第7讲电磁辐射及辐射耦合的基本原理
电磁耦合作用机理研究

电磁耦合作用机理研究提要:本文论述了电磁环境的相关概念,分析研究了电磁的耦合方式和作用机理,为下一步的深入研究,提供理论基础。
关键词:电磁环境;耦合方式;作用机理随着科学技术的不断发展和人类活动的不断拓展,微电子技术、计算机技术应用到了社会生活的方方面面,大量技术含量高、内部结构复杂的电工、电子产品得到广泛应用,使之日益信息化和电磁敏感化。
复杂电磁环境对地球和人类产生的影响越来越引起人们的关注。
因此,研究电磁的耦合作用机理具有重要的意义。
一、电磁环境相关概念电磁环境是指存在于空间所有电磁现象的总和。
各种人为电磁辐射和自然电磁辐射构成了复杂的电磁环境,其中人为电磁辐射包括移动电话机、无线电对话机、广播电视电台发射机、卫星、雷达等等,雷电、静电、地磁场、太阳黑子活动、宇宙射线等构成了自然电磁辐射源。
电磁辐射作用的形成需要同时具备以下三个要素:电磁波源,指产生电磁波的元器件、设备、系统或自然现象;耦合通道,指把能量从波源耦合或传播到敏感设备上,并使该设备产生响应的通道或媒介;敏感设备,指对电磁波发生响应的设备。
通常将这三个要素称为电磁耦合的三要素,如图1所示。
二、电磁辐射的耦合方式(一)天线耦合全体暴露于电磁场的金属导体均可认为是天线,“前门”耦合(“front-door”coupling)就是指电磁脉冲或微波能量通过目标上的天线耦合到电子系统内。
因此,可以按天线的设计特性计算耦合强度,当电磁波频率与天线设计频率相等时,耦合最大。
(二)孔缝耦合一般情况下,电子设备封装在由传导材料构成的容器中。
由于设备散热通风、缺口、裂缝以及馈电、信号传输的需要,容器不可能完全密封,存在着不同类型的孔缝,这就为电磁辐射提供了耦合途径。
“后门”耦合(“back-door”coup ling)就是高能电磁脉冲能量通过目标上的孔洞、缝隙耦合进入系统,干扰或毁坏电子设备。
当波长小于孔缝尺寸时,电磁波将毫无阻挡地进入屏蔽体内;当波长大于孔缝尺寸时,电磁波将被阻挡;当存在尺寸和电磁波长相比拟的孔缝时,电磁波的耦合就很严重,将产生共振。
电磁耦合器原理

电磁耦合器原理
电磁耦合器是一种将机械能转换为电能或将电能转换为机械能的装置。
其原理基于法拉第电磁感应定律和安培定律。
当电磁耦合器中通过一对线圈流过电流时,将产生磁场。
这个磁场会穿过线圈的磁铁部分,并在周围形成磁通。
当两个线圈分别位于磁场内,它们之间会发生耦合。
这种耦合效应可以使得一个线圈中的电流通过磁感应作用传导到另一个线圈中。
具体来说,当一个线圈中的电流发生变化时,根据法拉第电磁感应定律,它会在周围产生一个变化的磁场。
这个磁场会穿过另一个线圈,并在另一个线圈中诱导出电流。
根据安培定律,这个诱导电流的方向与线圈中的磁场变化方向相反。
通过调整电磁耦合器中的电流大小和方向,可以控制两个线圈之间的耦合程度。
当两个线圈的耦合程度较高时,输入线圈中的电能会高效地转换为磁场能,然后再转换为输出线圈中的电能,实现电能的传输。
当耦合程度较低或接近零时,输入线圈中的电能几乎不会传导到输出线圈中,实现了电磁隔离。
电磁耦合器在电力传输、电子设备、变压器等领域有着广泛的应用。
它具有高效、精确的能量传输和隔离能力,能够满足不同领域的需求。
电磁兼容原理

电磁兼容原理电磁兼容是指不同电子设备之间能够协调共存,不互相干扰,并能在同一电磁环境中正常工作的能力。
在现代电子技术高度发达的时代,电磁兼容成为了一个重要的问题。
本文将介绍电磁兼容的原理以及如何通过适当的设计来提高设备的电磁兼容性。
一、电磁兼容的原理1. 电磁耦合电子设备之间的互相干扰主要是通过电磁耦合传递的。
电磁耦合可以分为导线耦合和空间耦合两种形式。
导线耦合是指电磁干扰通过导线传递,例如电源线、信号线、地线等。
