中学物理中极值问题解法种种
初中物理极值题型归纳总结

初中物理极值题型归纳总结在初中物理学习中,极值问题是一类常见的题型,也是学生们比较容易遇到的难题之一。
本文将对初中物理中的极值题型进行归纳总结,帮助同学们更好地应对此类题目。
一、最大值与最小值在物理问题中,最大值和最小值往往代表着某种物理量的极端情况,是我们需要求解的目标。
以下是一些常见的最大值和最小值问题:1. 最大值问题最大值问题通常涉及到寻找某一物理量在给定条件下的最大取值。
例如,求解一个抛体的最大高度、求解电阻的最大功率等。
对于这类问题,可以采用以下思路来解决:(1)列出问题的相关条件或约束;(2)根据条件或约束,得出物理量的表达式;(3)对表达式求导,找到极值点;(4)通过适当的方法,判断得到的极值点是否满足最大值的条件。
2. 最小值问题最小值问题与最大值问题类似,但是求解的是物理量的最小取值。
例如,求解一个弹簧的最小压缩量、求解电路中电流的最小值等。
解决最小值问题可以按照以下步骤进行:(1)列出问题的相关条件或约束;(2)根据条件或约束,得出物理量的表达式;(3)对表达式求导,找到极值点;(4)通过适当的方法,判断得到的极值点是否满足最小值的条件。
二、具体题型分析1. 坡度问题坡度问题是一种常见的极值问题,通常涉及到物体在斜坡上运动的情况。
在解决坡度问题时,可以根据题目所给条件,利用力学知识和相关公式进行推导和计算。
以某个斜坡上的物体滑动时所具有的最大速度为例,可以通过以下步骤进行解答:(1)根据题目给出的条件,列出物体所受到的力;(2)根据牛顿第二定律,建立物体的运动方程;(3)通过求解运动方程,得到最大速度的表达式;(4)对表达式求导,并求解得到的导数为零的点,即可得到最大速度的取值。
2. 三角函数问题三角函数问题是另一种常见的极值问题类型,通常涉及到角度的取值范围以及某一物理量的极值。
在解决三角函数问题时,需要对三角函数的性质和恒等式有一定的了解。
例如,求解一个正弦函数在给定范围内的最大值,可以按照以下步骤进行:(1)根据给定的范围,列出正弦函数的表达式;(2)对表达式求导,并求解得到的导数为零的点;(3)通过判断该点是否满足最大值的条件,确定极值点的取值。
物理解题方法二极值法

四、用二次函数判别式求极值
若所求物理量的表达式为二次函数“Y=ax2+bx+c”的 形式,将该表达式整理得方程“ax2+bx+(c-y)=0”,要 使方程有解,该函数判别式△=b2-4a(c-y)≥0,由此可 解极值。
[例5]一点光源从离凸透镜无限远处沿主轴移到焦点, 移动过程中,点光源和所成的像间距离的变化情况是 : ()
六、用假设推理法求极值
通过假设法使研究对象处于临界状态,然后再利 用物理规律求得极值。(“临界”法)
[例7]如图,能承受最大拉力为10N的细OA与竖直方向成450,能 承受最大拉力为5N的细线OB水平,细线OC能承受足够大的拉力, 为使OA和OB均不被拉断,OC下端所悬挂物体P最重不得超过多 少?
二、利用三角函数法求极值 如果所求物理量表达式中含有三角函数, 可利用三角函数求极值。 1.若所求物理量表达式可化为“y=A sinθ cosθ”形式(即y= sin2θ),则在θ=45o时,y有极 值A/2。
[例2]如图,n个倾角不同的光滑斜面具有共同 的底边AB,当物体沿不同的倾角无初速从顶 端滑到底端,下列哪种说法正确( ) (A)倾角为30o时,所需时间最短。 (B)倾角为45o时,所需时间最短。 (C)倾角为75o时,所需时间最短。 (D)所需时间均相等。
七、用图象法求极值
通过分析物理过程中遵循的物理规律,找到变量间 的函数关系,作出其图象,由图象可求得极值。
[例8]两辆完全相同的汽车,沿水平直路一前一后匀速行驶, 速度均为V0,若前车突然以恒定加速度刹车,在它刚停止 时,后车以前车刹车时的加速度开时刹车,已知前车在刹 车过程中行驶距离为S。在上述过程中要使两车不相撞, 则两车在匀速运动时,报持的距离至少应为:( )
物理解题方法2--极值法

七、用图象法求极值
通过分析物理过程中遵循的物理规律,找到变量间 的函数关系,作出其图象,由图象可求得极值。
[例8]两辆完全相同的汽车,沿水平直路一前一匀速行驶, 速度均为V0,若前车突然以恒定加速度刹车,在它刚停止 时,后车以前车刹车时的加速度开时刹车,已知前车在刹 车过程中行驶距离为S。在上述过程中要使两车不相撞, 则两车在匀速运动时,报持的距离至少应为:( )
(A)S (B)2S (C)3C (D)4S
小结:
“忘”掉具体题文;升华、归纳、牢记其思维方法。
思考题:根据你见过的题目,给上述七类型各补上 1----3道题,以增强对极值法的理解。
知识回顾 Knowledge Review
祝您成功!
为多大?
