ACO蚁群算法
基于蚁群算法的路径规划

基于蚁群算法的路径规划路径规划是指在给定起点和终点的情况下,找到一条最优路径使得在特定条件下完成其中一种任务或达到目标。
蚁群算法(Ant Colony Optimization,简称ACO)是一种模拟蚂蚁寻找食物路径的启发式算法,已经广泛应用于路径规划领域。
本文将详细介绍基于蚁群算法的路径规划的原理、方法和应用,旨在帮助读者深入理解该领域。
1.蚁群算法原理蚁群算法的灵感源自蚂蚁在寻找食物过程中携带信息以及通过信息交流来引导其他蚂蚁找到食物的群体行为。
算法的基本原理如下:1)路径选择方式:蚂蚁根据信息素浓度和距离的启发信息进行路径选择,信息素浓度高的路径和距离短的路径更容易被选择。
2)信息素更新方式:蚂蚁在路径上释放信息素,并通过信息素挥发过程和信息素增强机制来更新路径上的信息素浓度。
3)路径优化机制:较短路径上释放的信息素浓度较高,经过多次迭代后,社会积累的信息素会指引蚂蚁群体更快地找到最优路径。
4)局部和全局:蚂蚁在选择路径时,既有局部的能力,也有全局的能力,这使得算法既能收敛到局部最优解,又能跳出局部最优解继续探索新的路径。
2.蚁群算法步骤1)定义问题:明确起点、终点以及路径上的条件、约束等。
2)初始化信息素与距离矩阵:设置初始信息素值和距离矩阵。
3)蚂蚁移动:每只蚂蚁根据信息素浓度和距离的启发选择下一个节点,直到到达终点。
4)信息素更新:蚂蚁根据路径上释放的信息素更新信息素矩阵。
5)迭代:不断重复蚂蚁移动和信息素更新过程,直到满足停止条件为止。
6)输出最优路径:根据迭代结果输出最优路径。
3.蚁群算法应用1)TSP问题:旅行商问题(Traveling Salesman Problem,TSP)是蚁群算法应用的典型问题之一、该问题是在给定一组城市以及它们之间的距离,求解一条经过每个城市一次且最短的路径。
蚁群算法通过模拟蚂蚁在城市之间的移动来求解该问题,并能够较快地找到接近最优解的路径。
2)无人机路径规划:无人机路径规划是指在给定起点和终点的情况下,找到无人机的最优飞行路径。
蚁群算法概述

蚁群算法概述一、蚁群算法蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来寻找最优解决方案的机率型技术。
它由Marco Dorigo于1992年在他的博士论文中引入,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。
蚂蚁在路径上前进时会根据前边走过的蚂蚁所留下的分泌物选择其要走的路径。
其选择一条路径的概率与该路径上分泌物的强度成正比。
因此,由大量蚂蚁组成的群体的集体行为实际上构成一种学习信息的正反馈现象:某一条路径走过的蚂蚁越多,后面的蚂蚁选择该路径的可能性就越大。
蚂蚁的个体间通过这种信息的交流寻求通向食物的最短路径。
蚁群算法就是根据这一特点,通过模仿蚂蚁的行为,从而实现寻优。
这种算法有别于传统编程模式,其优势在于,避免了冗长的编程和筹划,程序本身是基于一定规则的随机运行来寻找最佳配置。
也就是说,当程序最开始找到目标的时候,路径几乎不可能是最优的,甚至可能是包含了无数错误的选择而极度冗长的。
但是,程序可以通过蚂蚁寻找食物的时候的信息素原理,不断地去修正原来的路线,使整个路线越来越短,也就是说,程序执行的时间越长,所获得的路径就越可能接近最优路径。
这看起来很类似与我们所见的由无数例子进行归纳概括形成最佳路径的过程。
实际上好似是程序的一个自我学习的过程。
3、人工蚂蚁和真实蚂蚁的异同ACO是一种基于群体的、用于求解复杂优化问题的通用搜索技术。
