福建省福州市高一上学期数学期末考试试卷

合集下载

福建福州市2023-2024高一上学期期末质量检测数学试卷及答案

福建福州市2023-2024高一上学期期末质量检测数学试卷及答案

2023-2024学年第一学期福州市四校教学联盟1月期末学业联考高一数学试卷考试范围:必修一命题教师:审核教师:考试时间:1月3日完卷时间:120分钟满分:150分一、单项选择题:本大题共8小题,每小题5分,满分40分。

在每小题所给出的四个选项中,只有一个选项是符合题意的。

1.集合A={x∣−2<x≤2},B={−2,−1,0,1},则A∩B=A.{−1,1,2}B.{−2,−1,0,1}C.{−1,0,1}D.{−2,−1,0,1,2}2.若a>b>0,c>d,则下列结论正确的是3.函数y=−|ln(x−1)|的图象大致是A.B.C.D.4.命题p:α是第二象限角或第三象限角,命题q:cosα<0,则p是q的A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件A.110%B.120%C.130%D.140%7.命题“对∀x∈[1,2],ax2−x+a>0”为真命题的一个充分不必要条件可以是8.已知f(x)=ax2−1是定义在R上的函数,若对于任意−3≤x1<x2≤−1,都有f(x1)−f(x2)<2,则实数x1−x2a的取值范围是二、多项选择题:本大题共4小题,每小题5分,满分20分。

在每小题所给出的四个选项中,有多个选项是符合题意的。

9.下列大小关系正确的是A.20.3<20.4B.30.2<40.2C.log23<log48D.log23>log32 10.设正实数x,y满足x+y=2,则下列说法正确的是A.当k>1,有1个零点B.当k>1时,有3个零点C.当k<0时,有9个零点D.当k=−4时,有7个零点三、填空题:本大题共4小题,每小题5分,满分20分。

13.已知扇形的圆心角是2rad,其周长为6cm,则扇形的面积为cm2.四、解答题:本大题共6小题,满分70分。

除第17小题10分以外,每小题12分。

福建省福州市2021-2022学年高一上学期期末考试数学试题(解析版)

福建省福州市2021-2022学年高一上学期期末考试数学试题(解析版)