三、分析物理过程求极值
有些问题可直接通过分析题中的物理过程及相应的 物理规律,找出极值出现时的隐含条件,从而求解。
[例4]如图,轻质长绳水平地跨在相距为2L的两个小定滑轮A、B上, 质量为M的物体悬挂在绳上O点,O与A、B两滑轮距离相等,在轻 绳两端C、D分别施加竖直向下的拉力F=mg,先拉住物体,使绳处于 水平拉直状态,静止释放物体,在物体下落过程中,保持C、D两端拉 力F不变,求物体下落的最大速度和最大距离
物理解题方法2--极值法
一、利用配方法求极值 将所求物理量表达式化为 “y=(x-a)2+b” 的形式,从而可得出:当x=a时,y有极值b。 (二次函数求极值法)
[例1] 一矩形线框abcd周长为L,其中通 有电流I,将它置于一匀强磁场B中,且ab 边与磁感线方向平行,该线框所受磁力矩最 大可为多少?
二、利用三角函数法求极值 如果所求物理量表达式中含有三角函数, 可利用三角函数求极值。 1.若所求物理量表达式可化为“y=A sinθ cosθ”形式(即y= sin2θ),则在θ=45o时,y有极 值A/2。
专题极值法-高中物理八大解题方法含解析

高中物理解题方法之极值法高中物理中的极值问题,是物理教学研究中的活跃话题。
本文通过例题归纳综合出极值问题的四种主要解法。
一、 二次函数求极值二次函数a ac b a b x a c bx ax y 44)2(222--+=++=,当ab x 2-=时,y 有极值ab ac y m 442-=,若a>0,为极小值,若a<0,为极大值。
例1试证明在非弹性碰撞中,完全非弹性碰撞(碰撞后两物体粘合在一起)动能损失最大。
设第一个物体的质量为1m ,速度为1V 。
第二个物体的质量为2m ,速度为2V 。
碰撞以后的速度分别为'1V 和'2V 。
假使这四个速度都在一条直线上。
根据动量守恒定律有:'+'=+22112211V m V m V m V m (1)如果是完全非弹性碰撞,两物体粘合在一起,(1)则变为V m m V m V m '+=+)(212211,即212211m m V m V m V ++=' (2)现在就是要证明,在满足(1)式的碰撞中,动能损失最大的情况是(2)式。
碰撞中动能损失为ΔE k =()22()22222211222211'+'-+vm v m v m v m (3) 转变为数学问题:ΔE k 为v 的二次函数:由(1)得:v 2ˊ=2112211)(m v m v m v m '-+ (4)将(4)代入(3)得:k =++++-'12221112'1211)(2)(v m v m v m m v m m m m [2222112222112)(22m v m v m v m v m +-+] 二次函数求极值,当v 1ˊ=)()(212211m m v m v m ++ (5) 时∆E k 有极大值。
回到物理问题,将(5)代入(4)得v 2ˊ=)()(212211m m v m v m ++此两式表明,m 1和m 2碰后速度相等,即粘合在一起,此时动能损失(ΔE k )最大。
高中物理极值问题的常见解法例析

当加 速 度 aO , 度 达 到最 大. =时 速
 ̄ p( q m ) E . : I, v- g = q得 v= B
极值等. 例 1空 间 存 在 充 分 大 的 正 交 的 水 平 匀 强 电 场 ( 强 为E) . 场 和 匀 强 磁 场 ( 度 为B)足 够 长 的绝 缘 直 杆 水 平 放 置 , 电 场 强 , 与 平行 , 图 l 示 , 带 正 电 的 圆环 ( 量 为I, 如 所 一 质 n 电量 为 q 套 在 杆 )
一
mg 一 ̄( E q B) q +v
当v 0 , ★ — g — E= = 时 =m - q g  ̄
一
;
图1
图2
图3
分析 与 解 : 环 由 静 止运 动后 , 变加 速 运 动 . 力 如 图2 小 做 受 所示 , 理 关 系 可表 示 为 : 物
当a 0 , : 堕 :时 v —
场 , 感 应 强 度 为 B, 导 轨 的A 端 连 接 一 磁 在 c 个 阻值 为R的 电阻 , 根 质 量 为 m、 直 于 导 一 垂 轨 放 置 的金 属棒 a , 静 止 开始 沿导 轨 下 滑 , 此 过程 中a 棒 b从 求 b 的最大速度. 已知 a 与 导 轨 间 的 动 摩 擦 因 数 为 , 轨 和 金 属 b 导 棒 的 电阻 不 计 .
