高中物理极值问题的求解与分析

合集下载

物理中求极值的常用方法

物理中求极值的常用方法

物理解题中求极值的常用方法运用数学工具处理物理问题的能力是高考重点考查的五种能力之一,其中极值的计算在教学中频繁出现;因为极值问题范围广、习题多,会考、高考又经常考查,应该得到足够重视;另外很多学生数、理结合能力差,这里正是加强数理结合的“切人点”;学生求极值,方法较少,教师应该在高考专题复习中提供多种求极值的方法;求解物理极值问题可以从物理过程的分析着手,也可以从数学方法角度思考,下面重点对数学方法求解物理极值问题作些说明;1、利用顶点坐标法求极值对于典型的一元二次函数y=ax 2+bx+c,若a>0,则当x=-a b2时,y 有极小值,为y min =a b ac 442-;若a<0,则当x=-ab2时,y 有极大值,为y max =a b ac 442-;2、利用一元二次函数判别式求极值 对于二次函数y=ax 2+bx+c,用判别式法 利用Δ=b 2-4ac ≥0;式中含y 若y ≥A,则y min =A; 若y ≤A,则y max =A;3、利用配方法求极值对于二次函数y=ax 2+bx+c,函数解析式经配方可变为y=x-A 2+常数:1当x =A 时,常数为极小值;或者函数解析式经配方可变为y = - x -A 2+常数;2当x =A 时,常数为极大值;4、利用均值定理法求极值均值定理可表述为≥+2ba ab ,式中a 、b 可以是单个变量,也可以是多项式; 当a =b 时, a+b min =2ab ;当a =b 时, a+b max =2)(2b a +;5、利用三角函数求极值如果所求物理量表达式中含有三角函数,可利用三角函数的极值求解;若所求物理量表达式可化为“y=Asin ααcos ”的形式,则y=21Asin2α,在α=45o 时,y 有极值2A ; 对于复杂的三角函数,例如y=asin θ+bcos θ,要求极值时先需要把不同名的三角函数sin θ和cos θ,变成同名的三角函数,比如sin θ+ф ;这个工作叫做“化一”;首先应作辅助角如所示;考虑asin θ+bcos θ=θθcos sin 2222ba b ba a +++=22b a + cos фsin θ+sin фcos θ=22b a +sin θ+ф 其最大值为22b a +; 6、用图象法求极值通过分析物理过程遵循的物理规律,找到变量之间的函数关系,作出其图象,由图象可求得极值;7、用分析法求极值分析物理过程,根据物理规律确定临界条件求解极值;下面针对上述7种方法φ ab图1做举例说明;例1:如图2所示的电路中;电源的电动势ε=12伏,内阻r =欧,外电阻R 1=2欧,R 2=3欧,滑动变阻器R 3=5欧;求滑动变阻器的滑动头P 滑到什么位置,电路中的伏特计的示数有最大值最大值是多少分析:设aP 间电阻为x,外电路总电阻为R.则:先求出外电阻的最大值R max 再求出伏特计示数的最大值U max ;本题的关键是求R max ,下面用四种方R max ;方法一 用顶点坐标法求解抛物线方程可表示为y =ax 2+bx+c;考虑R =10)8)(2(x x -+=101662++-x x ,设y =-x 2+6x+16,当x =ab2-= —)1(26-=3时,R max 3=101636)3(2+⨯+- =Ω;方法二 用配方法求解考虑R =10)8)(2(x x -+ =101662++-x x =1025)3(2+--x ;即x =3Ω时,R max =5.21025=Ω; 方法三 用判别式法求解考虑R =101662++-x x ,则有-x 2+6x+16-10R =0,Δ=b2-4ac=36-4-116-10R>0,即:100-40R≥0,R≤Ω,即Rmax=Ω;方法四用均值定理法求解考虑R=10)8)(2(xx-+,设a=2+x;b=8-x; 当a=b时,即2+x=8-x,即x=3Ω时,Rmax 3=10)38)(32(-+=Ω;也可以用上面公式a+bmax =2)]8)(2[(2xx-+=25,Rmax =10)(maxba+=1025=Ω;以上用四种方法求出Rmax=Ω,下边求伏特计的最大读数;I min =rR+m axε=5.05.212+=4A;Umax=ε- Iminr=⨯=10V;即变阻器的滑动头P滑到R3的中点Ω处,伏特计有最大值,最大值为10伏;例2:如图3所示;光滑轨道竖直放置,半圆部分的半径为R,在水平轨道上停着一个质量为M=的木块,一颗质量为m=的子弹,以V=400m/s的水平速度射入木块中,然后一起运动到轨道最高点水平抛出,试分析:当圆半径R多大时,平抛的水平位移是最大且最大值为多少解析子弹与木块发生碰撞的过程,动量守恒,设共同速度为V1,则:mV0=m+MV1,所以:V1=VMmm+=smsm/4/40099.001.001.0=⨯+图3设在轨道最高点平抛时物块的速度为V 2,由于轨道光滑,故机械能守恒:所以:V 2=)/(])(4)[(21M m gR m M V M m ++-+=R R Rg V 401610444221-=⨯-=-则平抛后的位移可以表示为:s =V 2t =V 2104)4016(4RR g R ⨯-=⨯=4R R 4.02+-;因为a=-1<0,所以水平位移S 应该存在最大值;当R=)1(24.02-⨯-=-a b =时, S max =例3:在一平直较窄的公路上,一辆汽车正以22m/s 的速度匀速行驶,正前方有一辆自行车以4m/s 的速度同向匀速行驶,汽车刹车的最大加速度为6m /s 2,试分析两车不相撞的条件;解析要使二者不相撞,则二者在任一时间内的位移关系应满足 V 0t-S Vt at +<221式中S 为汽车刹车时与自行车间距 代入数据整理得:3t 2-18t+S>0, 显然,当满足∆=b 2-4ac ≥0,即∆=182-4⨯3S ≥0得:S ≤27m,S min =27m;当汽车刹车时与自行车间距为27米时是汽车不与自行车相撞的条件;例4:如图4所示;一辆四分之一圆弧小车停在不光滑水平地面上,质量为m 的小球从静止开始由车顶无摩擦滑下,且小车始终保持静止状态,试分析:当小球运动到什么位置时,地面对小车的摩擦力最大最大值是多少解析:设圆弧半径为R,当小球运动到重力mg 与半径夹角为θ时,速度为V,根据机械能守恒定律和牛顿第二定律有:解得小球对小车的压力为:N=3mgcos θ,其水平分量为:N x =3mgsin θcos θ=θ2sin 23mg根据平衡条件,地面对小车的静摩擦力水平向右,大小为:f= N x =θ2sin 23mg可以看出:当sin2θ=1,即θ=45o 时,地面对小车的静摩擦力最大,其值为:f max =mg 23;例5:如图5所示;质量为m 的物体由力F 牵引而在地面上匀速直线运动;物体与地面间的滑动摩擦系数为μ,求力F 最小时的牵引角θ;F 的方向是随θ变化的;解析:因物体匀速直线运动,所以有: Fcos θ-f =①f =μN =μmg-Fsin θ ②②代人①得:Fcos θ-μmg+μFsin θ=0 即:F =θμθμsin cos +mg;分母为两项不同名的三角函数,需要转化成同名的三角函数,也就是需要“化一”;由前面的“化一”结论得:a sin θ+b cos θ=22b a +sin θ+ф考虑本题分母:μsin θ+cos θ与a sin θ+b cos θ用比较法,得:a =μ;b =1; 于是tg ф=μ1=a b ,则ф=arc tg μ1;所以,μsin θ+cos θ=12+μsin θ+arc 图4tgμ1; 要使F 最小,则分母μsin θ+cos θ需最大,因此,θ+arc tgμ1=2π; 所以有:θ=2π-arc tg μ1=2π-arc ctg μ=arc tg μ;即:θ=arc tg μ时,F 最小;作为教师,运用“求导数”对本题验算非常简便;F =θμθμsin cos +mg ;考虑0=θd dF,则有μcos θ-sin θ=0则θ=arc tg μ,即当F 最小时,牵引角θ=arc tg μ;例6:甲、乙两物体同时、同地、同向由静止出发,甲做匀加速直线运动,加速度为4米/秒2,4秒后改为匀速直线运动;乙做匀加速直线运动,加速度为2米/秒2,10秒后改为匀速直线运动,求乙追上甲之前它们之间的最大距离;分析:运用物理规律和图形相结合求极值.是常用的一种比较直观的方法;由题意可知,4秒后甲做匀速直线运动的速度为:V 甲=a 甲t 甲=4⨯4=16m /s; 乙10秒后做匀速运动的速度为:V 乙=a 乙t 乙=2⨯10=20m /s;可画出v —t 如上图6所示;点相交,这表明在t =8秒时,两物体的速度相等,因此.在t =8秒时,两者间的距离最大;此时两图线所围观积之差,就是两者间的最大距离;即S max =21⨯4⨯16 + 4⨯16 — 21⨯8⨯16=32m;用分析法求极值在物理计算中较常见;经过对物理状态或过程分析后求极值,不一定要用繁难的数学,关键是确定临界状态和过程的最值;例7:如图7所示;AB、CD是两条足够长的固定平行金属导轨,两条导轨间的距离为L,导轨平面与平面的夹角是θ,在整个导轨平面内部有垂直于导轨平面斜向上方的匀强磁场,磁感应强度为B;在导轨的AC端连接一个阻值为R的电阻,一根垂直于导轨放置的金属棒ab,质量为m,从静止开始沿导轨下滑;已知ab与导轨间的滑动摩擦系数为μ,导轨和金属棒的电阻不计;求ab棒的最大速度;即分析物理过程;确定极值状态;运用物理规律求解;所示;在下滑过程中,ab受重力mg,支持力N=mgcosθ,摩擦力f=μmgcosθ,安培力F=RVLB22;沿导轨平面有:mgsinθ-μmgcosθ-RVLB22=ma ①ab由静止加速下滑会导致:当a=0时,ab速度到达最大,即:V=Vmax所以①式变为mgsinθ—μmgcosθ—RVLBmax22=0 ②②解式得:Vmax=22)cos(sinLBmgθμθ-;综上所述,求解极值习题常用的方法列举了七种、即均值定理法、顶点坐标法、配方法、判别式法、三角函数中“化一”法、图解法、分析法;针对有些习题所给的条件的“有界性”,运用求极值的方法时要特别注意,求出的极值不能“出界”,a图7B要注意定义域和值域的对应关系;例8:如图8所示;已知电流表内阻忽略不计;ε=10V,r =1Ω,Ro =R =4Ω,其中R 为滑动变阻器的最大值;当滑动片P 从最左端滑到最右端的过程中,电流表的最小值是多少最大值是多少电流表的示数将怎样变化解:设滑动变阻器滑片P 左端的电阻为R 左,通过电流表的电流为I A ,通过R o 的电流为I o ,由并联电路可知A I I 0=0R R 左① 由欧姆定律得:I =rR +总ε即:I=144410+-++=+-+左左左左并)(R R R rR R R ε②I=I 0+I A = I A)(左10+R R ③ 把③代入②式整理得I A =205402++-左左R R ④用配方法对④式求极值;I A =205402++-左左R R =25.2625402+--)(左R 当R =Ω时,I A 有极小值I Amin ==5.2640A; 当求电流表的最大值时,就需考虑R 的取值范围是“有界”的;这时的极值要与“界”的定义域对应,不能“出界”;当R 左=0时,即由④式得I A p 在a =2040=2A; 当R 左=R =4Ω时,由④式得I A P 在b =67.120454402=+⨯+-A; 由此可得,电流表先从2A 减小到,然后再增加到;所以电流表的最大值是2A,图8其变化是先减小后增大;综上所述,求极值的七种方法是解高中物理题的常用方法;在使用中,还要注意题目中的条件及“界”的范围;。

