由江西高考理科数学最后一题说起
2021届江西省高考理科数学总复习第3讲:简单的逻辑联结词、全称量词与存在量词

2021届江西省高考理科数学总复习第3讲:简单的逻辑联结词、全称量词与存在量词[最新考纲] 1.了解逻辑联结词“或”“且”“非”的含义.2.理解全称量词和存在量词的意义.3.能正确地对含有一个量词的命题进行否定.1.简单的逻辑联结词(1)命题中的或、且、非叫做逻辑联结词.(2)命题p且q、p或q、非p的真假判断p q p且q p或q 非p真真真真假真假假真假假真假真真假假假假真2.(1)全称量词:短语“所有的”“任意一个”等在逻辑中通常叫做全称量词,用符号“∀”表示.(2)存在量词:短语“存在一个”“至少有一个”等在逻辑中通常叫做存在量词,用符号“∃”表示.3.全称命题、特称命题及含一个量词的命题的否定命题名称语言表示符号表示命题的否定全称命题对M中任意一个x,有p(x)成立∀x∈M,p(x)∃x0∈M,﹁p(x0)特称命题存在M中的一个x0,使p(x0)成立∃x0∈M,p(x0)∀x∈M,﹁p(x)1.含有逻辑联结词的命题真假的判断规律(1)p∨q:p,q中有一个为真,则p∨q为真,即有真为真.(2)p∧q:p,q中有一个为假,则p∧q为假,即有假即假.(3)﹁p:与p的真假相反,即一真一假,真假相反.2.含有一个量词的命题的否定的规律是“改量词,否结论”.3.命题的否定和否命题的区别:命题“若p,则q”的否定是“若p,则﹁q”,否命题是“若﹁p,则﹁q”.一、思考辨析(正确的打“√”,错误的打“×”)(1)命题“3≥2”是真命题.()(2)若命题p∧q为假命题,则命题p,q都是假命题.()(3)命题“对顶角相等”的否定是“对顶角不相等”.()(4)“全等的三角形面积相等”是全称命题.()[答案](1)√(2)×(3)×(4)√二、教材改编1.命题“∀x∈R,x2+x≥0”的否定是()A.∃x0∈R,x20+x0≤0 B.∃x0∈R,x20+x0<0C.∀x∈R,x2+x≤0 D.∀x∈R,x2+x<0B[由全称命题的否定是特称命题知选项B正确.故选B.]2.下列命题中的假命题是()A.∃x0∈R,lg x0=1 B.∃x0∈R,sin x0=0C.∀x∈R,x3>0 D.∀x∈R,2x>0C[当x=10时,lg 10=1,则A为真命题;当x=0时,si n0=0,则B为真命题;当x≤0时,x3≤0,则C为假命题;由指数函数的性质知,∀x∈R,2x >0,则D为真命题.故选C.]3.已知p:2是偶数,q:2是质数,则命题﹁p,﹁q,p∨q,p∧q中真命题的个数为()A.1B.2 C.3D.4B[p和q显然都是真命题,所以﹁p,﹁q都是假命题,p∨q,p∧q都是真命题.]4.命题“实数的平方都是正数”的否定是________.存在一个实数的平方不是正数[全称命题的否定是特称命题,故应填:存在一个实数的平方不是正数.]考点1全称命题、特称命题(1)全称命题与特称命题的否定①改写量词:确定命题所含量词的类型,省去量词的要结合命题的含义加上量词,再对量词进行改写.②否定结论:对原命题的结论进行否定.(2)全称命题与特称命题真假的判断方法命题名称真假判断方法一判断方法二全称命题真所有对象使命题真否定为假假存在一个对象使命题假否定为真特称命题真存在一个对象使命题真否定为假全称命题、特称命题的否定(1)(2019·西安模拟)命题“∀x>0,xx-1>0”的否定是()A.∃x<0,xx-1≤0B.∃x>0,0≤x≤1C.∀x>0,xx-1≤0 D.∀x<0,0≤x≤1(2)已知命题p:∃m∈R,f(x)=2x-mx是增函数,则﹁p为() A.∃m∈R,f(x)=2x-mx是减函数B.∀m∈R,f(x)=2x-mx是减函数C.∃m∈R,f(x)=2x-mx不是增函数D.∀m∈R,f(x)=2x-mx不是增函数(1)B(2)D[(1)因为xx-1>0,所以x<0或x>1,所以xx-1>0的否定是0≤x≤1,所以命题的否定是∃x>0,0≤x≤1,故选B.。
2013年江西高考数学理科试卷(带详解)

2013年普通高等学校招生全国统一考试(江西卷)理科数学一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1,2,i M z =,i 为虚数单位,{}{}3,4,4N M N == ,则复数z =( )A.2i -B.2iC.4i -D.4i 【测量目标】集合的基本运算和复数的四则运算 【考查方式】利用并集运算、复数的乘法运算求解. 【难易程度】容易 【参考答案】C【试题解析】{}{}1,2,i ,3,4,M z N == 由{}4,M N = 得4,i=4,M z ∈∴4i.z =- 2.函数)y x =-的定义域为( )A.(0,1)B.[0,1)C.(0,1]D.[0,1]【测量目标】函数的定义域.【考查方式】利用根式和对数函数有意义的条件求解. 【难易程度】容易 【参考答案】B【试题解析】由00110x x x ⎧⇒<⎨->⎩…….3.等比数列,33,66x x x ++, 的第四项等于 ( )A.24-B.0C.12D.24【测量目标】等比数列性质.【考查方式】利用等比中项和等比数列的特点求解. 【难易程度】容易 【参考答案】A【试题解析】由2(33)(66)1x x x x +=+⇒=-或3x =-,(步骤1) 当1x =-时,330x +=,故舍去,(步骤2)所以当3x =-,则等比数列的前3项为3,6,12---,故第四项为24-.(步骤3)4.总体有编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号【测量目标】简单的随机抽样.【考查方式】利用随机抽样方法中随机数表的应用求解. 【难易程度】容易 【参考答案】D 【试题解析】依题意,第一次得到的两个数为65,6520>,将它去掉;第二次得到的两个数为72,由于7220>,将它去掉;第三次得到的两个数字为08,由于0820<,说明号码08在总体内,将它取出;继续向右读,依次可以取出02,14,07,02;但由于02在前面已经选出,故需要继续选一个,再选一个数就是01,故选出来的第五个个体是01. 5.2532()x x-展开式中的常数项为 ( )A.80B.-80C.40D.40-【测量目标】二项式定理.【考查方式】利用二项展开式的通项公式求解.【难易程度】容易 【参考答案】C【试题解析】展开式的通项为2510515532C ()()(2)C rrr r r r r T x x x --+=-=-, 令10502r r -=⇒=,故展开式的常数项为225(2)C 40-=.6.若22221231111,,e ,x S x dx S dx S dx x ===⎰⎰⎰则123,,S S S 的大小关系为( )A.123S S S <<B.213S S S <<C.231S S S <<D.321S S S <<【测量目标】定积分的几何意义.【考查方式】利用定积分的求法比较三个的大小来求解. 【难易程度】中等 【参考答案】B 【试题解析】32222212311122271,ln ln 2,e e e e 11133x x x S x dx S dx x S dx x =========-⎰⎰⎰,显然213S S S <<7.