(整理)圆锥曲线常考题型总结-配有大题及练习

合集下载

圆锥曲线十大题型全归纳

圆锥曲线十大题型全归纳

目录圆锥曲线十大题型全归纳题型一弦的垂直平分线问题 (2)题型二动弦过定点的问题 (3)题型三过已知曲线上定点的弦的问题 (4)题型四共线向量问题 (5)题型五面积问题 (7)题型六弦或弦长为定值、最值问题 (10)题型七直线问题 (14)题型八轨迹问题 (16)题型九对称问题 (19)题型十存在性问题 (21)圆锥曲线题型全归纳题型一:弦的垂直平分线问题例题1、过点T(-1,0)作直线l 与曲线N :2y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ∆是等边三角形,若存在,求出0x ;若不存在,请说明理由。

题型二:动弦过定点的问题例题2、已知椭圆C :22221(0)x y a b a b+=>>的离心率为32,且在x 轴上的顶点分别为A 1(-2,0),A 2(2,0)。

(I )求椭圆的方程;(II )若直线:(2)l x t t =>与x 轴交于点T,点P 为直线l 上异于点T 的任一点,直线PA 1,PA 2分别与椭圆交于M 、N 点,试问直线MN 是否通过椭圆的焦点?并证明你的结论题型三:过已知曲线上定点的弦的问题例题4、已知点A 、B 、C 是椭圆E :22221x y a b+= (0)a b >>上的三点,其中点A (23,0)是椭圆的右顶点,直线BC 过椭圆的中心O ,且0AC BC =,2BC AC =,如图。

(I)求点C 的坐标及椭圆E 的方程;(II)若椭圆E 上存在两点P 、Q ,使得直线PC 与直线QC 关于直线3x =对称,求直线PQ 的斜率。

题型四:共线向量问题1:如图所示,已知圆M A y x C ),0,1(,8)1(:22定点=++为圆上一动点,点P 在AM 上,点N 在CM 上,且满足N AM NP AP AM 点,0,2=⋅=的轨迹为曲线E.I )求曲线E 的方程;II )若过定点F (0,2)的直线交曲线E 于不同的两点G 、H (点G 在点F 、H 之间),且满足FH FG λ=,求λ的取值范围.2:已知椭圆C 的中心在坐标原点,焦点在x 轴上,它的一个顶点恰好是抛物线214y x =的焦点,离心率为5.(1)求椭圆C 的标准方程;(2)过椭圆C 的右焦点作直线l 交椭圆C 于A 、B 两点,交y 轴于M 点,若1MA AF λ=,2MB BF λ= ,求证:1210λλ+=-.题型五:面积问题例题1、已知椭圆C :12222=+by a x (a >b >0)的离心率为,36短轴一个端点到右焦点的距离为3。

(完整版)圆锥曲线大题20道(含标准答案)

(完整版)圆锥曲线大题20道(含标准答案)

1.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3( (1)求双曲线C 的方程; (2)若直线2:+=kx y l 与双曲线C 恒有两个不同的交点A 和B ,且2>⋅OB OA (其中O 为原点). 求k 的取值范围.解:(Ⅰ)设双曲线方程为12222=-by a x ).0,0(>>b a由已知得.1,2,2,32222==+==b b ac a 得再由故双曲线C 的方程为.1322=-y x (Ⅱ)将得代入13222=-+=y x kx y .0926)31(22=---kx x k 由直线l 与双曲线交于不同的两点得⎪⎩⎪⎨⎧>-=-+=∆≠-.0)1(36)31(36)26(,0312222k k k k即.13122<≠k k 且①设),(),,(B B A A y x B y x A ,则 ,22,319,312622>+>⋅--=-=+B A B A B A B A y y x x OB OA kx x k k x x 得由 而2)(2)1()2)(2(2++++=+++=+B A B A B A B A B A B A x x k x x k kx kx x x y y x x.1373231262319)1(22222-+=+-+--+=k k k k k k k于是解此不等式得即,01393,213732222>-+->-+k k k k .3312<<k ② 由①、②得.1312<<k故k 的取值范围为).1,33()33,1(⋃-- 2..已知椭圆C :22a x +22by =1(a >b >0)的左.右焦点为F 1、F 2,离心率为e. 直线l :y =e x +a 与x 轴.y 轴分别交于点A 、B ,M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设=λ.(Ⅰ)证明:λ=1-e 2;(Ⅱ)确定λ的值,使得△PF 1F 2是等腰三角形.(Ⅰ)证法一:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是2222222.,,1,).,0(),0,(b a c c b y c x b y ax a ex y a e a +=⎪⎩⎪⎨⎧=-=⎪⎩⎪⎨⎧=++=-这里得由. 所以点M 的坐标是(a b c 2,-). 由).,(),(2a eaa b e a c AB AM λλ=+-=得即221e a ab e ac e a-=⎪⎪⎩⎪⎪⎨⎧==-λλλ解得证法二:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是).,0(),0,(a ea-设M 的坐标是00(,),x y00(,)(,),a aAM AB x y a e eλλ=+=u u u u r u u u r 由得所以⎪⎩⎪⎨⎧=-=.)1(00a y e a x λλ因为点M 在椭圆上,所以,122220=+by a x即.11)1(,1)()]1([22222222=-+-=+-e e b a a e aλλλλ所以 ,0)1()1(2224=-+--λλe e解得.1122e e -=-=λλ即(Ⅱ)解法一:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|,即.||211c PF = 设点F 1到l 的距离为d ,由,1||1|0)(|||21221c eec a e a c e d PF =+-=+++-==得.1122e ee =+-所以.321,3122=-==e e λ于是即当,32时=λ△PF 1F 2为等腰三角形. 解法二:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|, 设点P 的坐标是),(00y x ,则0000010.22y x ce y x c e a -⎧=-⎪+⎪⎨+-⎪=+⎪⎩,2022023,12(1).1e x c e e a y e ⎧-=⎪⎪+⎨-⎪=⎪+⎩解得由|PF 1|=|F 1F 2|得,4]1)1(2[]1)3([2222222c e a e c e c e =+-+++- 两边同时除以4a 2,化简得.1)1(2222e e e =+- 从而.312=e 于是32112=-=e λ 即当32=λ时,△PF 1F 2为等腰三角形. 3.设R y x ∈,,j i ρρ、为直角坐标平面内x 轴、y 轴正方向上的单位向量,若j y i x b j y i x a ρρρρϖρ)3( ,)3(-+=++=,且4=+b a ϖϖ.(Ⅰ)求点),(y x P 的轨迹C 的方程;(Ⅱ)若A 、B 为轨迹C 上的两点,满足MB AM =,其中M (0,3),求线段AB 的长. [启思]4.已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OB OA +与)1,3(-=a 共线. (Ⅰ)求椭圆的离心率;(Ⅱ)设M 为椭圆上任意一点,且),( R ∈+=μλμλ,证明22μλ+为定值. 解:本小题主要考查直线方程、平面向量及椭圆的几何性质等基本知识,考查综合运用数学知识解决问题及推理的能力. 满分12分.(1)解:设椭圆方程为)0,(),0(12222c F b a by a x >>=+ 则直线AB 的方程为c x y -=,代入12222=+b y a x ,化简得02)(22222222=-+-+b a c a cx a x b a .令A (11,y x ),B 22,(y x ),则.,22222222122221b a b a c a x x b a c a x x +-=+=+ 由OB OA a y y x x OB OA +-=++=+),1,3(),,(2121与共线,得,0)()(32121=+++x x y y 又c x y c x y -=-=2211,,.23,0)()2(3212121c x x x x c x x =+∴=++-+∴ 即232222cba c a =+,所以36.32222a b a c b a =-=∴=, 故离心率.36==a c e (II )证明:(1)知223b a =,所以椭圆12222=+by a x 可化为.33222b y x =+设),(y x =,由已知得),,(),(),(2211y x y x y x μλ+=⎩⎨⎧+=+=∴.,2121x x y x x x μλμλ),(y x M Θ在椭圆上,.3)(3)(2221221b y y x x =+++∴μλμλ 即.3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ① 由(1)知.21,23,23222221c b c a c x x ===+ [变式新题型3]抛物线的顶点在原点,焦点在x 轴上,准线l 与x 轴相交于点A(–1,0),过点A 的直线与抛物线相交于P 、Q 两点.(1)求抛物线的方程;(2)若FP •FQ =0,求直线PQ 的方程;(3)设=λAQ (λ>1),点P 关于x 轴的对称点为M ,证明:FM =-λFQ ..6.已知在平面直角坐标系xoy 中,向量32),1,0(的面积为OFP ∆=,且,3OF FP t OM j ⋅==+u u u r u u u r u u u u r u u ur r .(I )设4t OF FP θ<<u u u r u u u r求向量与 的夹角的取值范围;(II )设以原点O 为中心,对称轴在坐标轴上,以F 为右焦点的椭圆经过点M ,且||,)13(,||2c t c 当-==取最小值时,求椭圆的方程.7.已知(0,2)M -,点A 在x 轴上,点B 在y 轴的正半轴,点P 在直线AB 上,且满足,AP PB =-u u u r u u u r ,0MA AP ⋅=u u ur u u u r . (Ⅰ)当点A 在x 轴上移动时,求动点P 的轨迹C 方程;(Ⅱ)过(2,0)-的直线l 与轨迹C 交于E 、F 两点,又过E 、F 作轨迹C 的切线1l 、2l ,当12l l ⊥,求直线l 的方程.8.已知点C 为圆8)1(22=++y x 的圆心,点A (1,0),P 是圆上的动点,点Q 在圆的半径CP 上,且.2,0AM AP AP MQ ==⋅(Ⅰ)当点P 在圆上运动时,求点Q 的轨迹方程; (Ⅱ)若直线12++=k kx y 与(Ⅰ)中所求点Q的轨迹交于不同两点F ,H ,O 是坐标原点,且4332≤⋅≤OH OF ,求△FOH 的面积已知椭圆E 的中心在坐标原点,焦点在坐标轴上,且经过()2,0A -、()2,0B 、31,2C ⎛⎫ ⎪⎝⎭三点.(Ⅰ)求椭圆E 的方程;(Ⅱ)若直线l :()1y k x =-(0k ≠)与椭圆E 交于M 、N 两点,证明直线AM 与直线BN 的交点在直线4x =上.10.如图,过抛物线x 2=4y 的对称轴上任一点P(0,m)(m>0)作直线与抛物线交于A 、B 两点,点Q 是点P 关于原点的对称点。