当一个设备产生电磁辐射时,通过导线就会传递到其他设备,造成干扰。
空间耦合是指电磁波通过空气传播,直接干扰其他设备。
这种干扰主要通过电磁波的辐射或者敏感部件的接收来实现。
2. 电磁辐射任何电子设备在工作时都会产生电磁辐射。
这些电磁波会以一定的频率振荡并传播到空气中。
不同频率的电磁波对其他设备的干扰程度也不同。
电磁辐射可以通过适当的设计进行控制。
例如,在电路板布局上可以采用良好的地线规划、信号和电源线的分离等方法来减少辐射。
3. 电磁感应电子设备在接收到其他设备的电磁波时也会产生干扰。
这是因为电磁波产生的电场和磁场可以感应到设备中的导线、元器件等。
对于感应干扰,可以采取屏蔽、过滤等措施来减少干扰。
例如,在信号线上可以添加屏蔽层,以减少外部电磁波对信号线的感应。
二、提高电磁兼容性的设计原则1. 地线设计良好的地线设计是提高电磁兼容性的重要手段。
地线应该具有低的阻抗,以便将电磁干扰引流至地。
同时,地线应该规划合理,避免形成地线回路,增加传导噪声的可能性。
2. 信号和电源线分离在电路板布局设计中,将信号和电源线分离是减少电磁耦合的有效方法。
信号线和电源线在布线时应尽量保持距离,并采用交错敷铜等技术来减少彼此之间的相互影响。
3. 屏蔽和过滤对于敏感的信号线或电路,可以采用屏蔽或过滤器来减少外部电磁波的干扰。
屏蔽层可以采用金属材料制作,对电磁波进行屏蔽。
过滤器则可以针对特定频率的干扰进行滤波,以保证信号的准确传输。
电磁波基本原理

电磁波基本原理
电磁波是由电场和磁场相互耦合而产生的一种能量传播现象。
它在空间中以无线电波的形式传播,具有电磁性、波动性和传播性。
电磁波的产生源于电荷的运动。
当电荷随着时间的变化而加速运动时,就会产生电场的变化。
根据法拉第电磁感应定律,电场的变化又会引起磁场的变化。
而根据安培电流定律,磁场的变化又会引起电场的变化。
这样电场和磁场就彼此交替地产生变化,形成了电磁波。
电磁波的特征之一是它的频率和波长。
频率指的是电磁波每秒钟振动的次数,以赫兹(Hz)为单位表示。
而波长则指的是
电磁波一个完整的周期所占据的距离。
电磁波的频率和波长之间有一个固定的关系,即波速等于频率乘以波长。
根据电磁波的频率,可以将它们分为不同的类型,包括射电波、微波、红外线、可见光、紫外线、X射线和γ射线。
这些电磁
波具有不同的特性和应用。
例如,射电波广泛用于通信和广播领域,可见光则用于照明和图像显示,X射线用于医学成像和材料检测。
电磁波在空间中的传播遵循波动理论。
它们以一种类似水波的方式传播,直线传播路径上的电场和磁场的变化形成了电磁波的垂直振动和相互垂直的传播方向。
根据麦克斯韦方程组,电磁波能够同时存在于空间中的电磁场,传播速度等于光速。
总的来说,电磁波的基本原理是以电场和磁场的相互耦合为基础,通过电荷的加速运动而产生,并具有频率和波长的特征。
不同类型的电磁波具有不同的频率范围和应用领域。
通过了解电磁波的基本原理,我们可以更好地理解它们的性质和应用。
《电磁兼容和测试技术》课件2-电磁兼容基础知识

4.电磁骚扰源分类及特性
雷电 NEMP
脉冲电路
无线通信
ESD
直流电机、变频调速器 感性负载通断
4.电磁骚扰源分类及特性
大气干扰
雷电干扰
宇宙干扰
自然 干扰源
热噪声 电气化铁路
无线电广播
电磁 干扰源
无线通信
功能性
人为 干扰源
非功能性
电视 雷达 导航
办公设备
输电线
点火系统
家用电器
工业、 医疗设备
4.电磁骚扰源分类及特性
电磁兼容性控制技术
传输通道抑制 空间分离 时间分隔 频谱管理 电气隔离 其他技术
6 电磁兼容的工程方法
电磁兼容性预测分析
电磁兼容性预测分析是采用计算机数字仿真技术,将各种 电磁干扰特性、传输特性和敏感度特性用数学模型描述,并编制 成程序对潜在的电磁干扰进行计算。