用“配方法”求物理极值例析

用“配方法”求物理极值例析

用“配方法”求物理极值例析山东省沂源四中(256104)任会常用“配方法”求极值是高中数学中最基本、最常用且最简单的一种方法。

也是我们求解高中物理极值问题常用的方法之一。

有些物理极值问题,若运用“配方法”求解,简捷明快,一目了然。

现举两例解析如下:例1、两物体沿着成a 角的两条直线作匀速运动,速度大小都是v 。

起初它们的位置分别在P 、Q 两点,如图1所示。

已知l PQ =。

问,经过多少时间两物体间的距离最近?最近距离是多少?解析:设两物体分别运动到MN 时,它们相距最近(用S 表示最近距离)。

在ΔQMN 中,vt l QN -=,根据余弦定理得: αcos )(2)()(222vt l vt vt l vt S ---+= 将上式整理配方得:2sin 22cos 2222ααl l vt l S +⎪⎭⎫ ⎝⎛-= 由此式可知,当v l t l vt 2,02==-即时,S 有最小值,其值为2sin min αl S =。

例2、在图2的电路中,电池的电动势ε=5V ,内电阻r=10Ω,固定电阻R=90Ω,R 0是可变电阻。

R 0在由零增加到400Ω的过程中,求可变电阻R 0上消耗热功率最大的条件和最大热功率。

解析:根据闭合电路的欧姆定律得:r R R I ++=0ε①又 ∵ 02R I P ⋅= ② ∴2002)(r R R R P ++=ε ③ 将③式整理配方得:[])(4)(0202r R R r R R P +++-=ε ④ 由④式可知,当R 0=R+r=90Ω+10Ω=100Ω时, R 0上消耗热功率最大,其最大值为: 2图1图PW W r R P m 161)1090(45)(422=+=+=ε 上述两例,也可以用其他多种方法求解,但配方法是较为简捷的一种方法。

同学们不妨作一比较。

练习题:1、一辆汽车在十字路口等候绿灯,当绿灯亮时,汽车以2m/s 2 的加速度开始行驶。

恰在这时,一辆自行车以8m/s 的速度匀速驶来,从后面超过汽车。

例析高中物理极值问题的求解方法

例析高中物理极值问题的求解方法
例 析 高 中物 理 极值 问题 的求解 方 法
■ 周 宏 建
求极 值 问题 不止 在数 学 中出现 , 在 物 + q的 小 球 , 用 长
理 解 题 中 也 经 常 出 现 。 物 理 极 值 问 题 是 指
某 一 物 理 过 程 中 物 理 量 出 现 的 最 大 值 或 最 小值 。
一 .
为 L 的 细 线 悬 挂


球 使 细 线 水 平 并
矢 - 豳 法 伸 盲 。然 后 自 由 释 ,
高 中物理 中 , 许 多物理 量 是矢 量 , 求 矢 量
的最值 时 , 矢 量 图 法 是 经 常 使 用 的 方 法 。 根 据平 行 四边 形 法 则 、 三 角 形 法 则 作 出 合 成 矢 量图, 结 合 题 目条 件 加 以 分 析 , 解 决 极 值 问 题 就会 极为 简 洁方便 。 例 1 一条 大河 宽 L一3 0 0 m, 水 流 速 度 一3 m/ s , 计 算 下
熟 练 掌 握 各 种 求 极 值 的 方 法 是 解 好 极 值
问题 的基 础 , 选择合 适 的求 极值 方 法 , 可 以 化 难 为易 , 达 到 事 半 功 倍 的 效 果 。 并 且 将 数 学 思 想运 用 到物 理 中求 极 值 , 不 但 有 助 于 学 生 提 高解 题能 力 , 更 是扩 展 了学 生 的解 题 思维 , 让 学 生能够 活学 活用 , 融会 贯通 。 作者 单位 : 江 苏 省 江 安 高 级 中 学
= = = 1 m/ s , 小 船 的速度
列情况 的渡河 时 间: ( 1 )以 最 短 时 间 渡 河 ;
( 2 ) 以最 小 位 移 渡 河 ; ( 3 )到 达 正 对 岸 上 游

专题极值法-高中物理八大解题方法含解析

专题极值法-高中物理八大解题方法含解析

高中物理解题方法之极值法高中物理中的极值问题,是物理教学研究中的活跃话题。

本文通过例题归纳综合出极值问题的四种主要解法。

一、 二次函数求极值二次函数a ac b a b x a c bx ax y 44)2(222--+=++=,当ab x 2-=时,y 有极值ab ac y m 442-=,若a>0,为极小值,若a<0,为极大值。