福建省福州市2021-2022学年高一上学期期末考试数学试题一、选择题:本照共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项提符合题目要求的.1.sin120°的值为()A.B.C.﹣D.﹣2.设集合A={x|x2﹣3x﹣4<0},B={x|x<3},则A∩B=()A.{x|x<﹣1}B.{x|x<4}C.{x|﹣4<x<1}D.{x|﹣1<x<3}3.命题“∀x>0,x2﹣1≤0”的否定是()A.∃x≤0,x2﹣1>0B.∀x>0,x2﹣1>0C.∃x>0,x2﹣1>0D.∀x≤0,x2﹣1>04.“四边形是菱形”是“四边形是平行四边形”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.已知函数f(x)=,以下关于f(x)的结论正确的是()A.若f(x)=2,则x=0B.f(x)的值域为(﹣∞,4)C.f(x)在(﹣∞,2)上单调递增D.f(x)<2的解集为(0,1)6.已知函数f(x)=,则f(x)的大致图像为()A.B.C.D.7.设a=0.123,b=30.4,c=log0.40.12,则a,b,c的大小关系为()A.a<b<c B.b<a<c C.a<c<b D.c<a<b8.已知函数f(x)=(x+3)(x﹣e)+(x﹣e)(x﹣π)+(x﹣π)(x+3)的零点x1,x2(x1<x2),则()A.x1x2>0B.<﹣C.x2﹣x1<e D.x1+x2<π二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题口算求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列函数是奇函数的是()A.f(x)=sin x B.f(x)=x2+xC.f(x)=D.f(x)=ln|1+x|10.在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于直线y=x对称,则以下结论一定正确的是()A.sinα=﹣cosβB.cosα=sinβC.cos(α﹣β)=0D.sin(α+β)=111.若x,y>0,且x+2y=1,则()A.B.C.D.12.边际函数是经济学中一个基本概念,在国防、医学、环保和经济管理等许多领域都有十分广泛的应用.函数f(x)的边际函数Mf(x)定义为Mf(x)=f(x+1)﹣f(x).某公司每月最多生产75台报警系统装置,生产x台(x∈N*)的收入函数R(x)=3000x﹣20x2(单位:元),其成本函数为C(x)=500x+4000(单位,元),利润是收入与成本之差,设利润函数为P(x),则以下说法正确的是()A.P(x)取得最大值时每月产量为63台B.边际利润函数的表达式为MP(x)=2480﹣40x(x∈N*)C.利润函数P(x)与边际利润函数MP(x)不具有相同的最大值D.边际利润函数MP(x)说明随着产量的增加,每台利润与前一台利润差额在减少三、填空题:本题共4小题,每小题5分,共20分.13.化简:lg4+lg25=.14.要在半径OA=60cm的圆形金属板上截取一块扇形板,使其弧的长为50πcm,那么圆心角∠AOB=.(用弧度表示)15.函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的部分图像如图所示,BC∥x轴,则ω=,φ=.16.写出一个同时具有下列性质①②③的函数f(x)=.①f(x)在R上单调递增;②=f(0);③f(0)>1.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知角α的顶点与坐标原点重合,始边与x轴的非负半轴重合,终边过点P(,).(1)求cos(α+π)的值;(2)若tanβ=﹣2,求tan(α﹣β)的值.18.(12分)已知函数f(x)=(a∈R),且f(1)=5.(1)求a的值;(2)判断f(x)在区间(0,2)上的单调性,并用单调性的定义证明你的判断.19.(12分)已知函数f(x)=.(1)求f(x)的最小正周期;(2)将y=f(x)的图象上的各点______得到y=g(x)的图象,当x∈时,方程g(x)=m有解,求实数m的取值范围.在以下①、②中选择一个,补在(2)中的横线上,并加以解答,如果①、②都做,则按①给分.①向左平移个单位,再保持纵坐标不变,横坐标缩短到原来的一半.②纵坐标保持不变,横坐标伸长到原来的2倍,再向右平移个单位.20.(12分)已知函数f(x)是定义在R上的偶函数,当x≥0,f(x)=2x+3.(1)求f(x)的〖解析〗式;(2)解不等式f(2x)≥2f(x).21.(12分)筒车是我国古代发明的一种水利灌溉工具,因其经济环保,至今还在农业生产中得到使用.明朝科学家徐光启在《农政全书》中描绘了筒车的工作原理,如图1是一个半径为R(单位:米),有24个盛水筒的筒车,按逆时针方向匀速旋转,转一周需要120秒,为了研究某个盛水筒P离水面高度h(单位:米)与时间t(单位:秒)的变化关系,建立如图2所示的平面直角坐标系xOy.