七年级数学(下)整式的运算单元测试
北师大七年级数学下册单元测试全套及答案

最新北师大版七年级数学下册单元测试全套及答案北师大版七年级下册 第一章 整式的运算单元测试题 一、精心选一选(每小题3分,共21分)1.多项式892334+-+xy y x xy 的次数是 ( )A. 3B. 4C. 5D. 62.下列计算正确的是 ( )A. 8421262x x x =⋅B. ()()m mmy y y =÷34 C. ()222y x y x +=+ D.3422=-a a、3.计算()()b a b a +-+的结果是 ( )A. 22a b -B. 22b a -C. 222b ab a +--D.222b ab a ++-4. 1532+-a a 与4322---a a 的和为 ( )A.3252--a aB. 382--a aC. 532---a aD. 582+-a a5.下列结果正确的是 ( )A. 91312-=⎪⎭⎫ ⎝⎛- B. 0590=⨯ C. ()17530=-. D. 8123-=-6. 若()682b a b a n m =,那么n m 22-的值是( )A. 10B. 52C. 20D. 32 ~7.要使式子22259y x +成为一个完全平方式,则需加上 ( )A. xy 15B. xy 15±C. xy 30D.xy 30±二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分) 1.在代数式23xy , m ,362+-a a , 12 ,22514xy yz x - , ab32中,单项式有个,多项式有 个。
2.单项式z y x 425-的系数是 ,次数是 。
3.多项式5134+-ab ab 有 项,它们分别是 。
4. ⑴ =⋅52x x 。
⑵()=43y 。
)⑶ ()=322b a 。
⑷()=-425y x 。
⑸ =÷39a a 。
⑹=⨯⨯-024510 。
5.⑴=⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛325631mn mn 。
(常考题)北师大版初中数学七年级数学下册第一单元《整式的乘除》测试题(有答案解析)(5)

一、选择题1.若x 2+5x +m =(x +n )2,则m ,n 的值分别为( ).A .m =254,n =52B .m =254,n =5 C .m =25,n =5 D .m =5,n =522.下列运算正确的是( )A .3333x x -=B .()4410a a a ÷=≠C .()222424mn m n -=-D .()232a b abab ÷-=3.多项式2425a ma ++是完全平方式,那么m 的值是( ) A .10±B .20±C .10D .204.如果多项式()2y a +与多项式()5y -的乘积中不含y 的一次项,则a 的值为( ) A .52-B .52C .5D .-55.已知3x y +=,1xy =,则23x xy y -+的值是()A .7B .8C .9D .12 6.若3a b +=-,10ab =-,则-a b 的值是( )A .0或7B .0或13-C .7-或7D .13-或13 7.已知5a b +=,2ab =-,则a 2+b 2的值为( ) A .21B .23C .25D .298.下列运算正确的是( )A .3m ·4m =12mB .m 6÷m 2= m 3(m≠0)C .236(3)27m m -=D .(2m+1)(m-1)=2m 2-m-19.下列运算正确的是( ) A .x 2·x 3=x 6B .(x 3)2=x 6C .(-3x)3=27x 3D .x 4+x 5=x 9 10.已知235m n +=,则48m n ⋅=( ) A .16B .25C .32D .6411.下列计算中,错误的有( )①222(2)4x y x y +=+;②222()2x y x xy y --=-+;③2211224x x x ⎛⎫-=-+ ⎪⎝⎭;④22(3)(3)9b a b a a b ---=- A .1个 B .2个C .3个D .4个12.如3a b +=-,1ab =,则22a b +=( )A .-11B .11C .-7D .7二、填空题13.(a 2)﹣1(a ﹣1b )3=_____.14.如图所示,将一个边长为a 的正方形减去一个边长为b 的小正方形,将剩余部分(阴影部分)对半剪开,恰好是两个完全相同的直角梯形,将它们旋转拼接后构成一个等腰梯形.(1)利用图形的面积关系可以得到一个代数恒等式是________; (2)求前n 个正奇数1,3,5,7,…的和是________.15.计算:(﹣2a ﹣2b )2÷2a ﹣8b ﹣3=_____.16.如图,大正方形与小正方形的面积之差是60,则阴影部分的面积是_____.17.若2211392781n n ++⨯÷=,则n =____.18.如图为杨辉三角表,它可以帮助我们按规律写出()n a b +(其中n 为正整数)展开式的系数,请仔细观察表中规律可得:1()a b a b +=+;222()2a b a ab b +=++; ……;如果55432345()10105y a b a xa b a b a b ab b +=+++++…….那么x y + =________.19.已知,a b 满足1,2a b ab -==,则a b +=____________20.如图,大正方形的边长为a ,小正方形的边长为b ,用代数式表示图中阴影部分的面积_____.三、解答题21.如图1是1个直角三角形和2个小正方形,直角三角形的三条边长分别是a 、b 、c ,其中a 、b 是直角边,两个小正方形的边长分别是a 、b .(1)将4个完全一样的直角三角形和2个小正方形构成一个大正方形(如图2).用两种不同的方法列代数式表示图2中的大正方形面积: 方法一:________________;方法二:________________;(直接把答案填写在答题卡的横线上)(2)观察图2,试写出()2a b +,2a ,2ab ,2b 这四个代数式之间的等量关系:________________.(直接把答案填写在答题卡的横线上)(3)请利用(2)中等量关系解决问题:若图1中一个三角形面积是6,图2的大正方形面积是64,求22a b +的值.22.我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如:图(1)可以 用来解释()2222a ab b a b ++=+,实际上利用一些卡片拼成的图形面积也可以对某些二次三项式进行因式分解.如图(2),将一张长方形纸板按图中虚线裁剪成九块,其中有两块是边长都为m 的大正方形,两块是边长都为n 的小正方形,五块是长为m ,宽为n 的全等小长方形,且m n >.(以上长度单位: cm )(1)观察图形,可以发现代数式22252m mn n ++可以分解因式为_________(2)若每块小长方形的面积为210cm ,四个正方形的面积和为258,cm 试求图中所有裁剪线(虚线部分)长之和.23.数学活动课上,张老师准备了若干个如图①的三种纸片,A 种纸片是边长为a 的正方形,B 种纸片是边长为b 的正方形,C 种纸片是长为,b 宽为a 的长方形,并用A 种纸片一张,B 种纸片一张,C 种纸片两张拼成如图②的大正方形.()1观察图②,请你写出代数式()222,,a b a b ab ++之间的等量关系是 ;()2根据()1中的等量关系,解决下列问题;①已知224,10a b a b +=+=,求ab 的值;②已知()()222020201852x x -+-=,求2019x -的值.24.先化简,再求值.()()()()22522334b a b a b a b a b+--+---,其中a ,b 满足()2210a b -+-=.25.化简:()()()2222x y y x x y -+--. 26.计算:(1)()3210842a a a a +-÷;(2)()()22222ab a b ---⋅.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据完全平方公式和整式的性质计算,得到m和n的关系式,通过计算即可得到答案.【详解】∵x2+5x+m=(x+n)2=x2+2nx+n2∴2n=5,m=n2∴m=254,n=52故选:A.【点睛】本题考查了整式、乘法公式、一元一次方程、乘方的知识;解题的关键是熟练掌握整式、完全平方公式的性质,从而完成求解.2.B解析:B【分析】根据幂的乘方、同底数幂乘法,合并同类项的运算法则逐一判断即可.【详解】33332x x x-=,故A选项错误;()4410a a a÷=≠,故B选项正确;()222424mn m n-=,故C选项错误;()232a b ab ab÷-=-,故D选项错误;故选B.【点睛】本题考查了整式的运算,幂的乘方、同底数幂乘法,合并同类项,关键是掌握各部分的运算法则.3.B解析:B【分析】由4a2+ma+25是完全平方式,可知此完全平方式可能为(2a±5)2,再求得完全平方式的结果,根据多项式相等,即可求得m的值.解:∵4a 2+ma+25是完全平方式, ∴4a 2+ma+25=(2a±5)2=4a 2±20a+25, ∴m=±20. 故选:B . 【点睛】本题考查了完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.4.B解析:B 【分析】把多项式的乘积展开,合并同类项,令含y 的一次项的系数为0,可求出a 的值. 【详解】()2y a +()5y -=5y-y 2+10a-2ay=-y 2+(5-2a)y+10a ,∵多项式()2y a +与多项式()5y -的乘积中不含y 的一次项,∴5-2a=0,∴a=52. 故选B . 【点睛】本题考查了多项式乘多项式,解答本题的关键在于将多项式的乘积展开,令含y 的一次项的系数为0,得到关于a 的方程.5.A解析:A 【分析】先把3x y +=代入原式,可得23x xy y -+=22xy +,结合完全平方公式,即可求解.【详解】 ∵3x y +=,∴23x xy y -+=2()x xy x y y -++=22x xy xy y -++=22x y +,∵1xy =,∴23x xy y -+=22x y +=22()23217x y xy +-=-⨯=,故选A . 【点睛】本题主要考查代数式求值,熟练掌握完全平方公式及其变形公式,是解题的关键.6.C解析:C根据完全平方公式得出( a-b )2=( a + b )2-4ab ,进而求出( a-b )2的值,再求出 a-b 的值即可 【详解】( a-b )2=( a + b )2-4ab∴ ()22(3) 4(10)a b =--⨯-- ∴()249a b -=∴7a b -=± 故答案选:C 【点睛】考查完全平方公式的应用,掌握完全平方公式的特点和相应的变形,是正确解答的关键.7.D解析:D 【分析】根据完全平方公式得()2222a b a b ab +=+-,再整体代入即可求值. 【详解】解:∵()2222a b a b ab +=++, ∴()2222a b a b ab +=+-,∵5a b +=,2ab =-,∴原式()252225429=-⨯-=+=.故选:D . 【点睛】本题考查完全平方公式,解题的关键是熟练运用完全平方公式进行计算.8.D解析:D 【分析】利用同底数幂的乘法和除法,积的乘方、幂的乘方,多项式乘多项式的运算法则计算即可判断. 【详解】A 、 347·m m m =,该选项错误;B 、624m m m ÷=,该选项错误;C 、236(3)27m m -=-,该选项错误;D 、(()221)121m m m m +-=--,该选项正确;故选:D . 【点睛】本题考查了同底数幂的乘法和除法,积的乘方、幂的乘方,多项式乘多项式,熟练掌握运算法则是解题的关键.9.B解析:B 【分析】根据幂的乘方与积的乘方的运算方法,同底数幂的乘法的运算方法,以及合并同类项的方法,逐项判断即可. 【详解】∵x 2•x 3=x 5,∴选项A 不符合题意; ∵(x 3)2=x 6,∴选项B 符合题意; ∵(−3x )3=−27x 3,∴选项C 不符合题意; ∵x 4+x 5≠x 9,∴选项D 不符合题意. 故选:B . 【点睛】此题主要考查了幂的乘方与积的乘方的运算方法,同底数幂的乘法的运算方法,以及合并同类项的方法,要熟练掌握.10.C解析:C 【分析】根据同底数幂的乘法、幂的乘方,即可解答. 【详解】解:2323548222232m n m n m n +⋅=⋅===, 故选:C . 【点睛】本题考查了同底数幂的乘法、幂的乘方,解决本题的关键是熟记同底数幂的乘法、幂的乘方.11.C解析:C 【分析】直接利用完全平方公式和平方差公式分别计算,判断各式得出答案即可. 【详解】解:①(2x+y )2=4x 2+4xy+y 2,错误;②2222()()2x y x y x xy y --=+=++,错误;③221124x x x ⎛⎫-=-+ ⎪⎝⎭,错误; ④()()()()2233339b a b a a b a b a b ---=-+--=-,正确;故选:C . 【点睛】此题主要考查了完全平方公式和平方差公式,正确掌握公式的基本形式是解题关键.12.D解析:D 【分析】根据222()2a b a b ab +=+-直接代入求值即可. 【详解】解:当3a b +=-,1ab =,时,222()2a b a b ab +=+-=9-2=7. 故选:D . 【点睛】本题考查对完全平方公式的变形应用能力,熟记有关完全平方公式的几个变形公式是解题的关键二、填空题13.【分析】直接利用积的乘方运算法则进行化简再利用单项式乘以单项式计算得出答案【详解】解:(a2)﹣1(a ﹣1b )3=a ﹣2•a ﹣3b3=a ﹣5b3=故答案为:【点睛】此题主要考查了积的乘方运算单项式乘解析:35b a .