高二圆锥曲线常考题型汇总-含答案

高二圆锥曲线常考题型汇总-含答案

面角 P—AD—B 所成平面角为 120 ,那么四棱锥 P—ABCD 的外接球的体积为
.
35.已知抛物线
C:y2
=
2
px
的焦点
F
与双曲线
4 3
x2

4 y2
=
1
的右焦点相同,过点
F
分别做两条直线
l1 ,
l2

直线 l1 与抛物线 C 交于 A,B 两点,直线 l2 抛物线 C 交于 D,E 两点,若 l1 与 l2 斜率的平方和为 1,则 AB + DE
=(

A. 4 a 5
B. 5 a 4
C. 3 a 5
D. 5 a 3
24. 已知 O 为坐标原点,椭圆的方程为 x2 + y2 = 1,若 P 、 Q 为椭圆的两个动点且 OQ ⊥ OP ,则 43
OP 2 + OQ 2 的最小值是( )
A. 2
B. 46
C. 48
D. 7
7
7
25.设双曲线 C 的中心为点 O ,若直线 l1 和 l2 相交于点 O ,直线 l1 交双曲线于 A1 、 B1 ,直线 l2 交双曲线于 A2 、
的最小值为( A、16
) B、20
C、24
D、32
第5/19页
教师答案与解析参考版 一、选择+填空(选择题中每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.椭圆的焦点 F1(−2 2, 0), F2 (2 2, 0) ,长轴为 2a ,在椭圆上存在点 P ,是 F1PF2 = 90 ,对于直线 y = a ,在 圆 x2 + ( y −1)2 = 2 上始终存在两点 M , N 使得直线上有点 Q ,满 MQN = 90 ,则椭圆的离心率范围是( )