与真实蚂蚁通过外激素的留存/跟随行为进行间接通讯相似,ACO中一群简单的人工蚂蚁(主体)通过信息素(一种分布式的数字信息,与真实蚂蚁释放的外激素相对应)进行间接通讯,并利用该信息和与问题相关的启发式信息逐步构造问题的解。
人工蚂蚁具有双重特性:一方面,他们是真实蚂蚁的抽象,具有真实蚂蚁的特性,另一方面,他们还有一些在真实蚂蚁中找不到的特性,这些新的特性,使人工蚂蚁在解决实际优化问题时,具有更好地搜索较好解的能力。
人工蚂蚁与真实蚂蚁的相同点为:1.都是一群相互协作的个体。
蚁群算法概述

若继续进行,则按信息素的指导,最终所有的蚂蚁会放弃ACD路线,而都 选择ABD路线。这也就是正反馈效应。
四:自然蚁群与人工蚁群算法
蚁群算法 (Ant Colony Optimization,ACO)
一:蚁群算法的由来
蚁群算法的由来:蚂蚁是地球上最常见、数量最多的昆虫种类之一, 常常成群结队地出现在人类的日常生活环境中。这些昆虫的群体生物智能特 征,引起了一些学者的注意。意大利学者M.Dorigo,V.Maniezzo等人在观察 蚂蚁的觅食习性时发现,蚂蚁总能找到巢穴与食物源之间的最短路径。
蚁群算法有两个阶段:适应阶段和协作阶段.在适 应阶段各候选解根据积累的信息不断调整自身结构;在 协作阶段,候选解之间通过信息交流,以期产生性能 更好的解。
蚁群算法与TSP问题
蚁群算法与TSP问题
蚁群算法与TSP问题
k 表示第k只蚂蚁在本次循环中留在路径(i,j)上的 ij
信息素的浓度, ij 表示本次循环所有蚂蚁在路径ij上所释放
五:蚁群算法与TSP问题
TSP问题的人工蚁群算法中,假设m只蚂蚁在图的相 邻节点间移动,从而协作异步地得到问题的解。每只蚂 蚁的一步转移概率由图中的每条边上的两类参数决定: 1 信息素值 也称信息素痕迹。2 可见度,即先验值。
信息素的更新方式有2种,一是挥发,也就是所有 路径上的信息素以一定的比率进行减少,模拟自然蚁群 的信息素随时间挥发的过程;二是增强,给评价值 “好”(有蚂蚁走过)的边增加信息素。
0
(3)
(
ij
蚁群算法

4.蚁群算法应用
信息素更新规则
1.蚁群算法简述 2.蚁群算法原理
最大最小蚂蚁系统
3.蚁群算法改进
4.蚁群算法应用
最大最小蚂蚁系统(MAX-MIN Ant System,MMAS)在基本AS算法的基础 上进行了四项改进: (1)只允许迭代最优蚂蚁(在本次迭代构建出最短路径的蚂蚁),或者至今 最优蚂蚁释放信息素。(迭代最优更新规则和至今最优更新规则在MMAS 中会被交替使用)
p( B) 0.033/(0.033 0.3 0.075) 0.081 p(C ) 0.3 /(0.033 0.3 0.075) 0.74 p( D) 0.075 /(0.033 0.3 0.075) 0.18
用轮盘赌法则选择下城市。假设产生的 随机数q=random(0,1)=0.05,则蚂蚁1将会 选择城市B。 用同样的方法为蚂蚁2和3选择下一访问 城市,假设蚂蚁2选择城市D,蚂蚁3选择城 市A。
蚁群算法
1.蚁群算法简述 2.蚁群算法原理 3.蚁群算法改进 4.蚁群算法应用
1.蚁群算法简述 2.蚁群算法原理
3.蚁群算法改进
4.蚁群算法应用
蚁群算法(ant colony optimization, ACO),又称蚂蚁 算法,是一种用来在图中寻找优 化路径的机率型算法。 由Marco Dorigo于1992年在他 的博士论文中提出,其灵感来源 于蚂蚁在寻找食物过程中发现路 径的行为
4.蚁群算法应用
例给出用蚁群算法求解一个四城市的TSP 3 1 2 3 5 4 W dij 1 5 2 2 4 2
假设蚂蚁种群的规模m=3,参数a=1,b=2,r=0.5。 解:
满足结束条件?