例1试证明在非弹性碰撞中,完全非弹性碰撞(碰撞后两物体粘合在一起)动能损失最大。

设第一个物体的质量为1m ,速度为1V 。

第二个物体的质量为2m ,速度为2V 。

碰撞以后的速度分别为'1V 和'2V 。

假使这四个速度都在一条直线上。

根据动量守恒定律有:'+'=+22112211V m V m V m V m (1)如果是完全非弹性碰撞,两物体粘合在一起,(1)则变为V m m V m V m '+=+)(212211,即212211m m V m V m V ++=' (2)现在就是要证明,在满足(1)式的碰撞中,动能损失最大的情况是(2)式。

碰撞中动能损失为ΔE k =()22()22222211222211'+'-+vm v m v m v m (3) 转变为数学问题:ΔE k 为v 的二次函数:由(1)得:v 2ˊ=2112211)(m v m v m v m '-+ (4)将(4)代入(3)得:k =++++-'12221112'1211)(2)(v m v m v m m v m m m m [2222112222112)(22m v m v m v m v m +-+] 二次函数求极值,当v 1ˊ=)()(212211m m v m v m ++ (5) 时∆E k 有极大值。

回到物理问题,将(5)代入(4)得v 2ˊ=)()(212211m m v m v m ++此两式表明,m 1和m 2碰后速度相等,即粘合在一起,此时动能损失(ΔE k )最大。

高考复习专题四—求极值的六种方法(解析版)

高考复习专题四—求极值的六种方法(解析版)