已知t=0时P的初始位置为点A(2,﹣2)(此时P装满水).(1)P从出发到开始倒水入槽需要用时40秒,求此刻P距离水面的高度(结果精确到0.1);(2)记与P相邻的下一个盛水筒为Q,在筒车旋转一周的过程中,求P与Q距离水面高度差的最大值(结果精确到0.1).22.(12分)已知函数g(x)=.(1)证明:g(x﹣2)+g(﹣x)=2;(2)若存在一个平行四边形的四个顶点都在函数f(x)的图象上,则称函数f(x)具有性质P,判断函数g(x)是否具有性质P,并证明你的结论;(3)设点A(﹣4,0),函数h(x)=2g(x).设点B是曲线y=h(x)上任意一点,求线段AB长度的最小值.▁▃▅▇█参*考*答*案█▇▅▃▁一、选择题:本照共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项提符合题目要求的.1.A〖解析〗sin120°=sin60°=,故选:A.2.D〖解析〗∵A={x|﹣1<x<4},B={x|x<3},∴A∩B={x|﹣1<x<3}.故选:D.3.C〖解析〗由全称命题的否定为特称命题,命题“∀x>0,x2﹣1≤0”的否定是∃x>0,x2﹣1>0.故选:C.4.A〖解析〗根据题意,若四边形是菱形,则四边形是平行四边形,反之若四边形是平行四边形,则四边形不一定是菱形,故“四边形是菱形”是“四边形是平行四边形”的充分不必要条件,故选:A.5.B〖解析〗对于A,若f(x)=2,则或,解得x=0或x=1,故A错误;对于B,当x≤0时,f(x)=x+2∈(﹣∞,2〗,当0<x<2时,f(x)=2x∈(1,4),故函数的值域为(﹣∞,4),故B正确;对于C,因为f(0)=f(1),故C错误;对于D,由f(x)<2,可得或,解得x<0或0<x<1,故f(x)<2的解集为(﹣∞,0)∪(0,1),故D错误.故选:B.6.B〖解析〗由1+x>0得x>﹣1,当x=0时,f(x)无意义,f(1)=<0,排除A,D,当x=时,f(x)===>0,排除C,故选:B.7.A〖解析〗因为a=0.123<1,1<b=30.4<30.5<2,c=log0.40.12>log0.40.16=2,即a<b<c,故选:A.8.D〖解析〗由题意知,f(x)=3x2+(6﹣2e﹣2π)x+πe﹣3π﹣3e,则函数f(x)图象的对称轴为x=﹣1,所以函数f(x)在(﹣1,+∞)上单调递增,在(﹣∞,﹣1)上单调递减,又f(﹣3)=(﹣3﹣e)(﹣3﹣π)>0,f(0)=﹣3e+eπ﹣3π<0,f(e)=(e﹣π)(e+3)<0,f(π)=(π﹣e)(3+π)>0,所以f(﹣3)f(0)<0,f(e)f(π)<0,因为﹣3,0∈(﹣∞,﹣1),e,π∈(﹣1,+∞),所以﹣3<x1<0,e<x2<π,所以x1x2<0,故A错误;﹣<<,故B错误;x2﹣x1∈(e,3+π),故C错误;x2+x1∈(e﹣3,π),故D正确.故选:D.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题口算求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.AC〖解析〗A.f(x)=sin x的定义域为R,f(﹣x)=sin(﹣x)=﹣sin x=﹣f(x),则f(x)是奇函数,B.f(﹣x)=x2﹣x≠﹣f(x),则f(x)为非奇非偶函数,C.f(﹣x)==﹣f(x),则f(x)是奇函数,D.函数的定义域为{x|x≠﹣1},定义域关于原点不对称,为非奇非偶函数,故选:AC.10.BD〖解析〗设P(m,n))为α的终边与单位圆的交点,则β的终边与单位圆的交点Q(n,m),∴sinα=n,cosα=m,sinβ=m,cosβ=n,故A错误,B正确;cos(α﹣β)=cosαcosβ+sinαsinβ=mn+mn=2mn,2mn不一定为0,故C错误;sin(α+β)=sinαcosβ+cosαsinβ=n2+m2=1,故D正确.故选:BD.11.ABD〖解析〗根据题意,依次分析选项:对于A,若x,y>0,且x+2y=1,则x=1﹣2y,则有xy=y(1﹣2y)=≤,当且仅当x=2y=时等号成立,A正确;对于B,由柯西不等式,〖()2+()2〗(12+12)=(x+2y)(1+1)=2≥(+)2,即(+)2≤2,变形可得+≤,B正确;对于C,+=(+)(x+2y)=5++≥5+4=9,当且仅当x=y=时等号成立,C错误;对于D,x+2y=1,则有(x+2y)2=1,变形可得x2+4y2+4xy=1,又由x2+4y2≥4xy,则有x2+4y2≥,D正确;故选:ABD.12.BCD〖解析〗对于A,P(x)=R(x)﹣C(x)=﹣20x2+2500x﹣4000,二次函数P(x)的图象开口向下,对称轴为直线x=,∵x∈N*,∴P(x)取得最大值时每月产量为63台或62台,故A错误,对于B,MP(x)=P(x+1)﹣P(x)=〖﹣20(x+1)2+2500(x+1)﹣4000〗﹣(﹣20x2+2500x ﹣4000)=2480﹣40x(x∈N*),故B正确,对于C,P(x)max=P(62)=P(63)=74120,∵函数MP(x)=2480﹣40x为减函数,则MP(x)max=MP(1)=2440,故C正确,对于D,因为函数MP(x)=2480﹣40x为减函数,说明边际函数MP(x)说明随着产量的增加,每台利润与前一台利润差额在减少,故D正确.