蚁群优化算法及其在工程中的应用

蚁群优化算法及其在工程中的应用引言:蚁群优化算法(Ant Colony Optimization,ACO)是一种基于蚁群行为的启发式优化算法,模拟了蚂蚁在寻找食物过程中的行为。
蚁群优化算法以其在组合优化问题中的应用而闻名,特别是在工程领域中,其独特的优化能力成为解决复杂问题的有效工具。
1. 蚁群优化算法的原理与模拟蚁群优化算法源于对蚂蚁觅食行为的研究,它模拟了蚂蚁在寻找食物时使用信息素沉积和信息素蒸发的策略。
蚂蚁释放的信息素作为信息传播的媒介,其他蚂蚁会根据信息素浓度选择路径。
通过这种方式,蚁群优化算法利用信息素的正反馈机制,不断优化路径选择,从而找到全局最优解。
2. 蚁群优化算法的基本步骤蚁群优化算法的基本步骤包括:初始化信息素浓度、蚁群初始化、路径选择、信息素更新等。
2.1 初始化信息素浓度在蚁群优化算法中,信息素浓度表示路径的好坏程度,初始时,信息素浓度可以设置为一个常数或随机值。
较大的初始信息素浓度能够提醒蚂蚁找到正确的路径,但也可能导致过早的收敛。
2.2 蚁群初始化蚂蚁的初始化包括位置的随机选择和路径的初始化。
通常情况下,每只蚂蚁都在搜索空间内的随机位置开始。
2.3 路径选择蚂蚁通过信息素和启发式信息来选择路径。
信息素表示路径的好坏程度,而启发式信息表示路径的可靠程度。
蚂蚁根据这些信息以一定的概率选择下一个位置,并更新路径。
2.4 信息素更新每只蚂蚁走过某条路径后,会根据路径的好坏程度更新信息素浓度。
信息素更新还包括信息素的挥发,以模拟现实中信息的流失。
3. 蚁群优化算法在工程中的应用蚁群优化算法在工程领域中有广泛的应用,以下将从路径规划、交通调度和电力网络等方面进行说明。
3.1 路径规划路径规划是蚁群算法在工程中最为常见的应用之一。
在物流和交通领域,蚁群算法可以帮助寻找最短路径或最佳路线。
例如,蚁群优化算法在无人驾驶车辆中的应用,可以通过模拟蚁群的行为,找到最优的路径规划方案。
3.2 交通调度蚁群优化算法在交通调度中的应用可以帮助优化交通流,减少拥堵和行程时间。
蚁群算法——精选推荐

蚁群算法同进化算法(进化算法是受⽣物进化机制启发⽽产⽣的⼀系列算法)和⼈⼯神经⽹络算法(神经⽹络是从信息处理⾓度对⼈脑的神经元⽹络系统进⾏了模拟的相关算法)⼀样,群智能优化算法也属于⼀种⽣物启发式⽅法,它们三者可以称为是⼈⼯智能领域的三驾马车(实际上除了上述三种算法还有⼀些智能算法应⽤也很⼴泛,⽐如模拟⾦属物质热⼒学退⽕过程的模拟退⽕算法(Simulated Algorithm,简称SA),模拟⼈体免疫系统在抗原刺激下产⽣抗体过程的⼈⼯免疫系统算法(Artificial Immune System,简称AIS)等,但是相对三者⽽⾔,模拟退⽕算法和⼈⼯免疫系统算法已逐渐处于低潮期)。
群智能优化算法主要是模拟了昆⾍,兽群、鸟群和鱼群的群集⾏为,这些群体按照⼀种合作的⽅式寻找⾷物,群体中的每个成员通过学习它⾃⾝的经验和其他成员的经验来不断地改变搜索的⽅向。
群体智能优化算法的突出特点就是利⽤了种群的群体智慧进⾏协同搜索,从⽽在解空间内找到最优解。
常见的群体智能优化算法主要有如下⼏类:蚁群算法(Ant Colony Optimizatio,简称ACO)【1992年提出】;粒⼦群优化算法(Particle Swarm Optimization,简称PSO)【1995年提出】菌群优化算法(Bacterial Foraging Optimization,简称BFO)【2002年提出】蛙跳算法(Shuffled Frog Leading Algorithm,简称SFLA)【2003年提出】⼈⼯蜂群算法(Artificial Bee Colony Algorithm,简称ABC)【2005年提出】除了上述⼏种常见的群体智能算法以外,还有⼀些并不是⼴泛应⽤的群体智能算法,⽐如萤⽕⾍算法,布⾕鸟算法,蝙蝠算法以及磷虾群算法等等。