圆锥曲线综合大题(考题猜想,易错必刷32题15种题型)(原卷版)2024-2025学年高二数学上学期

圆锥曲线综合大题(考题猜想,易错必刷32题15种题型)(原卷版)2024-2025学年高二数学上学期

圆锥曲线综合大题(易错必刷32题15种题型专项训练)➢韦达定理基础型➢直线横截式应用➢直线双变量型应用➢面积最值型➢面积比值范围型➢动直线过定点➢圆过定点➢圆锥切线➢定直线➢向量型定比分点➢斜率型:和定➢斜率型:积定➢斜率型:商定➢求轨迹➢新定义型第19题一.韦达定理基础型(共2题)1.(23-24高二下·四川成都·期中)已知椭圆C:22221x ya b+=(0a b>>),131,2Pæö-ç÷èø,231,2Pæöç÷èø,(30,P,()41,1P四点中恰有三点在椭圆C上.(1)求椭圆C的标准方程;(2)过右焦点F且斜率为1的直线l交椭圆C于M,N两点,点P为直线4x=上任意一点,求证:直线PM,PF,PN的斜率成等差数列.2.(23-24高二下·上海·期中)如图,由部分椭圆22221(0,0)x y a b y a b +=>>£和部分双曲线22221(0)x y y a b -=³,组成的曲线C 称为“盆开线”.曲线C 与x 轴有(2,0),(2,0)A B -两个交点,.(1)设过点(1,0)的直线l 与C 相切于点(4,3)M ,求部分椭圆方程、部分双曲线方程及直线l 的方程;(2)过A 的直线m 与C 相交于点,,P A Q 三点,求证:PBA QBA Ð=Ð.二. 直线横截式应用(共2题)3.(23-24高二上·广西南宁·期中)已知椭圆2222:1(0)x y C a b a b +=>>.(1)求椭圆C 的方程:(2)过点()1,0M 的直线l 与椭圆C 交于点A 、B ,设点1(,0)2N ,若ABN V 的面积为310,求直线l 的斜率k .4.(23-24高二下·云南玉溪·期中)在直角坐标平面内,已知点()()122,0,2,0A A -,动点P (x,y ).设1PA 、2PA 的斜率分别为12k k 、,且1234k k ×=-.设动点P (x,y )的轨迹为曲线C .(1)求曲线C 的方程;(2)过点F 1(―1,0)的直线l 交曲线C 于M N 、两点,是否存在常数l ,使11MN F M F N l =×uuuu r uuuu r恒成立?三. 直线双变量型(共2题)5.(23-24高二下·天津·期中)已知椭圆2222:1(0)x y C a b a b +=>>经过点()2,0A -,离心率为12.(1)求椭圆C 的方程;(2)点P Q 、为椭圆C 上不同的两点,直线AP 与y 轴交于点M ,直线AQ 与y 轴交于点),N E,设()0,(0)M m m >,且满足,EM EN PQ OE ^×=-uuu r uuu r,求点M 的坐标.6.(21-22高三上·湖北·期中)已知圆O :222x y +=,椭圆C :(22221x y a b a b+=>>,P是C 上的一点,A 是圆O 上的一点,PA 的最大值为(1)求椭圆C 的方程;(2)点M 是C 上异于P 的一点,PM 与圆O 相切于点N ,证明:2PO PM PN =×.四.面积最值型(共2题)7.(23-24高二下·福建泉州·期中)已知抛物线2:2(03)C y px p =<<,其焦点为F ,点(,Q m 在抛物线C 上,且4QF =.(1)求抛物线C 的方程;(2)O 为坐标原点,,A B 为抛物线上不同的两点,且OA OB ^,(i )求证直线AB 过定点;(ii )求AFO V 与ABO V 面积之和的最小值.8.(23-24高二下·内蒙古呼和浩特·期中)已知在平面直角坐标系xOy 中,动点P 到()和)的距离和为4,设点11,2A æöç÷èø.(1)求动点P 的轨迹方程;(2)M 为线段PA 的中点,求点M 的轨迹方程;(3)过原点O 的直线交P 的轨迹于B ,C 两点,求ABC V 面积的最大值.五.面积比值范围(共2题)9.(23-24高二·山东·期中)已知抛物线()2:20C y px p =>.过抛物线焦点F 作直线1l 分别在第一、四象限交C 于K P 、两点,过原点O 2与抛物线的准线交于E 点,设两直线交点为S .若当点P 的纵坐标为2-时,OP =(1)求抛物线的方程.(2)若EP 平行于x 轴,证明:S 在抛物线C 上.(3)在(2)的条件下,记SEP V 的重心为R ,延长ER 交SP 于Q ,直线EQ 交抛物线于N T 、(T 在右侧),设NT 中点为G ,求PEG △与ESQ V 面积之比n 的取值范围.10.(23-24高三上·青海西宁·期中)已知椭圆()2222:10x y E a b a b +=>>点P 在椭圆E 上运动,且12PF F V (1)求椭圆E 的方程;(2)设A ,B 分别是椭圆E 的右顶点和上顶点,不过原点的直线l 与直线AB 平行,且与x 轴,y 轴分别交于点M ,N ,与椭圆E 相交于点C ,D ,O 为坐标原点.(ⅰ)求OCM V 与ODN △的面积之比;(ⅱ)证明:22CM MD +为定值.六.动直线过定点 (共2题)11.(23-24高二下·安徽阜阳·期中)已知抛物线()2:20C y px p =>的焦点为F ,P 是C 上一点,线段PF的中点为5,22Q æöç÷èø.(1)求C 的方程;(2)若7p <,O 为原点,点M ,N 在C 上,且直线OM ,ON 的斜率之积为2024,求证:直线MN 过定点.12.(22-23高二上·四川雅安·期中)已知()0,1P 为椭圆2222:1(0)x y C a b a b +=>>上一点,点P 与椭圆C 的两(1)求椭圆C 的标准方程;(2)不经过点P 的直线l 与椭圆C 相交于,A B 两点,若直线PA 与PB 的斜率之和为1-,证明:直线l 必过定点,并求出这个定点坐标.七. 圆过定点(共2题)13.(23-24高二下·上海·期中)已知椭圆22:12x C y +=(1)若双曲线22221x y a b -=(0,0)a b >>的一条渐近线方程为y x =,且与椭圆C 有公共焦点,求此双曲线的方程;(2)过点10,3S æö-ç÷èø的动直线l 交椭圆C 于,A B 两点,试问在坐标平面上是否存在一个定点T ,使得以AB 为直径的圆恒过定点T ?若存在,求出T 的坐标,若不存在,说明理由.14.(23-24高二上·江苏常州·期中)已知双曲线()2222:10,0x y C a b a b-=>>F 到渐近线的距离为1.(1)求双曲线C 的方程;(2)若直线l 过定点()4,0M 且与双曲线C 交于不同的两点A 、B ,点N 是双曲线C 的右顶点,直线AN 、BN 分别与y 轴交于P 、Q 两点,以线段PQ 为直径的圆是否过x 轴上的定点?若是,求出定点坐标;若不是,说明理由.八.圆锥切线 (共2题)15.(23-24高二下·上海·期中)已知圆()22:21F x y -+=,动圆P 与圆F 内切,且与定直线3x =-相切,设圆心P 的轨迹为G (1)求G 的方程(2)若直线l 过点F ,且与G 交于,A B 两点①若直线l 与y 轴交于M 点,满足(),0,0MA AF MF FB l μl μ==>>uuu r uuu r uuur uuu r,试探究l 与μ的关系;②过点,A B 分别作曲线G 的切线相交于点P ,求PAB V 面积的最小值.16.(23-24高二下·上海·期中)已知抛物线2Γ:2x y =的焦点为F ,过Γ在第一象限上的任意一点P 作Γ的切线l ,直线l 交y 轴于点Q .过F 作l 的垂线m ,交Γ于,A B 两点.(1)若点Q 在Γ的准线上,求直线l 的方程;(2)求PF 的中点M 的轨迹方程;(3)若三角形PAB ,求点Q 的坐标.九.定直线(共2题)17.(2024高二·全国·期中)已知椭圆()2222:10x y C a b a b +=>>,A ,B 分别为C 的上、下顶点,O 为坐标原点,直线4y kx =+与C 交于不同的两点M ,N .(1)设点P 为线段MN 的中点,证明:直线OP 与直线MN 的斜率之积为定值;(2)若AB 4=,证明:直线BM 与直线AN 的交点G 在定直线上.18.(2024·河北·期中)已知椭圆C 的中心在原点O 、对称轴为坐标轴,A æççè、12B ö÷÷ø是椭圆上两点.(1)求椭圆C 的标准方程;(2)椭圆C 的左、右顶点分别为1A 和2A ,M ,N 为椭圆上异于1A 、2A 的两点,直线MN 不过原点且不与坐标轴垂直.点M 关于原点的对称点为S ,若直线1A S 与直线2A N 相交于点T .(i )设直线1MA 的斜率为1k ,直线2MA 的斜率为2k ,求12k k -的最小值;(ii )证明:直线OT 与直线MN 的交点在定直线上.十.向量型定比分点 (共2题)19.(23-24高二下·江苏南京·期中)已知椭圆C :()222210+=>>x y a b a b (P .(1)求椭圆C 的方程;(2)过右焦点F 的直线l 与椭圆C 交于A ,B 两点,若3AF FB =uuu r uuu r,求PAB V 的面积.20.(2023·河南·期中)已知椭圆()2222:10x y C a b a b +=>>的右焦点()10F ,,点12M ö÷÷ø在椭圆C 上.(1)求椭圆C 的标准方程;(2)过点()2,1P 的直线l 与椭圆C 交于A ,B 两点.若PA PB l =uu u r uuu r ,()0AQ QB l l =>uuu ruuu r ,求OQ uuu r 的最小值(O是坐标原点).十一.斜率型:和定 (共2题)21.(2024·河南郑州·期中)设抛物线2:2(0)C y px p =>的焦点为F ,()00,P x y 是C 上一点且2200||||PF PF x x -=+,直线l 经过点(8,0)Q -.(1)求抛物线C 的方程;(2)①若l 与C 相切,且切点在第一象限,求切点的坐标;②若l 与C 在第一象限内的两个不同交点为,A B ,且Q 关于原点O 的对称点为R ,证明:直线,AR BR 的倾斜角之和为π.22.(23-24高二上·云南昆明·期中)在平面直角坐标系xOy 中,动点(,)M x y 1x =+.记点M 的轨迹为C .(1)求C 的方程;(2)设点T 在y 轴上(异于原点),过点T 的两条直线分别交C 于A ,B 两点和P ,Q 两点,并且||||||||TA TB TP TQ =,求直线AB 的斜率与直线PQ 的斜率之和.十二.斜率型:积定(共2题)23.(23-24高二·辽宁鞍山·期中)已知椭圆2222:1(0)x y C a b a b+=>>,右焦点为()2,0F 且离心率为23,直线:6l x =,椭圆C 的左右顶点分别为12,A A P 、为l 上任意一点,且不在x 轴上,1PA 与椭圆C 的另一个交点为2,M P A 与椭圆C 的另一个交点为N .(1)直线1MA 和直线2MA 的斜率分别记为12M A M A k k 、,求证:12MA MA k k ×为定值;(2)求证:直线MN 过定点.24.(23-24高二·云南昆明·期中)已知点P 在椭圆C:x2a 2+y 2b 2=1(a >b >0)上,过点P 作直线l 与椭圆C 交于点Q ,过点P 作关于坐标原点O 的对称点P ¢,PP ¢的最小值为l 的斜率为0时,存在第一象限内的一点P 使得4,PP PQ =¢=(1)求椭圆C 的方程;(2)设直线l 的斜率为k (k ≠0),直线QP ¢的斜率为k ¢,求k k ¢×的值.十三.斜率型:商定(共2题)25.(2024·广东广州·期中)已知在平面直角坐标系xOy 中,双曲线C :()22221,0x y a b a b -=>过和(两点.(1)求双曲线C 的标准方程;(2)若S ,T 为双曲线C 上不关于坐标轴对称的两点,M 为ST 中点,且ST 为圆G 的一条非直径的弦,记GM 斜率为1k ,OM 斜率为2k ,证明:12k k 为定值.26.(23-24高二·广东汕头·期中)已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B ,点31,2æöç÷èø在该椭圆上,且该椭圆的右焦点F 的坐标为(1,0).(1)求椭圆C 的标准方程;(2)如图,过点F 且斜率为k 的直线l 与椭圆交于M ,N 两点,记直线AM 的斜率为1k ,直线BN 的斜率为2k ,求证:1213k k =.十四.求轨迹 (共2题)27.(23-24高二下·上海·期中)已知A 、B 、C 是我方三个炮兵阵地,A 地在B 地的正东方向,相距6km ;C 地在B 地的北偏西30°,相距4km .P 为敌方炮兵阵地.某时刻A 地发现P 地产生的某种信号,12s 后B地也发现该信号(该信号传播速度为13km/s ).以BA 方向为x 轴正方向,AB 中点为坐标原点,与AB 垂直的方向为y 轴建立平面直角坐标系.(1)判断敌方炮兵阵地P 可能分布在什么样的轨迹上,并求该轨迹的方程;(2)若C 地与B 地同时发现该信号,求从A 地应以什么方向炮击P 地?28.(23-24高二上·安徽宿州·期中)已知直线BC 经过定点()0,2,N O 是坐标原点,点M 在直线BC 上,且OM BC ^.(1)当直线BC 绕着点N 转动时,求点M 的轨迹E 的方程;(2)已知点()3,0T -,过点T 的直线交轨迹E 于点P Q 、,且65OP OQ ×=uuu r uuu r ,求PQ .十五.新定义型第19题(共4题)29.(2024·福建·期中)贝塞尔曲线是由法国数学家Pierre Bézier 发明的,它为计算机矢量图形学奠定了基础.贝塞尔曲线的有趣之处在于它的“皮筋效应”,即随着控制点有规律地移动,曲线会像皮筋一样伸缩,产生视觉上的冲击.(1)在平面直角坐标系中,已知点1T 在线段AB 上.若A (x 1,y 1),B (x 2,y 2),1AT a AB =,求动点1T 坐标;(2)在平面直角坐标系中,已知(2,4)A -,(2,0)B -,(2,4)C ,点,M N 在线段,AB BC 上,若动点2T 在线段MN 上,且满足2AM BN MT a ABBCMN===,求动点2T 的轨迹方程;(3)如图,已知((A B C D ,若点3,,,,,M N P X Y T 分别在线段,,,,,AB BC CD MN NP XY 上,且3AM BN CP MX NY XT a ABBCCDMNNPXY======,求动点3T 的轨迹方程.30.(23-24高三上·湖北荆州·期中)已知双曲线E 的中心为坐标原点,渐近线方程为y =,点(2,1)-在双曲线E 上.互相垂直的两条直线12,l l 均过点()(,0n n P p p >)*N n Î,直线1l 交E 于,A B 两点,直线2l 交E 于,C D 两点,,M N 分别为弦AB 和CD 的中点.(2)若直线MN 交x 轴于点()()*,0N n Q t n Î,设2n n p =.①求n t ;②记n a PQ =,()*21N n b n n =-Î,求211(1)nkk k k k b b a +=éù--ëûå.31.(2024·四川·期中)已知抛物线C :()220y px p =>的焦点为F ,过点F 的直线与C 相交于点A ,B ,AOB V 面积的最小值为12(O 为坐标原点).按照如下方式依次构造点()*N n F n Î:1F 的坐标为(),0p ,直线n AF ,n BF 与C 的另一个交点分别为n A ,n B ,直线n n A B 与x 轴的交点为1n F +,设点n F 的横坐标为n x .(2)求数列{}n x 的通项公式;(3)数列{}n x 中,是否存在连续三项(按原顺序)构成等差数列?若存在,指出所有这样的连续三项;若不存在,请说明理由.32.(2024·江西新余·期中)通过研究,已知对任意平面向量(),AB x y =uuu r,把AB uuu r绕其起点A 沿逆时针方向旋转q 角得到向量()cos sin ,sin cos AP x y x y q q q q =-+uuu r,叫做把点B 绕点A 逆时针方向旋转q 角得到点P ,(1)已知平面内点(A ,点B-,把点B 绕点A 逆时针旋转π3得到点P ,求点P 的坐标:(2)已知二次方程221+-=x y xy 的图像是由平面直角坐标系下某标准椭圆()222210+=>>x y a b a b绕原点O 逆时针旋转π4所得的斜椭圆C ,(i )求斜椭圆C 的离心率;(ⅱ)过点Q 作与两坐标轴都不平行的直线1l 交斜椭圆C 于点M 、N ,过原点O 作直线2l 与直线1l垂直,直线2l 交斜椭圆C 于点G 、H 理由.。