【分析】直接利用积的乘方运算法则进行化简,再利用单项式乘以单项式计算得出答案. 【详解】解:(a 2)﹣1(a ﹣1b )3=a ﹣2•a ﹣3b 3 =a ﹣5b 3=35b a . 故答案为:35b a.【点睛】此题主要考查了积的乘方运算,单项式乘以单项式,正确掌握相关运算法则是解题关键.14.【分析】(1)可分别在正方形和梯形中表示出阴影部分的面积两式联立即可得到关于ab 的恒等式(2)由12-02=122-12=332-22=542-32=7…n2-(n-1)2=2n-1相加即可得结果【解析:22()()a b a b a b -=+- 2n 【分析】(1)可分别在正方形和梯形中表示出阴影部分的面积,两式联立即可得到关于a 、b 的恒等式(2)由12-02=1,22-12=3,32-22=5,42-32=7…n2-(n-1)2=2n-1相加即可得结果.【详解】解:正方形中,S阴影=a2-b2;梯形中,S阴影=12(2a+2b)(a-b)=(a+b)(a-b);故所得恒等式为:a2-b2=(a+b)(a-b),故答案为:a2-b2=(a+b)(a-b).(2)∵12-02=1,22-12=3,32-22=5,42-32=7…n2-(n-1)2=2n-1∴1+3+4+5+7+9+…+(2n-1)=12-02+22-12+32-22+42-32+…+n2-(n-1)2=n2故答案为:n2.【点睛】本题考查了平方差公式的几何背景,正确表示出两个图形中阴影部分的面积是关键.15.2a4b5【分析】直接利用积的乘方运算法则化简再利用整式的除法运算法则计算得出答案【详解】解:(﹣2a﹣2b)2÷2a﹣8b﹣3=4a﹣4b2÷2a﹣8b﹣3=2a-4-(-8)b2-(-3)=2a解析:2a4b5.【分析】直接利用积的乘方运算法则化简,再利用整式的除法运算法则计算得出答案.【详解】解:(﹣2a﹣2b)2÷2a﹣8b﹣3=4a﹣4b2÷2a﹣8b﹣3=2a-4-(-8)b2-(-3),=2a4b5.故答案为:2a4b5.【点睛】本题考查了整数指数幂的运算,熟练应用法则是解题关键.16.30【分析】直接利用正方形的性质结合三角形面积求法利用平方差公式即可得出答案【详解】解:设大正方形的边长为a小正方形的边长为b故阴影部分的面积是:AE•BC+AE•BD=AE(BC+BD)=(AB﹣解析:30【分析】直接利用正方形的性质结合三角形面积求法,利用平方差公式即可得出答案.【详解】解:设大正方形的边长为a,小正方形的边长为b,故阴影部分的面积是:12AE•BC+12AE•BD=12AE(BC+BD)=12(AB﹣BE)(BC+BD)=12(a ﹣b )(a +b ) =12(a 2﹣b 2) =12×60 =30.故答案为:30.【点睛】本题主要考查平方差公式与几何图形和三角形的面积公式,用代数式表示阴影部分的面积,是解题的关键.17.3【分析】根据幂的乘方把算式中的各底数变成同底数然后按同底数幂运算法则列方程即可【详解】解:故答案为:3【点睛】本题考查了同底数幂的乘除和幂的乘方根据题意把底数变成相同是解题关键解析:3【分析】根据幂的乘方把算式中的各底数变成同底数,然后按同底数幂运算法则,列方程即可.【详解】解:2211392781n n ++⨯÷=22213143(3)(3)3n n ++⨯÷=,2423343333n n ++⨯÷=,242(33)433n n ++-+=,1433n +=,14n +=,3n =.故答案为:3【点睛】本题考查了同底数幂的乘除和幂的乘方,根据题意,把底数变成相同是解题关键. 18.7【分析】根据题意写出杨辉三角表的第六行的数从而可以得到x 和y 的值即可求出结果【详解】解:根据杨辉三角表第六行的数依次是15101051∴∴即∴故答案是:7【点睛】本题考查找规律解题的关键是理解杨辉解析:7【分析】根据题意写出杨辉三角表的第六行的数,从而可以得到x 和y 的值,即可求出结果.【详解】解:根据杨辉三角表,第六行的数依次是1、5、10、10、5、1,∴5x =,∴35y +=,即2y =,∴527x y +=+=.故答案是:7.【点睛】本题考查找规律,解题的关键是理解杨辉三角表,按照规律写出第六行的数.19.【分析】利用完全平方公式的两个关系式得到即可得到答案【详解】∵∴∴故答案为:【点睛】此题考查完全平方公式熟记完全平方公式及两个完全平方公式的关系是解题的关键解析:3±【分析】利用完全平方公式的两个关系式得到22()()41429a b a b ab +=-+=+⨯=,即可得到答案.【详解】∵1,2a b ab -==,∴22()()41429a b a b ab +=-+=+⨯=,∴3a b +=±,故答案为:3±.【点睛】此题考查完全平方公式,熟记完全平方公式及两个完全平方公式的关系是解题的关键. 20.【分析】由图形可得阴影部分的面积是:大正方形面积的一半与小正方形的面积之和减去以(a+b )为底边高为b 的三角形的面积之差再加上以b 为底边高为(a-b )的三角形的面积之和从而可以解答本题【详解】∵大正 解析:22a 【分析】由图形可得,阴影部分的面积是:大正方形面积的一半与小正方形的面积之和减去以(a+b )为底边,高为b 的三角形的面积之差再加上以b 为底边,高为(a-b )的三角形的面积之和,从而可以解答本题.【详解】∵大正方形的边长为a ,小正方形的边长为b ,∴图中阴影部分的面积是:2a 2+b 2−()b a b 2++()b a b 2-=2a 2, 故答案为2a 2. 【点睛】本题考查列代数式,解题的关键是利用数形结合的思想找出所求问题需要的条件.三、解答题21.(1)()2a b +;222a b ab ++;(2)()2222a b a b ab +=++;(3)40【分析】(1)利用两种方法表示出大正方形面积即可;(2)写出四个代数式之间的等量关系即可;(3)由直角三角形的面积是6,得到ab =12,大正方形②的面积是(a +b )2=64,把(2)变形后,整体代入可直接求值;【详解】解:(1)方法一:()2a b +;方法二:222a b ab ++;故答案为:(a +b )2;a 2+2ab +b 2;(2)()2222a b a b ab +=++;(3)∵162ab =,()264a b +=, ∴224ab =, ∴()222240a b a b ab +=+-=.【点睛】此题考查了完全平方公式的几何背景,代数式求值,以及列代数式,熟练掌握运算法则是解本题的关键.22.(1)()()22m n m n ++;(2)42cm .【分析】(1)根据图形的面积直接可以得到;(2)根据222258m n +=,10mn =,可得2229m n +=,可求得7m n +=,根据图形可知,图中所有裁剪线(虚线部分)长之和是66m n +,据此求解即可.【详解】(1)根据图形,依题意可得:2225222m mn n m n m n(2)依题意得222258m n +=,10mn =2229m n ∴+=2222m n m mn n2292049m n0m n +>7m n ∴+=,根据图形可知,图中所有裁剪线(虚线部分)长之和是:6666742m n m n ∴图中所有裁剪线(虚线部分)长之和为42cm .【点睛】本题考查完全平方公式和因式分解的应用,理解题意,从题目中获取信息,列出正确的代数式,再由图形的特点求解是解题的关键.23.(1)()2222a b a b ab +=++;(2)①3ab =;②20195x -=±.【分析】(1)整体看是一个边长为(a+b )的正方形,局部看它有一个边长为a ,b 的正方形,两个长为b ,宽为a 的矩形组成,根据图形的面积相等即可确定它们之间的关系; (2)①公式变形为ab=222()()2a b a b +-+计算即可; ②把x-2020变形成(x-2019)-1, 把x-2018变形成(x-2019)+1,用整体思想展开公式计算即可.【详解】()()22212a b a b ab +=++;理由如下:图②是边长为()a b +的正方形, ()2S a b ∴=+图②可看成1个边长为a 的正方形,1个边长为b 的正方形以及2个长为,b 宽为a 的长方形的组合图形, 222,S a b ab ∴=++()222 2a b a b ab ∴+=++. ()24a b +=①,()216,a b +∴=即22216a b ab ++=.又2210,a b +=3ab ∴=;②设2019,x a -=则20201,20181x a x a -=--=+,()()222020201852x x -+-=, ()()22 1152a a ∴-++=,22212152,a a a a ∴-++++=22252,a ∴+=2250,a ∴=225,a ∴=即()2201925,x -=20195x ∴-=±.【点睛】本题考查了完全平方公式的几何意义,公式的应用,以及公式的整体思想代换应用,熟练掌握公式的几何意义和公式的变形是解题的关键.24.22315a b +; 27.【分析】根据非负数及整式的运算法则即可求解.【详解】解:∵()2210a b -+-=,∴a-2=0,1-b=0,∴a=2,b=1,∴原式=()2222251062334ab b a ab ab b ba +--+++--=222225054631ab b a a ab b b +--+++=22315a b + ∴当a=2,b=1时,原式=23215121527⨯+=+=.【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则.25.284y xy .【分析】原式根据平方差公式和完全平方公式将括号展开,然后再合并同类项即可得到答案.【详解】解:()()()2222x y y x x y -+-- 2222444x y x y xy =---+284y xy =-+.【点睛】此题主要考查了整式的四则运算,熟练掌握平方差公式和完全平方公式是解答此题的关键.26.(1)2542a a +-;(2)224a b . 【分析】(1)多项式除以单项式,用多项式中的每一项分别除以单项式进行计算;(2)幂的混合运算,注意先算乘方,然后再按照单项式乘单项式的法则进行计算.【详解】解:(1)()3210842a a a a +-÷ 321028242a a a a a a =÷+÷-÷2542a a =+-(2)()()22222ab a b ---⋅24424a b a b --=⋅224a b --=224a b=. 【点睛】 本题考查整式的混合运算和幂的混合运算,掌握运算顺序和计算法则正确计算是解题关键.。
浙教新版七年级数学下册 第3章整式的乘除 单元测试卷 dayin

浙教新版七年级下学期《第3章整式的乘除》单元测试卷一.选择题(共10小题)1.计算(﹣2b)3的结果是()A.﹣8b3B.8b3C.﹣6b3D.6b32.下列计算中正确的是()A.a6÷a2=a3B.a6•a2=a8C.a9+a=a10D.(﹣a)9=a93.已知:2m=a,2n=b,则22m+2n用a,b可以表示为()A.a2+b3B.2a+3b C.a2b2D.6ab4.下列等式成立的是()A.(﹣1)0=﹣1 B.(﹣1)0=1 C.0﹣1=﹣1 D.0﹣1=15.如果x2+kxy+36y2是完全平方式,则k的值是()A.6 B.6或﹣6 C.12 D.12或﹣126.如图,边长为(m+3)的正方形纸片剪去一个边长为m的正方形之后,余下部分又剪拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为3,则此长方形的周长是()A.2m+6 B.4m+6 C.4m+12 D.2m+127.计算:=()A.B.C.D.8.若等式(x+6)x+1=1成立,那么满足等式成立的x的值的个数有()A.5个B.4个C.3个D.2个9.将图1中阴影部分的小长方形变换到图2位置,根据两个图形的面积关系可以得到一个关于a,b的恒等式为()A.a2﹣2ab+b2=(a﹣b)2B.a2+2ab+b2=(a+b)2C.2a2+2ab=2a(a+b)D.a2﹣b2=(a+b)(a﹣b)10.若a+b=6,ab=4,则a2+4ab+b2的值为()A.40 B.44 C.48 D.52二.填空题(共10小题)11.已知2a=5,2b=3,求2a+b的值为.12.计算:(4x2y﹣2xy2)÷2xy=.13.已知m+2n+2=0,则2m•4n的值为.14.若(x+p)与(x+5)的乘积中不含x的一次项,则p=.15.一个正方形的边长增加了2cm,它的面积就增加44cm2,这个正方形的边长是:.16.一个三角形的底边长为(2a+6b),高是(3a﹣5b),则这个三角形的面积是.17.已知6x=192,32y=192,则(﹣2017)(x﹣1)(y﹣1)﹣2=.18.我们知道,同底数幂的乘法法则为:a m•a n=a m+n(其中a≠0,m,n为正整数),类似地我们规定关于任意正整数m,n的一种新运算:h(m+n)=h(m)•h(n),请根据这种新运算填空:(1)若h(1)=,则h(2)=;(2)若h(1)=k(k≠0),那么h(n)•h(2017)=(用含n和k的代数式表示,其中n 为正整数)19.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如下图),此图揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律.例如:(a+b)0=1,它只有一项,系数为1;(a+b)1=a+b,它有两项,系数分别为1,1,系数和为2;(a+b)2=a2+2ab+b2,它有三项,系数分别为1,2,1,系数和为4;(a+b)3=a3+3a2b+3ab2+b3,它有四项,系数分别为1,3,3,1,系数和为8;…根据以上规律,解答下列问题:(1)(a+b)4展开式共有项,系数分别为;(2)(a+b)n展开式共有项,系数和为.20.