蚁群算法蚂蚁寻找⾷物的过程单只蚂蚁的⾏为及其简单,⾏为数量在10种以内,但成千上万只蚂蚁组成的蚁群却能拥有巨⼤的智慧,这离不开它们信息传递的⽅式———信息素。
蚁群算法公式范文

蚁群算法公式范文蚁群算法(Ant Colony Optimization, ACO)是一种仿生智能算法,源于对蚂蚁在寻找食物过程中的观察和分析。
蚁群算法通过模拟蚂蚁在寻找食物的过程,来优化解决各种优化问题。
在蚁群算法中,蚂蚁使用信息素和启发式信息来进行,并通过信息素更新和路径选择机制来不断优化过程。
蚂蚁在寻找食物的过程中会释放一种被称为“信息素”的化学物质。
当蚂蚁在条路径上行走时,会释放信息素,而其他蚂蚁通过检测到信息素的浓度来选择路径。
信息素的浓度越高,路径上的蚂蚁越多,其他蚂蚁就更有可能选择这条路径。
蚂蚁在行走结束后,会按照规定的方式更新路径上的信息素浓度。
蚂蚁选择路径的依据除了信息素,还有启发式信息。
启发式信息是根据蚂蚁当前所处位置与目标位置之间的距离进行计算的。
蚂蚁更倾向于选择距离目标位置更近的路径。
启发式信息对蚂蚁的路径选择起到了一定的引导作用。
蚁群算法中的公式主要涉及到信息素的更新和路径选择机制。
下面是蚁群算法中常用的公式:1.信息素的更新公式:τij(t+1) = (1-ρ) * τij(t) + Δτij(t)其中,τij(t+1)为第i只蚂蚁在第j条路径上的信息素浓度更新后的值;τij(t)为第i只蚂蚁在第j条路径上的当前信息素浓度;Δτij(t)为第i只蚂蚁在第j条路径上释放的信息素量;ρ为信息素蒸发系数,用于控制信息素的挥发速度。
2.蚂蚁选择路径的概率公式:Pij(t) = (τij(t)^α) * (ηij(t)^β) / Σ(τik(t)^α) * (ηik(t)^β)其中,Pij(t)为第i只蚂蚁在第j条路径上的选择概率;τij(t)为第i只蚂蚁在第j条路径上的信息素浓度;ηij(t)为第i只蚂蚁在第j条路径上的启发式信息;α和β分别为信息素和启发式信息的重要程度参数。
3.蚂蚁更新路径的公式:Δτij(t) = Q / Lk其中,Δτij(t)为第i只蚂蚁在第j条路径上释放的信息素量;Q为常数,表示每只蚂蚁释放的信息素总量;Lk为第k只蚂蚁的路径长度。
蚁群算法PPT课件

1
k 1
基本蚁群算法
针对蚂蚁释放信息是问题,M.Dorigo等人曾给出3中不同的模型, 分别为蚁周系统、蚁量系统和蚁密系统,其计算公式如下:
1.蚁周系统模型
k ii
Q 0,
/ Lk,第k只蚂蚁从城市i访问城市j 其他
2.蚁量系统模型
k ii
Q / dij,第k只蚂蚁从城市i访问城市j
0,
其他
3.蚁密系统模型
max (1 n Pbest )
(avg 1) n Pbest
信息素轨迹的初始化
在第一次循环后所有信息素轨迹与max (1) 相一致 通过选择对这种类型的轨迹初始化来增加在算法的
第一次循环期间对新解的探索
当将信息素轨迹初始化为 max 时,选择概率将增加
得更加缓慢 实验表明,将初始值设为 (1) max可以改善最大-
信息素轨迹的限制
在 决一于个 m选in和择点m上ax 选择相应解元素的概率Pdec直接取
Pdec
max
max (avg 1) min