(整理)圆锥曲线常考题型总结-配有大题及练习

(整理)圆锥曲线常考题型总结-配有大题及练习

圆锥曲线大综合第一部分圆锥曲线常考题型和热点问题一.常考题型题型一:数形结合确定直线和圆锥曲线的位置关系题型二:弦的垂直平分线问题题型三:动弦过定点问题题型四:过已知曲线上定点的弦的问题题型五:共线向量问题题型六:面积问题题型七:弦或弦长为定值的问题题型八:角度问题题型九:四点共线问题题型十:范围为题(本质是函数问题)题型十一:存在性问题(存在点,存在直线y kx m ,存在实数,三角形(等边、等腰、直角),四边形(矩形,菱形、正方形),圆)二.热点问题1.定义与轨迹方程问题2.交点与中点弦问题3.弦长及面积问题4.对称问题5.范围问题6.存在性问题7.最值问题8.定值,定点,定直线问题第二部分知识储备一.与一元二次方程 ax2bx c 0(a 0) 相关的知识(三个“二次”问题)1. 判别式:b24ac2. 韦达定理:若一元二次方程ax2bx c 0(a 0) 有两个不等的实数根x1, x2,则x1x2b, x1 x2 ca a3. 求根公式:若一元二次方程ax2bx c 0(a 0) 有两个不等的实数根x1, x2,则x1,2b b2 4 ac2a二.与直线相关的知识1.直线方程的五种形式:点斜式,斜截式,截距式,两点式,一般式WORD 完美 .格式2.与直线相关的重要内容:①倾斜角与斜率:y tan ,[0, ) ;②点到直线的距离公式: d Ax0By0C(一般式)或 d kx0 y0 b (斜截式)A2 B 212k 23.弦长公式:直线y kxb 上两点 A( x1 , y1), B( x2 , y2 ) 间的距离:AB 1 k 2 x x2 (1k2 )[( x x )24x x ]( 或 AB 1 1y y2)1 12 1 2k 21 4.两直线 l1 : y1k1x1b1 ,l2 : y2k2 x2b2 的位置关系:① l1 l2k1 k2 1 ② l1 / /l2k1 k2且b1b25.中点坐标公式:已知两点A( x1 , y1 ), B( x2 ,y2),若点 M x, y 线段AB 的中点,则x x1x1 , y y1y22 2三.圆锥曲线的重要知识考纲要求:对它们的定义、几何图形、标准方程及简单性质,文理要求有所不同。

(完整版)圆锥曲线大题题型归纳,推荐文档

(完整版)圆锥曲线大题题型归纳,推荐文档

精心整理圆锥曲线大题题型归纳基本方法:1. 待定系数法:求所设直线方程中的系数,求标准方程中的待定系数a 、b 、c 、e 、p 等等; 2. 齐次方程法:解决求离心率、渐近线、夹角等与比值有关的问题;3. 韦达定理法:直线与曲线方程联立,交点坐标设而不求,用韦达定理写出转化完成。

要注4. 5. 1.2.3无关;45“转化”的经验;6.大多数问题只要真实、准确地将题目每个条件和要求表达出来,即可自然而然产生思路。

题型一:求直线、圆锥曲线方程、离心率、弦长、渐近线等常规问题例1、 已知F 1,F 2为椭圆2100x +264y =1的两个焦点,P 在椭圆上,且∠F 1PF 2=60°,则△F 1PF 2的面积为多少?点评:常规求值问题的方法:待定系数法,先设后求,关键在于找等式。

变式1、已知12,F F 分别是双曲线223575x y -=的左右焦点,P 是双曲线右支上的一点,且12F PF ∠=120︒,求12F PF ∆的面积。

变式2、已知F 1,F 2为椭圆2221100x y b +=(0<b <10)的左、右焦点,P 是椭圆上一点.(1)求|PF 1|?|PF 2|的最大值; (2)若∠F 1PF 2=60°且△F 1PF 2的面积为6433,求b 的值 题型二过定点、定值问题例2.(淄博市2017届高三3月模拟考试)已知椭圆C :22221(0)x y a b a b+=>>经过点3(1,),离心率为3,点A 为椭圆C 的右顶点,直线l 与椭圆相交于不同于点A 的两个点1122(,),(,)P x y Q x y . (Ⅰ)求椭圆C 的标准方程;(Ⅱ)当0AP AQ •=u u u r u u u r时,求OPQ ∆面积的最大值;(Ⅲ)若直线l 的斜率为2,求证:OPQ ∆的外接圆恒过一个异于点A 的定点.处理定点问题的方法:⑴常把方程中参数的同次项集在一起,并令各项的系数为零,求出定点;⑵也可先取参数的特殊值探求定点,然后给出证明。

圆锥曲线常考问题(经典整理)