一块长方形铁皮,长为(5a2+4b2)m,宽为6a4m,在它的四个角上都剪去一个长为a3m的小正方形,然后折成一个无盖的盒子,这个无盖盒子的表面积是m2.三.解答题(共6小题)21.计算:3a2b•(﹣a4b2)+(a2b)322.计算:(a+1)2﹣a(a﹣1)23.先化简,再求值:(x﹣2y)2+(x+y)(x﹣4y),其中x=5,y=.24.甲乙两人共同计算一道整式乘法:(2x+a)(3x+b),由于甲抄错了第一个多项式中a的符号,得到的结果为6x2+11x﹣10;由于乙漏抄了第二个多项式中的x的系数,得到的结果为2x2﹣9x+10.请你计算出a、b的值各是多少,并写出这道整式乘法的正确结果.25.乘法公式的探究及应用.数学活动课上,老师准备了若干个如图1的三种纸片,A种纸片边长为a的正方形,B种纸片是边长为b的正方形,C种纸片长为a、宽为b的长方形,并用A种纸片一张,B种纸片一张,C种纸片两张拼成如图2的大正方形.(1)请用两种不同的方法求图2大正方形的面积.方法1:;方法2:.(2)观察图2,请你写出下列三个代数式:(a+b)2,a2+b2,ab之间的等量关系.;(3)类似的,请你用图1中的三种纸片拼一个图形验证:(a+b)(a+2b)=a2+3ab+2b2(4)根据(2)题中的等量关系,解决如下问题:①已知:a+b=5,a2+b2=11,求ab的值;②已知(x﹣2016)2+(x﹣2018)2=34,求(x﹣2017)2的值.26.阅读下面的材料并填空:①(1﹣)(1+)=1﹣,反过来,得1﹣=(1﹣)(1+)=②(1﹣)(1+)=1﹣,反过来,得1﹣=(1﹣)(1+)=×③(1﹣)(1+)=1﹣,反过来,得1﹣==利用上面的材料中的方法和结论计算下题:(1﹣)(1﹣)(1﹣)……(1﹣)(1﹣)(1﹣)浙教新版七年级下学期《第3章整式的乘除》单元测试卷参考答案与试题解析一.选择题(共10小题)1.A.2\B.3.已知:2m=a,2n=b,则22m+2n用a,b可以表示为()A.a2+b3B.2a+3b C.a2b2D.6ab ∵2m=a,2n=b,∴22m+2n=(2m)2×(2n)2=a2b2.4.故选:B.5.如果x2+kxy+36y2是完全平方式,则k的值是()A.6 B.6或﹣6 C.12 D.12或﹣12【解答】解:∵x2+kxy+36y2是一个完全平方式,∴k=±2×6,即k=±12,故选:D.6.如图,边长为(m+3)的正方形纸片剪去一个边长为m的正方形之后,余下部分又剪拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为3,则此长方形的周长是()A.2m+6 B.4m+6 C.4m+12 D.2m+12【分析】根据面积的和差,可得长方形的面积,根据长方形的面积公式,可得长方形的长,根据长方形的周长公式,可得答案.【解答】解:由面积的和差,得长方形的面积为(m+3)2﹣m2=(m+3+m)(m+3﹣m)=3(2m+3).由长方形的宽为3,可得长方形的长是(2m+3).长方形的周长是2[(2m+3)+3]=4m+12.故选:C.7.计算:=()A.B.C.D.故选:A.8.若等式(x+6)x+1=1成立,那么满足等式成立的x的值的个数有()A.5个B.4个C.3个D.2个【分析】分情况讨论:当x+1=0时;当x+6=1时,分别讨论求解.还有﹣1的偶次幂都等于1.【解答】解:如果(x+6)x+1=1成立,则x+1=0或x+6=1或﹣1,即x=﹣1或x=﹣5或x=﹣7,当x=﹣1时,(x+6)0=1,当x=﹣5时,1﹣4=1,当x=﹣7时,(﹣1)﹣6=1,故选:C.9.将图1中阴影部分的小长方形变换到图2位置,根据两个图形的面积关系可以得到一个关于a,b的恒等式为()A.a2﹣2ab+b2=(a﹣b)2B.a2+2ab+b2=(a+b)2C.2a2+2ab=2a(a+b)D.a2﹣b2=(a+b)(a﹣b)【分析】分别计算这两个图形阴影部分的面积,根据面积相等即可得到关于a,b的恒等式.【解答】解:第一个图形的阴影部分的面积=a2﹣b2;第二个图形是长方形,则面积=(a+b)(a﹣b).∴a2﹣b2=(a+b)(a﹣b).故选:D.10.若a+b=6,ab=4,则a2+4ab+b2的值为()A.40 B.44 C.48 D.52故选:B.11.已知2a=5,2b=3,求2a+b的值为15.12.计算:(4x2y﹣2xy2)÷2xy=2x﹣y.故答案为:2x﹣y.13.已知m+2n+2=0,则2m•4n的值为.【解答】解:∵m+2n+2=0,∴m+2n=﹣2,∴2m•4n=2m•22n=2m+2n=2﹣2=.故答案为:.14.若(x+p)与(x+5)的乘积中不含x的一次项,则p=﹣5.【解答】解:(x+p)(x+5)=x2+5x+px+5p=x2+(5+p)x+5p,∵乘积中不含x的一次项,∴5+p=0,解得p=﹣5,15.一个正方形的边长增加了2cm,它的面积就增加44cm2,这个正方形的边长是:10cm.【分析】设正方形的边长是xcm,根据面积相应地增加了44cm2,即可列方程求解.【解答】解:设正方形的边长是xcm,根据题意得:(x+2)2﹣x2=44,解得:x=10.故答案为:10cm.16.一个三角形的底边长为(2a+6b),高是(3a﹣5b),则这个三角形的面积是3a2+4ab﹣15b2.【分析】根据×底×高,求出三角形面积即可.【解答】解:三角形面积S=(2a+6b)(3a﹣5b)=(a+3b)(3a﹣5b)=3a2﹣5ab+9ab﹣15b2=3a2+4ab﹣15b2,故答案为:3a2+4ab﹣15b217.已知6x=192,32y=192,则(﹣2017)(x﹣1)(y﹣1)﹣2=﹣.【分析】由6x=192,32y=192,推出6x=192=32×6,32y=192=32×6,推出6x﹣1=32,32y﹣1=6,可得(6x﹣1)y﹣1=6,推出(x﹣1)(y﹣1)=1,由此即可解决问.【解答】解:∵6x=192,32y=192,∴6x=192=32×6,32y=192=32×6,∴6x﹣1=32,32y﹣1=6,∴(6x﹣1)y﹣1=6,∴(x﹣1)(y﹣1)=1,∴(﹣2017)(x﹣1)(y﹣1)﹣2=(﹣2017)﹣1=﹣【点评】本题考查幂的乘方与积的乘方,解题的关键是灵活运用知识解决问题,属于中考填空题中的压轴题.18.我们知道,同底数幂的乘法法则为:a m•a n=a m+n(其中a≠0,m,n为正整数),类似地我们规定关于任意正整数m,n的一种新运算:h(m+n)=h(m)•h(n),请根据这种新运算填空:(1)若h(1)=,则h(2)=;(2)若h(1)=k(k≠0),那么h(n)•h(2017)=k n+2017(用含n和k的代数式表示,其中n为正整数)【分析】(1)将h(2)变形为h(1+1),再根据定义新运算:h(m+n)=h(m)•h(n)计算即可求解;(2)根据h(1)=k(k≠0),以及定义新运算:h(m+n)=h(m)•h(n)将原式变形为k n•k2017,再根据同底数幂的乘法法则计算即可求解.【解答】解:(1)∵h(1)=,h(m+n)=h(m)•h(n),∴h(2)=h(1+1)=×=;(2)∵h(1)=k(k≠0),h(m+n)=h(m)•h(n),∴h(n)•h(2017)=k n•k2017=k n+2017.故答案为:;k n+2017.【点评】考查了同底数幂的乘法,定义新运算,熟练掌握运算性质和法则是解题的关键.19.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如下图),此图揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律.例如:(a+b)0=1,它只有一项,系数为1;(a+b)1=a+b,它有两项,系数分别为1,1,系数和为2;(a+b)2=a2+2ab+b2,它有三项,系数分别为1,2,1,系数和为4;(a+b)3=a3+3a2b+3ab2+b3,它有四项,系数分别为1,3,3,1,系数和为8;…根据以上规律,解答下列问题:(1)(a+b)4展开式共有5项,系数分别为1,4,6,4,1;(2)(a+b)n展开式共有n+1项,系数和为2n.【分析】经过观察发现,这些数字组成的三角形是等腰三角形,两腰上的数都是1,从第3行开始,中间的每一个数都等于它肩上两个数字之和,展开式的项数比它的指数多1.根据上面观察的规律很容易解答问题.【解答】解:(1)展开式共有5项,展开式的各项系数分别为1,4,6,4,1,(2)展开式共有n+1项,系数和为2n.故答案为:(1)5;1,4,6,4,1;(2)n+1,2n.【点评】本题考查完全平方式.本题主要是根据已知与图形,让学生探究,观察规律,锻炼学生的思维,属于一种开放性题目.20.一块长方形铁皮,长为(5a2+4b2)m,宽为6a4m,在它的四个角上都剪去一个长为a3m的小正方形,然后折成一个无盖的盒子,这个无盖盒子的表面积是21a6+24a4b2m2.【分析】这块铁皮的面积减去4个角上的小正方形的面积,就是无盖盒子的表面积.【解答】解:(5a2+4b2)•6a4﹣4(a3)2,=30a6+24a4b2﹣4×a6,=30a6+24a4b2﹣9a6,=21a6+24a4b2m2.【点评】本题考查了单项式乘以多项式的法则,在实际问题中,应灵活运用整式的乘法运算.三.解答题(共6小题)21.计算:3a2b•(﹣a4b2)+(a2b)3【分析】先算乘方,再算乘法,最后合并即可.【解答】解:原式=﹣2a6b3+a6b3=﹣a6b3.【点评】本题考查了整式的混合运算,能熟练地运用法则进行计算是解此题的关键.22.计算:(a+1)2﹣a(a﹣1)【分析】直接利用完全平方公式以及单项式乘以多项式运算法则计算进而合并同类项即可.【解答】解:原式=a2+2a+1﹣a2+a=3a+1.【点评】此题主要考查了完全平方公式以及单项式乘以多项式运算,正确掌握相关运算法则是解题关键.23.先化简,再求值:(x﹣2y)2+(x+y)(x﹣4y),其中x=5,y=.【分析】原式利用完全平方公式,以及多项式乘以多项式法则计算,去括号合并得到最简结果,把x 与y的值代入计算即可求出值.【解答】解:原式=x2﹣4xy+4y2+x2﹣4xy+xy﹣4y2=2x2﹣7xy,当x=5,y=时,原式=50﹣7=43.24.甲乙两人共同计算一道整式乘法:(2x+a)(3x+b),由于甲抄错了第一个多项式中a的符号,得到的结果为6x2+11x﹣10;由于乙漏抄了第二个多项式中的x的系数,得到的结果为2x2﹣9x+10.请你计算出a、b的值各是多少,并写出这道整式乘法的正确结果.【分析】先按甲乙错误的说法得出的系数的数值求出a,b的值,再把a,b的值代入原式求出整式乘法的正确结果.【解答】解:∵甲正确得到的算式:(2x﹣a)(3x+b)=6x2+(2b﹣3a)x﹣ab=6x2+11x﹣10 对应的系数相等,2b﹣3a=11,ab=10,乙错误的算式:(2x+a)(x+b)=2x2+(2b+a)x+ab=2x2﹣9x+10对应的系数相等,2b+a=﹣9,ab=10,∴,解得:.∴正确的式子:(2x﹣5)(3x﹣2)=6x2﹣19x+10.25.乘法公式的探究及应用.数学活动课上,老师准备了若干个如图1的三种纸片,A种纸片边长为a的正方形,B种纸片是边长为b的正方形,C种纸片长为a、宽为b的长方形,并用A种纸片一张,B种纸片一张,C种纸片两张拼成如图2的大正方形.(1)请用两种不同的方法求图2大正方形的面积.方法1:(a+b)2;方法2:a2+b2+2ab.(2)观察图2,请你写出下列三个代数式:(a+b)2,a2+b2,ab之间的等量关系.(a+b)2=a2+2ab+b2;(3)类似的,请你用图1中的三种纸片拼一个图形验证:(a+b)(a+2b)=a2+3ab+2b2(4)根据(2)题中的等量关系,解决如下问题:①已知:a+b=5,a2+b2=11,求ab的值;②已知(x﹣2016)2+(x﹣2018)2=34,求(x﹣2017)2的值.【分析】(1)依据正方形的面积计算方式,即可得到结论;(2)依据(1)中的代数式,即可得出(a+b)2,a2+b2,ab之间的等量关系;(3)画出长为a+2b,宽为a+b的长方形,即可验证:(a+b)(a+2b)=a2+3ab+2b2;(4)①依据a+b=5,可得(a+b)2=25,进而得出a2+b2+2ab=25,再根据a2+b2=11,即可得到ab=7;②设x﹣2017=a,则x﹣2016=a+1,x﹣2018=a﹣1,依据(x﹣2016)2+(x﹣2018)2=34,即可得到(x﹣2017)2的值.【解答】解:(1)图2大正方形的面积=(a+b)2;图2大正方形的面积=a2+b2+2ab;故答案为:(a+b)2,a2+b2+2ab;(2)由题可得(a+b)2,a2+b2,ab之间的等量关系为:(a+b)2=a2+2ab+b2;故答案为:(a+b)2=a2+2ab+b2;(3)如图所示,(4)①∵a+b=5,∴(a+b)2=25,即a2+b2+2ab=25,又∵a2+b2=11,∴ab=7;②设x﹣2017=a,则x﹣2016=a+1,x﹣2018=a﹣1,∵(x﹣2016)2+(x﹣2018)2=34,∴(a+1)2+(a﹣1)2=34,∴a2+2a+1+a2﹣2a+1=34,∴2a2+2=34,∴2a2=32,∴a2=16,即(x﹣2017)2=16.26.阅读下面的材料并填空:①(1﹣)(1+)=1﹣,反过来,得1﹣=(1﹣)(1+)=②(1﹣)(1+)=1﹣,反过来,得1﹣=(1﹣)(1+)=×③(1﹣)(1+)=1﹣,反过来,得1﹣=(1﹣)(1+)=利用上面的材料中的方法和结论计算下题:(1﹣)(1﹣)(1﹣)……(1﹣)(1﹣)(1﹣)【分析】直接利用平方差公式计算进而结合已知规律得出答案.【解答】解:①(1﹣)(1+)=1﹣,反过来,得1﹣=(1﹣)(1+)=,②(1﹣)(1+)=1﹣,反过来,得1﹣=(1﹣)(1+)=×,③(1﹣)(1+)=1﹣,反过来,得1﹣=(1﹣)(1+)=利用上面的材料中的方法和结论计算下题:(1﹣)(1﹣)(1﹣)……(1﹣)(1﹣)(1﹣)=××××…××=.故答案为:,,(1﹣)(1+),.【点评】此题主要考查了平方差公式,正确应用平方差公式是解题关键.。