微讲座(四)——求极值的六种方法从近几年高考物理试题来看,考查极值问题的频率越来越高,由于这类试题既能考查考生对知识的理解能力、推理能力,又能考查应用数学知识解决问题的能力,因此必将受到高考命题者的青睐.下面介绍极值问题的六种求解方法.一、临界条件法对物理情景和物理过程进行分析,利用临界条件和关系建立方程组求解,这是高中物理中最常用的方法.某高速公路同一直线车道上有同向匀速行驶的轿车和货车,其速度大小分别为v 1=30 m/s ,v 2=10 m/s ,轿车在与货车距离x 0=25 m 时才发现前方有货车,此时轿车只是立即刹车,两车可视为质点.试通过计算分析回答下列问题:(1)若轿车刹车时货车以v 2匀速行驶,要使两车不相撞,轿车刹车的加速度大小至少为多少?(2)若该轿车刹车的最大加速度为a 1=6 m/s 2,轿车在刹车的同时给货车发信号,货车司机经t 0=2 s 收到信号并立即以加速度大小a 2=2 m/s 2加速前进,两车会不会相撞?[解析] (1)两车恰好不相撞的条件是轿车追上货车时两车速度相等,即 v 1-at 1=v 2①v 1t 1-12at 21=v 2t 1+x 0②联立①②代入数据解得:a =8 m/s 2. (2)假设经过时间t 后,两车的速度相等 即v 1-a 1t =v 2+a 2(t -t 0)此时轿车前进的距离x 1=v 1t -12a 1t 2货车前进的距离x 2=v 2t 0+v 2(t -t 0)+12a 2(t -t 0)2代入数据解得:x 1=63 m ,x 2=31 m 因为:x 1-x 2=32 m>x 0,两车会相撞. [答案] (1)8 m/s 2 (2)会相撞 二、二次函数极值法 对于二次函数y =ax 2+bx +c ,当a >0时,y 有最小值y min =4ac -b 24a,当a <0时,y 有最大值y max =4ac -b 24a.也可以采取配方法求解.一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以a =3 m/s 2的加速度开始行驶,恰在这一时刻一辆自行车以v 自=6 m/s 的速度匀速驶来,从旁边超过汽车.试求:汽车从路口开动后,在追上自行车之前经过多长时间两车相距最远?此时距离是多少?[解析] 设汽车在追上自行车之前经过时间t 两车相距最远,则 自行车的位移:x 自=v 自t汽车的位移:x 汽=12at 2则t 时刻两车的距离Δx =v 自t -12at 2代入数据得:Δx =-32t 2+6t当t =-62×⎝⎛⎭⎫-32 s =2 s 时,Δx 有最大值Δx max =0-624×⎝⎛⎭⎫-32 m =6 m对Δx =-32t 2+6t 也可以用配方法求解:Δx =6-32(t -2)2显然,当t =2 s 时,Δx 最大为6 m. (说明:此题也可用临界法求解) [答案] 见解析 三、三角函数法某些物理量之间存在着三角函数关系,可根据三角函数知识求解极值.如图所示,一质量m =0.4 kg 的小物块,以v 0=2 m/s 的初速度,在与斜面成某一夹角的拉力F 作用下,沿斜面向上做匀加速运动,经t =2 s 的时间物块由A 点运动到B 点,A 、B 之间的距离L =10 m .已知斜面倾角θ=30°,物块与斜面之间的动摩擦因数μ=33.重力加速度g 取10 m/s 2.(1)求物块加速度的大小及到达B 点时速度的大小;(2)拉力F 与斜面的夹角多大时,拉力F 最小?拉力F 的最小值是多少?[解析] (1)设物块加速度的大小为a ,到达B 点时速度的大小为v ,由运动学公式得:L =v 0t +12at 2①v =v 0+at ②联立①②式,代入数据解得:a =3 m/s 2,v =8 m/s.(2)设物块所受支持力为F N ,所受摩擦力为F f ,拉力与斜面之间的夹角为α,受力分析如图所示,由牛顿第二定律得:F cos α-mg sin θ-F f =ma ③F sin α+F N -mg cos θ=0④ 又F f =μF N ⑤联立③④⑤解得:F =mg (sin θ+μcos θ)+macos α+μsin α⑥由数学知识得:cos α+33sin α=233sin(60°+α)⑦ 由⑥⑦式可知对应的F 最小值与斜面的夹角α=30°⑧ 联立⑥⑧式,代入数据得F 的最小值为:F min =1335N. [答案] (1)3 m/s 2 8 m/s(2)夹角为30°时,拉力最小,为1335N四、图解法此种方法一般适用于求矢量极值问题,如动态平衡问题,运动的合成问题,都是应用点到直线的距离最短求最小值.质量为m 的物体与水平地面间的动摩擦因数为μ,用图解法求维持物体做匀速运动的最小拉力.[解析] 由F fF N =μ知,不论F f 、F N 为何值,其比值恒定由图知F fF N=μ=tan α,即F ′的方向是确定的.由平衡条件推论可知:mg 、F ′、F 构成闭合三角形.显然,当F ⊥F ′时,F 最小.F min =mg sin α=mg tan α1+tan 2 α=μmg1+μ2.(说明:此题也可用三角函数法求解.) 物体受力分析如图. 由平衡条件得:F ·cos θ=F f ①F ·sin θ+F N =mg ② 又F f =μF N ③联立①②③得:F =μmgcos θ+μsin θ令sin α=11+μ2,cos α=μ1+μ2 则F =μmg1+μ2 sin (α+θ)当sin(α+θ)=1时,F min =μmg1+μ2.[答案] μmg1+μ2五、均值不等式法任意两个正整数a 、b ,若a +b =恒量,当a =b 时,其乘积a ·b 最大;若a ·b =恒量,当a =b 时,其和a +b 最小.在一次国际城市运动会中,要求运动员从高为H 的平台上A 点由静止出发,沿着动摩擦因数为μ的滑道向下运动到B 点后水平滑出,最后落在水池中.设滑道的水平距离为L ,B 点的高度h 可由运动员自由调节(取g =10 m/s 2).(1)求运动员到达B 点的速度与高度h 的关系.(2)运动员要达到最大水平运动距离,B 点的高度h 应调为多大?对应的最大水平距离x max 为多少?(3)若图中H =4 m ,L =5 m ,动摩擦因数μ=0.2,则水平运动距离要达到7 m ,h 值应为多少?[解析] (1)设斜面长度为L 1,斜面倾角为α,根据动能定理得mg (H -h )-μmgL 1cos α=12m v 20①即mg (H -h )=μmgL +12m v 20②v 0=2g (H -h -μL ).③ (2)根据平抛运动公式 x =v 0t ④ h =12gt 2⑤ 由③④⑤式得x =2(H -μL -h )h ⑥由⑥式可得,当h =12(H -μL )时水平距离最大x max =L +H -μL .(3)在⑥式中令x =2 m ,H =4 m ,L =5 m ,μ=0.2 则可得到-h 2+3 h -1=0 求得h 1=3+52m =2.62 m ;h 2=3-52m =0.38 m.[答案] 见解析 六、判别式法一元二次方程的判别式Δ=b 2-4ac ≥0时有实数根,取等号时为极值,在列出的方程数少于未知量个数时,求解极值问题常用这种方法.(原创题)如图所示,顶角为2θ的光滑绝缘圆锥,置于竖直向上的匀强磁场中,磁感应强度为B ,现有质量为m ,带电量为-q 的小球,沿圆锥面在水平面内做圆周运动,求小球做圆周运动的最小半径.[解析] 小球受力如图,设小球做圆周运动的速率为v ,轨道半径为R . 由牛顿第二定律得:水平方向:q v B -F N cos θ=m v 2R竖直方向:F N sin θ-mg =0 两式联立得:m v 2R-q v B +mg cot θ=0 因为速率v 为实数,故Δ≥0 即(qB )2-4⎝⎛⎭⎫m R mg cot θ≥0 解得:R ≥4m 2g cot θq 2B 2故最小半径为:R min =4m 2g cot θq 2B 2.