知识包括 : ①定积求和 、 定和求积 ; 一元 二次方程 ; ② ③三角 函
数, 等. 等 例 3如 图所 示 , 在 很 长 的 绝 缘 直 棒 上 的 小 球 , 质 量 . 套 其 为 I, 电 量 为 + 小 球 可 在 棒 上 滑 动 , 此 棒 竖 直 放 在 互 T带 I q, 将 相 垂 直 , 沿 水 平 方 向 的 匀 强 电 场 和 匀 强 磁 场 中 , 场 强 且 电 度 为 E, 感 应 强 度 为 B 小 球 与 棒 的 动 摩 擦 因 数 为 , 小 磁 , 求 球 由静 止 沿 棒 下 落 的 最 大 加 速 度 和 最 大 速 度 ? ( 小 球 电 设
物理极值问题的求解方法

物理极值问题的求解方法随着教改的不断深入,物理教学更加结合实际,物理习题的题型不断拓宽。
在中学物理竞赛及高考试卷中都出现了一些具有一定难度的求极值问题。
求极值的一般方法是用导数求解。
但中学生还没有学过关于异数的数学知识。
本专题将分若干小专题,分别介绍符合中学生数学基础的解决极值问题的方法。
一、几何法求极值在初中几何中我们曾经学过“点到直线的距离以垂线为最短。
”此结论对于求极小值问题,是一条捷径。
直距离为a,A起航时与B船相距为b,b>a 。
如果略去A船起动时的加速过程,认为它一起航就匀速运动。
则A船能拦截到B船的最小速率为多少?分析与解:分析本题是两个运动物体求它们之间的相对位置的问题。
若以地球为参照系,两个物体都运动,且运动方向不一致,它们之间的相对位置随时间变化的关系比较复杂,一时不容易做出正确的判断与解答。
但如果把参照系建立在某一运动的物体上,(如B上)由于以谁为参照系,就认为谁不动,此题就简化为一个物体,(如A)在此运动参照系的运动问题了。
当然解一个物体的运动问题比解两个物体都运动的问题自然容易多了。
以B为参照系,B不动,在此参照系中A将具有向左的分速度υ0,如图1-2所示。
在此参照系中A只要沿着PB方向就能拦截到B 。
应用“点到直线的距离以垂线为最短”的结论。
过O点作PB的垂线,交PB于E点,OE即为A船对地的速度的最小值υA,在△AOE中∵υA=υ0Sinθ而∴,由于灵活运用了几何知识,使较为复杂的问题,变为简单的几何问题了。
例2.如图1-3所示,重为G的物体与水平地面的动摩擦因数为μ,欲以一个拉力F使物体沿地面匀速前进。
问F与水平地面的夹角θ为何值时最省力?这个最小拉力是多大?分析与解:画出物体的受力分析图,如图1-4所示。
物体受到四个力的作用。
有重力G、拉力F、地面的支持力N及地面对物体的滑动摩擦力f,其中f=Nμ。
这四个力为共点力,合力为零。
可将N与f合成为一个力N′,N与f的作用将被N′等效,N′与N、f的关系满足平行四边形法则。
高中物理-求极值的六种方法

高中物理-求极值的六种方法一、临界条件法对物理情景和物理过程进行分析,利用临界条件和关系建立方程组求解,这是高中物理中最常用的方法.(2014·高考安徽卷)如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5 m 处有一小物体与圆盘始终保持相对静止.物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g 取10 m/s2.则ω的最大值是( )A. 5 rad/sB. 3 rad/s C .1.0 rad/s D .0.5 rad/s[解析] 当物体转到最低点时,恰好不滑动的临界条件为:物体受到静摩擦力达到最大值,即F f =F fm ,此时转盘的角速度最大,受力如图所示(其中O 为对称轴位置).由沿斜面的合力提供向心力,有F fm -mg sin 30°=mω2R由题意知:F fm =F f =μmg cos 30° 解得:ω=g4R=1.0 rad/s ,C 正确. [答案] C二、二次函数极值法 对于二次函数y =ax 2+bx +c ,当a >0时,y 有最小值y min =4ac -b 24a ,当a <0时,y 有最大值y max =4ac -b 24a.也可以采取配方法求解.(2016·临沂模拟)如图所示,在粗糙水平台阶上静止放置一质量m =0.5 kg 的小物块,它与水平台阶表面的动摩擦因数μ=0.5,且与台阶边缘O 点的距离s =5 m .在台阶右侧固定了一个1/4圆弧挡板,圆弧半径R =1 m ,圆弧的圆心也在O 点.今以O 点为坐标原点建立平面直角坐标系,现用F =5 N 的水平恒力拉动小物块,一段时间后撤去拉力,小物块最终水平抛出并击中挡板.(1)若小物块恰能击中挡板上的P 点(OP 与水平方向的夹角为37°),求其离开O 点时的速度大小;(2)为使小物块击中挡板,求拉力F 作用的最短时间;(3)改变拉力F 的作用时间,使小物块击中挡板的不同位置,求击中挡板时小物块动能的最小值. [解析] (1)小物块从O 点运动到P 点,做平抛运动 水平方向:R cos 37°=v 0t ,竖直方向:R sin 37°=12gt 2解得:v 0=433 m/s.(2)为使小物块击中挡板,小物块必须能运动到O 点 小物块在水平台阶表面上运动,由动能定理得:Fx 0-μmgs =ΔE k =0, 解得:x 0=2.5 m由牛顿第二定律得:F -μmg =ma ,解得:a =5 m/s 2 由运动学公式得:x 0=12at 2,解得:t =1 s.