故选:BCD.三、填空题:本题共4小题,每小题5分,共20分.13.2〖解析〗lg4+lg25=lg(4×25)=lg100=2.故〖答案〗为:2.14.〖解析〗由题意知,弧长l=50π,半径R=60,所以圆心角α===.故〖答案〗为:.15.2,〖解析〗因为BC∥x轴,所以f(x)的图象的一条对称轴方程为x=(+)=,﹣==×,所以ω=2.由2×+φ=π+kπ,k∈Z,且0<φ<π,得φ=.故〖答案〗为2,.16.2x+1(〖答案〗不唯一)〖解析〗根据题意,分析可得f(x)为指数型函数,且底数a>1,故要求函数可以为f(x)=2x+1,故〖答案〗为:2x+1(〖答案〗不唯一).四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.解:角α的终边过点P(,).∴cosα=,tanα==,(1)cos(α+π)=﹣cosα=﹣;(2)tan(α﹣β)===﹣2.18.解:(1)因为f(x)=,所以f(1)=1+a=5,所以a=4;(2)f(x)==x+在(0,2)上单调递减,证明如下:设0<x1<x2<2,所以x1﹣x2<0,1﹣<0,则f(x1)﹣f(x2)===(x1﹣x2)(1﹣)>0,所以f(x1)>f(x2),所以f(x)在区间(0,2)上单调递减.19.解:(1)∵函数f(x)=sin2x+2cos2x+2=sin2x+2•+2=sin2x+cos2x+3=2sin(2x+)+3,故函数的周期为2π.(2)将f(x)=2sin(2x+)+3的图象按照变换①:向左平移个单位,再保持纵坐标不变,可得y=2sin(2x++)+3=2cos2x+3的图象,再横坐标缩小为原来的一半可得g(x)=2cos4x+3的图象,当x∈〖,〗时,4x∈〖﹣,π〗,cos4x∈〖﹣1,1〗,g(x)∈〖1,5〗,若方程g(x)=m有解,则m∈〖1,5〗.将f(x)=2sin(2x+)+3的图象按照变换②:纵坐标保持不变,横坐标伸长到原来的2倍,可得y=2sin(x+)+3的图象,再向右平移个单位,可得g(x)=2sin x+3的图象.当x∈〖,〗时,sin x∈〖﹣,〗,g(x)∈〖2,+3〗.若方程g(x)=m有解,则m∈〖2,+3〗.20.解:(1)∵函数f(x)是定义在R上的偶函数,当x≥0,f(x)=2x+3,设x<0,则﹣x>0,∴f(x)=f(﹣x)=2﹣x+3.综上,可得f(x)=.(2)当x≥0时,由不等式f(2x)≥2f(x)可得,22x+3≥2(2x+3),即22x﹣2×2x﹣3≥0,求得2x≥3,或2x≤﹣1(舍去),∴x≥log23.当x<0时,由不等式f(2x)≥2f(x)可得,2﹣2x+3≥2(2﹣x+3),即2﹣2x﹣2×2﹣x﹣3≥0,求得2﹣x≥3,或2﹣x≤﹣1(舍去),∴x≤﹣log23.综上,不等式的解集为{x|x≥log23或x≤﹣log23 }.21.解:(1)由于筒车转一周需要120秒,所以P从出发到开始倒水入槽的40秒,线段OA按逆时针方向旋转了,因为A点坐标为(2,﹣2),则,以OA为终边的角为,所以P距离水面的高度为≈6.9m.(2)由于筒车转一周需要120秒,可知P转动的角度为,又以OA为终边的角为,则P开始转动t秒后距离水面的高度,0≤t≤120,如图所示,P,Q两个盛水筒分别用点B,C表示,则,点C相对于点B始终落后rad,此时Q距离水面的高度,则P,Q距离水面的高度差H=|h1﹣h2|==,0≤t≤120,利用sinθ+sinφ=,可得H=,当或,解得t=22.5或t=82.5,故H最大值为,所以P与Q距离水面高度差的最大值约为1.0m.22.解:(1)g(x﹣2)+g(﹣x)=log2+log2=log2〖〗=log24=2;(2)由(1)知,g(x)的图象关于点M(﹣1,1)中心对称,取函数g(x)图象上两点C(2,0),D(﹣4,2),显然线段CD的中点恰为点M;再取函数g(x)图象上两点E(,﹣1),F(﹣,3),显然线段EF的中点也恰为点M.因此四边形CEDF的对角线互相平分,所以四边形CEDF为平行四边形,所以函数g(x)具有性质P;(3)h(x)=2g(x)=,则B(x0,)(x0<﹣2或x0>0),则|AB|2=|x0+4|2+=(x0+4)2+=(x0+4)2+(2﹣)2=(x0+2)2+4(x0+2)+4+﹣+4,记x0+2=t(t<0或t>2),则|AB|2=t2+4t+﹣+8=(t﹣)2+4(t﹣)+16,记t﹣=u,则|AB|2=u2+4u+16=(u+2)2+12,所以,当u=﹣2,即x0=﹣3﹣时,|AB|min=2.。