圆锥曲线一.弦长问题弦长公式直线y kx b =+上两点1122(,),(,)A x y B x y 间的距离:2121AB k x x =+-221212(1)[()4]k x x x x =++- 或12211AB y y k =+- 例:已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (2,0),离心率为22.直线y =k (x -1)与椭圆C 交于不同的两点M ,N .(1)求椭圆C 的方程; (2)当△AMN 的面积为103时,求k 的值.练习:(2015·湖南)已知抛物线C 1 :x 2=4y 的焦点F 也是椭圆C 2:y 2a 2+x 2b2=1(a >b >0)的一个焦点.C 1 与C 2的公共弦的长为2 6.过点F 的直线l 与C 1相交于A ,B 两点,与C 2相交于C ,D 两点,且AC →与BD →同向. (1)求C 2的方程;(2)若|AC |=|BD |,求直线l 的斜率.二.中点弦问题公式法:若000(,)P x y 在椭圆22221x y a b+=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b+=+. 例:已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ) A.x 245+y 236=1 B.x 236+y 227=1 C.x 227+y 218=1 D.x 218+y 29=1 练习:已知双曲线x 2-y 23=1上存在两点M ,N 关于直线y =x +m 对称,且MN 的中点在抛物线y 2=18x 上,则实数m 的值为________.点差法(中点弦问题) 设()11,y x A 、()22,y x B ,()b a M ,为椭圆13422=+y x 的弦AB 中点则有 1342121=+y x ,1342222=+y x ;两式相减得()()03422212221=-+-y yx x⇒()()()()3421212121y y y y x x x x +--=+-⇒AB k =ba 43-例:设抛物线过定点A (-1,0),且以直线x =1为准线. (1)求抛物线顶点的轨迹C 的方程;(2)若直线l 与轨迹C 交于不同的两点M ,N ,且线段MN 恰被直线x =-12平分,设弦MN的垂直平分线的方程为y =kx +m ,试求m 的取值范围.三.范围问题解决圆锥曲线中的取值范围问题应考虑的五个方面(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围; (2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围; (4)利用已知的不等关系构造不等式,从而求出参数的取值范围;(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.例:(2015·天津)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F (-c,0),离心率为33,点M 在椭圆上且位于第一象限,直线FM 被圆x 2+y 2=b 24截得的线段的长为c ,|FM |=433. (1)求直线FM 的斜率; (2)求椭圆的方程;(3)设动点P 在椭圆上,若直线FP 的斜率大于2,求直线OP (O 为原点)的斜率的取值范围.练习:已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(3,0).(1)求双曲线C的方程;(2)若直线:y=kx+m(k≠0,m≠0)与双曲线C交于不同的两点M,N,且线段MN的垂直平分线过点A(0,-1),求实数m的取值范围.四.最值问题处理圆锥曲线最值问题的求解方法圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.命题点1利用三角函数有界性求最值例2过抛物线y2=4x的焦点F的直线交抛物线于A,B两点,点O是坐标原点,则|AF|·|BF|的最小值是()A.2 B. 2 C.4 D.2 2命题点2数形结合利用几何性质求最值例3(2015·江苏)在平面直角坐标系xOy中,P为双曲线x2-y2=1右支上的一个动点.若点P到直线x-y+1=0的距离大于c恒成立,则实数c的最大值为_____________.命题点3转化为函数利用基本不等式或二次函数求最值例4(2014·湖南)如图,O为坐标原点,椭圆C1:x2a2+y2b2=1(a>b>0)的左,右焦点分别为F1,F2,离心率为e1;双曲线C2:x2a2-y2b2=1的左,右焦点分别为F3,F4,离心率为e2.已知e1e2=32,且|F2F4|=3-1.(1)求C1,C2的方程;(2)过F1作C1的不垂直于y轴的弦AB,M为AB的中点,当直线OM与C2交于P,Q两点时,求四边形APBQ面积的最小值.练习:(1)已知焦点为F的抛物线y2=4x的弦AB的中点的横坐标为2,则|AB|的最大值为________.(2)(2014·北京)已知椭圆C:x2+2y2=4.①求椭圆C的离心率;②设O为原点,若点A在直线y=2上,点B在椭圆C上,且OA⊥OB,求线段AB长度的最小值.。

圆锥曲线经典题型总结(含答案)

圆锥曲线整理1.圆锥曲线的定义:(1)椭圆:|MF 1|+|MF 2|=2a (2a >|F 1F 2|);(2)双曲线:||MF 1|-|MF 2||=2a (2a <|F 1F 2|); (3)抛物线:|MF |=d .圆锥曲线的定义是本部分的一个重点内容,在解题中有广泛的应用,在理解时要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。

若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。

若去掉定义中的绝对值则轨迹仅表示双曲线的一支。

2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时2222bx a y +=1(0a b >>)。

%(2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:2222b x a y -=1(0,0a b >>)。

(3)抛物线:开口向右时22(0)y px p =>,开口向左时22(0)y px p =->,开口向上时22(0)x py p =>,开口向下时22(0)x py p =->。

注意:1.圆锥曲线中求基本量,必须把圆锥曲线的方程化为标准方程。

2.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断):椭圆:由x2,y 2分母的大小决定,焦点在分母大的坐标轴上。