阅读如下程序框图,如果输出5i =,那么在空白矩形框中应填入的语句为( )第7题图A.22S i =-B.21S i =-C.2S i =D.24S i =+ 【测量目标】循环结构的程序框图.【考查方式】根据程序框图表示的算法对i 的取值进行验证. 【难易程度】中等 【参考答案】C【试题解析】当2i =时,22510;S =⨯+=<当3i =时,仍然循环,排除D;当4i =时,241910S =⨯+=< 当5i =时,不满足10,S <即此时10S …输出i .(步骤1)此时A 项求得2528,S =⨯-=B 项求得2519,S =⨯-=C 项求得2510,S =⨯=故只有C 项满足条件. (步骤2)8.如图,正方体的底面与正四面体的底面在同一平面α上,且AB CD ,正方体的六个面所在的平面与直线,CE EF 相交的平面个数分别记为,m n ,那么m n += ( )第8题图A.8B.9C.10D.11 【测量目标】线面平行的判定.【考查方式】利用线面平行,线面相交的判断及空间想象力求解. 【难易程度】中等 【参考答案】A【试题解析】直线CE 在正方体的下底面内,与正方体的上底面平行;与正方体的左右两个侧面,前后两个侧面都相交,故4m =;(步骤1)作CD 的中点G ,显然易证平面EFG 的底边EG 上的高线与正方体的前后两个侧面平行,故直线EF 一定与正方体的前后两个侧面相交;另外,直线EF 显然与正方体的上下两个底面相交;综上,直线EF 与正方体的六个面所在的平面相交的平面个数为4,故4n =,所以8m n +=.(步骤2)9.过点引直线l 与曲线y =,A B 两点,O 为坐标原点,当AOB △的面积取最大值时,直线l 的斜率等于 ( )A.3 B.3- C.3± D.【测量目标】直线与圆的位置关系.【考查方式】利用角形的面积,点到直线的距离公式,三角函数的最值求解. 【难易程度】中等 【参考答案】B【试题解析】因为AOB △的面积在π2AOB ∠=时,取得最大值.设直线l 的斜率为k ,则直线l 的方程为(y k x =,即0kx y -=,(步骤1)由题意,曲线y =O 到直线l 的距离为π1sin4⨯=,23k =⇒=(舍去),或k =.(步骤2) 10.如图,半径为1的半圆O 与等边三角形ABC 夹在两平行线,12,l l 之间1l l ,l 与半圆相交于,F G 两点,与三角形ABC 两边相交于,E D 两点,设弧 FG 的长为(0π)x x <<,y EB BC CD =++,若l 从1l 平行移动到2l ,则函数()y f x =的图象大致是( )第10题图A B C D 【测量目标】函数图象的判断.【考查方式】利用函数的图象、扇形弧长、三角函数,以及数形结合的数学思想求解. 【难易程度】较难 【参考答案】D【试题解析】连接OF ,OG ,过点O 作,OM FG ⊥过点A 作AH BC ⊥,交DE 于点N .因为弧 FG的长度为x ,所以,FOG x ∠=则cos,2x AN OM ==所以cos ,2AN AE x AH AB ==则,2xAE =.2x EB ∴=2x y EB BC CD ∴=++=π)2xx =+<< 第Ⅱ卷 二、填空题:本大题共4小题,每小题5分,共20分.11.函数2sin2y x x =+的最小正周期为T 为 . 【测量目标】三角函数的周期.【考查方式】利用三角恒等变换求解三角函数的最小周期. 【难易程度】容易 【参考答案】π【试题解析】2πsin 2sin sin 2cos 22sin(233y x x x x x =+==-,故最小正周期为2ππ2T ==. 12.设1e ,2e 为单位向量.且1e ,2e 的夹角为π3,若123=+a e e ,12=b e ,则向量a 在b 方向上的射影为 ___________.【测量目标】平面向量的数量积运算.【考查方式】利用向量的投影,向量的数量积运算求解. 【难易程度】容易 【参考答案】52【试题解析】121(3)2||cos ||||||||2θ+===e e e a b a b a a a b b2112π2611cos 2653.222+⨯⨯⨯+=== e e e 13.设函数()f x 在(0,)+∞内可导,且(e )e x x f x =+,则(1)f '= .【测量目标】导数的运算.【考查方式】利用导数的运算,函数解析式的求解,以及转化与化归的数学思想求解. 【难易程度】中等 【参考答案】2【试题解析】由1(e )e ()ln (0)()1(0)xxf x f x x x x f x x x'=+⇒=+>⇒=+>,故(1)2f '=. 14.抛物线22(0)x py p =>的焦点为F ,其准线与双曲线22133x y -=相交于,A B 两点,若ABF △为等边三角形,则p = .【测量目标】直线与双曲线位置关系.【考查方式】利用抛物线与双曲线的简单性质,等边三角形的特征求解. 【难易程度】中等 【参考答案】6【试题解析】不妨设点A 在左方,AB 的中点为C ,则易求得点(0,),2pF (),2pA -)2pB -.(步骤1)因为ABF △为等边三角形,所以由正切函数易知tan 606FCp CB==⇒= . (步骤2)三、选做题:请在下列两题中任选一题作答,若两题都做,则按第一题评阅计分,本题共5分 15.(1).(坐标系与参数方程选做题)设曲线C 的参数方程为2x t y t=⎧⎨=⎩(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为 . 【测量目标】极坐标与参数方程.【考查方式】利用参数方程、直角坐标系方程和极从标的互化. 【难易程度】容易【参考答案】2cos sin 0ρθθ-=【试题解析】由曲线C 的参数方程为2,x t y t ==(t 为参数), 得曲线C 的直角坐标系方程为2x y =,(步骤1) 又由极坐标的定义得,2(cos )sin ρθρθ=,即化简曲线C 的极坐标方程为2cos sin 0ρθθ-=.(步骤2)(2).(不等式选做题)在实数范围内,不等式211x --…的解集为 . 【测量目标】解绝对值不等式.【考查方式】利用绝对值不等式的解法,结合绝对值的性质求解. 【难易程度】容易 【参考答案】[]0,4【试题解析】||2|1|11|2|110|2|222204x x x x x --⇒---⇒-⇒--⇒剟剟剟剟?.四、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别为,,a b c ,已知cos (cos )cos 0C A A B +=. (1)求角B 的大小;(2)若1a c +=,求b 的取值范围 【测量目标】两角和与差的正余弦,余弦定理.【考查方式】给出相关信息,利用两角和的余弦函数,余弦定理求解. 【难易程度】中等【试题解析】(1)由已知得cos()cos cos cos 0A B A B A B -++=即有sin sin cos 0A B A B = (步骤1)因为sin 0A ≠,所以sin 0B B =,又cos 0B ≠,所以tan B =又0πB <<,所以π3B ∠=.