(常考题)北师大版初中数学七年级数学下册第一单元《整式的乘除》测试(答案解析)(2)

一、选择题1.若6a b +=,4ab =,则22a ab b ++的值为()A .40B .36C .32D .302.下列运算正确的是( )A .3333x x -=B .()4410a a a ÷=≠ C .()222424mn m n -=-D .()232a b abab ÷-=3.下列运算:①236a a a ⋅=;②()236a a =;③55a a a ÷=;④333()ab a b =.其中结果正确的有( ) A .1个 B .2个C .3个D .4个4.下列计算中正确的是( )A .1(1)1--=B .0(1)0-=C .1122aa-=D .﹣0.0000035=﹣3.5×10﹣65.将4个数a 、b 、c 、d 排成2行、2列,两边各加一条竖直线记成a c b d ,定义a c bd=ad-bc .上述记号就叫做2阶行列式,若11x x +-11x x -+=12,则x=( ).A .2B .3C .4D .66.从边长为 2a +的正方形纸片中剪去一个边长为1a -的正方形纸片()1a >,则剩余部分的面积是( ) A .41a +B .43a +C .63a +D .2+1a7.若2x y +=,1xy =-,则()()1212x y --的值是( ) A .7-B .3-C .1D .98.已知3x y +=,1xy =,则23x xy y -+的值是()A .7B .8C .9D .12 9.下列计算正确的是( )A .(ab 3)2=a 2b 6B .a 2·a 3=a 6C .(a +b )(a -b )=a 2-2b 2D .5a -2a =310.计算()3222()m m m -÷⋅的结果是( )A .2m -B .22mC .28m -D .8m -11.计算()233a a ⋅的结果是( ) A .9a B .8aC .11aD .18a12.利用图形中面积的等量关系可以得到某些数学公式.根据如图能得到的数学公式是( )A .(a+b )(a-b )=a 2-b 2B .(a-b )2=a 2-2ab+b 2C .a (a+b )=a 2 +abD .a (a-b )=a 2-ab二、填空题13.(a 2)﹣1(a ﹣1b )3=_____.14.在代数式求值时,可以利用交换律,将各项交换位置后,把一个多项式化成“()222a ab b±++其他项”的形式,然后利用完全平方公式得到“()2a b ±+其他项”,最后整体代入求值.例如对于问题“已知2a b +=,1c =,求2222a c b ab +++的值”,可按以下方式求解:2222a c b ab +++2222a ab b c =+++22()a b c =++=22215+=.请仿照以上过程,解决问题:若3m n t +=-,7n k t -=-,则22244241m n k mn mk nk +++--+=______.15.已知a b m -=,4ab =-,化简()()22a b -+的结果是__________. 16.若()()21x a x -+的积中不含x 的一次项,则a 的值为______. 17.已知2m a =,5n a =,则2m n a -=___________. 18.设(2a+3b )2=(2a ﹣3b )2+A ,则A =__________ 19.计算:()221842a b abab -÷=(-)________.20.设23P x xy =-,239Q xy y =-,若P Q =,则xy的值为__________. 三、解答题21.计算:(1)()22142xy z x yz--÷-(2)()()()221214x x x x x +----22.先化简,再求值:()()()()()2442225x y x y x y x y x y x ⎡⎤+--+-+-÷⎣⎦,其中x ,y 满足()2320x y +-=.23.先化简,再求值()()()()()21231132x x x x x ----+-+,其中23x =-.24.如图,某小区有一块长为(24)a b +米,宽为(2)a b -米的长方形地块,角上有四个边长为()-a b 米的小正方形空地,开发商计划将阴影部分进行绿化.(1)用含有a 、b 的式子表示绿化的总面积(结果写成最简形式);(2)物业找来阳光绿化团队完成此项绿化任务,已知该队每小时可绿化4b 平方米,每小时收费300元,则该物业应该支付绿化队多少费用?(用含a 、b 的代数式表示) 25.(1)探究发现: 小明计算下面几个题目①()()23x x ++;②()()41x x -+;③()()42y y +-;④()()53y y -- 后发现,形如()()x p x q ++的两个多项式相乘,计算结果具有一定的规律,请你帮助小明完善发现的规律:2()()()()()p x x q x ++=++(2)面积说明:上面规律是否正确呢?小明利用多项式乘法法则计算()()x p x q ++,发现这个规律是正确的.小明记得学习乘法公式时,除利用多项式乘法法则可以证明公式外,还可以利用图形面积说明乘法公式,于是画出右面图形说明他发现的规律,请你帮助小明补全图中括号的代数式.(3)逆用规律:学过因式分解后,小明知道了因式分解与整式乘法是逆变形,他就逆用发现的规律对下面的多项式进行了因式分解,请你用小明发现的规律分解下面因式:2710x x -+. 26.图1是一个长为2a 、宽为2b 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的正方形的周长等于________.(2)观察图2,请你写出下列三个代数式2()a b +,2()a b -,ab 之间的等量关系为________.(3)运用你所得到的公式,计算:若m 、n 为实数,且3=-mn ,4m n -=,试求m n +的值.(4)如图3,点C 是线段AB 上的一点,以AC 、BC 为边向两边作正方形,设8AB =,两正方形的面积和1226S S +=,求图中阴影部分面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据a+b=6,ab=4,应用完全平方公式,求出a 2+ab+b 2的值为多少即可. 【详解】解:∵a+b=6,ab=4, ∴a 2+ab+b 2 =(a+b )2-ab =36-4 =32 故选:D . 【点睛】此题主要考查了完全平方公式的应用,要熟练掌握,应用完全平方公式时,要注意:①公式中的a ,b 可是单项式,也可以是多项式;②对形如两数和(或差)的平方的计算,都可以用这个公式;③对于三项的可以把其中的两项看做一项后,也可以用完全平方公式.2.B解析:B【分析】根据幂的乘方、同底数幂乘法,合并同类项的运算法则逐一判断即可. 【详解】33332x x x -=,故A 选项错误;()4410a a a ÷=≠,故B 选项正确;()222424mn m n -=,故C 选项错误;()232a b ab ab ÷-=-,故D 选项错误;故选B . 【点睛】本题考查了整式的运算,幂的乘方、同底数幂乘法,合并同类项,关键是掌握各部分的运算法则.3.B解析:B 【分析】按照幂的运算法则直接判断即可. 【详解】解:①235a a a ⋅=,原式错误; ②()236a a =,原式正确;③551a a ÷=,原式错误; ④333()ab a b =,原式正确; 故选:B . 【点睛】本题考查了幂的运算,熟记幂的运算法则,注意它们之间的区别是解题关键.4.D解析:D 【分析】根据零指数幂、负指数幂和科学记数法的表示判断即可; 【详解】1(1)1--=-,故A 错误;0(11)-=,故B 错误;122a a-=,故C 错误; ﹣0.0000035=﹣3.5×10﹣6,故D 正确; 故选:D . 【点睛】本题主要考查了零指数幂、负指数幂和科学记数法,准确分析判断是解题的关键.5.B解析:B 【分析】根据题中的新定义将所求的方程化为普通方程,整理后即可求出方程的解,即为x 的值. 【详解】解:根据题意化简11 11x x x x +--+=12,得(x+1)2-(x-1)2=12, 整理得:x 2+2x+1-(1-2x+x 2)-12=0,即4x=12, 解得:x=3, 故选:B . 【点睛】此题考查了整式的混合运算,属于新定义的题型,涉及的知识有:完全平方公式,去括号、合并同类项法则,根据题意将所求的方程化为普通方程是解本题的关键.6.C解析:C 【分析】根据题意列出关系式,化简即可得到结果; 【详解】 根据题意可得:()()()()()2221212132163a a a a a a a a +--=++-+-+=+=+;故答案选C . 【点睛】本题主要考查了完全平方公式的几何背景,准确分析计算是解题的关键.7.A解析:A 【分析】利用多项式乘以多项式法则计算,整理后将已知等式代入计算即可求出值. 【详解】解:∵x+y=2,xy=-1,∴(1-2x )(1-2y )=1-2y-2x+4xy=1-2(x+y )+4xy=1-2×2-4=-7; 故选:A . 【点睛】本题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.8.A解析:A 【分析】先把3x y +=代入原式,可得23x xy y -+=22xy +,结合完全平方公式,即可求解.∵3x y +=,∴23x xy y -+=2()x xy x y y -++=22x xy xy y -++=22x y +,∵1xy =,∴23x xy y -+=22x y +=22()23217x y xy +-=-⨯=,故选A . 【点睛】本题主要考查代数式求值,熟练掌握完全平方公式及其变形公式,是解题的关键.9.A解析:A 【分析】根据整式的积的乘方计算法则,同底数幂相乘法则,平方差公式,合并同类项依次进行计算并判断. 【详解】A 、(ab 3)2=a 2b 6,故正确;B 、a 2·a 3=a 5,故错误;C 、(a +b )(a -b )=a 2-b 2,故错误;D 、5a -2a=3a ,故错误; 故选:A . 【点睛】此题考查整式的计算,正确掌握整式的积的乘方计算法则,同底数幂相乘法则,平方差公式,合并同类项是解题的关键.10.C解析:C 【分析】先分别计算积的乘方运算,再利用单项式除以单项式法则计算即可. 【详解】 解:()3222()m m m -÷⋅=()468mm -÷ =()468m m -÷=28m -, 故选:C . 【点睛】本题考查单项式除以单项式,积的乘方运算.在做本题时需注意运算顺序,先计算积的乘方,再算除法.11.A【分析】根据幂的乘方运算、同底数幂的乘法法则即可得. 【详解】 原式63a a =⋅,9a =,故选:A . 【点睛】本题考查了幂的乘方、同底数幂的乘法,熟练掌握各运算法则是解题关键.12.B解析:B 【分析】根据图形得出阴影部分的面积是(a-b )2和b 2,剩余的矩形面积是(a-b )b 和(a-b )b ,即大阴影部分的面积是(a-b )2,即可得出选项. 【详解】解:从图中可知:阴影部分的面积是(a-b )2和b 2,剩余的矩形面积是(a-b )b 和(a-b )b ,即大阴影部分的面积是(a-b )2, ∴(a-b )2=a 2-2ab+b 2, 故选:B . 【点睛】本题考查了完全平方公式的应用,主要考查学生的阅读能力和转化能力,题目比较好,有一定的难度.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.【分析】直接利用积的乘方运算法则进行化简再利用单项式乘以单项式计算得出答案【详解】解:(a2)﹣1(a ﹣1b )3=a ﹣2•a ﹣3b3=a ﹣5b3=故答案为:【点睛】此题主要考查了积的乘方运算单项式乘解析:35b a .【分析】直接利用积的乘方运算法则进行化简,再利用单项式乘以单项式计算得出答案. 【详解】解:(a 2)﹣1(a ﹣1b )3 =a ﹣2•a ﹣3b 3 =a ﹣5b 3=35b a . 故答案为:35b a.【点睛】此题主要考查了积的乘方运算,单项式乘以单项式,正确掌握相关运算法则是解题关键.14.17【分析】由m+n=3-t 与n-k=t-7可得m+2n-k=-4再两边平方展开最后整体代入即可【详解】解:∵m+n=3-tn-k=t-7∴(m+n )+(n-k )=3-t+t-7即m+2n-k=-4解析:17 【分析】由m+n=3-t 与n-k=t-7可得m+2n-k=-4,再两边平方展开,最后整体代入即可. 【详解】解:∵m+n=3-t ,n-k=t-7, ∴(m+n )+(n-k )=3-t+t-7, 即m+2n-k=-4, ∴(m+2n-k )2=(-4)2, ∴m 2+4n 2+k 2+4mn-2mk-4nk=16, ∴m 2+4n 2+k 2+4mn-2mk-4nk+1=16+1=17, 故答案为:17. 【点睛】本题考查代数式求值,将原代数式进行适当的变形是得出正确答案的关键.15.【分析】根据多项式乘以多项式展开在把已知式子代入求解即可;【详解】由题可知∵∴原式;故答案是:【点睛】本题主要考查了整式的化简和代数式求值准确化简计算是解题的关键 解析:28m -【分析】根据多项式乘以多项式展开,在把已知式子代入求解即可; 【详解】由题可知()()()2222424-+=+--=+--a b ab a b ab a b , ∵a b m -=,4ab =-,∴原式42428m m =-+-=-; 故答案是:28m -. 