权重的确定方法汇总
权重的确定

权重的确定主要是主观赋权和客观赋权,主观赋权多是采取定性方法确定权重,如德尔菲法;而客观赋权,即根据各指标间的相关关系或指标值的离散程度确定权重。
在各类量化评价中可用的还有模糊综合评判法、灰色关联度法、综合指数法、主成分分析法、工程数学算法、决策优化算法、因子分析法等。
实际应用中仍旧以专家会议法、德尔菲法、灰色关联度法为多。
专家会议法是组织有关方面的专家,通过会议的形式,对问题进行分析判断得出结论。
优点是可以利用群体智慧,集思广义,通过讨论、交流取得共识,为正确决策提供依据。
下面主要介绍德尔菲法和灰色关联度法。
一、德尔菲法德尔菲法也叫专家打分法,是指通过匿名方式征询有关专家的意见,对专家意见进行统计、处理、分析和归纳,客观地综合多数专家经验与主观判断,对大量难以采用技术方法进行定量分析的因素做出合理估算,经过多轮意见征询、反馈和调整后,形成最终分析结论的方法。
1、专家打分法的程序●选择评价内容和范围,并且每位专家评价的内容、范围必须是唯一确定的。
●选择最有经验的专家作为德尔菲班长,还可由班长选定若干助手。
班长主持整个评价工作。
●由班长选聘若干专家组成评价小组,这些专家应该有丰富的实践经验,对评价内容有较为详细的了解,特别是能够坚持实事求是的原则。
聘请专家数量一般在20人左右,要注重专家质量。
对每位专家,德尔菲班长可以根据他们以往的工作成就或在本行业的威信给予不同的权重,以确定他们在评价组中的作用。
●由班长确定评价内容,建立评价标准,设计征询意见表。
●向专家提供背景资料,以匿名方式征询专家意见,让专家对各项标准打分。
●对专家意见进行分析汇总,将统计结果反馈给专家。
可以选择概率加权法对专家的评价结果进行处理。
●专家组讨论并分析意见分歧的原因,然后由专家组成员重新独立修正自己的意见,如此重复几次,直到专家意见分歧程度低于要求值。
●形成最终分析结论。
2、算例对某种特定管理对象管理水平评价主要包括储量经营水平、开发管理水平、生产管理水平、财务管理水平等4个方面。
确定权重的方法及原则

•确定权重的方法及原则•确定权重的原则•权值因子推断表法•专家直观判定法•层次分析法•排序法权重权重是一个相对的概念,是针对某一指标而言。
某一指标的权重是指该指标在整体评价中的相对重要程度。
权重表示在评价过程中,是被评价对象的不一致侧面的重要程度的定量分配,对各评价因子在总体评价中的作用进行区别对待。
事实上,没有重点的评价就不算是客观的评价,每个人员的性质与所处的层次不一致,其工作的重点也确信是不能一样的。
因此,相对工作所进行的业绩考评务必对不一致内容对目标奉献的重要程度做出估计,即权重的确定。
总之,权重是要从若干评价指标中分出轻重来,一组评价指标体系相对应的权重构成了权重体系。
一组权重体系{Vi|I=1,2,…n},务必满足下述两个条件:(1)0<Vi≤1;i=1,2,…,n。
(2)其中n是权重指标的个数一级指标与二级指标权重的确定:设某一评价的一级指标体系为{wi | i=1,2,…,n},其对应的权重体系为{vi | i=1,2,…,n}则有:(1)1<Vi≤1;i=1,2,…,n(2)假如该评价的二级指标体系为{Wij | i=1,2,…,n,j=1,2,…,m},则其对应的权重体系{Vij | i=1,2,…,n,j=1,2,…,m}应满足:(1)0<Vij≤1(2)(3)关于三级指标、四级指标能够以此类推。
权重体系是相对指标体系来确立的。
首先务必有指标体系,然后才有相应的权重体系。
指标权重的选择,实际也是对系统评价指标进行排序的过程,而且,权重值的构成应符合以上的条件。
确定权重的原则一、系统优化原则在评价指标体系中,每个指标对系统都由它的作用与奉献,对系统而言都有它的重要性。