(步骤2) (2)由余弦定理,有2222cos b a c ac B =+-.(步骤3)因为11,cos 2a c B +==,有22113()24b a =-+.又01a <<,于是有2114b <…,即有112b <….(步骤4)17.(本小题满分12分)正项数列{}n a 的前n 项和n S 满足:222(1)()0n n S n n S n n -+--+=(1)求数列{n a }的通项公式n a ; (2)令221(2)n n b n a+=+,数列{n b }的前n 项和为n T .证明:对于任意的*n ∈N ,都有564n T <【测量目标】数列的通项公式与前n 项和n S 的关系,裂项求和法.【考查方式】利用数列通项公式的求法和数列的求和,裂项求和法求出其前n 项和,通过放缩法证明. 【难易程度】中等【试题解析】(1)由222(1)()0n n S n n S n n -+--+=,得2()(1)0n n S n n S ⎡⎤-++=⎣⎦.由于{}n a 是正项数列,所以20,n n S S n n >=+.(步骤1)于是112,2a S n ==…时,221(1)(1)2n n n a S S n n n n n -=-=+----=. 综上,数列{}n a 的通项2n a n =.(步骤1) (2)证明:由于2212,(2)n n nn a n b n a +==+. 则222211114(2)16(2)n n b n n n n ⎡⎤+==-⎢⎥++⎣⎦.(步骤3) 222222222111111111111632435(1)(1)(2)n T n n n n ⎡⎤=-+-+-++-+-⎢⎥-++⎣⎦ (22221111)1151(1)162(1)(2)16264n n ⎡⎤=+--<+=⎢⎥++⎣⎦.(步骤4) 18.(本小题满分12分)小波以游戏方式决定参加学校合唱团还是参加学校排球队.游戏规则为:以O 为起点,再从12345678,,,,,,,,A A A A A A A A (如图)这8个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X .若0X =就参加学校合唱团,否则就参加学校排球队. (1)求小波参加学校合唱团的概率; (2)求X 的分布列和数学期望.第18题图【测量目标】古典概型,离散型随机变量分布列和期望.【考查方式】利用组合数的公式、向量数量积运算、古典概型概率等求解. 【难易程度】中等【试题解析】(1)从8个点中任意取两点为向量终点的不同取法共有28C 28=种,当0X =时,两向量夹角为直角共有8种情形,所以小波参加学校合唱团的概率为82(0)287P X ===.(步骤1) (2)两向量数量积X 的所有可能取值为2,1,0,1,2X --=-时,有两种情形;1X =时,有8种情形;1X =-时,有1(2)+(1)01.14147714EX =-⨯-⨯+⨯+⨯=-(步骤2)19.(本小题满分12分)如图,四棱锥P ABCD -中,PA ⊥平面,ABCD E 为BD 的中点,G 为PD 的中点,3,12DAB DCB EA EB AB PA ====△≌△,,连接CE 并延长交AD 于F . (1)求证:AD CFG ⊥平面;(2)求平面BCP 与平面DCP 的夹角的余弦值.第19题图【测量目标】线面垂直的判定,二面角,空间直角坐标系,空间向量及运算. 【考查方式】利用线面垂直的定理求解,通过建系求二面角的平面角的余弦值. 【难易程度】中等 【试题解析】(1)在ABD △中,因为E 是BD 的中点,所以1EA EB ED AB ====,故ππ,23BAD ABE AEB ∠=∠=∠=,(步骤1) 因为DAB DCB △≌△,所以EAB ECB △≌△, 从而有FED FEA ∠=∠,(步骤2)故,EF AD AF FD ⊥=,又因为,PG GD =所以FG PA . 又PA ⊥平面ABCD ,所以,GF AD ⊥故AD ⊥平面CFG .(步骤3)(2)以点A 为坐标原点建立如图所示的坐标系,则3(0,0,0),(1,0,0),(2A B C D,第19题(2)图3(0,0,)2P ,故1333(0),(),(,2222222BC CP CD ==--=- ,, (步骤4)设平面BCP 的法向量111(1,,)y z =n,则111102233022y y z ⎧+=⎪⎪⎨⎪--+=⎪⎩ ,解得1123y z ⎧=⎪⎪⎨⎪=⎪⎩,即12(1,,)33=-n .(步骤5)设平面DCP 的法向量222(1,,)y z =n,则222302330222y y z ⎧-+=⎪⎪⎨⎪--+=⎪⎩,解得222y z ⎧=⎪⎨=⎪⎩,(步骤6)即2(1=n .从而平面BCP 与平面DCP的夹角的余弦值为12124cos θ=== n n n n (步骤7)20. (本小题满分13分)如图,椭圆2222+=1(>>0)x y C a b a b:经过点3(1,),2P 离心率1=2e ,直线l 的方程为=4x .(1)求椭圆C 的方程;(2)AB 是经过右焦点F 的任一弦(不经过点P ),设直线AB 与直线l 相交于点M ,记,,PA PB PM 的斜率分别为123,,.k k k 问:是否存在常数λ,使得123+=k k k λ?若存在求λ的值;若不存在,说明理由.第20题图【测量目标】椭圆的方程,直线与椭圆的位置关系. 【考查方式】利用椭圆方程的方法及直线的斜率求解. 【难易程度】较难【试题解析】(1)由3(1,)2P 在椭圆上得,221914a b += ① 依题设知2a c =,则223b c =. ②(步骤1) ②代入①解得2221,4,3c a b ===.故椭圆C 的方程为22143x y +=.(步骤2) (2)方法一:由题意可设AB 的斜率为k , 则直线AB 的方程为(1)y k x =- ③代入椭圆方程223412x y +=并整理,得2222(43)84(3)0k x k x k +-+-=,(步骤3) 设1122(,),(,)A x y B x y ,则有2212122284(3),4343k k x x x x k k -+==++ ④(步骤4)在方程③中令4x =得,M 的坐标为(4,3)k .从而121231233331222,,11412y y k k k k k x x ---====----. 注意到,,A F B 共线,则有AF BF k k k ==,即有121211y y k x x ==--.所以1212121212123331122()1111212y y y y k k x x x x x x --+=+=+-+------ 121212232.2()1x x k x x x x +-=--++ ⑤(步骤5)④代入⑤得22122222823432214(3)8214343k k k k k k k k k k -++=-=---+++ , 又312k k =-,所以1232k k k +=.