【点睛】本题主要考查了整式的化简和代数式求值,准确化简计算是解题的关键.16.2【分析】先运用多项式的乘法法则计算再合并同类项因积中不含x 的一次项所以让一次项的系数等于0得a 的等式再求解【详解】解:(2x-a )(x+1)=2x2+(2-a )x-a ∵积中不含x 的一次项∴2-a=解析:2 【分析】先运用多项式的乘法法则计算,再合并同类项,因积中不含x 的一次项,所以让一次项的系数等于0,得a 的等式,再求解. 【详解】解:(2x-a )(x+1)=2x 2+(2-a )x-a , ∵积中不含x 的一次项, ∴2-a=0, ∴a=2, 故答案为:2. 【点睛】本题考查了多项式乘多项式法则,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.17.【分析】根据幂的乘方与同底数幂的除法法则解答即可【详解】∵(am )2÷an =22÷5=4÷5=故答案为:【点睛】本题主要考查了幂的乘方与同底数幂的除法熟记幂的运算法则是解答本题的关键解析:45【分析】根据幂的乘方与同底数幂的除法法则解答即可. 【详解】∵2m a =,5n a =,2m n a -=(a m )2÷a n =22÷5=4÷5=45. 故答案为:45. 【点睛】本题主要考查了幂的乘方与同底数幂的除法,熟记幂的运算法则是解答本题的关键.18.24ab 【分析】由完全平方公式(a±b )2=a2±2ab+b2得到(a+b )2=(a ﹣b )2+4ab 据此可以作出判断【详解】解:∵(2a+3b )2=(2a ﹣3b )2+4×2a×3b =(2a ﹣3b )2解析:24ab 【分析】由完全平方公式(a ±b )2=a 2±2ab +b 2,得到(a +b )2=(a ﹣b )2+4ab ,据此可以作出判断. 【详解】解:∵(2a +3b )2=(2a ﹣3b )2+4×2a ×3b =(2a ﹣3b )2+24ab ,(2a +3b )2=(2a ﹣3b )2+A ,∴A =24ab .故答案为:24ab .【点睛】本题考查了完全平方公式.关键是要了解(a ﹣b )2与(a +b )2展开式中区别就在于2ab 项的符号上,通过加上或者减去4ab 可相互变形得到.19.【分析】直接根据多项式除单项式运算法则计算即可【详解】解:==故答案为:【点睛】本题主要考查了多项式除以单项式灵活运用多项式除以单项式的运算法则成为解答本题的关键解析:-168a b +【分析】直接根据多项式除单项式运算法则计算即可.【详解】解:()221842a b abab -÷(-) =22118422a b ab ab ab ÷-÷(-)(-) =-168a b +.故答案为:-168a b +.【点睛】本题主要考查了多项式除以单项式,灵活运用多项式除以单项式的运算法则成为解答本题的关键.20.3【分析】根据P=Q 得出x=3y 求解即可【详解】解:∵∴即=0∴x=3y ∴=3故答案为:3【点睛】本题考查了完全平方公式关键是能根据已知条件变形 解析:3【分析】根据P=Q ,得出x=3y 求解即可.【详解】解:∵P Q =,23P x xy =-,239Q xy y =-,∴22339x xy xy y -=-,即2226(3)9x xy y x y =--+=0,∴x=3y ∴x y=3. 故答案为:3【点睛】本题考查了完全平方公式,关键是能根据已知条件变形.三、解答题21.(1)322x yz -;(2)3294x x -+-【分析】(1)根据单项式与单项式的除法法则计算即可;(2)先算乘法,再去括号合并同类项;【详解】解:(1)()22142xy z x yz--÷- =1221112x y z +-+-=322x yz -;(2)()()()221214x x x x x +---- =x 3+x 2-x-(2x 3-8x 2-x+4)=x 3+x 2-x-2x 3+8x 2+x-4=3294x x -+-.【点睛】本题考查了整式的混合运算,熟练掌握单项式与单项式的除法法则、单项式与多项式的乘法法则、多项式与多项式的乘法法则是解答本题的关键.22.22x y -+,10【分析】首先利用平方差公式、完全平方公式、多项式乘以多项式计算中括号里面的式子,再合并同类项,化简后,计算括号外的除法,最后代入x 、y 的值即可.【详解】解:原式()()222222164425210x y x xy y x xy xy y x ⎡⎤=--++--+-÷⎣⎦()2222221644210420x y x xy y x xy xy y x =-----+-+÷()222x xy x =-+÷22x y =-+.∵()230x +=,∴30x +=,20y -=,∴3x =-,2y =.∴原式()23226410=-⨯-+⨯=+=.【点睛】本题主要考查了整式的混合运算,关键是掌握整式乘、除、加、减的各种运算法则. 23.13718【分析】先根据多形式的乘法法则、平方差公式、完全平方公式计算,再去括号合并同类项即可.【详解】解:()()()()()21231132x x x x x ----+-+ =()()22213261692x x x x x x --+---++ =222193261322x x x x x x --+-+--- =215822x x --+, 当23x =-时, 原式=2122582332⎛⎫⎛⎫-⨯--⨯-+ ⎪ ⎪⎝⎭⎝⎭ =2165932-++ =13718. 【点睛】本题主要考查了整式的化简求值,涉及到的知识有:平方差公式,完全平方公式,多项式乘以多项式,合并同类项等知识.在求代数式的值时,一般先化简,再把各字母的取值代入求值.24.(1)()2148ab b-平方米;(2)(1050600)a b -元【分析】(1)用长方形面积减去四个小正方形面积即2(2)(24)4()a b a b a b -+-- 利用多项式乘法法则与公式展开,合并同类项即可;(2)利用总面积除以每小时工作面积再乘以每小时收费300元,计算即可.【详解】解:(1)根据题意得:2(2)(24)4()a b a b a b -+-- ,()2222482442a ab ab b a ab b =+----+,2222464484a ab b a ab b =+--+-,()2148ab b =-平方米,答:绿化的面积是()2148ab b-平方米;(2)根据题意得:()21484300ab b b -÷⨯, 723002a b ⎛⎫=-⨯ ⎪⎝⎭, (1050600)a b =-元,答:该物业应该支付绿化队(1050600)a b -元费用.【点睛】本题考查列代数式求图形面积,整式的乘法混合运算,多项式除以单项式,掌握列代数式求图形面积以及代数式的书写要求,整式的乘法混合运算,多项式除以单项式是解题关键. 25.(1)x ,p q +,pq ;(2)如图见解析;(3)()()25x x --【分析】(1)利用多项式乘以多项式的法则相乘即可得到结论(2)通过总结(1)的计算结果:()()2x p x q x px qx pq ++=+++在结合图形的面积,即可已得到答案.(3)观察运算结果发现,一次项系数是两个因式中常数项的和,常数项是两个因式中常数项的积,即可得到答案.【详解】(1)()()22356x x x x ++=++,()()24134x x x x -+=--,()()24228y y y y +-=+-,()()253815y y y y --=-+,总结规律为:()()()2x p x q x p q x pq ++=+++(2)根据(1)中总结的规律:()()2x p x q x px qx pq ++=+++结合图形的面积可知:()()x p x q ++为长方形的面积,则()x p +为长方形的宽,()x q +为长方形的长, 所以答案如图:(3)按照小明发现的规律:()()()2x p x q x p q x pq ++=+++ 2710x x -+()()()()22525x x =+-+-+-⨯-⎡⎤⎣⎦∴()()271025x x x x -+=--本题主要考查了多项式乘法中最基本的两个一次系数为1的一次二项式的乘法,通过运算能总结出规律是解题关键.26.(1)44a b -或者4()a b -;(2)22()()4a b a b ab -=+-;或22()()4a b a b ab +=-+;或224()()ab a b a b =+--;(3)2或2-;(4)192. 【分析】(1)直接写出边长:长边减短边=a-b ,进而可得周长; (2)根据阴影正方形的面积=大正方形的面积-4个长方形的面积解答,或利用大正方形的面积=阴影方形的面积+4个长方形的面积解答,或利用4个长方形的面积=大正方形的面积-阴影方形的面积解答;(3)根据22()()4a b a b ab +=-+求解即可;(4)设AC x =,BC y =,则21S x =,22S y =,由1226S S +=可得,2226x y +=,然后把8x y +=的两边平方求解即可.【详解】解:(1)由图可知,阴影部分正方形的边长为:a-b ,∴阴影部分的正方形的周长等于44a b -或者4()a b -,故答案为:44a b -或者4()a b -;(2)22()()4a b a b ab -=+-;或(22()()4a b a b ab +=-+;或224()()ab a b a b =+--;(3)∵3=-mn ,4m n -=,∴222()()444(3)16124m n m n mn +=-+=+⨯-=-=,∴2m n +=±,∴m n +的值为2或2-.(4)设AC x =,BC y =,则21S x =,22S y =, 由1226S S +=可得,2226x y +=,而8x y AB +==, 而12S xy =阴影部分, ∵8x y +=,∴22264x xy y ++=,又∴2226x y +=,∴238xy =, ∴13819242S xy ===阴影部分, 即,阴影部分的面积为192.本题主要考查完全平方公式的几何背景,利用图形的面积是解决此题的关键,利用数形结合的思想,注意观察图形.。
整式的乘除 冀教版数学七年级下册单元测试(含答案)

七年级下册数学冀教版第八章整式的乘除时间:60分钟满分:100分一、选择题(本大题共12小题,每小题3分,共36分.每小题给出的四个选项中,只有一项是符合题目要求的)1.下列计算正确的是()A.a·a2=a2B.(x3)2=x5C.(2a)2=4a2D.(x+1)2=x2+12.如图是小明的测试卷,则他的成绩为()A.25分B.50分C.75分D.100分3.一个长方体的长、宽、高分别为3a-4,2a,a,它的体积等于()A.3a3-4a2B.a2C.6a3-8aD.6a3-8a24.式子(2a-b)(-b+2a)的运算结果正确的是()A.4a2-4ab+b2B.4a2+4ab+b2C.2a2-b2D.4a2-b25.若(x2-mx+1)(x-1)中x2项的系数为零,则常数m的值是()A.-2B.-1C.1D.26.若ab2=-6,则-ab(a2b5-ab3-b)的值为()A.216B.246C.-216D.1747.计算5(6+1)(62+1)(64+1)+1的结果为()A.616B.68C.68+1D.68-18.已知(x-1)|x|-1有意义且恒等于1,则x的值为()A.-1或2B.1C.±1D.09.从边长为a的正方形内剪掉一个边长为b的小正方形(如图1),然后将剩余部分剪拼成一个长方形(如图2),上述操作所能验证的等式是()A.(a-b)2=a2-2ab+b2B.a2-b2=(a+b)(a-b)C.(a+b)2=a2+2ab+b2D.a2+ab=a(a+b)10.已知a m=7,b n=17,则(-a3m b n)2(a m b2n)3的值为()A.1B.-1C.7D.1711.若(m+n)2=11,(m-n)2=3,则(mn)-2=()A.-14B.14C.-114D.1812.设x,y为任意数,定义运算:x*y=(x+1)(y+1)-1.给出下列五个结论:①x*y=y*x;②x*(y+2)=x*y+x*2;③(x+1)*(x-1)=x*x-1;④x*0=0;⑤(x+1)*(x+1)=x*x+2*x+1.其中正确结论的序号是() A.①③ B.③⑤ C.①②④ D.②⑤二、填空题(本大题共4小题,每小题3分,共12分)13.计算:2 0190+(13)-1=.14.若27x=9x+2,则x=.15.已知(x-1)(x+2)=ax2+bx+c,则代数式4a-2b+c的值为.16.设a1,a2,a3,…是一列正整数,其中a1表示第一个数,a2表示第二个数……a n表示第n个数(n是正整数).已知a1=1,4a n=(a n+1-1)2-(a n-1)2,则a2 018=.三、解答题(本大题共6小题,共52分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分8分)计算:(1)5·(-5)2m+(-5)2m+1; (2)99.82;(3)3(2x-1)(x+6)-5(x-3)(x+6)+(2x-1)2; (4)-82 019×(-0.125)2 018+(-0.25)3×26.18.(本小题满分6分)化简并求值:(1)(3x+1)(2x-3)-(6x-5)(x-4),其中x=-2;(2)(2a+1)(2a-1)+(a-2)2-4(a+1)(a-2),其中a=-2.若(x m÷x2n)3÷x m-n与4x2为同类项,且m+5n=7,求m2-25n2的值.20.(本小题满分8分)“囧”是一个网络流行词.如图,将一张长为x+y,宽为3x的长方形的纸片,剪去两个一样的小直角三角形和一个小长方形得到一个“囧”字图案(阴影部分).(1)用含有x,y的式子表示图中“囧”字图案的面积;(2)当x=2,y=6时,求“囧”字图案的面积.21.(本小题满分10分)规定三角“”表示abc,方框“”表示x m+y n.例如:=1×19×3÷(24+31)=3.请根据这个规定解答下列问题.