[答案] 4m 2g cot θq 2B 21.(单选)(2016·广州模拟)如图所示,船在A 处开出后沿直线AB 到达对岸,若AB 与河岸成37°角,水流速度为4 m/s ,则船从A 点开出的最小速度为( )A .2 m/sB .2.4 m/sC .3 m/sD .3.5 m/s 解析:选B.AB 方向为合速度方向,由图可知,当v 船⊥AB 时最小,即v 船=v 水·sin 37°=2.4 m/s ,B 正确.2.(单选)如图所示,在倾角为θ的斜面上方的A 点处放置一光滑的木板AB ,B 端刚好在斜面上.木板与竖直方向AC 所成角度为α,一小物块自A 端沿木板由静止滑下,要使物块滑到斜面的时间最短,则α与θ角的大小关系应为( )A .α=θB .α=θ2C .α=θ3D .α=2θ解析:选B.如图所示,在竖直线AC 上选取一点O ,以适当的长度为半径画圆,使该圆过A 点,且与斜面相切于D 点.由等时圆知识可知,由A 沿木板滑到D 所用时间比由A 到达斜面上其他各点所用时间都短.将木板下端与D 点重合即可,而∠COD =θ,则α=θ2.3.(2016·宝鸡检测)如图所示,质量为m 的物体,放在一固定斜面上,当斜面倾角为30°时恰能沿斜面匀速下滑.对物体施加一大小为F 的水平向右的恒力,物体可沿斜面匀速向上滑行.设最大静摩擦力等于滑动摩擦力,当斜面倾角增大并超过某一临界角θ0时,不论水平恒力F 多大,都不能使物体沿斜面向上滑行,试求:(1)物体与斜面间的动摩擦因数; (2)这一临界角θ0的大小.解析:(1)斜面倾角为30°时,物体恰能匀速下滑,满足 mg sin 30°=μmg cos 30° 解得μ=33.(2)设斜面倾角为α,受力情况如图,由匀速直线运动的条件: F cos α=mg sin α+F f F N =mg cos α+F sin α F f =μF N解得:F =mg sin α+μmg cos αcos α-μsin α当cos α-μsin α=0,即cot α=μ时,F →∞ 即“不论水平恒力F 多大”,都不能使物体沿斜面向上滑行,此时,临界角θ0=α=60°. 答案:(1)33(2)60°4.如图所示,质量为m =0.1 kg 的小球C 和两根细绳相连,两绳分别固定在细杆的A 、B 两点,其中AC 绳长l A =2 m ,当两绳都拉直时,AC 、BC 两绳和细杆的夹角分别为θ1=30°、θ2=45°,g =10 m/s 2.问:细杆转动的角速度大小在什么范围内,AC 、BC 两绳始终张紧?解析:设两细绳都拉直时,AC 、BC 绳的拉力分别为F TA 、F TB ,由牛顿第二定律可知: 当BC 绳中恰无拉力时,F T A sin θ1=mω21l A sin θ1① F TA cos θ1=mg ②由①②解得ω1=1033rad/s. 当AC 绳中恰无拉力时,F TB sin θ2=mω22l A sin θ1③ F TB cos θ2=mg ④ 由③④解得ω2=10 rad/s.所以,两绳始终有张力时细杆转动的角速度的范围是 1033rad/s <ω<10 rad/s. 答案: 1033rad/s <ω<10 rad/s 5.(原创题)一人在距公路垂直距离为h 的B 点(垂足为A ),公路上有一辆以速度v 1匀速行驶的汽车向A 点行驶,当汽车距A 点距离为L 时,人立即匀速跑向公路拦截汽车,求人能拦截住汽车的最小速度.解析:法一:设人以速度v 2沿图示方向恰好在C 点拦住汽车,用时为t .则L +h tan α=v 1t ① hcos α=v 2t ② 联立①②两式得:v 2=h v 1L cos α+h sin α=h v 1L 2+h 2⎝ ⎛⎭⎪⎫L L 2+h 2cos α+h L 2+h 2sin α由数学知识知:v 2min =h v 1L 2+h 2 .法二:选取汽车为参照物.人正对汽车运动即可拦住汽车,即人的合速度方向指向汽车.其中一分速度大小为v 1,另一分速度为v 2,当v 2与合速度v 垂直时,v 2最小,由相似三角形知识可得:v 2v 1=h L 2+h2 v 2=h v 1L 2+h 2 .答案:h v 1L 2+h 26.小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m 的小球,甩动手腕,使球在竖直平面内做圆周运动.当球某次运动到最低点时,绳突然断掉,球飞行水平距离d 后落地,如图所示.已知握绳的手离地面高度为d ,手与球之间的绳长为34d ,重力加速度为g .忽略手的运动半径和空气阻力.(1)求绳断时球的速度大小v 1和球落地时的速度大小v 2. (2)问绳能承受的最大拉力多大?(3)改变绳长,使球重复上述运动,若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应为多少?最大水平距离为多少?解析:(1)设绳断后球飞行时间为t ,由平抛运动规律,有竖直方向14d =12gt 2,水平方向d =v 1t解得v 1=2gd .由机械能守恒定律有12m v 22=12m v 21+mg ⎝⎛⎭⎫d -34d 得v 2=52gd . (2)设绳能承受的最大拉力大小为F T ,这也是球受到绳的最大拉力大小,即球运动到最低点时球所受到的拉力.球做圆周运动的半径为R =34d由圆周运动向心力公式,有F T -mg =m v 21R得F T =113mg .(3)设绳长为l ,绳断时球的速度大小为v 3,绳承受的最大拉力不变,有F T -mg =m v 23l 得v 3=83gl 绳断后球做平抛运动,竖直位移为d -l ,水平位移为x ,时间为t 1,竖直方向有d -l =12gt 21,水平方向x =v 3t 1 得x =4l (d -l )3当l =d 2时,x 有最大值,x max =233d .答案:见解析 7.(原创题)如图所示,电动势为E 、内阻为r 的电源给一可变电阻供电,已知可变电阻变化范围为0~R m ,且R m >r .当R 为何值时功率最大,最大功率为多少?解析:设可变电阻为R ,则I =ER +rP =I 2R =E 2(R +r )2·R ①法一:(配方法)P =E 2(R -r )2R +4r显然,当R =r 时,功率最大,P max =E 24r.法二:(判别式法)将①式整理成关于R 的二次方程 PR 2+(2Pr -E 2)R +Pr 2=0 由于R 为实数,故Δ≥0 即(2Pr -E 2)2-4P 2r 2≥0 解得:P ≤E 24r最大值为P max =E 24r ,代入①式得R =r .答案:见解析 8.质量分别为M 、m 的斜面体A 、B 叠放在光滑水平面上,斜面体倾角为α,两者之间的动摩擦因数为μ(μ<tan α),今用水平外力F 推B ,使两者不发生滑动,假设最大静摩擦力等于滑动摩擦力,求F 的取值范围.(已知:m =3 kg ,M =8 kg ,μ=0.5,α=37°.)解析:B 恰好不向下滑动时,所需F 最小,此时B 受到最大静摩擦力沿斜面向上.如图甲所示.设两者共同的加速度为a 1,对整体有: F min =(M +m )a 1 对B 有:F min +F f1cos α-F N1sin α=ma 1 F f1sin α+F N1cos α=mg F f1=μ·F N1联立以上各式解得:F min =m (M +m )(sin α-μcos α)M (cos α+μsin α)g =7.5 N甲乙B恰好不上滑时所需F最大,此时B受最大静摩擦力沿斜面向下.如图乙所示.设共同加速度为a2,对整体有:F max=(M+m)a2对B有:F max-F f2cos α-F N2sin α=ma2F N2cos α=mg+F f2sin αF f2=μF N2联立以上各式解得:F max=m(M+m)(sin α+μcos α)M(cos α-μsin α)g=82.5 N故取值范围为7.5 N≤F≤82.5 N.答案:7.5 N≤F≤82.5 N。