因此,在确定它们的权重时,不能只从单个指标出发,而是要处理好各评价指标之间的关系,合理分配它们的权重。
应当遵循系统优化原则,把整体最优化作为出发点与追求的目标。
在这个原则指导下,对评价指标体系中各项评价指标进行分析对比,权衡它们各自对整体的作用与效果,然后对它们的相对重要性做出推断。
确定指标权重的方法:专家意见、统计分析、组合方法、权重分配

确定指标权重的方法
专家意见、统计分析、组合方法、权重分配
确定定量与定性评估指标的权重是一个重要的步骤,因为它可以帮助评估者根据指标的重要性和影响力进行加权计算,从而得到更准确的评估结果。
以下是一些常用的方法来确定定量与定性评估指标的权重:
1. 专家意见:可以请教一些专家或业内人士,让他们对指标的重要性进行评估。
他们可以根据自己的经验和知识,给出关于每个指标的权重建议。
这种方法的优点是可以借助专家的专业知识和经验,得到更准确的结果。
2. 统计分析:通过对历史数据进行分析,可以找到指标之间的关系和影响。
通过统计方法,可以计算每个指标的权重。
例如,可以使用回归分析、主成分分析等方法来确定指标的权重。
3. 组合方法:将定量和定性方法结合起来确定指标的权重。
例如,可以使用层次分析法(AHP),通过问卷调查和专家评估等方式来确定指标的相对重要性。
4. 权重分配:可以根据实际情况和需求,将每个指标的权重进行分配。
例如,可以给定量指标更高的权重,因为它们更具有客观性和可衡量性,但是定性指标也可以通过适当的主观权重来反映其重要性。
需要注意的是,每个评估指标的权重应该是客观、合理和可解释的。
在确定权重的过程中,应该考虑到指标之间的相互关系和影响,以及评估的目的和需求。
此外,权重应该是动态的,可以根据实际情况进行调整和更新,以适应不同的评估场景和需求。
(完整版)权重的确定方法

权重的确定方法在统计理论和实践中,权重是表明各个评价指标(或者评价项目)重要性的权数,表示各个评价指标在总体中所起的不同作用。
权重有不同的种类,各种类别的权重有着不同的数学特点和经济含义,一般有以下几种权重。
按照权重的表现形式的不同,可分为绝对数权重和相对数权重。
相对数权重也称比重权数,能更加直观地反映权重在评价中的作用。
按照权重的形成方式划分,可分为人工权重和自然权重。
自然权重是由于变换统计资料的表现形式和统计指标的合成方式而得到的权重,也称为客观权重。
人工权重是根据研究目的和评价指标的内涵状况,主观地分析、判断来确定的反映各个指标重要程度的权数,也称为主观权重。
按照权重形成的数量特点的不同划分,可分为定性赋权和定量赋权。
如果在统计综合评价时,采取定性赋权和定量赋权的方法相结合,获得的效果更好。
按照权重与待评价的各个指标之间相关程度划分,可分为独立权重和相关权重。
独立权重是指评价指标的权重与该指标数值的大小无关,在综合评价中较多地使用独立权重,以此权重建立的综合评价模型称为“定权综合”模型。
相关权重是指评价指标的权重与该指标的数值具有函数关系,例如,当某一评价的指标数值达到一定水平时,该指标的重要性相应的减弱;或者当某一评价指标的数值达到另一定水平时,该指标的重要性相应地增加。
相关权重适用于评价指标的重要性随着指标取值的不同而发生变化的条件下,基于相关权重建立的综合评价模型被称为“变权模型”。
比如评估环境质量多采用“变权综合”模型。
(一)统计平均法统计平均数法(Statistical average method)是根据所选择的各位专家对各项评价指标所赋予的相对重要性系数分别求其算术平均值,计算出的平均数作为各项指标的权重。
其基本步骤是:第一步,确定专家。