(1)计算:=.(2)解方程:=6x2+7.研究下列算式:0×1×2-13=-1,1×2×3-23=-2,2×3×4-33=-3,3×4×5-43=-4,…(1)你发现了什么规律?请将你发现的规律用公式表示出来,并用你学过的知识推导出这个公式.(2)用得到的公式计算:999×1 000×1 001.第八章综合能力检测卷答案题号1 2 3 4 5 6 7 8 9 10 11 12答案C B D A B B B A B C B A13.414.415.016.40351.C【解析】a·a2=a3,故A选项错误;(x3)2=x6,故B选项错误;(2a)2=4a2,故C选项正确;(x+1)2=x2+2x+1,故D选项错误.故选C.2.B【解析】由a2·a3=a5,(a3)2=a6,(ab)3=a3b3,a5÷a5=1.可知小明的成绩为25×2=50(分).3.D【解析】由题意知,V长方体=(3a-4)·2a·a=6a3-8a2.故选D.4.A【解析】(2a-b)(-b+2a)=(2a-b)2=4a2-4ab+b2.故选A.5.B【解析】∵(x2-mx+1)(x-1)=x3-x2-mx2+mx+x-1=x3-(1+m)x2+(1+m)x-1,且(x2-mx+1)(x-1)中x2项的系数为零,∴1+m=0,解得m=-1.故选B.6.B【解析】-ab(a2b5-ab3-b)=-a3b6+a2b4+ab2=-(ab2)3+(ab2)2+ab2,∵ab2=-6,∴原式=-(-6)3+(-6)2-6=216+36-6=246,故选B.7.B【解析】5(6+1)(62+1)(64+1)+1=(6-1)(6+1)(62+1)(64+1)+1=(62-1)(62+1)(64+1)+1=(64-1)(64+1)+1=68-1+1= 68.故选B.8.A【解析】根据题意,得x-1≠0,|x|-1=0或x=2.由|x|-1=0,得x=±1,由x-1≠0,得x≠1.综上可知,x 的值是-1或2.故选A.9.B【解析】从边长为a的正方形内剪掉一个边长为b的小正方形,剩余部分的面积是a2-b2,剩余部分剪拼成的长方形的面积是(a+b)(a-b),根据剩余部分的面积相等,得a2-b2=(a+b)(a-b).故选B.10.C【解析】(-a3m b n)2(a m b2n)3=(a m)6(b n)2(a m)3(b n)6=(a m)9(b n)8=79×(17)8=78×(17)8×7=(7×17)8×7=7.故选C.11.B【解析】∵(m+n)2=11,(m-n)2=3,∴m2+2mn+n2=11,m2-2mn+n2=3.两式相减,可得4mn=8,∴mn=2,∴(mn)-2=2-2=14.故选B.12.A【解析】x*y=y*x=xy+x+y,所以①正确;x*(y+2)=(x+1)(y+3)-1=xy+3x+y+2,x*y+x*2=(x+1)(y+1)-1+(x+1)(2+1)-1=xy+x+y+3x+3-1=xy +4x+y+2,所以②错误;(x+1)*(x-1)=(x+2)x-1=x2+2x-1,x*x-1=(x+1)(x+1)-1-1=x2+2x-1,所以③正确;x*0=x,所以④错误;(x+1)*(x+1)=(x+2)(x+2)-1=x2+4x+3,x*x+2*x+1=(x+1)(x+1)-1+3(x+1)-1+1=x2+5x+3,所以⑤错误.故选A.13.4【解析】 2 0190+(13)-1=1+3=4.14.4【解析】∵27x=9x+2,∴(33)x=(32)x+2,33x=32x+4,∴3x=2x+4,x=4.15.0【解析】(x-1)(x+2)=x2-x+2x-2=x2+x-2=ax2+bx+c,则a=1,b=1,c=-2.故4a-2b+c=4-2-2=0.16.4 035【解析】∵4a n=(a n+1-1)2-(a n-1)2,∴(a n+1-1)2=(a n-1)2+4a n=(a n+1)2.又∵a1,a2,a3,…是一列正整数,∴a n+1-1=a n+1,∴a n+1=a n+2,∵a1=1,∴a2=3,a3=5,a4=7,a5=9,…,∴a n=2n-1,∴a2 018=4 035.17.【解析】(1)5·(-5)2m+(-5)2m+1=-(-5)·(-5)2m+(-5)2m+1=-(-5)2m+1+(-5)2m+1=0.(2)99.82=(100-0.2)2=10 000-40+0.04=9 960.04.(3)3(2x-1)(x+6)-5(x-3)(x+6)+(2x-1)2=3(2x2+12x-x-6)-5(x2+6x-3x-18)+4x2-4x+1=6x2+36x-3x-18-5x2-30x+15x+90+4x2-4x+1=5x2+14x+73.(4)-82 019×(-0.125)2 018+(-0.25)3×26=-8×82 018×0.1252 018+(-0.25)3×43=-8×(8×0.125)2 018+(-0.25×4)3=-8×12 018+(-1)3=-8-1=-9.18.【解析】(1)(3x+1)(2x-3)-(6x-5)(x-4)=6x2-9x+2x-3-6x2+24x+5x-20=22x-23,当x=-2时,原式=22×(-2)-23=-67.(2)(2a+1)(2a-1)+(a-2)2-4(a+1)(a-2)=4a2-1+a2-4a+4-4a2+4a+8=a2+11,当a=-2时,原式=15.19.【解析】(x m÷x2n)3÷x m-n=(x m-2n)3÷x m-n=x3m-6n÷x m-n= x2m-5n,因为(x m÷x2n)3÷x m-n与4x2为同类项,所以2m-5n=2.又因为m+5n=7,所以m=3,n=45,所以m2-25n2=9-16=-7.20.【解析】(1)“囧”字图案的面积S=3x(x+y)-12·x+y2·x·2-x+y2·x=2x2+2xy.(2)当x=2,y=6时,“囧”字图案的面积S=8+2×2×6=32.21.【解析】(1)-32.=[2×(-3)×1]÷[(-1)4+31]=-6÷4=-32(2)∵=6x2+7, ∴(3x-2)(3x+2)-[(x+2)(3x-2)+32]=6x2+7,∴9x2-4-(3x2+4x-4+9)=6x2+7,∴9x2-4-3x2-4x-5=6x2+7,解得x=-4.22.【解析】(1)公式:(n-1)n(n+1)-n3=-n(n为正整数).推导:(n-1)n(n+1)-n3=n(n2-1)-n3=n3-n-n3=-n(n为正整数).(2)由(1)知,999×1 000×1 001-1 0003=-1 000,所以999×1 000×1 001=-1 000+1 0003=999 999 000.。
青岛版七年级数学下册整式的乘除单元测试卷40

青岛版七年级数学下册整式的乘除单元测试卷40一、选择题(共10小题;共50分)1. 计算的结果是A. B. C. D.2. 如果,那么是A. B. C. D.3. 下列计算中,正确的是A.D.4. 的计算结果是5. 第一宇宙速度是米/秒,卫星以此速度运行秒走过的路程为A. 米B. 米C. 米D. 米6. 计算的结果是A. B. C. D.7. 将一多项式,除以后,得商式为,余式为,则A. B. C. D.8. 下列运算正确的是A.B.C.D.9. 若有意义,则的取值范围是A. B.C. 或D. 且10. 若,则的值为A. C. D.二、填空题(共6小题;共30分)11. .12. 在括号里填上适当的式子:().13. 若的展开式中不含和项,则的值为.14. 计算:.15. 若,则.16. 若,,用的代数式表示,则.三、解答题(共8小题;共104分)17. 计算:.18. 已知当时,代数式的值为零,求当时,的值.19. 用小数表示下列各数:(1);(2;(3.20. 若,求的值.21. 已知多项式.(1)化简多项式;(2)若,求的值.22. 若(其中,,为自然数),你能求出的值吗?试一试.23.24. .答案第一部分1. B2. D3. A4. C5. D【解析】走过的路程为米.6. B7. D8. C 【解析】A 、,故A选项错误;B、,故B选项错误;C、,故C选项正确;D、,故D选项错误.9. D 【解析】由题意得且,所以且.10. B【解析】得到,则.第二部分11.【解析】12.13.【解析】展开式中不含和项,,,解得:,.14.【解析】根据题意:,,.16.【解析】,,,即.第三部分17.18. .19. (1)(2)(3)20. 因为,所以.21. (1)(2)方程变形得:,则.22. ,所以,,.所以.23.24. .。
(必考题)初中数学七年级数学下册第一单元《整式的乘除》测试(包含答案解析)(3)

一、选择题1.某种产品的原料提价,因而厂家决定对产品进行提价,现有三种方案方案一:第一次提价p %,第二次提价q %方案二:第一次提价q %,第二次提价p % 方案三:第一、二次提价均为2p q +% 其中p ,q 是不相等的正数,下列说法正确的个数是(提示:因为p≠q ,(p -q )2=p 2-2pq +q2>0,所以p 2+q 2>2pq )( )(1) 方案一提价最多 (2)方案二提价最多(3)方案三提价最多 (4)方案一二提价一样多A .1B .2C .3D .42.下列运算中正确的是( )A .235x y xy +=B .()3253x y x y =C .826x x x ÷=D .32622x x x ⋅= 3.有下列计算:①236a a a ⋅=;②33(2)6x x -=-;③0(11)-=;④122-=-;⑤426a a a -÷=.其中正确的个数为( )A .4B .3C .2D .14.将4个数a 、b 、c 、d 排成2行、2列,两边各加一条竖直线记成a c b d ,定义a c b d =ad -bc .上述记号就叫做2阶行列式,若11x x +- 11x x -+=12,则x=( ). A .2B .3C .4D .6 5.如果249x mx -+是一个完全平方式,则m 的值是( ) A .12± B .9C .9±D .12 6.下列运算中,正确的个数是( ) ①2352x x x +=;②()326x x =;③03215⨯-=;④538--+=A .1个B .2个C .3个D .4个7.下列计算正确的是( )A .(a +b )(a ﹣2b )=a 2﹣2b 2B .(a ﹣12)2=a 2﹣14C .﹣2a (3a ﹣1)=﹣6a 2+aD .(a ﹣2b )2=a 2﹣4ab +4b 28.如图:用四个全等的长方形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,若用a ,b 分别表示矩形的长和宽(a b >),则下列关系中不正确的是( )A .12a b +=B .2a b -=C .35ab =D .2284a b += 9.下列运算正确的是( )A .3515x x x ⋅=B .()3412x x -=C .()32628y y =D .623x x x ÷= 10.下列运算正确的是( ) A .x 2·x 3=x 6B .(x 3)2=x 6C .(-3x)3=27x 3D .x 4+x 5=x 9 11.如图,两个正方形边长分别为a ,b ,如果a+b =10,ab =18,则阴影部分的面积为( )A .21B .22C .23D .24 12.下列各式计算正确的是( ) A .5210a a a = B .()428=a a C .()236a b a b = D .358a a a +=二、填空题13.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了()n a b +(n 为正整数)的展开式(按a 的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应222()2a b a ab b +=++展开式中的系数;第四行的四个数1,3,3,1,恰好对应着+=+++33223()33a b a a b ab b 展开式中的系数等等.根据上面的规律,写出5()a b +的展开式:5()a b +=_________.利用上面的规律计算:5432252102102521-⨯+⨯-⨯+⨯-=_________.14.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)探究:上述操作能验证的等式是:__________;(请选择正确的一个)A .2222()a ab b a b -+=-B .22()()a b a b a b -=+-C .2()a ab a a b +=+(2)应用:利用所选(1)中等式两边的等量关系,完成下面题目:若46x y +=,45x y -=,则221664x y -+的值为__________.15.若2211392781n n ++⨯÷=,则n =____.16.要使()()22524x x x mx -+--的展开式中不含2x 项,则m 的值是______. 17.如图所示的四边形均为长方形,请写出一个可以用图中图形的面积关系说明的正确等式______.18.已知4222112x x +-⋅=,则x =________19.若代数式21x mx ++是完全平方式,则m 的值为______.20.29999981002-⨯=__________.三、解答题21.计算:(x +1)(x ﹣1)﹣2(2)x +.22.如图,在长8cm ,宽5cm 的长方形塑料板的四个角剪去4个边长为 cm x 的小正方形,按折痕做一个无盖的长方体盒子,求盒子的容积(塑料板的厚度忽略不计).23.数学中有很多等式可以用图形的面积来表示.(1)观察图,直接写出代数式22(),()a b a b +-,ab 之间的等量关系________;(2)根据(1)题中的等量关系,解决如下问题:①已知7,10a b ab -==-.求+a b 的值; ②已知13x x +=,求1x x-的值. 24.