2022年-有答案-福建省福州市某校高一(上)期末数学试卷

2022年-有答案-福建省福州市某校高一(上)期末数学试卷

2022学年福建省福州市某校高一(上)期末数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知一个扇形的面积为π3,半径为2,则其圆心角为( )A.π6B.π3C.π4D.π22. 已知集合A={x|≤0},集合B={x|4<x<6},则A∩B=()A.(4, 5)B.(4, 5]C.(5, 6)D.[5, 6)3. 已知角α的终边经过点(m, 2),且cosα=−√32,则实数m=()A.−√3B.±2√3C.2√3D.−2√34. 不等式ax2+ax−4<0的解集为R,则实数a的取值范围为()A.[−16, 0)B.(−16, 0]C.[−8, 0]D.(−8, 0]5. 已知a=log45,,c=sin2,则a,b,c的大小关系是()A.b<c<aB.c<a<bC.a<b<cD.c<b<a6. 函数y=cosx|tanx|(−π2<x<π2)的大致图象是()A. B.C. D.7. 若函数f(x)=的值域为(a, +∞),则a的取值范围为()A. B. C. D.8. 已知函数f(x)=m(x−2)+3,g(x)=x2−4x+3,若对任意x1∈[0, 4],总存在x2∈[1, 4],使得f(x1)>g(x2)成立,则实数m的取值范围是()A.(−2, 2)B.C.(−∞, −2)D.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.下列四个命题中,正确的有()A.命题p:“∃x≤1,x2−3x+2≥0”,则¬p为“∀x>1,x2−3x+2<0”B.函数f(x)=a x−1+1(a>0,且a≠1)的图象恒过定点(1, 2)C.若a>b,c>d>0,则ad >bcD.若函数f(x)=x2−2x+4在区间[0, m]上的最大值为4,最小值为3,则实数m的取值范围是[1, 2]已知a>0,b>0,且a+b=4,则下列结论正确的是()A.ab≤4B.C.2a+2b≥16D.a2+b2≥8已知函数,则以下说法中正确的是()A.f(x)的最小正周期为πB.f(x)在上单调递减C.是f(x)的一个对称中心D.f(x)的最大值为0.5函数f(x)=Asin(ωx +φ)(其中A >0,ω>0,|φ|<π)的部分图象如图所示,则下列说法正确的是( )A.B.函数f(x)图象的对称轴为直线C.函数f(x)的零点为D.若f(x)在区间上的值域为,则实数a 的取值范围为三、填空题(本大题共4小题,共20分)若幂函数f(x)的图象经过(4, 2),则f(9)=________.“M <N ”是“log 3M <log 3N ”的________条件(请用“充分不必要”“必要不充分”“充要”“既不充分也不必要”作答)将函数(ω>0)的图象向左平移个单位,得到函数y =g(x)的图象.若y =g(x)在区间上为增函数,则ω的取值范围是________.设函数f(x)={3x −1,x ≤a|x +1|,x >a.①若a =1,则f(x)的值域为________;②若f(x)在R 上单调递增,则实数a 的取值范围是________. 四、解答题(本大题共6小题,共70分)已知4cosα−sinα3sinα+2cosα=14.(1)求tanα的值;(2)求sin(π−α)sin(3π2−α)的值.设函数f(x)=sin(2x+φ)(−π<φ<0),y=f(x)图象的一条对称轴是直线x=π8.(1)求φ;(2)若函数y=2f(x)+a,(a为常数a∈R)在x∈[11π24,3π4]上的最大值和最小值之和为1,求a的值.已知函数.(1)若对任意,都有f(x)≥a成立,求实数a的取值范围;(2)若先将y=f(x)的图象上每个点横坐标伸长为原来的2倍(纵坐标不变),再将所得图象向左平移个单位长度,得到函数y=g(x)的图象,求函数在区间[−π, 3π]内的所有零点之和.已知函数f(x)=a x+log a x(a>0且a≠1).(1)若f(5a−3)>f(3a),求实数a的取值范围;(2)若a=2,①求证:f(x)的零点在区间内;②求证:对任意大于0的实数λ,存在正数μ,当x∈(0, λμ)时,函数f(x)的图象都在x 轴下方.运货卡车以每小时x千米的速度匀速行驶130千米(按交通法规限制50≤x≤100,单位:千米/小时).假设汽油的价格是每升6元,而汽车每小时耗油升,司机工资为每小时18元.