一般选择本行业或本领域中既有实际工作经验、又有扎实的理论基础、并公平公正道德高尚的专家;第二步,专家初评。
将待定权数的指标提交给各位专家,并请专家在不受外界干扰的前提下独立的给出各项指标的权数值;第三步,回收专家意见。
指标权重的确定方法

指标权重的确定方法
1.主观评价法:这种方法通过专家评价和专家判断来确定指标的权重。
专家可以根据自己的经验和知识,对不同指标的重要性进行排序或评分。
然后通过加权平均来计算指标的权重。
这种方法的优势在于可以考虑专家
的意见和经验,但可能存在主观性的问题。
2.层次分析法(AHP):AHP是一种常用的量化指标权重的方法。
它
基于对指标之间的相对关系进行判断和排序。
AHP将问题分解为多个层次,然后在不同层次上进行两两比较,从而得到指标之间的权重。
通过计算一
致性指标,可以评估判断的一致性程度。
这种方法的优势在于能够考虑不
同指标之间的相对重要性,但需要专家提供相对权重的判断。
3.统计分析法:这种方法通过对大量数据的分析和建模,来确定指标
的权重。
常用的统计分析方法包括回归分析、因子分析和主成分分析等。
通过建立数学模型,可以计算出各个指标对总体指标的贡献程度,从而确
定权重。
这种方法的优势在于能够考虑指标之间的相关性和影响程度,但
需要大量的数据支持。
在确定指标权重时,需要综合考虑不同方法的优缺点,并选择合适的
方法根据实际情况进行操作。
同时,还需要进行灵活性的调整和修正,根
据实际应用情况进行权重的修正和更新。
最后,确定的指标权重需要在实
际应用中进行验证和评估,以确保其准确性和可靠性。
权重的确定方法

权重的确定方法权重是一个相对的概念,是针对某一指标而言。
某一指标的权重是指该指标在整体评价中的相对重要程度。
在模糊决策中,权重至关重要,他反映了各个因素在综合决策过程中所占有的地位和所起的作用,直接影响决策的结果。
通常是根据经验给出权重,不可否认这在一定程度上能反映实际情况,但凭经验给出的权重有时不能客观的反映实际情况,导致评判结果“失真”。
比较客观的权重的判定方法有如下几种:1.确定权重的统计方法1.1专家估测法该法又分为平均型、极端型和缓和型。
主要根据专家对指标的重要性打分来定权,重要性得分越高,权数越大。
优点是集中了众多专家的意见,缺点是通过打分直接给出各指标权重而难以保持权重的合理性。
设因素集U={n u u u ,...,2,1},现有k 个专家各自独立的给出各个因素i u (i=1,2,...,n )的权重,∑==k j ij i a k a 11(i=1,2,...,n ),即)1,...,1,1(11211∑∑∑====kj nj k j j k j j a k a k a k A 。
1.2加权统计方法当专家人数k<30人时,可用加权统计方法计算权重。
按公式isi i k x w a ∑==1计算(其中s 为序号数)然后可得权重A 。
1.3频数统计方法由所有专家独立给出的各个因素的权重,得到权重分配表,对各个因素i u (i=1,2,...,n )进行但因素的权重统计实验,步骤如下:第一步:对因素i u (i=1,2,...,n )在它的权重ij a (j=1,2,...,k)中找出最大值i M 和最小值i m , 即{}ij k j i a M ≤≤=1max ,{}ij k j i a m ≤≤=1min . 第二步;适当选取整数p,利用公式pm M i i -计算出权重分为p 组的组距,并将权重从小到大分 为p 组.第三步:计算出落在每组内权重的频数和频率.第四步:根据频数和频率的分布请况,取最大频率所在分组的组中值为因素i u 的权重i a (i=1,2,...,n ),从而得权重A=(n a a a ,...,,21).1.4因子分析权重法根据数理统计中因子分析方法,对每个指标计算共性因子的累积贡献率来定权。