在每个选择点上蚂蚁需在avg=n/2个解元素中选择
蚂蚁构造最优解,需作n次正确的决策
P P n
dec
best
min
max (1 Pdec )
(avg 1)Pdec
3.最大-最小蚂蚁系统
蚁群算法将蚂蚁的搜索行为集中到最优解的附近可以提高解的质 量和收敛速度,从而改进算法的性能。但这种搜索方式会使早熟 收敛行为更容易发生。 MMAS能将这种搜索方式和一种能够有效避 免早熟收敛的机制结合在一起,从而使算法获得最优的性能
基本蚁群算法
蚂蚁k(k=1,2,…,m)根据各个城市间连接路径上的信息素浓度决
边作为移动方向
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蚁群算法蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。
它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。
蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。
蚁群算法是一种求解组合最优化问题的新型通用启发式方法,该方法具有正反馈、分布式计算和富于建设性的贪婪启发式搜索的特点。
通过建立适当的数学模型,基于故障过电流的配电网故障定位变为一种非线性全局寻优问题。
预期的结果:各个蚂蚁在没有事先告诉他们食物在什么地方的前提下开始寻找食物。
当一只找到食物以后,它会向环境释放一种信息素,吸引其他的蚂蚁过来,这样越来越多的蚂蚁会找到食物!有些蚂蚁并没有象其它蚂蚁一样总重复同样的路,他们会另辟蹊径,如果令开辟的道路比原来的其他道路更短,那么,渐渐,更多的蚂蚁被吸引到这条较短的路上来。
最后,经过一段时间运行,可能会出现一条最短的路径被大多数蚂蚁重复着。
原理:为什么小小的蚂蚁能够找到食物?他们具有智能么?设想,如果我们要为蚂蚁设计一个人工智能的程序,那么这个程序要多么复杂呢?首先,你要让蚂蚁能够避开障碍物,就必须根据适当的地形给它编进指令让他们能够巧妙的避开障碍物,其次,要让蚂蚁找到食物,就需要让他们遍历空间上的所有点;再次,如果要让蚂蚁找到最短的路径,那么需要计算所有可能的路径并且比较它们的大小,而且更重要的是,你要小心翼翼的编程,因为程序的错误也许会让你前功尽弃。
这是多么不可思议的程序!太复杂了,恐怕没人能够完成这样繁琐冗余的程序。
然而,事实并没有你想得那么复杂,上面这个程序每个蚂蚁的核心程序编码不过100多行!为什么这么简单的程序会让蚂蚁干这样复杂的事情?答案是:简单规则的涌现。
事实上,每只蚂蚁并不是像我们想象的需要知道整个世界的信息,他们其实只关心很小范围内的眼前信息,而且根据这些局部信息利用几条简单的规则进行决策,这样,在蚁群这个集体里,复杂性的行为就会凸现出来。
这就是人工生命、复杂性科学解释的规律!那么,这些简单规则是什么呢?下面详细说明:1、范围:蚂蚁观察到的范围是一个方格世界,蚂蚁有一个参数为速度半径(一般是3),那么它能观察到的范围就是3*3个方格世界,并且能移动的距离也在这个范围之内。
2、环境:蚂蚁所在的环境是一个虚拟的世界,其中有障碍物,有别的蚂蚁,还有信息素,信息素有两种,一种是找到食物的蚂蚁洒下的食物信息素,一种是找到窝的蚂蚁洒下的窝的信息素。
每个蚂蚁都仅仅能感知它范围内的环境信息。
环境以一定的速率让信息素消失。
3、觅食规则:在每只蚂蚁能感知的范围内寻找是否有食物,如果有就直接过去。
否则看是否有信息素,并且比较在能感知的范围内哪一点的信息素最多,这样,它就朝信息素多的地方走,并且每只蚂蚁都会以小概率犯错误,从而并不是往信息素最多的点移动。