(1)求这次行车总费用y关于x的表达式;(2)当x为何值时,这次行车的总费用最低,并求出最低费用的值.已知函数f(x)满足f(x+1)=x3+ln(+3x)−2.(1)设g(x)=f(x+1)+2,判断函数g(x)的奇偶性,并加以证明;(2)若不等式f(sinθ+cosθ)+f(sin2θ−t)+4<0对任意θ∈(−,)恒成立,求实数t的取值范围.参考答案与试题解析2022学年福建省福州市某校高一(上)期末数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】A【考点】扇形面积公式【解析】设扇形的圆心角为α,根据面积公式列方程求出α的值.【解答】解:设扇形的圆心角为α,则由扇形的半径为R=2,得面积为S=12⋅α⋅R2=12⋅α⋅22=π3,解得α=π6.故选A.2.【答案】A【考点】交集及其运算【解析】可以求出集合A,然后进行交集的运算即可.【解答】∵A={x|3≤x<5},B={x|4<x<6},∴A∩B=(4, 5).3.【答案】D【考点】任意角的三角函数【解析】由题意利用任意角的三角函数的定义,求得m的值.【解答】解:∵角α的终边经过点(m, 2),且cosα=√m2+22=−√32,且m<0,解得m=2√3(舍去),或m=−2√3,则实数m=−2√3.故选D.4.【答案】B【考点】一元二次不等式的应用【解析】讨论a=0和a≠0时,求出不等式ax2+ax−4<0的解集为R时实数a的取值范围.【解答】当a=0时,不等式ax2+ax−2<0化为−4<3,对任意的x∈R恒成立;当a≠0时,不等式ax2+ax−6<0的解集为R,应满足;综上知,实数a的取值范围是(−16.5.【答案】A【考点】对数值大小的比较【解析】容易得出,从而可得出a,b,c的大小关系.【解答】∵log45>log74=1,,,∴b<c<a.6.【答案】B【考点】函数的图象变换【解析】化简函数的解析式,然后判断函数的图象即可.【解答】解:−π2<x<π2⇒cosx>0,故函数y=cosx|tanx|=|sinx|,函数y=cosx|tanx|(−π2<x<π2)的大致图象是:B.故选:B.7.【答案】B【考点】函数的值域及其求法【解析】根据分段函数的解析式,分别求出每段上的值域,再结合函数的值域即可求出a的范围.【解答】当x<1时,f(x)=()x>,当x≥1时,f(x)=a+()x≤a+,且f(x)>a,即f(x)∈(a, a+1]∵f(x)的值城为(a, +∞),∴a+≥,且a≤∴≤a≤,8.【答案】A【考点】函数恒成立问题二次函数的性质二次函数的图象【解析】根据对任意的x1∈[0, 4],总存在x2∈[1, 4],使f(x1)>g(x2)成立,由二次函数的值域求得可得g(x)的最小值,可得−1<m(x−2)+3在x∈[0, 4]恒成立,进而根据一次函数的单调性可得关于m的不等式组,解不等式组可得答案.【解答】g(x)=x2−4x+3=(x−2)2−1,当x2∈[1, 4]时,g(x2)∈[−1, 3],则g(x2)的最小值为−1,可得−1<m(x−2)+3在x∈[0, 4]恒成立,则−1<−2m+3,且−1<2m+3,解得m<2,且m>−2,即−2<m<2,二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.【答案】A,B,D【考点】命题的真假判断与应用【解析】直接利用命题的否定,指数型函数的性质,不等式的性质,二次函数的性质的应用判断A、B、C、D的结论.【解答】对于B:函数f(x)=a x−1+1(a>0,且a≠1)的图,当x=1时,f(1)=2,故函数的图象恒过定点(1, 2),故B正确(1)对于C:当a>b>0时,c>d>0时,满足ad >bc,故C错误(2)对于D:函数f(x)=x2−2x+4=(x−1)2+3,函数的对称轴为x=1,由于函数在区间[0, m]上的最大值为4,最小值为3,所以实数m的取值范围是[1, 2],故D正确.故选:ABD.【答案】B,D【考点】基本不等式及其应用【解析】由基本不等式4=a+b≥2,可得A不正确;用“1”的代换,可得+=()(a+b)=(2++)≥+×2=1从而判断B;由基本不等式2a+2b≥2=2=2=8,可以判断C;由重要不等式变形,a2+b2≥2ab,∴2(a2+b2)≥(a+b)2,可以判断D.【解答】∵a>0,b>0,∴4=a+b≥2(当且仅当a=b=2时取“=”),∴3<ab≤4(当且仅当a=b=2时取“=”),即A错误;∵+=()(a+b)=+)≥+=7,∴B正确;∵2a+2b≥7=7=8,故C错误;∵a2+b4≥2ab,∴2(a4+b2)≥(a+b)2,∴a7+b2≥==8,故D正确.