计算 (1)222331()27(6)3ab a b a b -⋅÷-;(2)(2)(32)()a b a b b a b -+-+. 25.先化简,再求值:(2x+y )2﹣(y ﹣2x )2,其中11,34x y ==-. 26.如图,点M 是AB 的中点,点P 在MB 上.分别以AP ,PB 为边,作正方形APCD 和正方形PBEF ,连结MD 和ME .设AP =a ,BP =b ,且a +b =8,ab =6,求图中阴影部分的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据各方案中的百分率,分比表示 出提价后的单价,方案一:(1+p%)(1+q%)=1+p%+q%+p%•q%,方案二:(1+q%)(1+p%)=1+p%+q%+p%•q%,方案一与方案二一样多;方案三: (1+2p q + %)2>1+ p%+q%++p%•q%,方案三提价最多即可判断. 【详解】解:设某种产品的原料价格为1,方案一:第一次提价p %,第二次提价q %,某种产品的原料提价后价格为(1+p%)(1+q%)=1+p%+q%+p%•q%,方案二:第一次提价q %,第二次提价p %, 某种产品的原料提价后价格为(1+q%)(1+p%)==1+p%+q%+p%•q%,方案一与方案二一样多, 方案三:第一、二次提价均为2p q +%,某种产品的原料提价后价格为(1+2p q + %)2=1+ p%+q%+2%2p q +⎛⎫ ⎪⎝⎭=1+ p%+q%+()222+2%4p q pq +, p 2+q 2>2pq ,22+22244p q pq pq pq pq ++>=, (1+2p q + %)2=1+ p%+q%+2%2p q +⎛⎫ ⎪⎝⎭=1+ p%+q%+()222+2%4p q pq +>1+ p%+q%++p%•q%,方案三提价最多,说法正确的个数是正确的个数有2个.故选择:B .【点睛】本题考查百分率应用问题,列代数式,多项式乘以多项式运算,比较代数式值的大小,利用公式p 2+q 2>2pq 进行放缩比较大小是解题关键. 2.C解析:C【分析】按照合并同类项,幂的运算法则计算判断即可.【详解】∵2x 与3y 不是同类项,∴无法计算,∴选项A 错误;∵()3263x y x y =,∴选项B 错误;∵88262x x x x -==÷,∴选项C 正确;∵32325222x x x x +⋅==,∴选项D 错误;故选C.【点睛】本题考查了幂的基本运算,准确掌握幂的运算法则,并规范求解是解题的关键. 3.C解析:C【分析】按照幂的运算法则,仔细计算判断即可.【详解】∵23235a a a a +⋅==,∴①错误;∵3333(2)(2)8x x x -=-=-,∴②错误;∵0(11)-=,∴③正确, ∵1122-=, ∴④错误, ∵424(26)a a a a ---÷==,∴⑤正确.故选C.【点睛】本题考查了幂的计算,熟练掌握幂的运算法则,灵活进行相应的计算是解题的关键. 4.B解析:B【分析】根据题中的新定义将所求的方程化为普通方程,整理后即可求出方程的解,即为x 的值.【详解】解:根据题意化简11 11x x x x +--+=12,得(x+1)2-(x-1)2=12, 整理得:x 2+2x+1-(1-2x+x 2)-12=0,即4x=12,解得:x=3,故选:B .【点睛】此题考查了整式的混合运算,属于新定义的题型,涉及的知识有:完全平方公式,去括号、合并同类项法则,根据题意将所求的方程化为普通方程是解本题的关键. 5.A解析:A【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m 的值.【详解】解:∵()22249=23x mx x mx -+-+,∴223mx x -=±⨯⨯ ,解得m=±12.故选:A .【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要. 6.A解析:A【分析】①根据同类项的定义判断计算;②根据幂的乘方公式计算;③利用零指数幂和有理数的混合运算法则计算;④根据同类项的定义判断计算.【详解】∵2x 与3x 不是同类项,无法合并,∴①是错误的;∵()326x x =,∴②是正确的; ∵032112-1=1⨯-=⨯,∴③是错误的; ∵53-5+3=-2--+=,∴④是错误的;综上所述,只有一个正确,故选:A.【点睛】本题考查了合并同类项,幂的乘方,零指数幂,绝对值,有理数的混合运算,熟练掌握公式及其运算法则是解题的关键.7.D解析:D【分析】根据整式的乘法逐项判断即可求解.【详解】解:A. (a +b )(a ﹣2b )=a 2﹣4b 2,原题计算错误,不合题意;B. (a ﹣12)2=a 2﹣a +14,原题计算错误,不合题意; C. ﹣2a (3a ﹣1)=﹣6a 2+2a ,原题计算错误,不合题意;D. (a ﹣2b )2=a 2﹣4ab +4b 2,计算正确,符合题意.故选:D【点睛】本题考查了单项式乘以多项式,平方差公式,完全平方式,熟练掌握单项式乘以多项式的法则、乘法公式是解题的关键.8.D解析:D【分析】能够根据大正方形和小正方形的面积分别求得正方形的边长,再根据其边长分别求解,根据4个矩形的面积和等于两个正方形的面积的式求解即可.【详解】解:A 、根据大正方形的面积求得该正方形的边长是12,则12a b +=,故A 选项不符合题意;B 、根据小正方形的面积可以求得该正方形的边长是2,则2a b -=,故B 选项不符合题意;C 、根据4个矩形的面积和等于大正方形的面积减去小正方形的面积,即41444140ab ,35ab =,故 C 选项不符合题意;D 、222()2144a b a b ab +=++=,所以 221442351447074a b ,故 D 选项符合题意.故选:D .【点睛】本题考查了代数式和图形的面积公式正确运算,熟悉相关性质是解题的关键.9.C解析:C【分析】根据整式的同底数幂相乘法则、幂的乘方法则、积的乘方法则、同底数幂相除法则进行计算并判断.【详解】A 、358⋅=x x x ,故该项错误;B 、()3412x x -=-,故该项错误;C 、()32628y y =,故该项正确;D 、624x x x ÷=,故该项错误;故选:C .【点睛】本题考查了整式的计算,熟记整式的同底数幂相乘法则、幂的乘方法则、积的乘方法则、同底数幂相除法则是解题的关键.10.B解析:B【分析】根据幂的乘方与积的乘方的运算方法,同底数幂的乘法的运算方法,以及合并同类项的方法,逐项判断即可.【详解】∵x 2•x 3=x 5,∴选项A 不符合题意;∵(x 3)2=x 6,∴选项B 符合题意;∵(−3x )3=−27x 3,∴选项C 不符合题意;∵x 4+x 5≠x 9,∴选项D 不符合题意.故选:B .【点睛】此题主要考查了幂的乘方与积的乘方的运算方法,同底数幂的乘法的运算方法,以及合并同类项的方法,要熟练掌握.11.C解析:C【分析】表示出空白三角形的面积,用总面积减去两个空白三角形的面积即可,再将得到的等式变形后,利用整体代入求值即可.【详解】解:如图,大正方形的边长是a,三角形①的两条直角边长都为a ,三角形②的一条直角边为a -b ,另一条直角边为b ,因此S 大正方形=a 2,S △②=12(a ﹣b )b =12ab ﹣12b 2,S △①=12a 2, ∴S 阴影部分=S 大正方形﹣S △①﹣S △②, =12a 2﹣12ab+12b 2, =12 [(a+b )2﹣3ab], =12(100﹣54) =23,故选:C .【点睛】考查完全平方公式的意义,适当的变形是解决问题的关键.12.B解析:B【分析】根据同底数幂相乘、幂的乘方、积的乘方、合并同类项法则逐一计算即可判断.【详解】解:A、a5•a2=a7,此选项计算错误,故不符合题意;B、(a2)4=a8,此选项计算正确,符合题意;C、(a3b)2=a6b2,此选项计算错误,故不符合题意;D、a3与a5不能合并,此选项计算错误,故不符合题意.故选:B.【点睛】本题主要考查幂的运算,合并同类项,解题的关键是熟练掌握同底数幂相乘、幂的乘方与积的乘方的运算法则.二、填空题13.a5+5a4b+10a3b2+10a2b3+5ab4+b51【分析】(1)直接根据图示规律写出图中的数字再写出(a+b)5的展开式;(2)发现这一组式子中是2与-1的和的5次幂由(1)中的结论得:2解析:a5+5a4b+10a3b2+10a2b3+5ab4+b5 1【分析】(1)直接根据图示规律写出图中的数字,再写出(a+b)5的展开式;(2)发现这一组式子中是2与-1的和的5次幂,由(1)中的结论得:25-5×24+10×23-10×22+5×2-1=(2-1)5,计算出结果.【详解】解:(1)如图,则(a+b )5=a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5;(2)25-5×24+10×23-10×22+5×2-1.=25+5×24×(-1)+10×23×(-1)2+10×22×(-1)3+5×2×(-1)4+(-1)5=(2-1)5=1.【点睛】本题考查了完全式的n 次方,也是数字类的规律题,首先根据图形中数字找出对应的规律,再表示展开式:对应(a+b )n 中,相同字母a 的指数是从高到低,相同字母b 的指数是从低到高.14.B ;【分析】(1)先求出图1中剩余部分的面积为a2-b2再求出图2中图形的面积即可列得等式;(2)利用平方差公式分解因式后代入求值即可【详解】(1)图1中边长为a 的正方形的面积为:a2边长为b 的正方解析:B ; 94【分析】(1)先求出图1中剩余部分的面积为a 2-b 2,再求出图2中图形的面积即可列得等式; (2)利用平方差公式分解因式后代入求值即可.【详解】(1)图1中,边长为a 的正方形的面积为:a 2,边长为b 的正方形的面积为:b 2,∴图1中剩余部分面积为:a 2-b 2,图2中长方形的长为:a+b ,长方形的宽为:a-b ,∴图2长方形的面积为:(a+b )(a-b ),故选:B ;(2)∵46x y +=,45x y -=,∴221664x y -+=(4)(4)64x y x y +-+=6564⨯+=94,故答案为:94.【点睛】此题考查几何图形中平方差公式的应用,利用平方差公式进行计算,掌握平方差计算公式是解题的关键.15.3【分析】根据幂的乘方把算式中的各底数变成同底数然后按同底数幂运算法则列方程即可【详解】解:故答案为:3【点睛】本题考查了同底数幂的乘除和幂的乘方根据题意把底数变成相同是解题关键解析:3【分析】根据幂的乘方把算式中的各底数变成同底数,然后按同底数幂运算法则,列方程即可.【详解】解:2211392781n n ++⨯÷=22213143(3)(3)3n n ++⨯÷=,2423343333n n ++⨯÷=,242(33)433n n ++-+=,1433n +=,14n +=,3n =.故答案为:3【点睛】本题考查了同底数幂的乘除和幂的乘方,根据题意,把底数变成相同是解题关键. 16.-6【分析】结合题意根据整式乘法的性质计算即可得到答案【详解】∵的展开式中不含项∴∴∴故答案为:-6【点睛】本题考查了整式的知识;解题的关键是熟练掌握整式乘法的性质从而完成求解解析:-6【分析】结合题意,根据整式乘法的性质计算,即可得到答案.【详解】∵()()22524x x x mx -+--的展开式中不含2x 项∴()224520x x mx x ⨯-+⨯+⨯= ∴4100m -++=∴6m =-故答案为:-6.【点睛】本题考查了整式的知识;解题的关键是熟练掌握整式乘法的性质,从而完成求解. 17.(a+b )(2a+b )=【分析】根据长方形的面积=2个大正方形的面积+3个长方形的面积+1个小正方形的面积列式即可【详解】由题意得:(a+b )(2a+b )=故答案为:(a+b )(2a+b )=【点睛】解析:(a+b )(2a+b )=2223a ab b ++【分析】根据长方形的面积=2个大正方形的面积+3个长方形的面积+1个小正方形的面积列式即可.【详解】由题意得:(a+b )(2a+b )=2223a ab b ++,故答案为:(a+b )(2a+b )=2223a ab b ++.【点睛】此题考查多项式乘多项式与图形面积,正确理解图形面积的构成是解题的关键. 18.3【分析】利用同底数幂乘法的逆运算求解即可【详解】∵∴即:∴∴故答案为:3【点睛】本题主要考查同底数幂乘法的逆运算灵活运用同底数幂乘法法则是解题关键解析:3【分析】利用同底数幂乘法的逆运算求解即可.【详解】∵()4411312222222172x x x x x x +++++-⋅-=⋅=⋅-=,∴172112x +⋅=,即:142162x +==,∴14x +=,∴3x =,故答案为:3.【点睛】本题主要考查同底数幂乘法的逆运算,灵活运用同底数幂乘法法则是解题关键. 19.【分析】利用完全平方式的结构特征判断即可确定出m 的值【详解】解:∵代数式x2+mx+1是一个完全平方式∴m=±2故答案为:±2【点睛】此题考查了完全平方式熟练掌握完全平方公式是解本题的关键解析:2±【分析】利用完全平方式的结构特征判断即可确定出m 的值.【详解】解:∵代数式x 2+mx+1是一个完全平方式,∴m=±2,故答案为:±2【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.20.【分析】将化为进行计算【详解】解:原式====【点睛】本题考查了平方差公式和完全平方公式能灵活运用公式进行计算是解此题的关键解析:1995-【分析】将29999981002-⨯化为2(10001)(10002)(10002)---+进行计算.【详解】解:原式=2(10001)(10002)(10002)---+ =22(100020001)(10004)-+--=2210002000110004-+-+=1995-.【点睛】本题考查了平方差公式和完全平方公式,能灵活运用公式进行计算是解此题的关键.