蚂蚁找窝的规则和上面一样,只不过它对窝的信息素做出反应,而对食物信息素没反应。
4、移动规则:每只蚂蚁都朝向信息素最多的方向移,并且,当周围没有信息素指引的时候,蚂蚁会按照自己原来运动的方向惯性的运动下去,并且,在运动的方向有一个随机的小的扰动。
为了防止蚂蚁原地转圈,它会记住最近刚走过了哪些点,如果发现要走的下一点已经在最近走过了,它就会尽量避开。
5、避障规则:如果蚂蚁要移动的方向有障碍物挡住,它会随机的选择另一个方向,并且有信息素指引的话,它会按照觅食的规则行为。
6、播撒信息素规则:每只蚂蚁在刚找到食物或者窝的时候撒发的信息素最多,并随着它走远的距离,播撒的信息素越来越少。
根据这几条规则,蚂蚁之间并没有直接的关系,但是每只蚂蚁都和环境发生交互,而通过信息素这个纽带,实际上把各个蚂蚁之间关联起来了。
比如,当一只蚂蚁找到了食物,它并没有直接告诉其它蚂蚁这儿有食物,而是向环境播撒信息素,当其它的蚂蚁经过它附近的时候,就会感觉到信息素的存在,进而根据信息素的指引找到了食物。
问题:说了这么多,蚂蚁究竟是怎么找到食物的呢??在没有蚂蚁找到食物的时候,环境没有有用的信息素,那么蚂蚁为什么会相对有效的找到食物呢?这要归功于蚂蚁的移动规则,尤其是在没有信息素时候的移动规则。
首先,它要能尽量保持某种惯性,这样使得蚂蚁尽量向前方移动(开始,这个前方是随机固定的一个方向),而不是原地无谓的打转或者震动;其次,蚂蚁要有一定的随机性,虽然有了固定的方向,但它也不能像粒子一样直线运动下去,而是有一个随机的干扰。
这样就使得蚂蚁运动起来具有了一定的目的性,尽量保持原来的方向,但又有新的试探,尤其当碰到障碍物的时候它会立即改变方向,这可以看成一种选择的过程,也就是环境的障碍物让蚂蚁的某个方向正确,而其他方向则不对。
这就解释了为什么单个蚂蚁在复杂的诸如迷宫的地图中仍然能找到隐蔽得很好的食物。
当然,在有一只蚂蚁找到了食物的时候,其他蚂蚁会沿着信息素很快找到食物的。
蚂蚁如何找到最短路径的?这一是要归功于信息素,另外要归功于环境,具体说是计算机时钟。
信息素多的地方显然经过这里的蚂蚁会多,因而会有更多的蚂蚁聚集过来。
假设有两条路从窝通向食物,开始的时候,走这两条路的蚂蚁数量同样多(或者较长的路上蚂蚁多,这也无关紧要)。
当蚂蚁沿着一条路到达终点以后会马上返回来,这样,短的路蚂蚁来回一次的时间就短,这也意味着重复的频率就快,因而在单位时间里走过的蚂蚁数目就多,洒下的信息素自然也会多,自然会有更多的蚂蚁被吸引过来,从而洒下更多的信息素……;而长的路正相反,因此,越来越多地蚂蚁聚集到较短的路径上来,最短的路径就近似找到了。
也许有人会问局部最短路径和全局最短路的问题,实际上蚂蚁逐渐接近全局最短路的,为什么呢?这源于蚂蚁会犯错误,也就是它会按照一定的概率不往信息素高的地方走而另辟蹊径,这可以理解为一种创新,这种创新如果能缩短路途,那么根据刚才叙述的原理,更多的蚂蚁会被吸引过来。
引申跟着蚂蚁的踪迹,你找到了什么?通过上面的原理叙述和实际操作,我们不难发现蚂蚁之所以具有智能行为,完全归功于它的简单行为规则,而这些规则综合起来具有下面两个方面的特点:1、多样性2、正反馈多样性保证了蚂蚁在觅食的时候不置走进死胡同而无限循环,正反馈机制则保证了相对优良的信息能够被保存下来。
我们可以把多样性看成是一种创造能力,而正反馈是一种学习强化能力。
正反馈的力量也可以比喻成权威的意见,而多样性是打破权威体现的创造性,正是这两点小心翼翼的巧妙结合才使得智能行为涌现出来了。