【答案】A,B,C【考点】函数y=Asin(ωx+φ)的图象变换【解析】由题意利用三角恒等变换化简f(x)的解析式,正弦函数的图象和性质,得出结论.【解答】函数=cos(x+)sin(x+)+=sin(2x+)+,故它的最小正周期为=π,故A正确;当x∈,2x+∈[,],故f(x)在上单调递减,故B正确;当x=时,f(x)=×0+=,故(,)是f(x)的一个对称中心,故C正确;显然,f(x)的最大值为+=1,故D错误,【答案】A,B,D【考点】命题的真假判断与应用【解析】直接利用函数的图象和性质的应用判定A、B、C、D的结论.【解答】对于A:根据函数的图象得:A=2,由于,解得T=π,所以ω=2,则f(x)=2sin(2x+φ),由于f()=2sin(+φ)=2,解得φ=,由于|φ|<π,所以φ=-,故f(x)=2sin(2x−),故A正确;对于B:令(k∈Z),解得(k∈Z),故B正确;对于C:令,解得(k∈Z),故C错误;对于D:若f(x)在区间,得到,由于上的值域为,则,解得,故实数a的取值范围为.三、填空题(本大题共4小题,共20分)【答案】3【考点】幂函数的概念、解析式、定义域、值域【解析】设幂函数f(x)=x a,由幂函数f(x)的图象经过(4, 2),解得f(x)=x 12,由此能求出f(9).【解答】解:设幂函数f(x)=x a,∵幂函数f(x)的图象经过(4, 2),∴4a=2,解得a=12,∴f(x)=x 1 2,∴f(9)=912=3.故答案为:3.【答案】必要不充分【考点】充分条件、必要条件、充要条件【解析】根据对数不等式的性质求出等价条件,结合充分条件和必要条件的定义进行判断即可.【解答】由log 3M <log 3N 得0<M <N ,则M <N 成立,即必要性成立,当M <N <0时,M <N 成立,但log 3M <log 3N 无意义,即充分性不成立, 则“M <N ”是“log 3M <log 3N ”的必要不充分条件, 【答案】(0,]【考点】函数y=Asin (ωx+φ)的图象变换 【解析】由题意利用函数y =Asin(ωx +φ)的图象变换规律,得到g(x)的解析式,再根据正弦函数的单调增区间,求得ω的取值范围. 【解答】将函数(ω>0)的图象向左平移个单位,得到函数y =g(x)=2sin(ωx +-)=2sinωx 的图象.若y =g(x)在区间上为增函数,则ω⋅(−)≥−,且ω•≤,求得0<ω≤,则ω的取值范围为(0,],【答案】(−1, +∞),[−1, 1] 【考点】函数单调性的性质与判断 分段函数的应用 函数的值域及其求法 【解析】①把a =1代入分段函数解析式,分别求出值域,取并集得答案;②在同一坐标系内画出函数y =3x −1与y =|x +1|的图象,数形结合得答案. 【解答】①若a =1,则f(x)={3x −1,x ≤1|x +1|,x >1,当x ≤1时,f(x)=3x −1∈(−1, 2], 当x >1时,f(x)=|x +1|>2,∴ f(x)的值域为(−1, 2]∪(2, +∞)=(−1, +∞);②在同一平面直角坐标系内作出函数y =3x −1与y =|x +1|的图象如图:由图可知,要使函数f(x)={3x −1,x ≤a|x +1|,x >a 在R 上的增函数,则实数a 的取值范围是[−1, 1].四、解答题(本大题共6小题,共70分) 【答案】 ∵4cosα−sinα3sinα+2cosα=14,∴ 16cosα−4sinα=3sinα+2cosα, ∴ 14cosα=7sinα, ∴ tanα=2;∵ sin(π−α)sin(3π2−α)=−sinαcosα=−sinαcosαsin 2α+cos 2α=−tanαtan 2α+1, 又tanα=2,∴ 原式=−24+1=−25. 【考点】同角三角函数间的基本关系 运用诱导公式化简求值 【解析】(1)取分母化简即可;(2)先利用诱导公式化简,再构造分母转化为正切,利用第一问的正弦值即可求出结果. 【解答】∵ 4cosα−sinα3sinα+2cosα=14,∴ 16cosα−4sinα=3sinα+2cosα, ∴ 14cosα=7sinα, ∴ tanα=2; ∵ sin(π−α)sin(3π2−α)=−sinαcosα=−sinαcosαsin 2α+cos 2α=−tanαtan 2α+1,又tanα=2,∴ 原式=−24+1=−25. 