赋权法

合集下载

多指标综合评价中赋权方法评析

多指标综合评价中赋权方法评析

多指标综合评价中赋权方法评析在多指标综合评价中,赋权方法的选择对于评价结果的准确性和可靠性具有重要影响。

本文将介绍多指标综合评价中常见的赋权方法,并对其优缺点进行分析,旨在为实际应用中合理选择赋权方法提供参考。

多指标综合评价是指通过多个相互关联的指标来评价某一对象或系统的整体性能。

赋权方法是指根据各指标对整体评价的重要性程度,给予相应的权重,以便在综合评价时体现各指标的重要性差异。

常见的赋权方法包括主观赋权法和客观赋权法。

主观赋权法是根据专家的经验、知识和判断力,对各指标赋予相应的权重;客观赋权法则根据指标之间的相关关系或变异程度等客观信息确定权重。

主观赋权法的优点在于能够充分反映专家的经验和判断力,适用于具有不确定性和复杂性的评价问题。

但是,主观赋权法也容易受到专家主观意识的影响,导致赋权结果缺乏客观性和公正性。

客观赋权法的优点在于能够根据客观信息来确定权重,避免主观赋权法的主观性和片面性。

但是,客观赋权法往往忽略了专家的经验和判断力,无法充分反映各指标对评价目标的重要程度。

在实际应用中,可以根据具体问题的特点选择合适的赋权方法。

例如,对于具有较强主观性的评价问题,可以选择主观赋权法来赋予各指标权重;对于客观性较强的评价问题,可以选择客观赋权法来确定权重。

另外,也可以将主观赋权法和客观赋权法相结合,形成一种综合赋权方法,以充分利用两者的优点,避免其缺点。

在多指标综合评价中,赋权方法的选择应根据具体问题的特点进行判断。

在实际应用中,应充分考虑各种赋权方法的优缺点,合理选择和应用,以提高评价结果的准确性和可靠性。

下一步研究方向是多指标综合评价中赋权方法的优劣比较和组合应用。

未来可以进一步探索不同赋权方法的组合方式,以更好地体现各指标对整体评价的重要性;也可以研究如何将多指标综合评价应用于实际问题的解决,例如在环境质量评估、经济发展评价等领域的应用。

这将有助于提高多指标综合评价的应用价值和实用性。

在当今复杂的社会和经济环境中,多指标综合评价方法被广泛应用于各个领域,如经济学、环境学、生物学等。

赋权方法

赋权方法
法(专家评分法或专家咨询法):采取匿名的方式 广泛征求专家的意见, 经过反复多次的信息交流和反馈修正, 使 专家的意见逐步趋向一致, 最后根据专家的综合意见, 对评价对 象做出评价的一种定量与定性相结合的预侧、评价方法。
步骤:
(1)编制专家咨询表。按评价内容的层次、评价指标的定义、 必须的填表说明, 绘制咨询表格。 (2)分轮咨询。根据咨询表对每位专家至少进行两轮反馈, 并 针对反馈结果组织小组讨论, 确定调查内容的结构。经过有控制 的2-4轮咨询后将每轮的专家意见汇总。 (3)结果处理。应用常规的统计分析方法, 分析专家对该项目 研究的关心程度( 回收率)、专家意见的集中程度、专家意见的 协调程度等来筛选指标或描述指标的重要程度( 即权重值)。
XLL
二、客观赋权方法——熵值法
(2)计算指标信息熵值e和信息效用值d
m
ej K yij ln yij i 1
dj 1 ej
式中,K为常数。
某项指标的信息效用价值取决于该指标的信息熵ej与1之间 的差值,它的值直接影响权重的大小,信息效用值越大,对评 价的重要性就越大,权重也就越大。
层次分析法确定评价指标权重及Excel 计算——曹茂林
XLL
二、客观赋权方法
客观赋权法是利用数理统计的方法将各指标值经过分析处理 后得出权数的一类方法。
根据数理依据,这类方法又分为变异系数法、主成分分析法 、熵值法等。
这类方法根据样本指标值本身的特点来进行赋权,具有较好 的规范性。但其容易受到样本数据的影响,不同的样本会根据同 一方法得出不同的权数。
XLL
二、客观赋权方法——熵值法
(3)计算评价指标权重 利用熵值法估算各指标的权重,其本质是利用该指标信息
的价值系数来计算,其价值系数越高,对评价的重要性就越大( 或称权重越大,对评价结果的贡献大)。