故存在常数2λ=符合题意. (步骤6)方法二:设000(,)(1)B x y x ≠,则直线FB 的方程为:00(1)1y y x x =--,令4x =,求得003(4,)1y M x -,从而直线PM 的斜率为0030212(1)y x k x -+=-,(步骤3)联立0022(1)1143y y x x x y ⎧=-⎪-⎪⎨⎪+=⎪⎩ ,得0000583(,)2525x y A x x ---,(步骤4) 则直线PA 的斜率为:00102252(1)y x k x -+=-,直线PB 的斜率为:020232(1)y k x -=-,所以00000123000225232122(1)2(1)1y x y y x k k k x x x -+--++=+==---,(步骤5) 故存在常数2λ=符合题意. (步骤6)21. (本小题满分14分)已知函数1()=(12)2f x a x --,a 为常数且>0a . (1)证明:函数()f x 的图象关于直线1=2x 对称;(2)若0x 满足00(())=f f x x ,但00()f x x ≠,则称0x 为函数()f x 的二阶周期点,如果()f x 有两个二阶周期点12,,x x 试确定a 的取值范围;(3)对于(2)中的12,x x 和a , 设3x 为函数()()ff x 的最大值点,()()()1,,A x f f x()()()()223,,,0.B x f f x C x 记ABC △的面积为()S a ,讨论()S a 的单调性.【测量目标】函数单调性的综合应用.【考查方式】利用函数的对称性,解方程,导数的应用及函数单调性求解. 【难易程度】较难【试题解析】(1)证明:因为11()(12),()(12),22f x a x f x a x +=--=- 有11()()22f x f x +=-,(步骤1)所以函数()f x 的图象关于直线12x =对称. (步骤2) (2)当102a <<时,有224,(())4(1),a x f f x a x ⎧⎪=⎨-⎪⎩1,21.2x x >…所以(())f f x x =只有一个解0x =,又(0)0f =,故0不是二阶周期点. (步骤3)当12a =时,有1,2(()).11,2x x f f x x x ⎧⎪⎪=⎨⎪->⎪⎩… 所以(())f f x x =有解集1|2x x ⎧⎫⎨⎬⎩⎭…,又当12x …时,()f x x =,故1|2x x ⎧⎫⎨⎬⎩⎭…中的所有点都不是二阶周期点.(步骤4)当12a >时,有2222214,41124,42(()).1412(12)4,244144,4a x x a a a x x a f f x a a a a x x a a a a x x a ⎧⎪⎪⎪-<⎪=⎨-⎪-+<⎪⎪-⎪->⎩……… 所以(())f f x x =有四个解2222240,,,141214a a a a a a +++,(步骤5)又22(0)0,()1212a af f a a==++, 22222244(),()14141414a a a a f f a a a a ≠≠++++,故只有22224,1414a a a a ++是()f x 的二阶周期点.(步骤6) 综上所述,所求a 的取值范围为12a >.(步骤7)(3)由(2)得2122224,1414a a x x a a ==++,因为3x 为函数(())f f x 的最大值点,所以314x a =或3414a x a-=.(步骤8)当314x a =时,221()4(14)a S a a -=+.求导得:22112(22()(14)a a S a a ---'=-+,所以当1(2a ∈时,()S a单调递增,当)a ∈+∞时()S a 单调递减;(步骤9)当3414a x a -=时,22861()4(14)a a S a a -+=+,求导得:2221243()2(14)a a S a a +-'=+,因12a>,从而有2221243()02(14)a aS aa+-'=>+,(步骤10)所以当1(,)2a∈+∞时()S a单调递增. (步骤11)。
2011年高考江西省数学试卷-理科(含详细答案)

绝密★启用前2011年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
第I 卷1至2页。
第Ⅱ卷3 至4页,满分150分,考试时间120分钟. 考试结束后, 考试注意:1.答题前,考生在答题卡上务必将自己的准考证号、姓名填写在答题卡上.考试要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考试本人的准考证号、姓名是否一致.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,.第II 卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3.考试结束后,监考员将试题卷、答题卡一并交回。
参考公式:样本数据(11,y x ),(22,y x ),...,(n n y x ,)的线性相关系数∑∑∑===----=ni ini ini i iy yx xy y x xr 12121)()())(( 其中nx x x x n +++= (21)ny y y y n+++= (21)锥体的体积公式 13V Sh =其中S 为底面积,h 为高第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1) 若ii z 21+=,则复数-z = ( )A.i --2B. i +-2C. i -2D.i +2 答案:C 解析: i i ii i ii z -=--=+=+=21222122(2) 若集合}02|{},3121|{≤-=≤+≤-=xx x B x x A ,则B A ⋂= ( )A.}01|{<≤-x xB.}10|{≤<x xC.}20|{≤≤x xD.}10|{≤≤x x 答案:B 解析:{}{}{}10/,20/,11/≤<=⋂≤<=≤≤-=x x B A x x B x x A (3) 若)12(21log1)(+=x x f ,则)(x f 的定义域为 ( )A. (21-,0) B. (21-,0] C. (21-,∞+) D. (0,∞+)答案: A 解析:()⎪⎭⎫ ⎝⎛-∈∴<+<∴>+0,211120,012log 21x x x(4) 若x x x x f ln 42)(2--=,则0)('>x f 的解集为 ( )A. (0,∞+)B. (-1,0)⋃(2,∞+)C. (2,∞+)D. (-1,0) 答案:C 解析:()()()2,012,0,02,0422'2>∴>+-∴>>-->--=x x x x xx x x x x f(5) 已知数列}{n a 的前n 项和n S 满足:m n m n S S S +=+,且11=a ,那么=10a ( ) A. 1 B. 9 C. 10 D. 55答案:A 解析: 11,41,31,2104314321321212==∴=+==∴=+==∴=+=a a S S S a S S S a S a a S(6) 变量X 与Y 相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U 与V 相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).1r 表示变量Y 与X 之间的线性相关系数,2r 表示变量V 与U 之间的线性相关系数,则 ( )A.012<<r rB. 120r r <<C.120r r <<D. 12r r =答案:C 解析: ()()()()∑∑∑===----=ni ini ini i iyyxxyy x xr 12121第一组变量正相关,第二组变量负相关。