(3)设小物块击中挡板任意点的坐标为(x ,y ),则 x =vt ,y =12gt 2再由动能定理得:mgy =E k -12mv 2又1/4圆弧挡板方程为:x 2+y 2=R 2 化简得:E k =mgR 24y +3mgy4当mgR 24y =3mgy 4,即y =33R 时,动能E k 取最小值,E kmin =523 J. [答案] (1)43 3 m/s (2)1 s (3)52 3 J三、三角函数法某些物理量之间存在着三角函数关系,可根据三角函数知识求解极值.如图甲所示,一物体以一定的速度v 0沿足够长斜面向上运动,此物体在斜面上的最大位移与斜面倾角的关系如图乙中的曲线所示.运动过程中物体的动摩擦因数不变,g =10m/s 2.(1)求物体的初速度大小和物体与斜面之间的动摩擦因数;(2)若物体的质量为m ,初速度大小为v ,当斜面倾角为α时,物体上滑位移为s ,求物体上滑过程中克服摩擦力做的功;(3)θ为多大时,x 值最小,最小值为多少?[解析] (1)当斜面倾角θ为90°时,物体做竖直上抛运动,v 20=2gh ,由题图乙可知,上升的最大位移h =54 m解得:v 0=5 m/s ①当斜面倾角θ为0°时,物体沿水平面运动,运动的位移x 0=54 3 m ,则物体运动中必受到摩擦阻力的作用,设动摩擦因数为μ,此时摩擦力大小为f =μmg由牛顿第二定律得,f =ma 加速度大小为a =μg ②对物体在水平面的运动,由运动学方程:v 20=2ax 0③ 联立①②③,解得:μ=33. (2)当斜面倾角为α时,设物体上滑过程中克服摩擦力做的功为W f ,由动能定理得, -mgs sin α-W f =0-12mv 2解得:W f =12mv 2-mgs sin α.(3)对于斜面倾角θ为任意一角度,利用动能定理可得 -mgx sin θ-μmgx cos θ=0-12mv 20.解得:x =v 202g (sin θ+μcos θ)=h sin θ+μcos θ.设μ=tan φ,上式可化为:x =h1+μ2sin(θ+φ)当θ=90°-φ=90°-arctan 33=60°时,x 为最小值 最小值:x =h 1+μ2=32h =1.08 m. [答案] (1)5 m/s 33 (2)12mv 2-mgs sin α (3)60° 1.08 m四、图解法此种方法一般适用于求矢量极值问题,如动态平衡问题、运动的合成问题,都是应用点到直线的距离最短求最小值.质量为m 的物体与水平地面间的动摩擦因数为μ,用图解法求维持物体做匀速运动的最小拉力.[解析] 由F fF N =μ知,不论F f 、F N 为何值,其比值恒定由图知F fF N=μ=tan α,即F ′的方向是确定的.由平衡条件推论可知:mg 、F ′、F 构成闭合三角形. 显然,当F ⊥F ′时,F 最小.F min =mg sin α=mg tan α1+tan 2 α=μmg 1+μ2.(说明:此题也可用三角函数法求解.)物体受力分析如图. 由平衡条件得: F ·cos θ=F f ① F ·sin θ+F N =mg ② 又F f =μF N ③联立①②③得:F =μmgcos θ+μsin θ令sin α=11+μ2,cos α=μ1+μ2 则F =μmg1+μ2 sin(α+θ)当sin(α+θ)=1时,F min =μmg1+μ2.[答案] μmg1+μ2 五、均值不等式法任意两个正整数a 、b ,若a +b =恒量,当a =b 时,其乘积 a ·b 最大;若a ·b =恒量,当a =b 时,其和a+b 最小.小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m 的小球,甩动手腕,使球在竖直平面内做圆周运动.当球某次运动到最低点时,绳突然断掉,球飞行水平距离d 后落地,如图所示.已知握绳的手离地面高度为d ,手与球之间的绳长为34d ,重力加速度为g .忽略手的运动半径和空气阻力. (1)求绳断时球的速度大小v 1和球落地时的速度大小v 2;(2)问绳能承受的最大拉力多大?(3)改变绳长,使球重复上述运动,若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应为多少?最大水平距离为多少?[解析] (1)设绳断后球飞行时间为t ,由平抛运动规律,有竖直方向14d =12gt 2,水平方向d =v 1t解得v 1=2gd由机械能守恒定律有12mv 22=12mv 21+mg ⎝⎛⎭⎫d -34d 得v 2=52gd . (2)设绳能承受的最大拉力大小为F T ,这也是球受到绳的最大拉力大小 球做圆周运动的半径为R =34d由圆周运动向心力公式,有F T -mg =mv 21R得F T =113mg .(3)设绳长为l ,绳断时球的速度大小为v 3,绳承受的最大拉力不变,有F T -mg =m v 23l 得v 3=83gl 绳断后球做平抛运动,竖直位移为d -l ,水平位移为x ,时间为t 1有d -l =12gt 21,x =v 3t 1得x =4l (d -l )3当l=d 2时,x 有最大值,x max =233 d.[答案] 见解析六、判别式法一元二次方程的判别式Δ=b 2-4ac ≥0时有实数根,取等号时为极值,在列出的方程数少于未知量个数时,求解极值问题常用这种方法.