• 数学模型
干扰源模型、传输损耗模型、接受器模型
• 系统法
从电子设备或系统设计开始就进行电磁兼容性设计的方法。它在设备或 系统设计的全过程中贯彻始终,全面综合电磁耦合因素,不断进行电磁兼容 性分析、预测,对各阶段设计进行评估,提出修改措施。
6 电磁兼容的工程方法 EMC措施与费效比
6 电磁兼容的工程方法
为了实现系统内外的电磁兼容,需要技术上和组织上两方面采取措施。
Ea , Ha ;Eb , Hb
S
Va
V
J
a
,
J
m a
Sa
Va
J
b
,
J
m b
Sb
2. 传导耦合的基本原理
传导耦合按其耦合方式可以划分为三种基本方式: ①电路性耦合 ②电容性耦合 ③电感性耦合 实际工程中,这三种耦合方式同时存在、互相联系。
电磁屏蔽基本原理

电磁屏蔽基本原理在电子设备及电子产品中,电磁干扰(Electromagnetic Interference)能量通过传导性耦合和辐射性耦合来进行传输。
为满足电磁兼容性要求,对传导性耦合需采用滤波技术,即采用EMI滤波器件加以抑制;对辐射性耦合则需采用屏蔽技术加以抑制。
在当前电磁频谱日趋密集、单位体积内电磁功率密度急剧增加、高低电平器件或设备大量混合使用等因素而导致设备及系统电磁环境日益恶化的情况下,其重要性就显得更为突出。
屏蔽是通过由金属制成的壳、盒、板等屏蔽体,将电磁波局限于某一区域内的一种方法。
由于辐射源分为近区的电场源、磁场源和远区的平面波,因此屏蔽体的屏蔽性能依据辐射源的不同,在材料选择、结构形状和对孔缝泄漏控制等方面都有所不同。
在设计中要达到所需的屏蔽性能,则需首先确定辐射源,明确频率范围,再根据各个频段的典型泄漏结构,确定控制要素,进而选择恰当的屏蔽材料,设计屏蔽壳体。
屏蔽原理电屏蔽的实质是减小两个设备(或两个电路、组件、元件)间电场感应的影响。
电屏蔽的原理是在保证良好接地的条件下,将干扰源所产生的干扰终止于由良导体制成的屏蔽体。
因此,接地良好及选择良导体做为屏蔽体是电屏蔽能否起作用的两个关键因素。
磁屏蔽的原理是由屏蔽体对干扰磁场提供低磁阻的磁通路,从而对干扰磁场进行分流,因而选择钢、铁、坡莫合金等高磁导率的材料和设计盒、壳等封闭壳体成为磁屏蔽的两个关键因素。
电磁屏蔽的原理是由金属屏蔽体通过对电磁波的反射和吸收来屏蔽辐射干扰源的远区场,即同时屏蔽场源所产生的电场和磁场分量。
由于随着频率的增高,波长变得与屏蔽体上孔缝的尺寸相当,从而导致屏蔽体的孔缝泄漏成为电磁屏蔽最关键的控制要素。
屏蔽效能屏蔽体对辐射干扰的抑制能力用屏蔽效能SE(Shielding Effectiveness)来衡量,屏蔽效能的定义:没有屏蔽体时,从辐射干扰源传输到空间某一点(P)的场强 1( 1)和加入屏蔽体后,辐射干扰源传输到空间同一点(P)的场强 2( 2)之比,用dB(分贝)表示。
8.1 电磁辐射机理,8.2偶极子的场,8.3辐射功率及电阻
I l j r j 1 j E e ( 2 2 3 3 ) sin 4π r r r
3
2 I l j E sin e j r 4 π 0 r
特点:
是以球面波形式向四周扩散,随着r的增大,能量分布到更大的球面 上。当 r 时,电磁波便消失了。
• E 与 H 之比为一常数,有阻抗量纲,定义为媒质的本征阻抗或波阻
抗,自由空间的波阻抗为:
0 0 E Z0 0 0 120 377 Ω H 0 0
(θ 900 ) j β I l e- j β r H 4 r 2.08310-5 e- j(2.110 / 2) ( A/m)
第八章 电磁能量辐射与天线
8.1 电磁辐射机理 8.2 单元偶极子的电磁场 8.3 单元偶极子的辐射功率和辐射电阻 8.4 辐射的方向性与方向图
8.5 线天线与天线阵
什么是辐射?