2005年高考.江西卷.理科数学试题精析详解(可打印修改)

能将其化成复数的代数形式.
3. “a=b”是“直线 y x 2与圆(相x 切a)2 ( y b)2 2
”的 ( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件
D.既不充分又不必要条件
【思路点拨】本题主要考查直线和圆相切的条件以及充要条件,直线与圆相切的充要条件是
rr 【解后反思】设 a, b
的夹角为
,则 cos
|
rr ragbr a || b
, |
0,
,(1)当
为锐角,有
rr agb
f
0且
rr
rr
rr
rr
agb 1 (2) 当 为钝角,有 agb p 0 且 agb 1 (3)当 0 , a, b 共线且方向相同.(4)当
时,
rr agb
0.
2
7.已知函数 y xf (x)的图象如右图所示(其中f (x)
【正确解答】 I {x | 3 x 0或0 x 3}, CI B {0} , A U(CI B) {0,1, 2}.选 D.
【解后反思】集合主要有三种逻辑运算:交集,并集,补集,运算时要留意集合元素的性质,元
素确定性,互异性,无序性,要注意补集的运算是离不开全集的,在化简集合时,经常用到两
【正确解答】将
1,22-------9
平均分成三组的数目为
C93C63C33 A33
280 ,又每组的三个数成等差
数列,种数为了 4,所以答案为 B
【解后反思】这是一道概率题,属于等可能事件,在求的过程中,先求出不加条件限制的
所有可能性 a,然后再根据条件,求出满足题目要求的可能种数 b,最后要求的概率就
2008年高考理科数学试题(江西卷)

2008年普通高等学校招生全国统一考试江西卷数学试题(理科)全解全析本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷l 至2页,第Ⅱ卷3至4页,共150分.第Ⅰ卷考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3.考试结束,监考员将试题卷、答题卡一并收回.参考公式:如果事件A 、B 互斥,那么 球的表面积公式P (A +B)=P (A)+P (B) S =4πR 2如果事件A 、B 相互独立,那么 其中R 表示球的半径 P (A·B)=P (A)·P (B) 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 V =34πR 3n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径P n (k )=C kn P k (1一P )k n -一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.在复平面内,复数z =sin2+i cos 2对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 【标准答案】D【试题解析】易知sin2>0 ,cos 2<0。
根据复数的几何意义可知z 所对应的点位于第四象限。
【高考考点】三角函数的定义和复数的几何意义 【易错提醒】实数值与三角函数角的大小的对应。
【学科网备考提示】注意复数的几何意义。
2.定义集合运算:A *B ={z |z =xy ,x ∈A ,y ∈B }.设A ={1,2},B ={0,2},则集合A *B 的所有元素之和为A .0B .2C .3D .6【标准答案】D【试题解析】A ,B 两个集合中的元素的乘积:1⨯0=0,1⨯2=2,2⨯0=0,2⨯2=4.故集合A *B 有三个元素0,2,4,它们的和为6。
2008年高考数学江西卷(理)全解全析

绝密★启用前2008年普通高等学校招生全国统一考试江西卷数学试题(理科)全解全析本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷l 至2页,第Ⅱ卷3至4页,共150分.第Ⅰ卷考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3.考试结束,监考员将试题卷、答题卡一并收回.参考公式:如果事件A 、B 互斥,那么 球的表面积公式P (A +B)=P (A)+P (B) S =4πR 2如果事件A 、B 相互独立,那么 其中R 表示球的半径 P (A·B)=P (A)·P (B) 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 V =34πR 3n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径P n (k )=C kn P k (1一P )k n -一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.在复平面内,复数z =sin2+i cos 2对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 【标准答案】D【试题解析】易知sin2>0 ,cos 2<0。
根据复数的几何意义可知z 所对应的点位于第四象限。
【高考考点】三角函数的定义和复数的几何意义 【易错提醒】实数值与三角函数角的大小的对应。
【学科网备考提示】注意复数的几何意义。
2.定义集合运算:A *B ={z |z =xy ,x ∈A ,y ∈B }.设A ={1,2},B ={0,2},则集合A *B 的所有元素之和为 A .0 B .2 C .3 D .6 【标准答案】D【试题解析】A ,B 两个集合中的元素的乘积:1⨯0=0,1⨯2=2,2⨯0=0,2⨯2=4.故集合A *B 有三个元素0,2,4,它们的和为6。
江西高考数学理科卷带详解