高三高考数学总复习《圆锥曲线》题型归纳与汇总

高考数学总复习题型分类汇《圆锥曲线》篇经典试题大汇总目录【题型归纳】题型一求曲线的方程 (3)题型二最值(范围)问题 (4)题型三定点定值与存在性 (6)【巩固训练】题型一求曲线的方程 (8)题型二最值(范围)问题 (9)题型三定点定值与存在性 (11)高考数学《圆锥曲线》题型归纳与训练【题型归纳】题型一 求曲线的方程例1 已知定点()0,3-G ,S 是圆()723:22=+-y x C (C 为圆心)上的动点,SG 的垂直平分线与SC 交于点E ,设点E 的轨迹为M . 求M 的方程. 【答案】见解析【解析】由题意知ES EG =,所以26=+=+EC ESEC EG ,又因为266<=GC .所以点E 的轨迹是以G ,C 为焦点,长轴长为26的椭圆,动点E 的轨迹方程为191822=+y x . 例2 设O 为坐标原点,动点M 在椭圆22:12x C y +=上,过点M 作x 轴的垂线,垂足为N , 点P 满足2NP NM =.求点P 的轨迹方程.【答案】见解析【解析】如图所示,设(),P x y ,(),0N x ,()1,M x y . 由2NP NM =知,12y y =,即12y =.又点M 在椭圆2212x y +=上,则有22122x y +=,即222x y +=.例3 如图,矩形ABCD 中, ()()()()2,0,2,0,2,2,2,2A B C D -- 且,AM AD DN DC λλ==,[]0,1,AN λ∈交BM 于点Q .若点Q 的轨迹是曲线P 的一部分,曲线P 关于x 轴、y 轴、原点都对称,求曲线P 的轨迹方程.【答案】Q 的轨迹为第二象限的14椭圆,由对称性可知曲线P 的轨迹方程为2214x y +=. 【解析】设(),Q x y ,由,AM AD DN DC λλ==,求得()()2,2,42,2M N λλ--, ∵1,22QA AN QB BM k k k k λλ====-,∴11224QA QB k k λλ⎛⎫⋅=⋅-=- ⎪⎝⎭, P x,y ()NM Oxy∴1224y y x x ⋅=-+-,整理得()22120,014x y x y +=-≤≤≤≤.可知点Q 的轨迹为第二象限的14椭圆,由对称性可知曲线P 的轨迹方程为2214x y +=. 【易错点】求轨迹问题学生容易忽视范围 【思维点拨】高考中常见的求轨迹方程的方法有:1.直译法与定义法:直译法求轨迹方程:题目给出的条件可以直接得到一个关于动点坐标的关系式,化简; 定义法求轨迹方程:轨迹方程问题中,若能得到与所学过的圆锥曲线定义相符的结论,可以根据相应圆锥曲线的定义求出相关的参数,从而得到方程.2.相关点法:找动点之间的转化关系(平移,伸缩,中点,垂直等),用要求的代替已知轨迹的,代入化简3.参数法:可用联立求得参数方程,消参.注意此种问题通常范围有限制.4.交轨法:联立求交点,变形的轨迹. 题型二 最值(范围)问题例1 已知F 为抛物线C :x y 42=的焦点,过F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D 、E 两点,则DE AB +的最小值为( )A. 16B. 14C. 12D. 10 【答案】A【解析】设()()()()11223344,,,,,,,A x y B x y D x y E x y ,直线1l 的方程为()11y k x =-,联立方程()214 1y xy k x ==-⎧⎪⎨⎪⎩,得2222111240k x k x x k --+=,∴21122124k x x k --+=- 212124k k +=, 同理直线2l 与抛物线的交点满足:22342224k x x k ++=, 由抛物线定义可知12342AB DE x x x x p +=++++=22122222121224244448816k k k k k k ++++=++≥=, 当且仅当121k k =-=(或1-)时,取等号.【易错点】本题考查抛物线的焦点弦长,利用抛物线的焦点弦长公式,表示出DE AB +,然后利用基本不等式求最值.对相关流程应有所熟练例2 已知点A (0,2)-,椭圆E :22221(0)x y a b a b+=>>的离心率为2,F 是椭圆E 的右焦点,直线AF,O 为坐标原点. (1)求E 的方程;(2)设过点A 的动直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程. 【答案】见解析【解析】(1)2(c,0)F c c 设,由条件知,222=2, 1.c a b a c a ==-=又所以 22 1.4x E y +=故的方程为 (2)1122:=2,(,),(,).l x l y kx P x y Q x y ⊥-当轴时不合题意,故设22214x y kx y =-+=将代入得22(14)16120.k x kx +-+=221,23=16(43)0,4k k x ∆->>=当即时,12PQ x =-=从而O PQ d OPQ =∆又点到直线的距离所以的面积21=241OPQ S d PQ k ∆⋅=+244,0,.44OPQ t t t S t t t∆=>==++则44,20.2t t k t +≥==±∆>因为当且仅当,即OPQ ∆所以,当的面积最大时,l 的方程为2222y x y x =-=--或. 【思维点拨】 圆锥曲线中的取值范围问题常用的方法有以下几个:(1)利用已知参数的范围,求新参数的范围,解这类问题的关键是在两个参数之间建立等量关系;(2)利用基本不等式求出参数的取值范围;(3)利用函数的值域的求法(甚至求导),确定参数的取值范围. 题型三 定点定值与存在性问题例1 已知椭圆C :()222210x y a b a b +=>>上.(1)求C 的方程.(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .直线OM 的斜率与直线l 的斜率的乘积为定值. 【答案】见解析【解析】 (1=22421a b+=,解得28a =,24b =. 所以C 的方程为22184x y +=. (2)设直线l :()00y kx b kb =+≠≠,,()11A x y ,, ()22B x y ,,()M M M x y ,.将 y kx b =+代入22184x y +=得()22221+4280k x kbx b ++-=. 故1222221M x x kb x k +-==+,221M M by kx b k =+=+ . 于是直线OM 的斜率12M OM M y k x k ==-,即12OM k k ⋅=-. 所以直线OM 的斜率与直线l 的斜率的乘积为定值.【思维点拨】解析几何是高考必考内容之一,在命题时多从考查各种圆锥曲线方程中的基本量关系及运算,在直线与圆锥曲线关系中.一般用方程的思想和函数的观点来解决问题,并会结合中点坐标,方程根与函数关系来求解.例2 已知抛物线2:4C y x =,点()0,m M 在x 轴的正半轴上,过M 点的直线l 与抛物线C 相交于A ,B 两点,O 为坐标原点.(1) 若1=m ,且直线l 的斜率为1,求以AB 为直径的圆的方程;(2) 是否存在定点M ,使得不论直线:l x ky m =+绕点M 如何转动,2211AMBM+恒为定值?【答案】(1)()()223216x y -+-=. (2)存在定点M (2, 0). 【解析】(1)当1=m 时,()0,1M ,此时,点M 为抛物线C 的焦点,直线l 的方程为1-=x y ,设()()1122,,A x y B x y ,,联立24{ 1y xy x ==-,消去y 得, 2610x x -+=,∴126x x +=, 121224y y x x +=+-=,∴圆心坐标为(3, 2).又1228AB x x =++=,∴圆的半径为4,∴圆的方程为()()223216x y -+-=. (2)由题意可设直线l 的方程为x ky m =+,则直线l 的方程与抛物线2:4C y x =联立,消去x 得: 2440y ky m --=,则124y y m =-, 124y y k +=,()()22222211221111AMBMx m y x m y +=+-+-+()()()22122222222121211111y y k y k y k y y +=+=+++ ()()()()222121222222221221682111621y y y y k m k mky y k m m k +-++===+++ 对任意k R ∈恒为定值, 于是2=m ,此时221114AMBM+=. ∴存在定点()0,2M ,满足题意. 【易错点】定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果(取特殊位置或特殊值),因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.【思维点拨】定点、定值问题通常先假设存在,推证满足条件的结论,若结论正确,则存在;若结论不正确,则不存在.在求解中通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的.【巩固训练】题型一 求曲线的方程1.设圆222150x y x ++-=的圆心为A ,直线l 过点()0,1B 且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC的平行线交AD 于点E .证明EA EB +为定值,并写出点E 的轨迹方程.【答案】13422=+y x (0≠y ) 【解析】因为||||AC AD =,AC EB //,故ADC ACD EBD ∠=∠=∠, 所以||||ED EB =,故||||||||||AD ED EA EB EA =+=+.又圆A 的标准方程为16)1(22=++y x ,从而4||=AD ,所以4||||=+EB EA .由题设得)0,1(-A ,)0,1(B ,2||=AB ,由椭圆定义可得点E 的轨迹方程为13422=+y x (0≠y ).2.已知动圆G 过定点()4,0F ,且在y 轴上截得的弦长为8.求动圆G 的圆心点G 的轨迹方程; 【答案】28y x =【解析】设动圆圆心(),G x y ,设圆交y 轴于,M N 两点,连接,GF GM , 则GF GM =,过点G 作GH MN ⊥,则点H 是MN 的中点, 显然()22224,4GM x GF x y =+=-+,于是()222244x y x -+=+,化简整理得28y x =,故的轨迹方程为28y x =.3.已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于A B ,两点,交C 的准线于P Q ,两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明AR FQ ∥;(2)若PQF △的面积是ABF △的面积的两倍,求AB 中点的轨迹方程.【答案】(1)见解析; (2)12-=x y .【解析】由题设)0,21(F .设b y l a y l ==:,:21,则0≠ab ,且记过B A ,两点的直线为l ,则l 的方程为0)(2=++-ab y b a x .(1)由于F 在线段AB 上,故01=+ab .记AR 的斜率为1k ,FQ 的斜率为2k ,则222111k b aaba ab a b a a b a k =-=-==--=+-=.所以FQ AR ∥. (2)设l 与x 轴的交点为)0,(1x D , 则1111,2222ABF PQF a b S b a FD b a x S -=-=--=△△. 由题设可得221211b a x a b -=--,所以01=x (舍去),11=x . 设满足条件的AB 的中点为),(y x E . 当AB 与x 轴不垂直时,由DE AB k k =可得)1(12≠-=+x x yb a . 而y b a =+2,所以)1(12≠-=x x y . 当AB 与x 轴垂直时,E 与D 重合.所以,所求轨迹方程为12-=x y .题型二 最值(范围)问题1.已知动点E 到点A ()2,0与点B ()2,0-的直线斜率之积为14-,点E 的轨迹为曲线C . (1)求C 的方程;(2)过点D ()1,0作直线l 与曲线C 交于P , Q 两点,求OP OQ ⋅的最大值.【答案】(1)()22124x y x +=≠±(2)14 【解析】(1)设(),E x y ,则2x ≠±.因为E 到点A ()2,0,与点B ()2,0-的斜率之积为14-,所以122y yx x ⋅=-+-,整理得C 的方程为()22124x y x +=≠±. (2)当l 垂直于轴时,l 的方程为1x =,代入2214x y +=得P ⎛ ⎝⎭,1,Q ⎛ ⎝⎭.11,4OP OQ ⎛⎛⋅=⋅= ⎝⎭⎝⎭. 当l 不垂直于x 轴时,依题意可设()()10y k x k =-≠,代入2214x y +=得 ()2222148440k xk x k +-+-=.因为()216130k ∆=+>,设()11,P x y , ()22,Q x y .则2122814k x x k +=+, 21224414k x x k -=+.()()21212121211OP OQ x x y y x x k x x ⋅=+=+-- ()()22212121k x x k x x k =+-++14+21174416k =-+ 14< 综上OP OQ ⋅ 14≤,当l 垂直于x 轴时等号成立,故OP OQ ⋅的最大值是14.2.设椭圆()2222:10x y M a b a b +=>>经过点12,,P F F ⎭是椭圆M 的左、右焦点,且12PF F ∆的面积为2. (1)求椭圆M 的方程;(2)设O 为坐标原点,过椭圆M 内的一点()0,t 作斜率为k 的直线l 与椭圆M 交于,A B 两点,直线,OA OB 的斜率分别为12,k k ,若对任意实数k ,存在实数m ,使得12k k mk +=,求实数m 的取值范围.【答案】(1)22143x y +=;(2)[)2,m ∈+∞. 【解析】(1)略(2)设直线l 的方程为y kx t =+,由221{ 43x y y kx t+==+,得()2223484120k x ktx t +++-=,设()()1122,,,A x y B x y ,则21212228412,3434kt t x x x x k k -+=-=++,()212121221212122223t x x y y t t kt k k k k k k x x x x x x t ++=+=+++=+=--, 由12k k mk +=对任意k 成立,得22223t m t =--,∴()232m t m-=,又()0,t 在椭圆内部中,∴203t ≤<,∴2m ≥,即[)2,m ∈+∞.题型三 定点定值与存在性问题1.已知12,F F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,离心率为12, ,M N 分别是椭圆的上、下顶点,22•2MF NF =-.(1)求椭圆E 的方程;(2)若直线y kx m =+与椭圆E 交于相异两点,A B ,且满足直线,MA MB 的斜率之积为14,证明:直线AB 恒过定点,并求定点的坐标.【答案】(1)22143x y +=(2)直线AB恒过定点(0,.【解析】(1)由题知()0,2c F ,()b M ,0,()b N -,0,22222-=-=⋅∴b c NF MF ①由21==a c e ,得c a 2= ② 又222cb a =- ③ 由①②③联立解得:42=a ,32=b ∴椭圆E 的方程为13422=+y x . (2)证明:由椭圆E 的方程得,上顶点()3,0M ,设()11,y x A ,()22,y x B ,由题意知,01≠x ,02≠x由⎪⎩⎪⎨⎧=++=13422y x m kx y 得:()()034843222=-+++m kmx x k∴221438kkmx x +-=+,()22214334k m x x +-=, 又111133x m kx x y k MA -+=-=,222233x m kx x y k MB -+=-=, 由41=⋅NB MA k k ,得()()2121334x x m kx m kx =-+-+, ()()()()()()0433483414342222=+-+--+--k m km m k k m ,化简得:06332=+-m m 解得:3=m 或32=m ,结合01≠x ,02≠x 知32=m ,即直线AB 恒过定点()32,0.2.已知椭圆C :22221(0)x y a b a b+=>>的离心率为2,(,0)A a ,(0,)B b ,(0,0)O ,ΔOAB 的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:||||AN BM ⋅为定值.【答案】(1) 1422=+y x (2)见解析. 【解析】(1)由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧+===,,121,23222c b a ab a c 解得1,2==b a . 所以椭圆C 的方程为1422=+y x . (2)由(1)知,)1,0(),0,2(B A ,设),(00y x P ,则442020=+y x .当00≠x 时,直线PA 的方程为)2(200--=x x y y .令0=x ,得2200--=x y y M .从而221100-+=-=x y y BM M . 直线PB 的方程为110+-=x x y y . 令0=y ,得100--=y x x N .从而12200-+=-=y x x AN N . 所以221120000-+⋅-+=⋅x y y x BM AN 228844224844400000000000000002020+--+--=+--+--++=y x y x y x y x y x y x y x y x y x 4=.当00=x 时,10-=y ,,2,2==AN BM 所以4=⋅BM AN .综上,BM AN ⋅为定值.3. 在平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b+=>>的离心率e =C 上的点 到(0,2)Q 的距离的最大值为3. (1)求椭圆C 的方程;(2)在椭圆C 上,是否存在点(,)M m n 使得直线l :1mx ny +=与圆O :221x y += 相交于不同的两点,A B ,且OAB ∆的面积最大?若存在,求出点M 的坐标及相对应的OAB ∆的面积;若不存在,请说明理由.【答案】(1) 2213x y += (2)见解析【解析】(1)由2223c e c a a ==⇒=,所以222213b ac a =-= 设(,)P x y 是椭圆C 上任意一点,则22221x y a b+=,所以222222(1)3y x a a y b =-=-||PQ ===所以,当1y =-时,||PQ 3=,可得a =1,b c ==故椭圆C 的方程为:2213x y += (2)存在点M 满足要求,使OAB ∆得面积最大.假设直线:1l mx ny +=与圆22:1O x y +=相交于不同两点,A B , 则圆心O 到l的距离1d =<,∴221m n +> ①因为(,)M m n 在椭圆C 上,所以2213m n +=②,由①②得:203m <∵||AB ==所以1||2OABSAB d =⋅=2213m n =-代入上式得213221213OABmS m m ∆==+⋅,当且仅当22231(0,3]32m m =⇒=∈,∴2231,22m n ==,此时满足要求的点(M 有四个. 此时对应的OAB ∆的面积为12. 4.已知过抛物线()022>=p px y 的焦点F 的直线交抛物线于()()()112212,,,A x y B x y x x < 两点,且6AB =.(1)求该抛物线E 的方程;(2)过点F 任意作互相垂直的两条直线12,l l ,分别交曲线E 于点,C D 和,M N .设线段,CD MN 的中点分别为,P Q ,求证:直线PQ 恒过一个定点.【答案】(1)24y x = (2)直线PQ 恒过定点()3,0.【解析】(1)抛物线的焦点,02p F ⎛⎫⎪⎝⎭,∴直线AB 的方程为:2p y x ⎫=-⎪⎭联立方程组22{ 2y pxp y x =⎫=-⎪⎭,消元得: 22204p x px -+=, ∴212122,4px x p xx +==∴6AB ===,解得2p =±.∵0p >,∴抛物线E 的方程为:24y x =.(2)设,C D 两点坐标分别为()()1122,,,x y x y ,则点P 的坐标为1212,22x x y y ++⎛⎫⎪⎝⎭..由题意可设直线1l 的方程为()()10y k x k =-≠. 由()24{1y x y k x ==-,得()2222240k x k x k -++=.()24224416160k k k ∆=+-=+>因为直线1l 与曲线E 于,C D 两点,所以()1212122442,2x x y y k x x k k+=++=+-=. 所以点P 的坐标为2221,k k ⎛⎫+⎪⎝⎭. 由题知,直线2l 的斜率为1k-,同理可得点Q 的坐标为()212,2k k +-. 当1k ≠±时,有222112k k+≠+,此时直线PQ 的斜率2222221112PQ kk k k k k k+==-+--. 所以,直线PQ 的方程为()222121k y k x k k+=---,整理得()230yk x k y +--=. 于是,直线PQ 恒过定点()3,0; 当1k=±时,直线PQ 的方程为3x =,也过点()3,0.综上所述,直线PQ 恒过定点()3,0.新课程标准的内容与现形课标内容的对比如下表:与现形课标对比,必修3中的“算法初步”删掉了;删掉了必修5中的解三角形,不等式的大部分内容。