• 电磁波从波源出发,以有限速度 在媒质中向四面八方传播,一部分电
磁波能量脱离波源而单独在空间波动,不再返回波源,这种现象称为辐射。 研究内容: • 辐射是有方向性的,希望在给定的方向产生指定的场。
e j r 1
公式中忽略
1 的低次项 , 得 r
Hr H E 0 Il sin H 4 r 2 r j Il cos I jq P cos E 2 π 0 r 3 p ql 2 π 0 r 3
结论 1、没有电荷运动,就不会有辐射。
2、假如电荷在导线中做匀速运动,也即导线内流过的是恒定电流,那么:
① 如果是无限长直导线,辐射不会发生;
电磁辐射 检测原理
电磁辐射检测原理
电磁辐射检测原理是一种测量和分析电磁辐射的技术方法,通常用于评估电磁辐射对人体和环境的潜在影响。
其基本原理是利用特定传感器或探测器来测量电磁辐射的强度、频率和波长等参数。
以下是常见的几种电磁辐射检测原理:
1. 电离室原理:利用电离室的工作原理,即电磁辐射经过离子化气体时会产生电离现象。
测量设备会通过测量电离室中产生的离子数量来确定电磁辐射的强度。
2. 频率谱分析原理:将电磁辐射信号进行频率谱分析,得到不同频率的成分,从而确定电磁辐射的频率特性。
常用的频谱分析方法包括傅里叶变换和快速傅里叶变换。
3. 接收天线原理:利用天线接收电磁辐射信号,并将其转换为电信号进行测量。
不同种类的天线适用于不同频率范围的电磁辐射检测。
4. 热辐射测量原理:通过测量物体表面的热辐射来间接确定电磁辐射的强度。
热成像技术是一种常见的热辐射测量方法。
5. 电磁波干涉原理:利用电磁辐射在干涉中产生的波峰和波谷来测量辐射的特性,如波长和振幅等。
常见的干涉技术包括干涉仪和干涉滤光片。
这些原理可以单独或联合使用,根据不同的测量需求选择适当的方法和设备来进行电磁辐射检测。
物理第五章电磁波的辐射优秀课件
1 c2
则有: 2 A ( A c 1 2 t) c 1 2 2 tA 2 0 jf(2)
2(A )f
t
0
(1)
一般情况下,真空中电磁场的
矢势和标势满足的的微分方程
矢势和标势满足的的微分方程:
2 A ( A c 1 2 t) c 1 2 2 tA 2 0 jf(2)
通过以闭合回路为边界的任意曲面的磁通量。
注:从矢势A的引入可以看出,电磁场的矢势与静磁场的 矢势唯一的区别就在于,电磁场的矢势是随时间变化的。
4.电磁场标势的引入
对于静电场:
0
静电场:
E0
E
对于E 变化电磁B场:0 t
: 标势(电势)
不能象静电场那样直接引入标量势函数
4.电磁场标势的引入
BA
说明:
u在变化情况下电场与磁场发生直接联系, 则电场的表示式必然包含矢势A在内。 u变化的电磁场,E不再是保守力场,不存在势能的概念,
标势失去作为电场中的势能的意义。
u 当A与时间无关,即∂A/∂t=0时, E
这时 就直接归结为电势。
任何电磁场可以用一标量场和一矢量场 A所描述:
B A
E
A
解出后代入第一式可解出A,因而可以确定辐
射电磁场。
矢势和标势满足的的微分方程:
2 A ( A c 1 2 t) c 1 2 2 tA 2 0 jf (2)
2(A )f
t
0
u 洛仑兹规范
1
Ac2 t 0
(1)
洛仑兹规范 下势的方程
22 A c1c212 2t2 2tA 2 0f0(jf(1)2)
称为达朗贝尔方程
洛仑兹规范 下势的方程
电磁辐射基础知识
分,其中一部分电磁场能量在辐射源周围空间及辐射源 之间周期性地来回流动,不向外发射,称为感应场;
电场和磁场之间存在90°相位差,由它们构成的波印亭矢
量为零
另一小部分电磁场能量脱离辐射体,以电磁波的形式向
外发射,称为辐射场。
电场和磁场同相位,两者的振幅比为波阻抗120π
概念关系
电磁场=感应场+辐射场 电磁波=辐射场
周期为T的非正弦波可分解成(看作)一系列正弦波的
叠加,这些正弦波中频率最低的称为基波,其频率 f0=1/T,其余正弦波称为谐波,频率为nf0,n=2,3,4……, n称为谐波次数。周期性的非正弦波频谱是离散的。一 般基波频谱强度最大,谐波次数越高,频谱强度越小。 为了简化设备,降低成本,工科医设备的电磁振荡源的 频谱质量很差,除了振荡频率(周期)的变化之外,振 荡波形也有畸变,偏离正弦波形,造成谐波干扰。这类 干扰源中常见的典型设备是塑料热合机。其基波频率虽 然远离广播电视的接收频率,但是其谐波频率可能落入 广播电视的接收频率范围,干扰电视的图像与声音。
由惠更斯—菲涅耳原理,包括电磁波在内的一切波有干
涉、绕射、镜面反射、漫反射(散射)、透射等特性。 当辐射源与测量点之间有障碍物时,电磁波可通过绕射 方式从辐射源到达监测点,但强度能量有很大的损失。 同一波源发出的波可以通过不同路径传播到达测量点, 这些不同传播路径的波在相位上是相关的,但这些波在 测量点的相位一般不同,由此产生相消干涉或相加干涉。 同相相加,反相相消。干涉的结果使得电磁波能量的空 间分布发生变化,因此出现在测量中可能距离辐射源相 同的点位但测量值却相差较大,但对电磁波的总能量来 说是不变的。
一、电磁场与电磁波
电磁波的性质 电磁波的干涉、绕射、反射、透射(续)