2009年高考理科数学卷(江西)一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数()()211i z x x =-+-为纯虚数,则实数x 的值为 ( ) A.-1 B.0 C.1 D.-1或1 【测量目标】复数的基本概念.【考查方式】由纯虚数概念直接进行求解. 【难易程度】容易 【参考答案】A【试卷解读】由纯虚数概念得:210110x x x ⎧-=⇒=-⎨-≠⎩,故选A.2.函数ln 1x y +=( )A.(4,1)--B.(4,1)-C.(1,1)-D.(]1,1- 【测量目标】函数的定义域.【考查方式】由对数函数、根式性质分别求解,直接得出答案. 【难易程度】容易 【参考答案】C【试卷解读】由210340x x x +>⎧⎨--+>⎩141x x >-⎧⇒⎨-<<⎩,(步骤1) 11x ⇒-<<.故选C.(步骤2)3.已知全集U =AB 中有m 个元素,()()U U A B 痧中有n 个元素.若A B 非空,则A B的元素个数为 ( ) A.mn B.m +n C.n m - D.m n -【测量目标】集合的含义,集合的基本运算. 【考查方式】利用交并补之间的基本关系,进行计算. 【难易程度】容易 【参考答案】D【试卷解读】()()U U UA B A B ⎡⎤=⎣⎦痧?,AB m n ∴=-,故选D4.若函数()π()1cos ,(0)2f x x x x =+剟,则()f x 的最大值为 ( )A.1 1 2【测量目标】同角三角函数的基本关系,三角函数的值域. 【考查方式】对函数进行化简,进一步得到答案. 【难易程度】容易 【参考答案】B【试卷解读】()()1cos cos f x x x x x =+=+π2cos 3x ⎛⎫=- ⎪⎝⎭π(0)2x剟.(步骤1) 当π3x =时,ππ()2cos 2cos 0233f x ⎛⎫=-== ⎪⎝⎭. 故选B.(步骤2) 5.设函数2()()f x g x x =+,曲线()y g x =在点()1,(1)g 处的切线方程为21y x =+,则曲线()y f x =在点()1,(1)f 处切线的斜率为 ( ) A.4B.0.25- C.2D.0.5- 【测量目标】导数的几何意义.【考查方式】利用导数求解切线方程,进而求解切点处的斜率. 【难易程度】容易 【参考答案】A 【试卷解读】()()2f x g x x ''=+,(步骤1)(1)2,(1)(1)214g f g ''∴==+⨯=,故选A.(步骤2)6.过椭圆22221(0)x y a b a b +=>>的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若1260F PF ∠=,则椭圆的离心率为 ( )A.2 C.12 D.13【测量目标】椭圆的简单几何性质.【考查方式】求出交点坐标,由角度关系确定离心率. 【难易程度】中等 【参考答案】B【试卷解读】由题意知,2,b P c a ⎛⎫-± ⎪⎝⎭,又1260F PF ∠=,(步骤1)21222122tan PF c ac F PF b PF b a∴∠===222221ac ea c e===--(步骤2) 213e ∴=或23e =(舍去),e ⇒=(步骤3)第6题图7.()1nax by ++展开式中不含x 的项的系数绝对值的和为243,不含y 的项的系数绝对值的和为32,则a,b,n 的值可能为 ( ) A.a =2,b =1-,n =5 B.a =2-,b =1-,n =6 C.a =1-,b =2,n =6 D.a =1,b =2,n =5 【测量目标】二项式定理.【考查方式】利用展开式中的常数项求参数的值. 【难易程度】容易 【参考答案】D【试卷解读】()()5512433,1322nnb a +==+==,(步骤1)1,2,5a b n ⇒===.(步骤2)8.数列{}n a 的通项222ππcossin 33n n n a n ⎛⎫=- ⎪⎝⎭,其前n 项和为n S ,则30S 为 ( ) A.470 B .490 C .495 D .510【测量目标】数列的前n 项和.【考查方式】由通项公式化简求得结果. 【难易程度】中等 【参考答案】A【试卷解读222ππcos sin 33n n n a n ⎛⎫=- ⎪⎝⎭222π2π1cos 1cos 2π33cos 223n n n n n ⎛⎫+- ⎪=-= ⎪ ⎪⎝⎭, 2π32π3T ∴==,故数列{}n a 的最小正周期为3,(步骤1) 则2222223012453622S ⎛⎫⎛⎫++=-++-++ ⎪ ⎪⎝⎭⎝⎭…2222829302⎛⎫+++ ⎪⎝⎭()()()221010211323153922k k k k k k ==⎡⎤-+-⎡⎤=-+=-⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦∑∑91011254702⨯⨯=-=.(步骤2)9.如图,正四面体ABCD 的顶点,,A B C 分别在两两垂直的三条射线,,Ox Oy Oz 上,则在下列命题中,错误的为( )第9题图 A.O ABC -是正三棱锥B.直线OB ∥平面ACDC.直线AD 与OB 所成的角是45D.二面角D OB A --为45 【测量目标】二面角,线面平行的判定. 【考查方式】由题设已知条件,求解. 【难易程度】中等 【参考答案】B【试卷解读】将原图补为正方体B 选项错误,故选B.10.为了庆祝六一儿童节,某食品厂制作了3种不同的精美卡片,每袋食品随机装入一张卡片,集齐3种卡片可获奖,现购买该种食品5袋,能获奖的概率为 ( ) A.3181B.3381 C.4881 D.5081【测量目标】排列、组合的应用.【考查方式】根据题意,先计算没有获奖的概率,再计算获奖即可. 【难易程度】中等 【参考答案】D【试卷解读】没有获奖的概率:5532331381P ⨯-==,(步骤1) ∴能获奖的概率为:150181P P =-=,故选D.(步骤2) 11.一个平面封闭区域内任意两点距离的最大值称为该区域的“直径”,封闭区域边界曲线的长度与区域直径之比称为区域的“周率”,下面四个平面区域(阴影部分)的周率从左到右依次记为1234,,,t t t t ,则下列关系中正确的为 ( )A BC DA.1432t t t t >>>B.3124t t t t >>>C.4231t t t t >>>D.3421t t t t >>> 【测量目标】几何概型的新定义.【考查方式】计算出各个选项的面积即可得出答案. 【难易程度】中等【参考答案】C【试卷解读】前三个区域的周率依次等于正方形、圆、正三角形的周长和最远距离,123π,3t t ∴===,第四个区域的周率可以转化为一个正六边形的周长与它的一对平行边之间的距离之比,4t ∴=,则4231t t t t >>>,选C.12.设函数)()0f x a =<的定义域为D ,若所有点()(),(),s f t s t D ∈构成一个正方形区域,则a 的值为 ( ) A.2- B.4- C.8- D.不能确定 【测量目标】函数定义域求参数范围.【考查方式】由韦达定理、正方形性质直接求解. 【难易程度】中等 【参考答案】B【试卷解读】由题意知,函数)()0f x a =<的两根分别为:1x =和2x =,因为区域为正方形,12max ()x x f x ∴-=,=4a a ⇒==-或0a =(舍去),故4a =-. 二.填空题:本大题共4小题,每小题4分,共16分.请把答案填在答题卡上. 13.已知向量()()()3,1,1,3,,7k ===a b c ,若()-a c b ,则k =【测量目标】向量的坐标运算.【考查方式】向量平行,对应坐标成比例即可得出答案. 