赋权方法

赋权方法
XLL
二、客观赋权方法——变异系数法
变异系数法(Coefficient of variation method):是直接利用各 项指标所包含的信息,通过计算得到指标的权重。此方法的基 本做法是:在评价指标体系中,指标取值差异越大的指标,也 就是越难以实现的指标,这样的指标更能反映被评价单位的差 距,赋予的权重也越大。 步骤: (1)计算变异系数。
XLL
二、客观赋权方法——熵值法
熵值法步骤:
(1)数据处理
a. 标准化处理
xj x min x max xj x ' ij ; x ' ij x max x min x max x min
其中,xj为第j项指标值,xmax为第j项指标的最大值,xmin为 第j项指标的最小值, x’ij为标准化值。 若所用指标的值越大越好,则选用前一个公式。 若所用指标的值越小越好,则选用后一个公式。
案例:/article/042620032013.html
XLL
二、客观赋权方法——熵值法
熵值法:一种客观赋权方法,它通过计算指标的信息熵, 根据指标的相对变化程度对系统整体的影响来决定指标的权重 ,相对变化程度大的指标具有较大的权重,此方法现广泛应用 在统计学等各个领域,具有较强的研究价值。 熵,英文为 entropy,是德国物理学家克劳修斯在 1850年创 造的一个术语,它用来表示一种能量在空间中分布的均匀程度 。熵是热力学的一个物理概念,是体系混乱度(或无序度)的量度 ,用 S表示。 应用在系统论中,熵越大说明系统越混乱,携带 的信息越少,熵越小说明系统越有序,携带的信息越多。
在应用时首先要明确所要最终解决的问题然然后建立包含最高层中间层和最低层组合排序的层次分析结构模型它的信息主要是基于人们对于每一层次中各因素相对重要性做出的判断这种判断按1一9分值对比打分做出判断矩阵

指标体系赋权方法

指标体系赋权方法

指标体系赋权方法
以下是 7 条关于“指标体系赋权方法”的内容:
1. 主观赋权法,这就像是你对一群小伙伴的喜爱程度进行打分一样,全凭你的感觉和判断呀!比如说在选班长的时候,大家根据自己对各个候选人的印象来给他们赋权。

主观赋权法就是这么直接,你的想法最重要!
2. 客观赋权法呢,好比是根据考试成绩来给学生排名,有实打实的数据作依据呢!就像公司根据员工的实际业绩表现来确定他们在指标体系中的权重一样,真实又客观,这才靠谱呀!
3. 层次分析法,哎呀呀,这就如同搭积木,一层一层的建起来,把复杂的问题逐步拆解,最后确定好赋权。

比如评选最佳城市,你会从各个方面进行分析、比较,最终得出权重,是不是很有意思?
4. 模糊综合评价法,哇塞,就好像在大雾天里判断事物,虽然有点模糊不清,但依然能得出个大概呀!像是对一款新菜品的综合评价,各种感觉混合在一起,也能给到赋权呢!
5. 主成分分析法,这简直就是从一堆杂乱的东西中找出最主要的那些呀!比如在众多的市场数据中找出最关键的影响因素来进行赋权,厉害吧?
6. 因子分析法,就像从一箱子玩具中找出相同类型的放在一起,然后根据这些类型来赋权。

比如说分析学生的学习情况,把相关的因素归为一类来考虑赋权呢!
7. 组合赋权法,嘿嘿,这相当于把各种方法都拿来融合一下呀!就好像做菜时,把不同的调料混合在一起,出来的味道更棒呢!比如在一个大项目中,综合运用几种赋权方法,那不是更全面、更准确吗!
我的观点结论就是:不同的指标体系赋权方法都有其独特之处和适用场景,我们要根据具体情况灵活选择和运用呀,这样才能让赋权更合理、更有效!。