(完整版)圆锥曲线知识点+例题+练习含答案(整理).docx

(完整版)圆锥曲线知识点+例题+练习含答案(整理).docx圆锥曲线⼀、椭圆:( 1)椭圆的定义:平⾯内与两个定点F1 , F2的距离的和等于常数(⼤于| F1 F2 |)的点的轨迹。

其中:两个定点叫做椭圆的焦点,焦点间的距离叫做焦距。

注意: 2a | F1F2 | 表⽰椭圆;2a | F1F2|表⽰线段F1F2; 2a| F1F 2 |没有轨迹;(2)椭圆的标准⽅程、图象及⼏何性质:中⼼在原点,焦点在x 轴上中⼼在原点,焦点在y 轴上标准⽅程图形x2y2y2x2a2b 21( a b 0)a 2b21(ab 0)yB 2yB 2P F2 PA 1 A 2x A 1xA 2OF1O F21B 1FB 1顶点对称轴焦点焦距离⼼率通径2b2aA1 (a,0), A2 (a,0)A1( b,0), A2 (b,0)B1 (0, b), B2(0, b)B1( 0,a), B2 (0, a) x 轴,y轴;短轴为2b,长轴为2aF1 (c,0), F2(c,0)F1 ( 0,c), F2 (0,c)| F1 F2 | 2c(c 0)c2 a 2 b 2(0 e 1) (离⼼率越⼤,椭圆越扁)a(过焦点且垂直于对称轴的直线夹在椭圆内的线段)3.常⽤结论:(1)椭圆x2y21(a b 0) 的两个焦点为F1, F2,过F1的直线交椭圆于A, B两a2 b 2点,则ABF 2的周长=(2)设椭圆x2y2221( a b 0)左、右两个焦点为 F1, F2,过 F1且垂直于对称轴的直线a b交椭圆于 P, Q 两点,则 P, Q 的坐标分别是| PQ |⼆、双曲线:( 1)双曲线的定义:平⾯内与两个定点F1 , F2的距离的差的绝对值等于常数(⼩于| F1F2 | )的点的轨迹。

其中:两个定点叫做双曲线的焦点,焦点间的距离叫做焦距。

注意: | PF1 || PF2 | 2a 与 | PF2 | | PF1 |2a ( 2a| F1F2 | )表⽰双曲线的⼀⽀。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线大综合第一部分 圆锥曲线常考题型和热点问题一.常考题型题型一:数形结合确定直线和圆锥曲线的位置关系 题型二:弦的垂直平分线问题 题型三:动弦过定点问题题型四:过已知曲线上定点的弦的问题 题型五:共线向量问题 题型六:面积问题题型七:弦或弦长为定值的问题 题型八:角度问题 题型九:四点共线问题题型十:范围为题(本质是函数问题)题型十一:存在性问题(存在点,存在直线y kx m =+,存在实数,三角形(等边、等腰、直角),四边形(矩形,菱形、正方形),圆)二.热点问题1.定义与轨迹方程问题2.交点与中点弦问题3.弦长及面积问题4.对称问题5.范围问题6.存在性问题7.最值问题8.定值,定点,定直线问题第二部分 知识储备一. 与一元二次方程20(0)ax bx c a ++=≠相关的知识(三个“二次”问题)1. 判别式:24b ac ∆=-2. 韦达定理:若一元二次方程20(0)ax bx c a ++=≠有两个不等的实数根12,x x ,则12b x x a +=-,12cx x a⋅= 3. 求根公式:若一元二次方程20(0)ax bx c a ++=≠有两个不等的实数根12,x x ,则1,22b x a-±=二.与直线相关的知识1. 直线方程的五种形式:点斜式,斜截式,截距式,两点式,一般式2. 与直线相关的重要内容:①倾斜角与斜率:tan y θ=,[0,)θπ∈;②点到直线的距离公式:d =或d =(斜截式)3. 弦长公式:直线y kx b =+上两点1122(,),(,)A x y B x y 间的距离:1212)AB x AB y =-==-或 4. 两直线1111122222:,:l y k x b l y k x b =+=+的位置关系:① 12121l l k k ⊥⇔⋅=- ②121212//l l k k b b ⇔=≠且5. 中点坐标公式:已知两点1122(,),(,)A x y B x y ,若点(),M x y 线段AB 的中点,则1112,22x x y y x y ++== 三.圆锥曲线的重要知识考纲要求:对它们的定义、几何图形、标准方程及简单性质,文理要求有所不同。