【难易程度】容易 【参考答案】5 【试卷解读】()3,6k -=--a c ,3613k --⇒=, 315,5k k ⇒=⇒=.14.正三棱柱111ABC A B C -内接于半径为2的球,若,A B 两点的球面距离为π,则正三棱柱的体积为.【测量目标】三棱锥的体积.【考查方式】利用它球面距离进行求解即可. 【难易程度】中等 【参考答案】8 【试卷解读】,A B 两点的球面距离为π,故90,AOB ∠=又OAB △是等腰直角三角形,AB ∴==则ABC △,(步骤1)O 到平面ABC 的距离:d ==∴正三棱柱高h =ABC △的面积S =,(步骤2) ∴正三棱柱111ABC A B C -的体积8V Sh ==.(步骤3)15()2k x +的解集为区间[],a b ,且2b a -=,则k =.【测量目标】解含参的一元二次不等式. 【考查方式】画出图象,数形结合,求解. 【难易程度】中等【试卷解读】由题意知,曲线y =x 轴上半周的半圆,(步骤1)()2k x +(如图),此时有:3b =.又2b a -=,1a ⇒=.(步骤2)在1a =处,半圆与直线相交,y ∴=(,(步骤3)将点(代入直线中:k =(步骤4)第15题图 16.设直线系():cos 2sin 1M x y θθ+-=()02πθ剟,对于下列四个命题:A .M 中所有直线均经过一个定点。
江西2014年高考数学含答案

2014年江西省高考理科数学试题及参考答案一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
1. z 是z 的共轭复数. 若2=+z z ,(2)(=-i z z (i 为虚数单位),则=z A. i +1 B. i --1 C. i +-1 D. i -12. 函数)ln()(2x x x f -=的定义域为A.)1,0(B. ]1,0[C. ),1()0,(+∞-∞D. ),1[]0,(+∞-∞ 3. 已知函数||5)(x x f =,)()(2R a x ax x g ∈-=,若1)]1([=g f ,则=a A. 1 B. 2 C. 3 D. 1-4.在ABC ∆中,内角A,B,C 所对的边分别是,,,c b a ,若,3,6)(22π=+-=C b a c 则ABC∆的面积是A.3B.239 C.233 D.33 5.一几何体的直观图如右图,下列给出的四个俯视图中正确的是6.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是7.阅读如下程序框图,运行相应的程序,则程序运行后输出的结果为A.7B.9C.10D.11 8.若12()2(),f x x f x dx =+⎰则1()f x dx =⎰A.1-B.13-C.13D.1 9.在平面直角坐标系中,,A B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线240x y +-=相切,则圆C 面积的最小值为A.45π B.34π C.(6π- D.54π10.如右图,在长方体1111ABCD A B C D -中,AB =11,AD =7,1AA =12,一质点从顶点A 射向点()4312E ,,,遇长方体的面反射(反射服从光的反射原理),将1i -次到第i 次反射点之间的线段记为()2,3,4i L i =,1L AE =,将线段1234,,,L L L L 竖直放置在同一水平线上,则大致的图形是二.选做题:请考生在下列两题中任选一题作答,若两题都做,则按所做的第一题评阅计分,本题共5分.在每小题给出的四个选项中,只有一项是符合题目要求的. 11(1).(不等式选做题)对任意,x y R ∈,111x x y y -++-++的最小值为A.1B.2C.3D.411(2).(坐标系与参数方程选做题)若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段()101y x x =-≤≤的极坐标为( ) A.1,0cos sin 2πρθθθ=≤≤+ B.1,0cos sin 4πρθθθ=≤≤+C.cos sin ,02πρθθθ=+≤≤D.cos sin ,04πρθθθ=+≤≤三.填空题:本大题共4小题,每小题5分,共20分.12.10件产品中有7件正品,3件次品,从中任取4件,则恰好取到1件次品的概率是________.13.若曲线x y e -=上点P 处的切线平行于直线210x y ++=,则点P 的坐标是________. 14.已知单位向量1e 与2e 的夹角为α,且1c o s 3α=,向量1232a e e =-与123b e e =-的夹角为β,则cos β=15.过点(1,1)M 作斜率为12-的直线与椭圆C :22221(0)x y a b a b+=>>相交于,A B ,若M是线段AB 的中点,则椭圆C 的离心率为四.简答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)已知函数()sin()cos(2)f x x a x θθ=+++,其中,(,)22a R ππθ∈∈-(1)当4a πθ==时,求()f x 在区间[0,]π上的最大值与最小值;(2)若()0,()12f f ππ==,求,a θ的值.17、(本小题满分12分)已知首项都是1的两个数列(),满足.(1) 令,求数列的通项公式; (2) 若,求数列的前n 项和.18、(本小题满分12分) 已知函数.(1) 当时,求的极值; (2) 若在区间上单调递增,求b 的取值范围.19、(本小题满分12分)如图,四棱锥ABCD P -中,ABCD 为矩形,平面⊥PAD 平面ABCD .(1)求证:;PD AB ⊥(2)若,2,2,90===∠PC PB BPC 问AB 为何值时,四棱锥ABCD P -的体积最大?并求此时平面PBC 与平面DPC 夹角的余弦值.20.(本小题满分13分)如图,已知双曲线)0(1:222>=-a y ax C 的右焦点F,点A,B 分别在C 的两条渐近线上,AF ⊥x 轴,AB ⊥OB,BF ∥OA(O 为坐标原点), (1)求双曲线C 的方程;(2)过C 上一点P(x 0,y 0)(y 00≠)的直线l :1020=-y y a xx 与直线AF 相交于点M ,与直线23=x 相交于点N 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
年年岁岁卷相似,岁岁年年题不同。2008年是江西省高考数学自主命题的第四年,今
年全省理科平均分为 比去年了降了,特别是理科压轴题的难度系数为,属于超难题。2007
年考生满面笑容,2008年考生叫苦连天。2008年的理科压轴题是一道函数与不等式的综合
题,一改前两年以数列与不等式的综合题为压轴题局面,避免了老师和学生猜题压宝,具有
良好的导向作用。压轴题基于公平的原则体现了试题选拔功能,其设计之新颖,立意之深隧,
技巧之高难,把选拔功能体现得酣畅淋漓。本文以08年江西省高考数学理科压轴题为例谈
谈自己的看法。
1考查能力好载体
题目 函数fx=x11+a11+8axax,x∈(0,+∞).