2024年高中物理:利用矢量作图法解力学中的极值问题

2024年高中物理:利用矢量作图法解力学中的极值问题

2024年高中物理:利用矢量作图法解力学中的极值问题下面用矢量作图法来求解物理量的极值问题。

一、判断绳上拉力的极值例1. 三段不可伸长的细绳OA、OB、OC能承受的最大拉力相同,它们共同悬挂一重物,如图1,其中OB是水平的,A端、B端固定,若逐渐增大C端所挂物体的质量,则最先断的细绳是()A. 必定是OAB. 必定是OBC. 必定是OCD. 可能是OB,也可能是OC图1解析:对O点进行受力分析,O点受到三根绳的拉力分别是,如图1-1所示,由于O点静止,则三力矢量和为零,即其中任意二力的合力与第三个力等值反向。

作出力合成矢量图,由直角三角形的边角关系可知,绳OA上实际拉力最大,故当C端所挂物体的质量逐渐增大过程中,三段绳上拉力虽然都增大,但绳OA上实际拉力最先达最大承受力,必定先断,其他两根绳实际拉力均未达最大承受力则不断,所以答案A正确。

图1-1点评:通过力的矢量图中边长的长短即可判断出三根绳上实际拉力的大小关系,在都增大的过程中,最长边表示的拉力先达极值。

二、求解最大重量例2. 用细绳AO、BO悬挂重物,BO水平,AO与竖直线成45°,如图2所示。

AO、BO所能承受的最大拉力均为10N,OC 能承受足够大的拉力,为使细线不被拉断,则所挂重物的最大重量是多少?图2解析:O点受三根细线的拉力分别为,作出矢量合成图如图2-1,由于O点静止,与的合力R必与等值反向,即,由直角三角形边长关系可知,故应选满足AO细绳上实际拉力取最大值,即,而OB细线上实际拉力则小于10N,此时所挂重物的重量达最大,则最大重量为所求。

图2-1点评:由力矢量图可知,二根细线拉力不能同时达最大,只能满足较大的拉力达极值,而另一根细线拉力则小于极值,再来求解最大重量。

三、求解最小外力例3. 如图3,在水平面上放有质量为m,与地面动摩擦因数为的物体,现用力F拉物体使其沿地面匀速前进,求F的最小值及方向。

图3解析:物体m受重力mg,地面支持力、动摩擦力及拉力F (方向未知)。

物理极值问题

物理极值问题

物理极值问题
物理极值问题是一个物理量在某过程中的最大或最小值的问题,这是高中物理教学中的重要内容,涉及到的领域包括力学、热学、电学等,并且这一问题的难度较大,对学生的学习综合实力和数学结合能力有较高要求。

在求解极值问题时,我们通常从以下几个方面进行思考:
首先,当物理量达到极值时,该物理系统处于平衡状态,例如汽车以恒定功率启动最后会达到最大速度;其次,当物理量达到极值时,可能存在另一物理量为零的情况,例如从高处掉落的小球掉在竖直放置的弹簧上,当加速度为零时速度最大,而速度为零时加速度最大;第三,瞬时速度相等时,物理量也可能达到极值,例如在一物体撞上中间有弹簧的另一物体时,当两者速度相等时弹簧的弹性势能最大;最后,当物理量达到极值时可能会出现临界状态,如光的折射中入射角变化达到全反射的情况。

高中物理求极值方法与常用结论总结

高中物理求极值方法与常用结论总结

高中物理求极值方法与常用结论总结(一)利用分式的性质求极值[例1] 物体A放在水平面上,作用在A上的推力F与水平方向成30º角,如图示。

使A作匀速直线运动。

试问,当物体A与水平面之间的摩擦系数μ为多大时,不管F增大到多大,都可以使A在水平面上,作匀速直线运动?解:A受力如图所示,由已知,A处于平衡状态,有:Fcosα=fFcos30º=μ(G+Fsin30º),得F=由已知当公式的分母为零,即F→∞的匀速运动时sin30º-μcos30º=0时得μ=tg30º=0.58,则F→∞,此时都可以使A在水平面上作匀速直线运动。

(二)利用一元二次方程求根公式求极值有些问题,通过分析列关系式,最后整理出关于一个未知量的一元二次方程。

它的根就可能是要求的极值。

这种方法应用是很普遍的。

(三)利用一元二次方程判别式△=b2-4ac≥O求极值[例2] 一个质量为M的圆环,用细线悬挂着。

将两个质量为m的有孔的小珠套在环上,且可沿环无摩擦滑动,如图(a)所示。

今将两小珠从环的顶端由静止开始释放。

证明,当m>M 时,圆环能升起。

证明:取小球为研究对象,受力如图(a)。

由牛顿第二定律,得所mgcosθ+N=由机械能守恒定律,得mgR(1-cosθ)=由此二式得N=2mg-3mgcosθ(1)上式中,N>0,即cosθ<以环为研究对象,受力图如(b),在竖直方向,由牛顿第二定律,有T+2N’cosθ—Mg=Ma当环恰好能上升时,a=0,可得2N’cosθ=Mg (3)将(1)代入(3)式中,其中N’为(a)图中N的反作用力。