赋权法_

赋权法_

权重确定的主客观赋权法组员:余芳云 10卢玲婕 47钟灵欢 48一、引言在多属性决策问题的求解过程中,属性的权重具有举足轻重的作用,它被用来反映属性的相对重要性。

很多多属性决策方法( 如简单加性加权法、 TOPSIS 法、多属性效用理论等) 都涉及到属性权重,如何科学、合理地确定属性权重, 关系到多属性决策结果的可靠性与正确性。

目前已有许多确定属性权重的方法,这些方法可以分为三大类,即主观赋权法、客观赋权法和主客观综合赋权法( 或称组合赋权法)。

1、主观赋权法主观赋权法是人们研究较早、较为成熟的方法, 它根据决策者( 专家)主观上对各属性的重视程度来确定属性权重,其原始数据由专家根据经验主观判断而得到。

决策或评价结果具有较强的主观随意性, 客观性较差, 同时增加了对决策分析者的负担, 应用中有很大局限性。

常用的主观赋权法有(1)层次分析法( AHP) 、(2)最小平方法、(3)TACTIC 法、(4)专家调查法( Delphi 法)、(5)二项系数法、(6)环比评分法等。

其中层次分析法是实际应用中使用得最多的方法, 它能将复杂问题层次化, 将定性问题定量化。

随着 AHP 法的进一步完善, 利用 AHP法进行主观赋权的方法将会更加合理, 更加符合实际情况。

2、客观赋权法客观赋权法研究较晚,还很不完善, 它主要根据原始数据之间的关系来确定权重,不依赖于人的主观判断, 不增加决策分析者的负担,决策或评价结果具有较强的数学理论依据。

但这种赋权方法依赖于实际的问题域,因而通用性和决策人的可参与性较差, 计算方法大都比较繁琐,而且不能体现决策者对不同属性的重视程度,有时确定的权重会与属性的实际重要程度相悖。

常用的客观赋权法主要有(1)主成份分析法、(2)熵技术法、(3)离差及均(4)方差法、多目标规划法等。

其中熵技术法用得较多, 这种赋权法使用的数据是决策矩阵确定的属性权重反映了属性值的离散程度。

离差法确定的属性权重太粗糙, 一般不宜使用, 例如, 属性f i、 fj 下各方案的属性值的最大离差vi , vj 相等时, 两属性下各方案的属性值的离散程度可能差别很大。

赋权法_

赋权法_

权重确定的主客观赋权法组员:余芳云1011200110卢玲婕1011200147钟灵欢1011200148 一、引言在多属性决策问题的求解过程中,属性的权重具有举足轻重的作用,它被用来反映属性的相对重要性。

很多多属性决策方法( 如简单加性加权法、TOPSIS 法、多属性效用理论等) 都涉及到属性权重,如何科学、合理地确定属性权重, 关系到多属性决策结果的可靠性与正确性。

目前已有许多确定属性权重的方法,这些方法可以分为三大类,即主观赋权法、客观赋权法和主客观综合赋权法( 或称组合赋权法)。

1、主观赋权法主观赋权法是人们研究较早、较为成熟的方法, 它根据决策者( 专家)主观上对各属性的重视程度来确定属性权重,其原始数据由专家根据经验主观判断而得到。

决策或评价结果具有较强的主观随意性, 客观性较差, 同时增加了对决策分析者的负担, 应用中有很大局限性。

常用的主观赋权法有(1)层次分析法( AHP) 、(2)最小平方法、(3)TACTIC 法、(4)专家调查法( Delphi 法)、(5)二项系数法、(6)环比评分法等。

其中层次分析法是实际应用中使用得最多的方法, 它能将复杂问题层次化, 将定性问题定量化。

随着AHP 法的进一步完善, 利用AHP法进行主观赋权的方法将会更加合理, 更加符合实际情况。

2、客观赋权法客观赋权法研究较晚,还很不完善, 它主要根据原始数据之间的关系来确定权重,不依赖于人的主观判断, 不增加决策分析者的负担,决策或评价结果具有较强的数学理论依据。