(1)当8a时,求fx的单调区间;
(2)对任意正数a,证明:12fx.
解 (1)略
(2)对任意给定的0a,0x,因为
ax
axxf8111111)(
,若令axb8,则8abx ①
baxxf11111
1
)(
②
(一)先证1)(xf:因为xx1111,aa1111,bb1111
又由xba2≥8244abx,∴xba≥6
所以
(2).再证2)(xf:由①、②中关于x,a,b的对称性,不妨设x≥a≥b,则0(Ⅰ).当a+b≥7,则a≥5,∴x≥a≥5
111b,16261611111
ax
∴2111111)(baxxf
1)1)(1)(1()()(1)1)(1)(1()()(9)1)(1)(1()(23111111111111)(
baxabxaxbxabxbabaxaxbxabxbabax
axbxabxba
bax
bax
xf
(Ⅱ)若a+b<7,由①得abx8,∴811ababx ③
因为222))1(21()(41111bbbabbbb
∴)1(2111bbb ④
同理得)1(2111aaa ⑤,于是
)8211(212)(ababbbaaxf
⑥
今证明8211ababbbaa ⑦
因为)1)(1(211baabbbaa,则只要)1)(1(2baab82abab
只要abba8)1)(1(,即证ababba81,即a+b<7,而这显然成立。
综上,对任意正数a,12fx.
此题虽然难,但其第(1)问的入口较宽,只要正确求出函数的导数,便可得到答案;这
样变难题的整体把关为难题的分支把关,充分考查学生的个性品质。数学压轴题已从“一题
把关”转为“多题把关”,设置了层次分明的台阶,入口宽,上手易,但是深入难,解到底
更难。第2小题无人挨边;14分的题全省9分一人,8分二人。第(2)问的构造思想和放
缩法等的应用要有很高的技巧,以下引用不等式研究专家宋庆老师的发言:说句实在话,该
题命题人陶平生教授[1]所给出的证明是最好的。问题只是这道好题在不恰当的时间出现在
不恰当的地方。平心而论,不等式做到这个分上,可以说达到了一个佳境。
2似曾相识燕归来
08年江西理科最后一题第(2)小题与2004年西部奥林匹克最后一题类似,且证明比
这道西部奥林匹克题还难。而这道西部奥林匹克题当年参赛选手无一人完全证出。
2004西部数学奥林匹克第八题 求证:对任意正实数a、b、c都有
222222
3212abc
abbcca
(王建伟供题)
提示:令222222,,bcaxyzabc,则,,xyzR,1xyz,于是,只须证明
11132
12111xyz
,不妨设xyz。
《中学数学研究》(南昌)2006年第2期“一道西部数学奥林匹克赛题的溯源与推广”( 四
川省篷安中学蒋明斌老师著);对那道西部奥林匹克题给出了推广。福建龙岩学院吴善和老
师2004年7月,在《中学数学研究》(南昌)“关于IMO42一个不等式的逆向”一文给出
了右边不等式的一种证明。
从历届竞赛题中找借鉴已成为高考命题的一种趋势,2008年有几道高考试题具有竞赛背
景,譬如,天津市数学高考理科第22题第(3)小题,需要按4的剩余类讨论,广东省数学
高考理科第21题和重庆数学高考理科第22题均涉及求二阶线性递归数列的通项公式。参加
过数学竞赛训练的同学得益明显,试题背景有失公平,引发争议。
3华山不止一条道
著名数学家张景中院士认为此题难度较大,适宜竞赛而不适合高考。命题者提供的参考
答案看似推理自然,但实际上做题者难以想到。下面提供另一种解法,以供叁考。
解:∵111118111181axaxxaxaax,记8b=x,c=ax,问题
转化为在三个正数a、b、c且8abc的条件下求111(,,)111Fabcabc的
上下界。不妨设abc,记8,,takabck,把(,,)Fabc看成t的函数
111
()(,,)1811ftFabctktk
,注意变量和参数范围为02tk,计
算导数332332221'()((1)(1))((1)())(,)2kkfttktttkQtktt,这里(,)Qtk是
某个正值代数式,于是可根据233()((1)())gtktttk的正负来判断的增减。注意到
()0gk
,容易作因式分解:22()()((3))gtkttkktk,由第二个因式形成的二
次方程2(3)0tkktk的判别式22(3)4kkkV,当4k时有0V。于是
2
(3)tkktk
在(0,)k上递增,从而()ft在tk处最大。容易检验有
21
()2811fkkk
和()1ft。