(原创题)如图所示,顶角为2θ的光滑绝缘圆锥,置于竖直向上的匀强磁场中,磁感应强度为B ,现有质量为m 、带电量为-q 的小球,沿圆锥面在水平面内做圆周运动,求小球做圆周运动的最小半径.[解析] 小球受力如图,设小球做圆周运动的速率为v ,轨道半径为R . 由牛顿第二定律得:水平方向:qvB -F N cos θ=mv 2R竖直方向:F N sin θ-mg =0 两式联立得: mv 2R-qvB +mg cot θ=0 因为速率v 为实数,故Δ≥0 即(qB )2-4⎝⎛⎭⎫m R mg cot θ≥0 解得:R ≥4m 2g cot θq 2B 2故最小半径为:R min =4m 2g cot θq 2B 2.[答案] 4m 2g cot θq 2B 21.(2016·广州模拟)如图所示,船在A 处开出后沿直线AB 到达对岸,若AB 与河岸成37°角,水流速度为4 m/s ,则船从A 点开出的最小速度为( )A .2 m/sB .2.4 m/sC .3 m/sD .3.5 m/s解析:选B.AB 方向为合速度方向,由图可知,当v 船⊥AB 时最小,即v 船=v 水·sin 37°=2.4 m/s ,B 正确.2.(原创题)如图,有几个底边长度均为L 、倾角不同的光滑斜面,将一物体从斜面顶端由静止释放滑到底端,当倾角α为多少时用时最短?最短时间为多少?解析:斜面长度为s =Lcos α.物体的加速度为a =g sin α. 由s =12at 2得:t =2Lg sin αcos α=4Lg sin 2α当α=45°时,t 最小, t min =2L g. 答案:45° 2L g3.一质量为m 的小球在光滑的水平面上以速度v 0匀速运动,从t =0时刻开始小球受到恒力F 作用,F 与v 0之间的夹角如图所示.求:(1)小球速度的最小值;(2)小球速度最小时的位移的大小.解析:(1)如图,将v 0分解为平行于F 方向的v 0sin θ和垂直于F 方向的v 0cos θ,因小球在垂直于F 方向的速度不变,当平行于F 方向的分速度为0时v 最小,则v min =v 0cos θ.(2)小球从t =0时刻到速度达到最小值的过程可看做初速度为v 0cos θ的反方向的类平抛运动过程,则小球的加速度大小为a =Fm所用时间t =v 0sin θa小球在垂直于F 方向的位移为x =v 0cos θ·t 平行于F 方向的位移为y =12at 2故总位移为l =x 2+y 2解得l =mv 20sin θ3cos 2θ+12F.答案:见解析4.(原创题)一人在距公路垂直距离为h 的B 点(垂足为A ),公路上有一辆以速度v 1匀速行驶的汽车向A 点行驶,当汽车距A 点距离为L 时,人立即匀速跑向公路拦截汽车,求人能拦截住汽车的最小速度.解析:法一:设人以速度v 2沿图示方向恰好在C 点拦住汽车,用时为t .则L +h tan α=v 1t ① hcos α=v 2t ② 整理得:v 2=hv 1L cos α+h sin α=hv 1L 2+h 2⎝ ⎛⎭⎪⎫L L 2+h 2cos α+h L 2+h 2sin α由数学知识知:v 2min =hv 1L 2+h 2. 法二:选取汽车为参照物.人正对汽车运动即可拦住汽车,即人的合速度方向指向汽车.其中一分速度大小为v 1,另一分速度为v 2,当v 2与合速度v 垂直时,v 2最小,由相似三角形知识可得: v 2v 1=hL 2+h 2 v 2=hv 1L 2+h 2. 答案:hv 1L 2+h 25.甲、乙两车在平直公路上比赛,某一时刻,乙车在甲车前方L 1=11 m 处,乙车速度v 乙=60 m/s ,甲车速度v 甲=50 m/s ,此时乙车离终点线尚有L 2=600 m ,如图所示.若甲车加速运动,加速度a =2 m/s 2,乙车速度不变,不计车长.求:(1)经过多长时间甲、乙两车间距离最大,最大距离是多少? (2)到达终点时甲车能否超过乙车?解析:(1)当甲、乙两车速度相等时,两车间距离最大, 即v 甲+at 1=v 乙,得t 1=v 乙-v 甲a =60-502 s =5 s甲车位移x 甲=v 甲t 1+12at 21=275 m乙车位移x 乙=v 乙t 1=60×5 m =300 m 此时两车间距离Δx =x 乙+L 1-x 甲=36 m. (2)甲车追上乙车时,位移关系x ′甲=x ′乙+L 1 甲车位移x ′甲=v 甲t 2+12at 22,乙车位移x ′乙=v 乙t 2,将x ′甲、x ′乙代入位移关系, 得v 甲t 2+12at 22=v 乙t 2+L 1,代入数值并整理得t 22-10t 2-11=0, 解得t 2=-1 s(舍去)或t 2=11 s , 此时乙车位移x ′乙=v 乙t 2=660 m >L 2 故到达终点时甲车不能超过乙车. 答案:见解析6.(原创题)如图所示,电动势为E 、内阻为r 的电源给一可变电阻供电,已知可变电阻变化范围为0~R m ,且R m >r .当R 为何值时功率最大,最大功率为多少?解析:设可变电阻为R , 则I =ER +rP =I 2R =E 2(R +r )2·R ① 配方法:P =E 2(R -r )2R+4r显然,当R =r 时,功率最大,P max =E 24r .