但这种赋权方法依赖于实际的问题域,因而通用性和决策人的可参与性较差, 计算方法大都比较繁琐,而且不能体现决策者对不同属性的重视程度,有时确定的权重会与属性的实际重要程度相悖。

常用的客观赋权法主要有(1)主成份分析法、(2)熵技术法、(3)离差及均(4)方差法、多目标规划法等。

其中熵技术法用得较多, 这种赋权法使用的数据是决策矩阵确定的属性权重反映了属性值的离散程度。

指标体系构建的赋权方法

指标体系构建的赋权方法

指标体系构建的赋权方法赋权方法在指标体系构建里可太重要啦。

咱先来说说主观赋权法吧。

主观赋权法呢,就像是一群好朋友坐在一起商量着给东西定重要性。

比如说专家打分法,这就好比找了一群特别厉害的学霸或者行业里的大佬,让他们根据自己的经验和知识,给每个指标打分。

这些专家就像超级英雄一样,凭借着自己多年的“功力”,给指标们排出个一二三来。

不过呢,这里面也有点小问题哦。

毕竟是人的主观判断嘛,可能会受到专家自己的偏好或者当时心情的影响。

就像你今天心情好,可能就会给某个东西多打几分一样呢。

还有层次分析法,这个方法就像是搭积木一样,把指标一层一层地分析。

它要先构建一个层次结构,然后比较各个指标的相对重要性。

这就需要我们做很多的两两比较,就像在给指标们开一场“谁更重要”的辩论赛。

但是这个方法有时候也会让人觉得有点头疼,因为要做的比较太多啦,就像你要在好多好多美味的蛋糕里选出最爱的那个,真的好难抉择呀。

再来说说客观赋权法。

像主成分分析法就很有趣。

它像是一个超级侦探,要从数据里找出隐藏的规律。

这个方法主要是根据数据的变异程度来确定权重的。

数据变动大的指标呢,就会被认为比较重要,就像在一群小伙伴里,那个总是有很多新花样的小伙伴会比较引人注目一样。

不过呢,这个方法对数据的要求比较高,如果数据有点小脾气,不太规范的话,那结果可能就会有点小偏差啦。

还有熵值法呢。

熵这个概念听起来就很神秘,其实简单理解就是一种混乱程度的度量。

熵值法就是根据指标的信息熵来确定权重的。

信息熵小的指标,就说明它包含的信息多,权重就会大一些。

这就好像在一个装满宝藏的箱子里,那些闪闪发光、特别稀有的宝藏肯定会更受重视啦。

这些赋权方法各有各的优缺点,在构建指标体系的时候,我们就像是厨师做菜一样,要根据实际的情况,选择合适的赋权方法,或者把几种方法混合起来用,这样才能做出一道“美味可口”的指标体系大餐呢。