三、解答题21.﹣4x ﹣5.【分析】利用平方差公式和完全平方公式计算即可.【详解】(x+1)(x ﹣1)﹣2(2)x +=2x ﹣1﹣2x ﹣4x ﹣4=﹣4x ﹣5.【点睛】本题考查了平方差公式和完全平方公式,熟记并灵活运用两个公式是解题的关键.22.()32342640cm x x x -+ 【分析】这个盒子的容积=边长为8-2x,5-2x 的长方形的底面积乘高 x ,把相关数值代入即可.【详解】解:由题意,得()()8252x x x --()24016104x x x x =--+()242640x x x =-+3242640x x x =-+,答:盒子的容积是()32342640cm x x x -+.【点睛】本题主要考查单项式乘多项式,多项式乘多项式,解决本题的关键是找到表示长方体容积的等量关系.23.(1)(a+b )2=4ab+(a-b )2;(2)①±3;②【分析】(1)根据图形可知:大正方形是由四个小长方形和中间阴影的小正方形组成,且小正方形的边长为a-b ,列式即可得出结论;(2)①根据(1)的结论直接计算即可;②根据(1)的结论直接计算即可.【详解】解:(1)由S 大正方形=4S 小长方形+S 阴影得:(a+b )2=4ab+(a-b )2.故答案为:(a+b )2=4ab+(a-b )2.(2)①∵a-b=7,ab=-10,∴(a+b )2=(a-b )2+4ab=72+4×(-10)=9,∴a+b=±3;②∵13x x +=,22114x x x x ⎛⎫⎛⎫+=+- ⎪ ⎪⎝⎭⎝⎭, ∴22134x x ⎛⎫=+- ⎪⎝⎭, ∴2145x x ⎛⎫+-= ⎪⎝⎭,∴1x x-= 【点睛】 本题考查了对完全平方公式几何意义的理解及完全平方公式在代数式求值中的运用,熟练掌握完全平方公式是解题的关键.24.(1)212ab -;(2)2263a b - 【分析】(1)由单项式的乘法和除法、积的乘方的运算法则进行计算,即可得到答案; (2)由整式的加减乘除混合运算,先去括号,然后合并同类项,即可得到答案.【详解】解:(1)222331()27(6)3ab a b a b -⋅÷- =2423311279()6a b a b a b⨯-• =534331()6a b a b ⨯- =212ab -;(2)(2)(32)()a b a b b a b -+-+=2226432a ab ab b ab b +----=2263a b -.【点睛】本题考查了整式的混合运算,单项式的乘法和除法、积的乘方的运算法则,解题的关键是熟练掌握运算法则,正确的进行解题.25.8xy ,23-【分析】直接利用完全平方公式化简进而合并同类项,再把已知数据代入计算即可.【详解】解:(2x+y )2﹣(y ﹣2x )2,=4x 2+4xy+y 2﹣(y 2+4x 2﹣4xy ),=4x 2+4xy+y 2﹣y 2﹣4x 2+4xy ,=8xy , 当11,34x y ==-时, 原式=8×13×(14-), =﹣23. 【点睛】本题主要考查了用完全平方公式化简求值,熟记公式的几个变形公式是解题关键. 26.36【分析】依据AP =a ,BP =b ,点M 是AB 的中点,可得AM =BM =2a b +,再根据S 阴影=S 正方形APCD +S 正方形BEFP ﹣S △ADM ﹣S △BEM ,即可得到图中阴影部分的面积.【详解】解:∵a +b =8,a b =6,∴S 阴影部分=S 正方形APCD +S 正方形BEFP ﹣S △AMD ﹣S △MBE , =22112222a b a b a b a b ++⎛⎫⎛⎫+-- ⎪ ⎪⎝⎭⎝⎭, =()2224a b a b ++- , =()()22+24a b a b ab +--,=64﹣12﹣644,=64﹣12﹣16,=36.【点睛】本题主要考查了完全平方公式的几何背景,即运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.。
【最新试题库含答案】七年级数学下册第一章测试题_0

七年级数学下册第一章测试题:篇一:人教版七年级数学下册第一章测试题七年级数学下册第一章测试题数学(整式的运算)班级____________学号_____________姓名_____________(时间90分钟,满分100分,不得使用计算器)一、选择题(2'×10=20',每题只有一个选项是正确的,将正确选项的字母填入下表中)1. 在代数式1b1a?bx?yx?yz,3.5,4x2?x?1,2a,,?2mn,xy,,中,下2a4bc12列说法正确的是()。
(A)有4个单项式和2个多项式,(B)有4个单项式和3个多项式;(C)有5个单项式和2个多项式,(D)有5个单项式和4个多项式。
2. 减去-3x得x2?3x?6的式子是( A )。
(A)x2?6(B)x2?3x?6(C)x2?6x (D)x2?6x?63. 如果一个多项式的次数是6,则这个多项式的任何一项的次数都( B )(A)等于6(B)不大于6 (C)小于6(D)不小于64. 下列式子可用平方差公式计算的是:C (A)(a-b)(b-a);(B)(-x+1)(x-1);(C)(-a-b)(-a+b);(D)(-x-1)(x+1);5. 下列多项式中是完全平方式的是 (B )(A)x2?4x?1(B)x2?2y2?1(C)x2y2?2xy?y2(D)9a2?12a?4 6. 计算(?520052)?(?2)2005?( B ) 125(A)-1 (B)1 (C)0 (D)19977. (5×3-30÷2)0=( A )(A)0 (B)1(C)无意义(D)158. 若要使9y2?my?是完全平方式,则m的值应为( A )(A)?3(B)?3 (C)? (D)? 9. 若x2-x-m=(x-m)(x+1)且x≠0,则m=( D )(A)0(B)-1 (C)1 (D)2 10. 已知 |x|=1, y=, 则 (x20)3-x3y的值等于( B )(A)?或? (B)或(C)(D)?34543454345414141313二、填空题(2'×10=20',请将正确答案填在相应的表格内) 32x2y11. -的系数是_____,次数是___3__.212. 计算:4?105?5?106; 13. 已知 ?8xym。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学(下)整式的运算单元测试
七年级数学(下)整式的运算----单元测试
一、选择题
1.下列说法正确的是( ) A.x2y3z没有系数 B.
a的系数是2 2 C.2021?是一次单项式 D.x4?x3y2?1 是五次三项式 2.下
列计算正确的是( ) A.(?1)0??1 B.
2
111?2?2??3a? C. D.(?0.1)?1006、下列计算错误的是: ?22933a2
2
2
2
2
2
2
①、(2x+y)=4x+y ②、(3b-a)=9b-a ③、(-3b-a)(a-3b)=a-9b
1221222
④、(-x-y)=x-2xy+y ⑤、(x- )=x-2x+
24
A、1个 B、2个 C、3个 D、4个
3、下列语句中错误的是( )
A、数字 0 也是单项式 B、单项式 a 的系数与次数都是 1
C、?2ab2122的系数是 ? D、xy是二次单项式 332222224.下列式子中是完
全平方式的是( )
A.a?ab?b B.a?2a?2 C.a?2b?b D.a?2a?1 5、下列多项式中是完全平方式的是
( )
A、x?4x?1 B、x2?2y2?1 C、x2y2?2xy?y2 D、9a?12a?4 6.按下列程序计算,最后
输出的答案是( ) a 3222立方 2-a 2÷a +1答案 A.a B. a?1 C.a D.a
7下列计算 (1) (-1)0=-1 (2) (-1)1=-1 (3) 2×22=
-
-
1 2(4)3a-2=
1(a 0) (5) ( -a2)m=(-a m)2正确的有……………………( ) 3a (A) 2
个 (B) 3个 (C) 4个 (D) 5个
8、下列计算正确的是:( )
235-11325 223
A、2a+2a=2a B、2a= C、(5a)=25a D、(-a)÷a=a
2a
9、下列计算错误的是:( )
222222 22
①、(2x+y)=4x+y ②、(3b-a)=9b-a ③、(-3b-a)(a-3b)=a-9b
1221222 ④、(-x-y)=x-2xy+y ⑤、(x-- )=x-2x+
24
A、2个 B、3个 C、4个 D、5个
10、长方形一边长为2a+b,另一边为a-b,则长方形周长为( )
A.3a B.6a+b C.6a D.10a-b 11、计算:?xxx?
( ) A、x B、?x55
23n6n3n?2 C、x33
3n?3 D、?x3n?3
12、已知a=2,b=3,c=4 则a、b、c、的大小关系为:( )
A、b>c>a B、a>b>c C、c>a>b D、a
13、如果一个多项式的次数是6,则这个多项式的任何一项的次数都( )
A.小于6 B.等于6 C.不大于6 D.不小于6 2
14、若 4a-2ka+9是一个完全平方的展开形式,试求k的值:( )
A、12 B、±6 C、6 D、±12
44
15.计算(?520212)?(?2)2021?( ) 125(A)-1 (B)1
(C)0 (D)1997
二、填空题 1.多项式-abx+
2
2
131x-ab+3中,是 次四项式
252.5x-6x+1-( )=7x+8;
3.有一单项式的系数是2,次数为3,这个单项式可能是______;
1n32m2xy与-xy是同类项,则m?n? 。 4.若单项式
35、若a+b=5,ab=2,则(a+b)= 。
226、饶老师给出:a?b?1 ,a?b?2 , 你能计算出 ab 的值为 _________
2
2
2
27、若 (x?3)(x?4)?ax?bx?c ,则a?_______、b?_______、c?_______。
8.若A=x?2y,B?4x?y,则2A?B? . 9、已知2×8=4 求m=
2410、?2?1?2?12?1的结果为 . m
2m
????11.计算:(?a)?a= 12.化简:0.12513. 若m?22021325?82021=
11?3,则m2?2= mm214.若x?2x?3?0,则2x?4x?2021= ,x?y?1,那
么x2?y2? 。 15、如果x?y?202116、 ??1??22
?(??3)0?_______2
17、已知2x-3x-1=0,求6x-9x-5=
18、若m?n?10,mn?24,则m?n? 。 19、
4202122?0.252021? 。
20.若(2x+a)( x-1)的结果中不含x的一次项,则a=__________ 21. 用小数表示
3×10的结果为___________ 22.若代数式2x23.单项式
2
-2
2?3x?7的值是8,则代数式4x2?6x?9的值___
12
?mn的系数是 324.5x-6x+1-( )=7x+8;
25、一个多项式减去a?b等于a?b则这个多项式为 ( ) 26.已知(a+b)=13,
(a―b)=11,则ab=_____ 27.若3
2x-1
2
2
22221=1,则x= , 若3=,则x= .
27x
28.若x2-6x-2的2倍减去一个多项式得到4x2-7x-5,则这个多项式是
_____________ 29.已知:一个三角形的周长是3m+4n,其中一条边是m-n,第二条边比
第一条边长m+4n, 求:三角形的第三边。
30、正方形的一边增加4厘米,邻边减少4厘米,所得矩形面积与这个正方形的边长
减少2厘米所得的正方形的面积相等,求原正方形的边长。
31.小明在利用16. 观察下列各式:x,x32. 若9?333 若
(9?x22,2x3,3x4,5x5,8x6......试按此规律写出的第十个式子是 。
m?81,m? 。
)(x?3)( )=x4?81,则括号内应填入的多项式为 。
234. 若M的值使得x?4x?M?(x?2)2?1成立,则M的值为 。
235.完全平方公式计算一个二项整式的平方时,不小心用墨水把最后一项染黑了,得
到正确的结果变为4a?12ab? ,你觉得这一项应是:____
36.下图是某同学在沙滩上用石于摆成的小房子:
观察图形的变化规律,写出第2个小房子用了
块石子.(1分)第4个小房子用了 块石子.(1分) 第n个小房子
用了 块石子.(2分) 三、计算题
x?1(x?1)?1,求整数x
1.已知
2.(??3.14)0?(?0.125)2021?82021
3、已知两个两位数的平方差是220,且它们的十位上的数相同,一个数的个位数是6,
另一个数的个位数是4,求这两个数。 4、一个正方形的边长若增加4cm,则面积增加
64cm,求这个正方形的面 5、 (2x+y+1)(2x+y-1) 22、计算
(a?1)(a?1)(a?1)(a?1)6. 化简求值: (mn+2)(mn-2)-(m-n) ,其中m=2,n=0.5 7、(8
分)已知x?2x?y?6y?10?0,求x,y的值. 2(?3x)?(2x?1)(3x?2)?3(x?2)(x?2)?0 8.(5分)
解方程:
222
2
24
9.用两种不同的方法
求下面图形的
3a
总面积(本题5分)
a3aa
12-2
10、观察例题,然后回答: 例:x+ =3,则x+ x= .
x
1122-22-2
解:由x+ =3,得(x+ )=9,即x+x+2=9所以:x+x=9-2=7
xx12-22
通过你的观察你来计算:当x=6时,求①x+x; ②(x- )
x
11.小明在做一道数学题:“两个多项式A和B,其中B=3a-5a-7,试求A+2B时”,错
误地将A+2B看成了A-2B,结果求出的答案是:2
-2a+3a+6,你能帮他计算出正确的A+2B的答案吗?(写出计算过程)
2
感谢您的阅读,祝您生活愉快。