判别式法:将①式整理成关于R 的二次方程 PR 2+(2Pr -E 2)R +Pr 2=0 由于R 为实数,故Δ≥0 即(2Pr -E 2)2-4P 2r 2≥0 解得:P ≤E 24r最大值为P max =E 24r,代入①式得R =r .答案:见解析7.质量分别为M 、m 的斜面体A 、B 叠放在光滑水平面上,斜面体倾角为α,两者之间的动摩擦因数为μ(μ<tan α),今用水平外力F 推B ,使两者不发生滑动,求F 的取值范围,假设最大静摩擦力等于滑动摩擦力.(已知:m =3 kg ,M =8 kg ,μ=0.5,α=37°)解析:B 恰好不向下滑动时,所需F 最小,此时B 受到最大静摩擦力沿斜面向上.如图甲所示. 设两者共同的加速度为a 1,对整体有: F min =(M +m )a 1① 对B 有:⎩⎪⎨⎪⎧F min +F f1cos α-F N1sin α=ma 1F f1sin α+F N1cos α=mg F f1=μ·F N1②③④联立解得: F min =m (M +m )(sin α-μcos α)M (cos α+μsin α)g =7.5 NB 恰好不上滑时所需F 最大,此时B 受最大静摩擦力沿斜面向下.如图乙所示. 设共同加速度为a 2,对整体有: F max =(M +m )a 2⑤ 对B 有:⎩⎪⎨⎪⎧F max -F f2cos α-F N2sin α=ma 2F N2cos α=mg +F f2sin αF f2=μF N2⑥⑦⑧ 联立解得: F max =m (M +m )(sin α+μcos α)M (cos α-μsin α)g =82.5 N故取值范围为7.5 N ≤F ≤82.5 N. 答案:7.5 N ≤F ≤82.5 N。
高中物理求极值方法与常用结论总结

高中物理求极值方法与常用结论总结高中物理中,求极值是一个重要的数学应用问题。
很多物理问题都需要通过求极值来进行分析和解决,因此掌握求极值方法和常用结论是十分重要的。
下面将为你总结高中物理求极值的方法和常用结论。
一、求极值的方法1.寻找最值法:通过寻找物理问题的最大值或最小值来求出极值。
2.解析法:通过建立数学模型,对其求导或使用其他数学方法得出极值。
3.几何方法:通过几何图形的性质和分析来求出极值。
二、常用结论1.极大值与极小值:对于一元函数f(x),若在x=a处,f'(a)=0,并且在a点左侧由正变负,在a点右侧由负变正,则a称为f(x)的极大值点;若在x=b处,f'(b)=0,并且在b点左侧由负变正,在b点右侧由正变负,则b称为f(x)的极小值点。
2.拐点与拐点性质:对于函数f(x),若在x=c处f''(c)=0,并且在c点左侧由负变正,在c点右侧由正变负,则c称为f(x)的拐点。
拐点的性质为:由凹变凸的拐点称为极小值点,由凸变凹的拐点称为极大值点。
3.一元二次函数的最值结论:一元二次函数y=ax^2+bx+c(其中a≠0)的最值点可以通过如下结论求得:当a>0时,最小值为:y_min=c-b^2/(4a)当a<0时,最大值为:y_max=c-b^2/(4a)4.相对速度最小值结论:当两个运动着的物体相对于一些静止参考系运动时,它们的相对速度最小值出现在它们的运动方向夹角为0°或者180°时。
5.成千上万法:在解决物理问题中,当数据较多时,可以通过逐个数值代入进行计算。
6.速度为零但加速度不为零时的移动物体:当一个物体在其中一时刻速度为零(静止),但加速度不为零时,可以通过如下结论求出物体在这一时刻的位置:位移s = (1/2)at^2,其中a为加速度,t为时间。
7.物体自由落体的最高点:自由落体的物体在竖直上抛运动中,最高点时速度为零,也就是物体停止上升,准备掉下来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中学物理中极值问题解法种种卢小柱极值问题是中学物理中一类内容丰富、难度较大和技巧性较强的物理问题.它要求学生的基础知识和基本技能较熟练,并有较强的综合分析问题和解决问题的能力,以及能熟练地运用数学知识解答物理问题.下面对常见的极值问题的解法作一归纳,以供参考.1.配方法若题中物理量的变化规律可表示为二次函数y=ax 2+bx+c 的形式,则经配方有y=a(x+b a 2)2+442ac b a -.若a>0,则当x=-b a 2时,y 有极小值y min =442ac b a-;若a<0,则当x=-b a 2时,y 有极大值y max =442ac b a-.例1 甲、乙两辆汽车同方向行驶,甲在乙前50m 处以速度20m/s 作匀速直线运动, 乙车的初速度为4m/s,加速度为8m/s 2.试问什么时候甲车在前时,两车相距最远?最远距离是多少?解: 设运动时间为ts,由运动学公式有 甲的位移为s 1=20t, 乙的位移为s 2=4t+4t 2两车相距∆s=s 1+50-s 2=50+20t -4t -4t 2=-4t 2+16t+50=-4(t -2)2+66 当t=2s 时, ∆s 有极大值为 ∆s max =66m.例2 如图1所示的电路中,电源内阻为r,电动势为ε,则当变阻器电阻R 为何值时,电源输出功率最大?解: 电源输出功率为P=I 2R=(εR r +)2R=ε2222R R Rr r ++ 分母配方后得:P=ε224(/)R r R r-+故当R r R =/,即R=r 时,分母最小,P 最大.P max =ε24r.2.