有2(2mg-3mgcosθ)cosθ=Mg 即6mcos2θ-4mcosθ+M=0 (4)(4)式是关于cosθ的一元二次方程。

cosθ为实数,则△≥0,即(4m)2-4(6m)M≥0,可得m≥M 当m=M时,T恰好为零,但不升起,所以取m>M为升起条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理极值问题的求解与分析
高中物理知识点多、解题方法多样.有一类是极值问题的求解,这类问题是高中物理教学中经常遇到的一类问题,是核心知识点,高考压轴题中经常出现,是学生感到难解的题型之一.求解极值问题的方法一般可以分为两类,一类是物理方法,另一类是数学方法,下面就运用这两类方法对求极值的问题加以解析.
一、用物理方法求解极值
1. 分析物理过程,寻求极值条件求解
例如:如图1所示,质量为1g的小环带4×10-4C的正电,套在长直的绝缘杆上,两者间的动摩擦因数μ=0.2.将杆放入都是水平的互相垂直的匀强电场和匀强磁场中,杆所在平面与磁场垂直,与电场的夹角为37°.若E=10N/C,B=0.5T,小环从静止启动.求:(1)当小环加速度最大时,环的速度和加速度;(2)当小环的速度最大时,环的速度和加速度.
解析:(1)小环从静止启动后,受力情况如图2,随着速度的增大,洛仑兹力便增大,于是正压力减小,摩擦力减小,加速度增大.当环的速度为v时,正压力为零,摩擦力消失,此时环有最大加速度amax.(2)在上述状态之后,环的速度继续增大导致洛仑兹力继续增大,致使小环下侧与杆之间出现挤压力N,如图3.于是摩擦力f又产生,杆的加速度a减小,v?圯Bvq?圯N?圯f?圯a,当a减小
到零时,环有最大速度vmax.
解:(1)在平行于杆的方向上有:mgsin37°- Eqcos37°=mamax 解得:amax=2.8 m/s2
在垂直于杆的方向上有:Bvq = mgcos37°+ Eqsin37°
解得:v=52 m/s
(2)在平行于杆方向有:mgsin37°= Eqcos37°+ f
在垂直于杆方向有:Bvmaxq = mgcos37° + Eqsin37° + N
又f = ?滋N
解得:vmax = 122m/s
求解这类极值问题,关键要细致地分析物理过程,理顺物理量的关系,找出变化点和转折点,寻找到极值的条件.这就要求教师平时要引导学生养成重视分析物理过程求解习题的习惯,这也是学好物理的根本方法之一.
2. 利用物理图像求解极值
例如:物体A、B同时从同一地点,沿同一方向运动,A以10m/s 的速度匀速前进,B以2m/s2的加速度从静止开始做匀加速直线运动,求A、B再次相遇前两物体间的最大距离.
解析:根据题意作出A、B的v-t图像,如图4所示可知,A、B 再次相遇前它们之间距离有最大值的临界条件是vA=vB,得t=5s. A、B间距离的最大值数值上等于ΔOvAP 的面积,即ΔSmax= ×5×10m=25m.
这类问题要求学生具有将物理现象转化为图像问题的能力.这就
要求老师在平常的教学中加强对这方面知识的教学引导.要求学生能全面系统地看懂图中的“轴”、“线”、“点”、“斜率”、“面积”、“截距”等所表示的物理意义,形成利用图像解题的习惯.
二、用数学方法求解极值
数学方法是研究物理学的一种基本方法,其内容就是把数学的思想、方法,以至结果应用于物理过程的描述和分析之中,以求得问题的答案.
1. 用二次函数求极值
例如:如图5,一半径为R的光滑绝缘半球面开口向下,固定在水平面上.整个空间存在匀强磁场,磁感应强度方向竖直向下.一电荷量为q(q>0)、质量为m的小球P在球面上做水平的匀速圆周运动,圆心为O′.球心O到该圆周上任一点的连线与竖直方向的夹角为θ(0
解析:据题意,小球P做匀速圆周运动,圆心为O′.P受到向下的重力mg、球面对它沿OP方向的支持力N和磁场的洛仑兹力f=qvB.
根据牛顿第二定律:
Ncosθ - mg = 0
Nsinθ - f =
解得:v2- v+ = 0
由于v是实数,必须满足:Δ = 2 - ≥0
由此得:B≥
可见,为了使小球能够在该圆周上运动,磁感应强度大小的最小
值为Bmin= .
这类问题,要求学生善于发现等式中的特点,能和二次函数的表达式联系起来,然后利用判别式≥0求解极值.所以教者平时就要善于启发引导学生发现规律和所学的数学知识联系起来进行解题,挖掘学生利用数学知识解题的潜能.
2. 利用矢量作图法求极值
例如:如图6,已知质量为m、电荷为q的小球,在匀强电场中由静止释放后沿直线OP向斜下方运动(OP和竖直方向成θ角),那么所加匀强电场的场强E的最小值是多少?
解析:根据题意,释放后小球所受合力的方向必为OP方向.用三角形定则从图中不难看出:重力矢量mg的大小方向确定后,合力F 的方向确定(为OP方向),而电场力Eq的矢量起点必须在mg矢量的末端,终点必须在OP射线上.在图中画出几组可能的电场力,不难看出,只有当电场力方向与OP方向垂直时,Eq才会最小,所以E也最小,有Emin= .
这类问题的关键是根据矢量合成的平行四边形定则或三角形法则作出矢量图,并加以分析.这实质利用了直线外一点到直线的距离垂线段最短的原理,这种方法也适合变力的分析.因此老师平时就要加强学生形成画图解题的习惯.。

相关文档
最新文档