文科:掌握椭圆,了解双曲线;理科:掌握椭圆及抛物线,了解双曲线1. 圆锥曲线的定义及几何图形:椭圆、双曲线及抛物线的定义及几何性质。

2. 圆锥曲线的标准方程:①椭圆的标准方程②双曲线的标准方程 ③抛物线的标准方程 3. 圆锥曲线的基本性质:特别是离心率,参数,,a b c 三者的关系,p 的几何意义等4. 圆锥曲线的其他知识:①通径:椭圆22b a ,双曲线22b a,抛物线2p②焦点三角形的面积:p 在椭圆上时122tan2F PF Sb θ=⋅p 在双曲线上时122/tan2F PF Sb θ=四.常结合其他知识进行综合考查1. 圆的相关知识:两种方程,特别是直线与圆,两圆的位置关系2. 导数的相关知识:求导公式及运算法则,特别是与切线方程相关的知识3. 向量的相关知识:向量的数量积的定义及坐标运算,两向量的平行与垂直的判断条件等 4. 三角函数的相关知识:各类公式及图像与性质5. 不等式的相关知识:不等式的基本性质,不等式的证明方法,均值定理等五.不同类型的大题 (1)圆锥曲线与圆例1.(本小题共14分)已知双曲线,右准线方程为(Ⅰ)求双曲线的方程;(Ⅱ)设直线是圆上动点处的切线,与双曲线交于不同的两点,证明的大小为定值…【解法1】本题主要考查双曲线的标准方程、圆的切线方程等基础知识,考查曲线和方程的关系等解析几何的基本思想方法,考查推理、运算能力.(Ⅰ)由题意,得,解得,∴,∴所求双曲线的方程为. (Ⅱ)点在圆上,圆在点处的切线方程为, 化简得.由及得, ∵切线与双曲线C 交于不同的两点A 、B ,且,∴,且,设A 、B 两点的坐标分别为,则, ∵,且, 2222:1(0,0)x y C a b a b-=>>3x =C l 22:2O x y +=0000(,)(0)P x y x y ≠l C ,A B AOB ∠2a c c a⎧=⎪⎪⎨⎪=⎪⎩1,a c ==2222b c a =-=C 2212y x -=()()0000,0P x y x y ≠222x y +=()00,P x y ()0000x y y x x y -=--002x x y y +=2200122y x x x y y ⎧-=⎪⎨⎪+=⎩22002x y +=()222000344820x x x x x --+-=l 2002x <<20340x -≠()()22200016434820x x x ∆=--->()()1122,,,x y x y 20012122200482,3434x x x x x x x x -+==--cos OA OB AOB OA OB⋅∠=⋅()()121212010220122OA OB x x y y x x x x x x y ⋅=+=+--.∴ 的大小为.【解法2】(Ⅰ)同解法1.(Ⅱ)点在圆上,圆在点处的切线方程为,化简得.由及得①②∵切线与双曲线C 交于不同的两点A 、B ,且, ∴,设A 、B 两点的坐标分别为,则, ∴,∴ 的大小为.(∵且,∴,从而当时,方程①和方程②的判别式均大于零).练习1:已知点是椭圆的左顶点,直线与椭圆相交于两点,与轴相交于点.且当时,△的面积为. (Ⅰ)求椭圆的方程;()212012012201422x x x x x x x x x ⎡⎤=+-++⎣⎦-()222200002222000082828143423434x x x x x x x x ⎡⎤--⎢⎥=+-+----⎢⎥⎣⎦22002200828203434x x x x --==-=--AOB ∠90︒()()0000,0P x y x y ≠222x y +=()00,P x y ()0000x y y x x y -=--002x x y y +=2200122y x x x y y ⎧-=⎪⎨⎪+=⎩22002x y +=()22200344820x x x x x --+-=()222000348820xy y x x ---+=l 2002x <<20340x -≠()()1122,,,x y x y 2200121222008228,3434x x x x y y x x --==--12120OA OB x x y y ⋅=+=AOB ∠90︒22002x y +=000x y ≠220002,02x y <<<<20340x -≠A ()22:109x y C t t+=>:1()l x my m =+∈R C ,E F x B 0m =AEF 163C(Ⅱ)设直线,与直线分别交于,两点,试判断以为直径的圆是否经过点?并请说明理由.(2)圆锥曲线与图形形状问题例2.1已知A ,B ,C 是椭圆W :24x +y 2=1上的三个点,O 是坐标原点.(1)当点B 是W 的右顶点,且四边形OABC 为菱形时,求此菱形的面积;(2)当点B 不是W 的顶点时,判断四边形OABC 是否可能为菱形,并说明理由.解:(1)椭圆W :24x +y 2=1的右顶点B 的坐标为(2,0).因为四边形OABC 为菱形,所以AC 与OB 相互垂直平分.所以可设A (1,m ),代入椭圆方程得14+m 2=1,即m=2±.所以菱形OABC 的面积是12|OB |·|AC |=12×2×2|m |.(2)假设四边形OABC 为菱形.因为点B 不是W 的顶点,且直线AC 不过原点,所以可设AC 的方程为y =kx +m (k ≠0,m ≠0).由2244,x y y kx m⎧+=⎨=+⎩消y 并整理得(1+4k 2)x 2+8kmx +4m 2-4=0. 设A (x 1,y 1),C (x 2,y 2),则1224214x x km k +=-+,121222214y y x x mk m k++=⋅+=+. 所以AC 的中点为M 224,1414km m k k ⎛⎫- ⎪++⎝⎭. 因为M 为AC 和OB 的交点,所以直线OB 的斜率为14k-.因为k ·14k ⎛⎫- ⎪⎝⎭≠-1,所以AC 与OB 不垂直.所以OABC 不是菱形,与假设矛盾.所以当点B 不是W 的顶点时,四边形OABC 不可能是菱形.练习1:已知椭圆C :)0(12222>>=+b a by a x 过点(2,1),且以椭圆短轴的两个端点和一个焦点为顶点的三角形是等腰直角三角形.(Ⅰ)求椭圆的标准方程;(Ⅱ)设M ,)x y (是椭圆C 上的动点,P ,0)p (是X 轴上的定点,求MP 的最小值及取最小值时点M 的坐标.AE AF 3x =M N MN B(3)圆锥曲线与直线问题 例3.1已知椭圆22:24C x y +=,(1)求椭圆C 的离心率.(2)设O 为原点,若点A 在椭圆C 上,点B 在直线2y =上,且OA OB ⊥,求直线AB 与圆222xy +=的位置关系,并证明你的结论.解析:⑴椭圆的标准方程为:22142x y +=, 2a =,b =则c =c e a ==;⑵直线AB 与圆222x y +=相切.证明如下:法一:设点A B ,的坐标分别为()()002x y t ,,,,其中00x ≠. 因为OA OB ⊥,所以0OA OB ⋅=,即0020tx y +=,解得02y t x =-. 当0x t =时,202t y =-,代入椭圆C的方程,得t =故直线AB的方程为x =圆心O 到直线AB的距离d .此时直线AB 与圆222x y +=相切. 当0x t ≠时,直线AB 的方程为()0022y y x t x t--=--,即()()0000220y x x t y x ty ---+-=. 圆心O 到直线AB 的距离d =.又220024x y +=,02y t x =-,故d ===此时直线AB 与圆222x y +=相切. 法二:由题意知,直线OA 的斜率存在,设为k ,则直线OA 的方程为y kx =,OA OB ⊥,①当0k =时,()20A ±,,易知()02B ,,此时直线AB 的方程为2x y +=或2x y -+=, 原点到直线AB,此时直线AB 与圆222x y +=相切; ②当0k ≠时,直线OB 的方程为1y x k =-,联立2224y kx x y =⎧⎨+=⎩得点A的坐标⎛⎫,或⎛⎫⎝;联立12y xk y ⎧=-⎪⎨⎪=⎩得点B 的坐标()22k -,, 由点A 的坐标的对称性知,无妨取点A ⎛⎫,进行计算, 于是直线AB的方程为:))2222y x k x k k-=+++,即((21220k x y k -+++=,原点到直线AB 的距离d ==,此时直线AB 与圆222x y +=相切。

相关文档
最新文档