判别式法若物理量的变化关系为二次函数,或者通过巧妙的变换能使物理量出现二次项,则可利用判别式∆=b 2-4ac 来求解.当∆≥0时有实根,∆=0时取极值.例3 火焰与光屏之间的距离是L,在它们中间放有一个凸透镜,其焦距为f.试证明,要使火焰在光屏上成清晰像,则L 至少要为4f.证明:设物距为u,像距为v,则u+v=L ……①由成像公式有:111u v f+= ……②由①②得:u 2-Lu+Lf=0故要成实像,则必须∆=L 2-4Lf ≥0,解得L 最小为4f.例4 如图2所示,顶角为2α的光滑圆锥置于磁感应强度为B 、方向竖直向下的匀强磁场中.现有一质量为m 、带电量为+Q 的小球沿圆锥面在水平面内作匀速圆周运动,求小球作圆周运动的最小半径.解: 小球受力如图,建坐标.由圆周运动知识得x 方向有: f -Ncos α=m v R2……①y 方向有: Nsin α-mg=0 ……②又f=QvB ……③由①②③得: mv 2-QBRv+mgRctg α=0要方程有实数解,则∆=Q 2B 2R 2-4m 2gRctg α≥0 解得:R ≥4222m gctg Q B α,故轨道半径的最小值为R min =4222m gctg Q B α.评注:配方法和判别式法是两种最常用的求解极值问题的方法.一般在求解某极值所满足的条件或某个具体的极值时,可用此法.其解题关键是先由题意列方程,写出一元二次方程式.3.不等式法若题中遇到两个物理量(或两项)的和或积为定值,求相应物理量的极值问题,可以用不等式法来解.其数学原理为:设有变量a,b,且a>0,b>0,则(1) 一定有a ·b ≤(a b +2)2,如果a+b=P(定值),则当a=b 时,a ·b 有极大值为P 2/4;(2)一定有a+b ≥2ab ,如果a ·b=P(定值),则当a=b 时,a+b 有极小值为2P .例5 如图3,粗细均匀的玻璃管长L=100cm,开口向上竖直放置,上端齐管口有一段长为h=25cm 的水银柱封闭着27℃的空气柱.现使空气柱温度逐渐升高,问欲使管内水银全部溢出,温度至少升至多高?(P 0=75cmHg)解: 设管内温度升高到TK 时,管内尚有水银xcm,管的横截面积为S,由气态方程有()()P h L h S T 00+-=()()P x L x ST 0+-代入数据并整理得:T=()()7510025+-x x∵(75+x)+(100-x)=175为常数,∴当75+x=100-x,即x=12.5cm 时,T 有极大值为T max =306.25K例 6 有一辆汽车由甲站出发作匀加速直线运动到达乙站,两站相距S 0.如果加速度a 与汽车每秒的耗油量x 之间的关系为:x=αa+β(α>0,β>0).则汽车在全程中最小耗油量为多少?解: 汽车运动时间为t=20S a , 故总耗油量为Q=xt=(αa+β)20S a两边平方得:Q 2=(αa+β)2·2S 0/a=2S 0(α2a+2αβ+β2/a)要Q 最少,即要求α2a+β2/a 最小,∵α2a ·(β2/a )= α2β为常数,∴当α2a=β2/a,即a=β/α时,Q 有最小值Q min =220S αβ.评注:不等式法是一种巧妙地求解极值问题的好方法.运用此法的关键是设法找出(或有意地设置)积或和为定值的两项表达式.如6+x -x 2可转化为(3-x)(2+x),两项因式的和为定值;又例2中, P=(εR r +)2R 也可转化为ε22(/)R r R +,这样R 和r R 两项的积成了定值.图2图3然后再选用相应的公式来解.4.三角函数法由三角函数的性质有:y=asin θ+bcos θ=a b 22+sin(θ+ϕ),其中ϕ=arctg(b/a).当θ+ϕ=π/2时,函数有极大值y max =a b 22+;当θ+ϕ=0时,函数有极小值y min =0.例7 如图4,质量为m 的物体放在地面上,它们之间的动摩擦因素为μ,用力F 拉物体,使物体在地面上作匀速运动,力与水平地面间的夹角α多大时,所需力F 最小?解: 分析物体受力如图,由∑F=0得 Fcos α-f=0 ……① Fsin α+N -mg=0 ……②f=μN ……③由①②③得:F=μαμαmg cos sin +=μμαϕmg 12++sin(),其中tg α=μ∴当α+ϕ=π/2,即α=arctg μ时,F 有极小值为F min =μμmg 12+. 5.图解法图解法就是根据物理量之间的几何关系,或物理量与时间等的变化图线(如v −t 图线,s −t 图线)等,利用几何知识或图线的物理意义来求解的一种方法.例7 一条笔直的河流,水流速度为v 1,船在静水中的速度为v 2,且v 1>v 2,若要船过河时航程最短,则航向(船头指向)与河岸方向的夹角α为多少?解: 如图5所示,要航程最短,也就是要船的合速度方向与垂直河岸方向的夹角最小.如图,以v 1的矢端A 点为圆心,以v 2的大小为半径作圆弧,然后过O 点作圆弧的切线,切点为B.则当航向为AB 时,合速度方向OB 与垂直河岸方向的夹角最小,航程最短.∴cos α=v v 12,α=arccos vv 12.例8 A 、B 两车停在同一站,某时刻A 以2m/s 2的加速度匀加速开出,3s 后B 以3m/s 2的加速度与A 同向开出.问B 车追上A 车之前,在A 运动后多少时间两车相距最远?最远距离为多少?解: 根据题意作出A 、B 两车的v −t 速度如图6所示. 