确定权重的7种方法

确定权重的7种方法表7-1 地质环境质量评价定权方法一览表一、专家打分法专家打分法即是由少数专家直接根据经验并考虑反映某评价观点后定出权重,具体做法和基本步骤如下:第一步选择评价定权值组的成员,并对他们详细说明权重的概念和顺序以及记权的方法。
第二步列表。
列出对应于每个评价因子的权值范围,可用评分法表示。
例如,若有五个值,那么就有五列。
行列对应于权重值,按重要性排列。
第三步发给每个参予评价者一份上述表格,按下述步骤四~九反复核对、填写,直至没有成员进行变动为止。
第四步要求每个成员对每列的每种权值填上记号,得到每种因子的权值分数。
第五步要求所有的成员对作了记号的列逐项比较,看看所评的分数是否能代表他们的意见,如果发现有不妥之处,应重新划记号评分,直至满意为止。
第六步要求每个成员把每个评价因子(或变量)的重要性的评分值相加,得出总数。
第七步每个成员用第六步求得的总数去除分数,即得到每个评价因子的权重。
第八步把每个成员的表格集中起来,求得各种评价因子的平均权重,即为“组平均权重”。
第九步列出每种的平均数,并要求评价者把每组的平均数与自己在第七步得到的权值进行比较。
第十步如有人还想改变评分,就须回到第四步重复整个评分过程。
如果没有异议,则到此为止,各评价因子(或变量)的权值就这样决定了。
二、调查统计法具体作法有下面四种。
1.重要性打分法:重要性打分法是指要求所有被征询者根据自己对各评价因子的重要性的认识分别打分,其步骤如下:a.对被征询者讲清统一的要求,给定打分范围,通常1~5分或1~100分都可。
b.请被征询者按要求打分。
c.搜集所有调查表格并进行统计,给出综合后的权重。
2.列表划勾法:该方法如图7-2所示。
事先给出权值,制成表格。
由被调查者在认为合适的对应空格中打勾。
对应每一评价因子,打勾1~2个,打2个勾表示程度范围。
这样就完成一个样本的调查结果。
在样本调查的基础上,除采用一般的求个样本的均值作为综合结果外,还可采用如下方法:图7-2 列表划勾法示意图备择程因子序号度W 1 2 3 …m-1 m0.2 √√√0.4 √√√0.6 √√0.8 √1.0a.频数截取法频数截取法的主要步骤如下:第一步:列中值频率分布表,见表7-2。
专家权重确定方法

专家权重确定方法一、介绍专家权重确定方法是一种通过专家意见来确定权重或评估指标重要性的方法。
在决策分析、综合评价、风险评估等领域中,专家权重确定方法被广泛应用。
本文将介绍几种常见的专家权重确定方法,包括层次分析法、模糊综合评判法和Delphi法。
二、层次分析法层次分析法(Analytic Hierarchy Process,AHP)是一种定性与定量相结合的方法,通过对准则层与指标层之间的两两比较,确定权重的相对大小。
具体步骤如下:1. 确定层次结构:将决策问题分解为准则层、指标层和方案层。
2. 两两比较:专家根据其经验和知识,对准则层与指标层之间的重要程度进行两两比较,采用尺度值进行评判。
3. 构造判断矩阵:根据专家比较结果,构造准则层与指标层之间的判断矩阵。
4. 计算权重:通过计算判断矩阵的特征向量,得到准则层与指标层的权重。
5. 一致性检验:对判断矩阵进行一致性检验,以保证专家比较结果的可信度。
6. 综合权重:根据层次结构,将指标层的权重综合得到方案层的权重。
三、模糊综合评判法模糊综合评判法是一种基于模糊集理论的权重确定方法,能够处理评价指标之间的模糊性和不确定性。
具体步骤如下:1. 确定评价指标:根据决策问题的特点和目标,确定评价指标。
2. 设定隶属函数:对每个评价指标,设定其隶属函数,表示该指标的模糊性和不确定性。