g1赋权法计算权重

g1赋权法计算权重

g1赋权法计算权重G1赋权法是一种常用的计算权重的方法,它可以根据不同指标的重要程度给予不同的权重,从而得到一个综合的评价结果。

在这篇文章中,我将详细介绍G1赋权法的原理和应用。

一、G1赋权法的原理G1赋权法是基于层次分析法(AHP)的一种改进方法。

层次分析法是一种将复杂问题分解为多个层次,通过比较和判断来确定各个层次的权重的方法。

G1赋权法在层次分析法的基础上,引入了指标的量化关系,通过对比不同指标的量化结果,进一步确定各个指标的权重。

具体而言,G1赋权法的计算过程如下:1. 确定评价指标:首先确定评价对象的各个指标,这些指标应该能够全面、准确地反映评价对象的特征。

2. 量化指标:将各个指标进行量化,可以使用具体的数据或者专家经验对指标进行评分。

3. 计算相对权重:根据量化结果,计算各个指标之间的相对权重。

这一步可以通过计算各个指标的比值,然后进行归一化处理得到。

4. 计算综合权重:将各个指标的相对权重与其对应的上级指标的权重相乘,得到各个指标的综合权重。

5. 归一化处理:对各个指标的综合权重进行归一化处理,使其之和为1,得到最终的权重结果。

二、G1赋权法的应用G1赋权法在实际应用中具有广泛的应用价值,可以用于各种决策问题的权重计算。

1. 企业绩效评价:对于企业的绩效评价,可以将各个指标作为评价的依据,通过G1赋权法计算各个指标的权重,从而得到一个全面准确的绩效评价结果。

例如,对于某个企业来说,销售额、市场份额、客户满意度等指标可以作为绩效评价的指标,通过G1赋权法计算各个指标的权重,可以得到一个客观公正的绩效评价结果。

2. 投资决策:在进行投资决策时,往往需要考虑多个因素,如投资风险、收益率、市场前景等。

通过G1赋权法可以量化这些指标,计算各个指标的权重,从而为投资决策提供有力的参考。

例如,在选择投资项目时,可以将项目的收益率、风险等指标作为评价指标,通过G1赋权法计算各个指标的权重,从而确定最终的投资决策。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.熵权法概述
• 熵原本是一热力学概念,它最先由申农 C. E.Shannon 引入信息论 ,称之为信息熵。现已在 工程技术,社会经济等领域得到十分广泛的应用。
• 申农定义的信息熵是一个独立于热力学熵的概念, 但具有热力学熵的基本性质(单值性、可加性和极 值性),并且具有更为广泛和普遍的意义,所以称 为广义熵。它是熵概念和熵理论在非热力学领域 泛化应用的一个基本概念。
(4)按照权重与待评价的各个指标之间相关程度划分,可 分为独立权重和相关权重。 独立权重是指评价指标的权重与该指标数值的大小无关, 在综合评价中较多地使用独立权重,以此权重建立的综合 评价模型称为“定权综合”模型。 相关权重是指评价指标的权重与该指标的数值具有函数关 系,例如,当某一评价的指标数值达到一定水平时,该指 标的重要性相应的减弱;或者当某一评价指标的数值达到 另一定水平时,该指标的重要性相应地增加。相关权重适 用于评价指标的重要性随着指标取值的不同而发生变化的 条件下,基于相关权重建立的综合评价模型被称为“变权 模型”。比如评估环境质量多采用“变权综合”模型。
1.1专家估测法
1.2 加权统计法
1.3 频数统计法
W=(0.275,0.5,0.075,0.185)
归一化处理得 W=(0.2657,0.4831,0.0725,0.1787)
二、变异系数法
变异系数法(Coefficient of variation method)是 直接利用各项指标所包含的信息,通过计算得到 指标的权重。是一种客观赋权的方法。此方法的 基本做法是:在评价指标体系中,指标取值差异 越大的指标,也就是越难以实现的指标,这样的 指标更能反映被评价单位的差距。例如,在评价 各个国家的经济发展状况时,选择人均国民生产 总值(人均GNP)作为评价的标准指标之一,是因 为人均GNP不仅能反映各个国家的经济发展水平, 还能反映一个国家的现代化程度。如果各个国家 的人均GNP没有多大的差别,则这个指标用来衡 量现代化程度、经济发展水平就失去了意义。
三、因子分析权数法
1 = 1 . 0 4 7 * 0 . 3 8 7 0 6 4 8 0 . 3 3 3 8 * 0 . 1 9 5 6 2 3 9 . . . 0 . 0 8 7 * 0 . 0 7 5 2 0 3 1 0 . 5 7 9