由图可知,当t=9s 时,A 、B 相距最远.最远距离为∆S max =12⨯3⨯18=27(m). (即阴影三角形面积)评注:用图解法求解极值问题具有简洁、生动的特点.通过分析图线的物理意义能使物理关系一目了然,因而避免了繁杂的数学运算.运用图解法的关键是选择好合适的图象.6.数形结合法例9 在地面上以初速2v 0竖直上抛一物体A 后,又以初速v 0竖直上抛另一物体 B.若要两物体在空中相遇,则两物体抛出的时间间隔的极大值和极小值分别是多少?1图6解: 以A 物抛出时开始计时,时间间隔为∆t,则两物体的位移分别为:S A =2v 0t-12gt 2,S B =v 0(t-∆t)-12g(t-∆t)2 分别作出上面两函数的图线如图7所示,要两物体相遇,即要求两图线有交点.移动图B,很快可看出时间间隔的最小值和最大值分别为:∆t min =20v g , ∆t max =40v g评注:数形结合法就是结合物理量所满足的函数表达式及其图线来解题的一种方法.它实际上是一种综合性的解题方法.它在分析函数表达式时,通过借助函数图象来帮助理解,从而使解题过程简化.7.临界值法在有些问题中,若所求物理量的极值与这一物理量或其它量的临界值有关,这时可以假设恰好达到临界值,从而求出相关物理量的极值.例10 如图8,一半圆形碗内壁光滑,半径为R,一小球从碗口由静止下滑.当球与圆心的连线跟竖直方向的夹角α为何值时,其竖直分速度最大?解: 分析小球受力如图.竖直方向建y 轴.则y 方向有: mg-Ncos α=ma y随着Ncos α的增大, a y 逐渐减小,v y 逐渐增大,其临界值就是: a y =0,即Ncos α=mg 时,v y 有最大值. 又由圆周运动知识有:N-mgcos α=m vR 2由机械能守恒有:mgRcos α=12mv 2由以上方程式解得:cos α=33,所以α=arccos 33例11 如图9,质量为M=4Kg 的木板长为L=1.4m,静止在光滑水平面上,其上面右端静置一质量为m=1Kg 的小滑块(可视为质点).小滑块与木板间的动摩擦因素为μ=0.4,现用一水平恒力F=28N 向拉木板,要使小滑块从木板上滑下来,此力至少需作用多少时间?(g=10m/s 2)解: 要滑块滑下来,其临界值就是恰好滑下来或恰好不滑下来.这时两者速度恰好相等,滑块相对木板的位移恰好为L,对应的时间就是最短时间.再分析木板,在外力作用下由静止开始向右加速,其加速度必定大于滑块的加速度,故任意时刻其速度必定大于滑块速度,而到达临界值时两者速度相等,故木板的运动形式是先在拉力F 作用下作匀加速运动,然后撤去F 后,作匀减速运动,即外力F 只需作用一段时间t 后便可撤去.对系统: Ft=(M+m)v 共 ……①图7图8FS M -μmgL=12(M+m)v 共2 ……②对M: S M =12a M t 2=F mg Mt -μ22……③ 由①②③解得t=1s.评注:例11中,学生的常见错误就是认为外力需要一直作用,直到滑块从木板上掉下来.但通过临界值法的分析,发现F 实际上只需作用一段时间后,木板可继续运动直至滑块滑落.因此,灵活运用临界值分析法,可以使隐蔽的极值问题得到暴露,使解题时少走弯路.另外,该题中审题时要注意区别“要m 脱离M,F 作用的最短时间”与“要m 脱离M 的最短时间”.8.其它方法求解极值问题的方法很多.比如还有单调函数在某一区间内的两端点时取极值;体积一定时,球面积最小;面积一定时,球体积最大;通过某两点的所有圆周中,以这两点为直径的圆面积最小;等等.例12 如图10,水面上有一半径为r 的圆形木板,在圆心的正上方高h 处有一点光源S.光线射入水中后,在水底平面上形成半径为R 的圆形阴影.设水深为H,水的折射率为n,当h 改变时,求阴影的最大半径.解: 由图可知sin i r r h =+22,sin ()γ=-+-R rH R r 22 ∴折射率为: n=r H R r R r r h 2222+--+()() 整理得: R=r H r n n h 2222221()-++r 由R 的表达式可看出,R 是关于h 的单调递减函数,当h=0时,R 最大为R max =Hn r 21-+例13 一带电质点,质量为m,电量为q,以平行于ox 轴的速度v 从y 轴上的a 点射入图中第一象限所示的区域,为了使该质点能从x 轴上的b 点以垂直于ox 轴的速度v 射出,可在适当的地方加一个垂直于xy 平面、磁感强度为B 的匀强磁场,若此磁场仅公布在一个圆形区域内,试求这圆形磁场区域的最小半径.不计粒子重力.解: 质点在磁场中受洛仑兹力作用,作匀速圆周运动有 qvB=m v R 2,∴R=mvqB根据题意,质点在磁场区域中的运动轨道是半径为R 的圆上的1/4圆周(图中虚线所示),这段圆弧应与入射方向和出射方向的速度相切,如图,切点为M 、N.则与这两条直线相距R 的O '点就是圆周的圆心.又由数学知识可知,在通过M 、N 两点的不同圆周中,面积最小的一个是以MN 为直径的圆,即为所求的最小磁场区域,如图实线所示.其半径为:图9S图10∙ x 图11r=12=1222R R+=22R=22⋅mvqB总之,在处理极值问题时,一般都要先分析题意列方程,写出函数表达式,然后再根据函数表达式的特点,选用合适的方法来解.因此,只要我们平时注意了这方面知识的积累,总是可以解答出来的.。