3. 构造评价矩阵:根据专家意见,构造评价矩阵,反映各评价指标之间的关系。
4. 计算权重:通过计算评价矩阵的隶属度加权平均值,得到评价指标的权重。
5. 敏感性分析:对评价指标的权重进行敏感性分析,检验权重的可靠性和稳定性。
四、Delphi法Delphi法是一种通过多轮专家咨询和意见征询的方法,通过匿名化的方式,达成专家们的一致意见。
具体步骤如下:1. 问题设计:确定决策问题,并设计问题,以便专家能够提供有用的意见和建议。
2. 专家选择:选择一组具有相关背景和知识的专家,包括学术界和业界的专家。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、指标权重的确定1.综述目前关于属性权重的确定方法很多,根据计算权重时原始数据的来源不同,可以将这些方法分为三类:主观赋权法、客观赋权法、组合赋权法。
主观赋权法是根据决策者(专家)主观上对各属性的重视程度来确定属性权重的方法,其原始数据由专家根据经验主观判断而得到。
常用的主观赋权法有专家调查法(Delphi法)、层次分析法(AHP )[106-108]、二项系数法、环比评分法、最小平方法等。
本文选用的是利用人的经验知识的有序二元比较量化法。
主观赋权法是人们研究较早、较为成熟的方法,主观赋权法的优点是专家可以根据实际的决策问题和专家自身的知识经验合理地确定各属性权重的排序,不至于出现属性权重与属性实际重要程度相悖的情况。
但决策或评价结果具有较强的主观随意性,客观性较差,同时增加了对决策分析者的负担,应用中有很大局限性。
鉴于主观赋权法的各种不足之处,人们又提出了客观赋权法,其原始数据由各属性在决策方案中的实际数据形成,其基本思想是:属性权重应当是各属性在属性集中的变异程度和对其它属性的影响程度的度量,赋权的原始信息应当直接来源于客观环境,处理信息的过程应当是深入探讨各属性间的相互联系及影响,再根据各属性的联系程度或各属性所提供的信息量大小来决定属性权重。
如果某属性对所有决策方案而言均无差异(即各决策方案的该属性值相同),则该属性对方案的鉴别及排序不起作用,其权重应为0;若某属性对所有决策方案的属性值有较大差异,这样的属性对方案的鉴别及排序将起重要作用,应给予较大权重.总之,各属性权重的大小应根据该属性下各方案属性值差异的大小来确定,差异越大,则该属性的权重越大,反之则越小。
常用的客观赋权法[109-110]有:主成份分析法、熵值法[111-112]、离差及均方差法、多目标规划法等。
其中熵值法用得较多,这种赋权法所使用的数据是决策矩阵,所确定的属性权重反映了属性值的离散程度。
客观赋权法主要是根据原始数据之间的关系来确定权重,因此权重的客观性强,且不增加决策者的负担,方法具有较强的数学理论依据。
但是这种赋权法没有考虑决策者的主观意向,因此确定的权重可能与人们的主观愿望或实际情况不一致,使人感到困惑。
因为从理论上讲,在多属性决策中,最重要的属性不一定使所有决策方案的属性值具有最大差异,而最不重要的属性却有可能使所有决策方案的属性值具有较大差异。
这样,按客观赋权法确定权重时,最不重要的属性可能具有最大的权重,而最重要的属性却不一定具有最大的权重。
而且这种赋权方法依赖于实际的问题域,因而通用性和决策人的可参与性较差,没有考虑决策人的主观意向,且计算方法大都比较繁锁。
从上述讨论可以看出,主观赋权法在根据属性本身含义确定权重方面具有优势,但客观性较差;而客观赋权法在不考虑属性实际含义的情况下,确定权重具有优势,但不能体现决策者对不同属性的重视程度,有时会出现确定的权重与属性的实际重要程度相悖的情况。
针对主、客观赋权法各自的优缺点,为兼顾到决策者对属性的偏好,同时又力争减少赋权的主观随意性,使属性的赋权达到主观与客观的统一,进而使决策结果真实、可靠。