引申来讲,大自然的进化,社会的进步、人类的创新实际上都离不开这两样东西,多样性保证了系统的创新能力,正反馈保证了优良特性能够得到强化,两者要恰到好处的结合。
如果多样性过剩,也就是系统过于活跃,这相当于蚂蚁会过多的随机运动,它就会陷入混沌状态;而相反,多样性不够,正反馈机制过强,那么系统就好比一潭死水。
这在蚁群中来讲就表现为,蚂蚁的行为过于僵硬,当环境变化了,蚂蚁群仍然不能适当的调整。
既然复杂性、智能行为是根据底层规则涌现的,既然底层规则具有多样性和正反馈特点,那么也许你会问这些规则是哪里来的?多样性和正反馈又是哪里来的?我本人的意见:规则来源于大自然的进化。
而大自然的进化根据刚才讲的也体现为多样性和正反馈的巧妙结合。
而这样的巧妙结合又是为什么呢?为什么在你眼前呈现的世界是如此栩栩如生呢?答案在于环境造就了这一切,之所以你看到栩栩如生的世界,是因为那些不能够适应环境的多样性与正反馈的结合都已经死掉了,被环境淘汰了!蚁群算法的实现下面的程序开始运行之后,蚂蚁们开始从窝里出动了,寻找食物;他们会顺着屏幕爬满整个画面,直到找到食物再返回窝。
其中,…F‟点表示食物,…H‟表示窝,白色块表示障碍物,…+‟就是蚂蚁了。
参数说明:最大信息素:蚂蚁在一开始拥有的信息素总量,越大表示程序在较长一段时间能够存在信息素。
信息素消减的速度:随着时间的流逝,已经存在于世界上的信息素会消减,这个数值越大,那么消减的越快。
错误概率表示这个蚂蚁不往信息素最大的区域走的概率,越大则表示这个蚂蚁越有创新性。
速度半径表示蚂蚁一次能走的最大长度,也表示这个蚂蚁的感知范围。
记忆能力表示蚂蚁能记住多少个刚刚走过点的坐标,这个值避免了蚂蚁在本地打转,停滞不前。
而这个值越大那么整个系统运行速度就慢,越小则蚂蚁越容易原地转圈启发式搜索启发式搜索就是在状态空间中的搜索对每一个搜索的位置进行评估,得到最好的位置,再从这个位置进行搜索直到目标。
这样可以省略大量无谓的搜索路径,提高了效率。
在启发式搜索中,对位置的估价是十分重要的。
采用了不同的估价可以有不同的效果。
我们先看看估价是如何表示的。
启发中的估价是用估价函数表示的,如:最佳优先搜索的最广为人知的形式称为A*搜索(发音为“A星搜索”).它把到达节点的耗散g(n) 和从该节点到目标节点的消耗h(n)结合起来对节点进行评价:f(n)=g(n)+h(n)因为以g(n)给出了从起始节点到节点n的路径耗散,而h(n)是从节点n到目标节点的最低耗散路径的估计耗散值,因此f(n)=经过节点n的最低耗散解的估计耗散.这样,如果我们想要找到最低耗散解,首先尝试找到g(n)+h(n)值最小的节点是合理的。
可以发现这个策略不只是合理的:倘若启发函数h(n)满足一定的条件,A*搜索既是完备的也是最优的。
如果把A*搜索用于Tree-Search,它的最优性是能够直接分折的。
在这种情况下,如果h(n)是一个可采纳启发式--也就是说,倘若h(n)从不会过高估计到达目标的耗散--A*算法是最优的。
可采纳启发式天生是最优的,因为他们认为求解问题的耗散是低于实际耗散的。
因为g(n)是到达节点n的确切耗散,我们得到一个直接的结论:f(n)永远不会高估经过节点n的解的实际耗散.启发算法有:蚁群算法,遗传算法、模拟退火算法等蚁群算法是一种来自大自然的随机搜索寻优方法,是生物界的群体启发式行为,现己陆续应用到组合优化、人工智能、通讯等多个领域。
蚁群算法的正反馈性和协同性使其可用于分布式系统,隐含的并行性更使之具有极强的发展潜力。
从数值仿真结果来看,它比目前风行一时的遗传算法、模拟退火算法等有更好的适应性。