四、独立性权数法
• 利用数理统计学中多元回归方法,计算复 相关系数来定权的,复相关系数越大,所 赋的权数越大。
• 计算每项指标与其它指标的复相关系数, 计算公式为,
R越大,重复信息越多,权重应越小。取复 相关系数的倒数作为得分,再经归一化处 理得权重系数。
五、主成分分析法
六、优序图法
七、熵权法
目录
1 熵权法双击概添述加标题文字 2 熵权法基本原理 3 熵权法计算权重过程 4 熵权法适用范围 5 熵权法的优缺点
由于评价指标体系中的各项指标的量纲不同,
不宜直接比较其差别程度。为了消除各项评价指标 的量纲不同的影响,需要用各项指标的变异系数来 衡量各项指标取值的差异程度。各项指标的变异系 数公式如下:
例如 英国社会学家英克尔斯提出了在综合 评价一个国家或地区的现代化程度时,其各项 指标的权重的确定方法就是采用的变异系数法。
现有m个待评项目,n个评价指标,形成标准化后的 数据矩阵为R,rij表示第i个项目第j个指标的数值。
r11 r12
R
r21 rm1
r22 rm 2
r1n
r2n
rm3
ቤተ መጻሕፍቲ ባይዱ
rm 4
mn
设Vj,(j=1,2,…,n)表示某个指标各个项目的最大离差,
V j r m a x r m in
【例1】试利用变异系数法综合评价一个国家现代 化程度时的指标体系中的各项指标的权重。数据资料 是选取某一年的数据,包括中国在内的中等收入水平 以上的近40个国家的10项指标作为评价现代化程度的 指标体系,计算这些国家的变异系数,反映出各个国 家在这些指标上的差距,并作为确定各项指标权重的 依据。其标准差、平均数数据及其计算出的变异系数 等见表1。
(2)按照权重的形成方式划分,可分为人工权重和自然权 重。自然权重是由于变换统计资料的表现形式和统计指标的 合成方式而得到的权重,也称为客观权重。人工权重是根据 研究目的和评价指标的内涵状况,主观地分析、判断来确定 的反映各个指标重要程度的权数,也称为主观权重。
(3)按照权重形成的数量特点的不同划分,可分为定性 赋权和定量赋权。如果在统计综合评价时,采取定性赋 权和定量赋权的方法相结合,获得的效果更好。
1.熵权法概述
• 熵权法是一种客观赋权方法。在具体使用 过程中,熵权法根据各指标的变异程度, 利用信息熵计算出各指标的熵权,再通过 熵权对各指标的权重进行修正,从而得出 较为客观的指标权重。
1.熵权法概述
• 熵权法是一种客观赋权方法。在具体使用 过程中,熵权法根据各指标的变异程度, 利用信息熵计算出各指标的熵权,再通过 熵权对各指标的权重进行修正,从而得出 较为客观的指标权重。
一、统计平均法(专家打分法)
统计平均数法(Statistical average method)是根据所选择的 各位专家对各项评价指标所赋予的相对重要性系数分别求其 算术平均值,计算出的平均数作为各项指标的权重。其基本 步骤是: 第一步,确定专家。一般选择本行业或本领域中既有实际工 作经验、又有扎实的理论基础、并公平公正道德高尚的专家; 第二步,专家初评。将待定权数的指标提交给各位专家,并 请专家在不受外界干扰的前提下独立的给出各项指标的权数 值; 第三步,回收专家意见。将各位专家的数据收回,并计算各 项指标的权数均值和标准差; 第四步,分别计算各项指标权重的平均数。
m
m
r m a x m i a 1 x { r ij} ,r m in m i i1 n { r ij} ,第 j列 的 最 大 , 最 小 值
w j
Vj
n
Vj
j= 1
九、CRITIC法
权重的确定方法
在统计理论和实践中,权重是表明各个评价指标(或 者评价项目)重要性的权数,表示各个评价指标在总体中 所起的不同作用。权重有不同的种类,各种类别的权重有 着不同的数学特点和经济含义,一般有以下几种权重。
(1)按照权重的表现形式的不同,可分为绝对数权重和 相对数权重。相对数权重也称比重权数,能更加直观地反 映权重在评价中的作用。
八、标准离差法
标准离差法的思路与熵权法相似。通常,某个指 标的标准差越大,表明指标值的变异程度越大,提供 的信息量越多,在综合评价中所起的作用越大,其权 重也越大。相反,某个指标的标准差越小,表明指标 值的变异程度越小,提供的信息量越少,在综合评价 中所起的作用越小,其权重也应越小。
相关文档
最新文档