因此,合理的赋权方法应该同时基于指标数据之间的内在规律和专家经验对决策指标进行赋权。
目前,这种确定权重的主客观信息集成方法的研究已经引起了重视,并且得到了一些初步的研究成果[113]-[115]。
本文在权重的选取上采用了第三类赋权法,即主客观综合赋权法(或称组合赋权法)。
主客观组合赋权法的两种常用方法是:“乘法”集成法、“加法”集成法。
其公式分别是∑==mi ii i i i b a b a w 1 i i i b a w )1(αα-+=,)10(≤≤α (4-3)其中i w 表示第i 个指标的组合权重;i a ,i b 分别为第i 各属性的客观权重和主观权重。
前者的组合实质上是乘法合成的归一化处理,该方法使用于指标个数较多、权重分配比较均匀的情况。
后者实质上是线性加权,称为线性加权组合赋权方法。
当决策者对不同赋权方法存在偏好时,α能够根据决策者的偏好信息来确定。
2有序二元比较量化法本文选用的方法是利用人的经验知识的二元比较量化原理与方法(二元对比模型)去确定主观权重[116]-[120]。
对于定量目标相对优属度的求解,权重的确定需要将方案集X 换成目标集G ,模糊概念优越性变换为重要性,人的经验知识换成决策者的意向。
但多目标系统决策要求系统目标权重值之和等于“1”,故在系统目标对重要性的相对隶属度的基础上还需要进行归一化。
将m 个目标进行二元比较重要性定性排序,经过一致性检验判断与调整得到排序一致性二元对比标度矩阵E 。
根据标度矩阵E 各行元素值之和,从大到小排列,得到关于优的排序次数,再以排序第1位的目标作为标准,与其他目标进行重要性程度的比较,可得非归一化目标权向量''''12(,,,)m w w w w =。
然后进行归一化计算,即可得目标权向量式:12(,,,)m w w w w =满足11mi i w ==∑3熵值法在信息论中,熵是对不确定性的一种度量。
信息量越大,不确定性就越小,熵也就越小;信息量越小,不确定性越大,熵也越大。
根据熵的特性,我们可以通过计算熵值来判断一个事件的随机性及无序程度,也可以用熵值来判断某个指标的离散程度,指标的离散程度越大,该指标对综合评价的影响越大。
人们在决策中获得信息的多少和质量,是决策的精度和可靠性大小的决定因素之一。
信息论中,信息熵是系统无序程度的度量,信息是系统有序程度的度量,两者绝对值相等,符号相反。
熵是信息论中最重要的基本概念,它表示从一组不确定事物中提供信息量的多少。
在多指标决策问题中,某项指标的变异程度越大,信息熵越小,该指标提供的信息量就越大,那么在方案评价中所取得的作用就越大,该指标的权重也就越大;反之,某指标的变异程度越小,信息熵越大,该指标所提供的信息量越小,那么该指标的权重也就越小。
根据各指标值的变异程度,利用信息熵计算各指标的权重[121]-[125]。
熵技术就是利用决策矩阵和各指标的输出熵来确定各指标的权系数的一种方法。
若考虑n 个方案,m 个指标的多指标决策问题的决策矩阵n m ij x X ⨯=)(。
首先,为了便于计算和优选分析,消除指标间由于量纲不同而带来比较上的困难,可利用标准化公式(4-1)(4-2)将决策矩阵X 转变成为标准化决策矩阵R=n m ij r ⨯)(。
定义1(评价指标的熵):在有n 个被评价对象,m 个评价指标的评估问题中,第i 个评价指标的熵定义为:∑=-=nj ij ij i f f K H 1ln i =1,2,…,m ;j =1,2,…,n其中K=()1ln -n ,∑==n j ijijij rr f 1;并假定,当ij f =0,0ln =ij ij f f 。
