (-6,0),CE 、BD 为AB 、AC 边上的中线,则|BD |+|CE |=30. 由重心性质可知|GB |+|GC | =23(|BD |+|CE |)=20. ∵B 、C 是两个定点,G 点到B 、C 距离和等于定值20,且20>12,∴G 点的轨迹是椭圆,B 、C 是椭圆焦点.∴2c =|BC |=12,c =6,2a =20,a =10,b 2=a 2-c 2=102-62=64,故G 点的轨迹方程为x 2100+y 264=1, 去掉(10,0)、(-10,0)两点.又设G (x ′,y ′),A (x ,y ),则有x ′2100+y ′264=1. 由重心坐标公式知⎩⎨⎧x ′=x 3,y ′=y 3. 故A 点轨迹方程为(x 3)2100+(y 3)264=1. 即x 2900+y 2576=1,去掉(-30,0)、(30,0)两点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

►基础梳理
1.椭圆的定义及标准方程.
(1)平面内与两个定点F 1,F 2的距离之和等于常数(大于|F 1F 2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两点间的距离叫做椭圆的焦距.
(2)椭圆的标准方程(请同学们自己填写表中空白的内容):
焦点在x 轴上 焦点在y 轴上
标准方程 x 2a 2+y 2b 2=1(a >b >0) y 2a 2+x 2
b 2
=1(a >b >0)
焦点 (±c ,0) (0,±c )
a ,
b ,
c 的关系:c 2=a 2-b 2
2.只有当||PF 1+||PF 2=2a >||F 1F 2时,点P 的轨迹才是椭圆; 当||PF 1+||PF 2=2a =||F 1F 2时,点P 的轨迹是线段F 1F 2; 当||PF 1+||PF 2=2a <||F 1F 2时,点P 的轨迹不存在. 3.正确理解椭圆的两种标准形式. (1)要熟记a ,b ,c 三个量的关系.
椭圆方程中,a 表示椭圆上的点M 到两焦点间距离和的一半,正数a ,b ,c 恰构成一个直角三角形的三条边,a 是斜边,所以a >b ,a >c ,且a 2=b 2+c 2,其中c 是焦距的一半,叫做半焦距.
(2)通过标准方程可以推断焦点的位置,其方法是:看x 2,y 2的分母大小,哪个分母大,焦点就在哪个坐标轴上.
4.用待定系数法求椭圆标准方程的步骤.
(1)作推断:依据条件推断椭圆的焦点在x 轴上还是在y 轴上. (2)设方程:
①依据上述推断设方程为x 2a 2+y 2b 2=1或x 2b 2+y 2
a
2=1.
②在不能确定焦点位置的状况下也可设mx 2+ny 2=1(m >0,n >0且m ≠n ). (3)找关系,依据已知条件,建立关于a ,b ,c 或m ,n 的方程组. (4)解方程组,代入所设方程即为所求.,►自测自评
1.到两定点F 1(-4,0)和F 2(4,0)的距离之和为8的点M 的轨迹是线段F 1F 2.
2.椭圆的焦点坐标为(4,0),(-4,0),椭圆上一点到两焦点的距离之和为10,则椭圆的标准方程为x 2
25+
y 2
9
=1. 3.已知a =4,c =3,焦点在y 轴上的椭圆的标准方程为x 27+y 2
16
=1.
4.椭圆x 225+y 2
9
=1的焦点坐标为(4,0),(-4,0).
1.已知两定点F 1(-2,0),F 2(2,0),点P 是平面上一动点,且|PF 1|+|PF 2|=6,则点P 的轨迹是(C ) A .圆 B .直线 C .椭圆 D .线段
2.若椭圆的两焦点为(-2,0),(2,0),且过点⎝⎛⎭⎫52
,-3
2,则该椭圆的方程是(D ) A.y 28+x 24=1 B.y 210+x
26=1 C.y 24+x 28=1 D.y 26+x 2
10
=1 解析:由题意知,所求椭圆的焦点在x 轴上,可以排解A 、B ;再把点⎝⎛⎭⎫52,-3
2代入方程,可知应选D. 3.过椭圆4x 2+2y 2=1的一个焦点F 1的直线与椭圆交于A 、B 两点,则A 、B 与椭圆的另一焦点F 2构成
△ABF 2,那么△ABF 2的周长是______.
答案:2 2
4.写出适合下列条件的椭圆的标准方程: (1)a =4,b =3焦点在x 轴上; (2)a =5,c =2焦点在y 轴上;
(3)求中心在原点,焦点在坐标轴上,且经过点⎝⎛⎭⎫63,3和点⎝⎛⎭

223,1.
答案:(1)x 216+y 29=1;(2)y 225+x 221=1;(3)x 2
+y 2
9
=1.
5.设F 1、F 2分别为椭圆C :x 2a 2+y
2b
2=1,(a >b >
0)
的左右两焦点,若椭圆
C
上的点
A ⎝
⎛⎭⎫1,32到F 1、F 2两点的距离之和为4,求椭圆C 的方程及焦点坐标.
解析:椭圆C 的焦点在x 轴上,由椭圆上的点A 到F 1,F 2两点的距离之和是4,得2a =4,即a =2.
又A ⎝⎛⎭⎫1,3
2在椭圆C 上, ∴122+⎝⎛⎭
⎫322b 2=1,解得b 2=3. ∴c 2=a 2-b 2=1.
∴椭圆C 的方程为x 24+y 2
3=1,
焦点坐标为F (±1,0).。

相关文档
最新文档