由于10≤≤ij f ,所以n f f nj ij ij ln ln 01≤-≤∑=,也由此可知,10≤≤i H定义2(评价指标的熵权):在(m ,n )评价问题中,第i 个评价指标的熵权i w 定义为:∑=--=m i iii H m H w 11由上述定义以及熵函数的性质可以得到如下熵权的性质:(1)各被评价对象在指标i 上的值完全相同时,熵值达到最大值1,熵权为0。
这也意味着该指标向决策者未提供任何有用信息,该指标可以考虑被取消。
(2)当各被评价对象在指标i 上的值相差较大、熵值较小、熵权较大时,说明该指标向决策者提供了有用的信息。
同时还说明在该问题中,各对象在该指标上有明显差异,应重点考察。
(3)指标的熵越大,其熵权越小,该指标越不重要,而且满足10<<i w 且11=∑=mi i w(4)作为权数的熵权,有其特殊意义。
它并不是在决策或评估问题中某指标的实际意义上的重要性系数,而是在给定被评价对象集后各种评价指标值确定的情况下,表示各指标的在竞争意义上的相对激烈程度系数。
(5)从信息角度来考虑,它代表了该指标在该问题中,提供有用信息量的多寡程度。
(6)熵权的大小与被评价对象有直接关系。
熵值法确定各指标的权系数步骤如下:1)数据的非负数据化处理:由于熵值法计算采用的是各个方案某一指标占同一指标值总和的比值,因此不存在量纲的影响,不需要进行标准化处理,若数据中有负数,就需要对数据进行非负化处理!此外,为了避免求熵值时对数的无意义,需要进行数据平移: 对于越大越好的指标:minmax mini i i ij ij x x x x r --=+1 (4-1) 对于越小越好的指标:min max max i i iji ij x x x x r --=+1 (4-2)为了方便起见,仍记非负化处理后的数据为r ij 。
2)由R=n m ij r ⨯)(计算第i 项指标下第j 个方案占该指标的比重ij f∑==m i ijijij rr f 1 i =1,2,…,m ;j =1,2,…,n ; (4-4) 3)第i 个评价指标i f 输出的熵∑=-=nj ij ij i f f K H 1ln j =1,2,…,n ; (4-5)4)各目标的熵权系数 ∑=--=m i iii H m H w 11 i =1,2,…,m (4-6)该方法的两个缺点:➢ 缺乏各指标之间的横向比较;➢ 各指标的权重随着样本的变化而变化,权数依赖于样本,在应用上限制。
4.层次分析法(AHP)1概述层次分析法,是应用网络系统理论和多目标综合评价方法的一种层次权重决策分析方法。
层次分析法本质是一种决策方法,所谓决策是指在面临多种方案时需要依据一定的标准选择某一种方案,详见《运筹学》。
层次分析法可应用于决策、评价、分析、预测。
2层次分析法的步骤和方法运用层次分析法构造系统模型时,大体可以分为以下五个步骤:2.1 建立层次结构模型2.2 构造判断矩阵2.3 一致性检验2.4 计算各层权重2.5 总体一致性检验下面我们依次分析:2.1建立层次结构模型层次分析法强调决策问题的层次性,我们必须认清决策目标与决策因素之间的关系。
简单地说,就是处理各个因素之间的包含关系,再把它们放在一个层次结构图中。
一般地,我们把层次结构图分成3个层次:目标层:决策的目的、要解决的问题准则层:考虑的因素、决策的准则。
方案层:决策时的备选方案。
作为本文的例子,我们以选择旅游地作为问题,演示层次分析法的过程。
选择旅游地是决策目标那么应放在目标层。
同时我们在选择旅游地时会考虑到不同的因素,如景色、费用等,这些作为准则层。
最后,我们把各个景点纳入考虑的范围,就有方案层。
值得注意的是分层取决于问题本身,所以决策目标不同时,层次结构图就可能大不相同。
这时候,就可能出现多个层次。