【答案】解:(1)∵x=π8是它的一条对称轴,∴2⋅π8+φ=kπ+π2.∴φ=kπ+π4,又−π<φ<0,得φ=−3π4;(2)由(1)得f(x)=2sin(2x−34π)∴y=2sin(2x−34π)+a,又π6≤2x−34π≤3π4,∴y max=2+a,y min=1+a,∴2a+3=1,∴a=−1.【考点】函数y=Asin(ωx+φ)的图象变换三角函数的最值【解析】(1)通过函数的对称轴,结合−π<φ<0,求出φ的值.(2)利用(1)以及函数y=2f(x)+a,求出含a的函数表达式,利用最大值和最小值的和,求出a的值即可.【解答】解:(1)∵x=π8是它的一条对称轴,∴2⋅π8+φ=kπ+π2.∴φ=kπ+π4,又−π<φ<0,得φ=−3π4;(2)由(1)得f(x)=2sin(2x−34π)∴y=2sin(2x−34π)+a,又π6≤2x−34π≤3π4,∴y max=2+a,y min=1+a,∴2a+3=1,∴a=−1.【答案】函数=sin2x+).对任意,2x−,],sin(2x−,1].再根据对任意,都有f(x)≥a成立,即实数a的取值范围(−∞.若先将y=f(x)的图象上每个点横坐标伸长为原来的2倍(纵坐标不变),得到y=sin(x−)的图象.再将所得图象向左平移个单位长度,故函数在区间[−π,即sinx=在区间[−π.而sinx=在区间[−π,从小到大依次设为a、b、c、d,根据正弦函数的图象的对称性,=,=,∴函数在区间[−π.【考点】函数y=Asin(ωx+φ)的图象变换【解析】(1)由题意利用三角恒等变换,化简函数的解析式,再根据函数的定义域和值域,求得f(x)的最小值,可得a的范围.(2)由题意利用函数y=Asin(ωx+φ)的图象变换规律,求得g(x)的解析式,再利用正弦函数的图象和性质,求得函数在区间[−π, 3π]内的所有零点之和.【解答】函数=sin2x+).对任意,2x−,],sin(2x−,1].再根据对任意,都有f(x)≥a成立,即实数a的取值范围(−∞.若先将y=f(x)的图象上每个点横坐标伸长为原来的2倍(纵坐标不变),得到y=sin(x−)的图象.再将所得图象向左平移个单位长度,故函数在区间[−π,即sinx=在区间[−π.而sinx=在区间[−π,从小到大依次设为a、b、c、d,根据正弦函数的图象的对称性,=,=,∴函数在区间[−π.【答案】f(x)定义域为(0, +∞),当a>1时,f(x)是增函数,由f(5a−3)>f(3a),得,所以a>,当0<a<1时,f(x)是减函数,由f(5a−3)>f(3a),得,所以<a<1,综上,a∈(,1)∪(,+∞).证明:①因为f(x)=2x+log2x在(0, +∞)上增函数,又f()=2+log2=2−2<0,f()=2+log2=2−1>0,所以f(x)的零点在(,)上.②由①知f(x)的零点x0∈(,),又f(x)在(0, +∞)上为增函数,所以x∈(0, x0)时,f(x)<0,所以对任意λ>0,存在μ=,使f(x)<0在(0, λμ)上恒成立.【考点】函数与方程的综合运用【解析】(1)f(x)定义域为(0, +∞),分两种情况当a>1时,当0<a<1时,结合f(x)单调性,进而可得答案.(2)①由f(x)单调性,及f()<0,f()>0,即可得出答案.②由①知f(x)的零点x0∈(,),x∈(0, x0)时,f(x)<0,存在μ=,使f(x)<0在(0, λμ)上恒成立.【解答】f(x)定义域为(0, +∞),当a>1时,f(x)是增函数,由f(5a−3)>f(3a),得,所以a>,当0<a<1时,f(x)是减函数,由f(5a−3)>f(3a),得,所以<a<1,综上,a∈(,1)∪(,+∞).证明:①因为f(x)=2x+log2x在(0, +∞)上增函数,又f()=2+log2=2−2<0,f()=2+log2=2−1>0,所以f(x)的零点在(,)上.②由①知f(x)的零点x0∈(,),又f(x)在(0, +∞)上为增函数,所以x∈(0, x0)时,f(x)<0,所以对任意λ>0,存在μ=,使f(x)<0在(0, λμ)上恒成立.【答案】运货卡车行驶的时间为(ℎ),则有=,x∈[40, 100];由(1)可得,当且仅当,即时取等号,故当(km/ℎ)时,这次行车的总费用最低为元.【考点】根据实际问题选择函数类型【解析】(1)求出运货卡车行驶的时间,然后根据题意求出行车总费用即可;(2)利用基本不等式求解最值即可.【解答】运货卡车行驶的时间为(ℎ),则有=,x∈[40, 100];由(1)可得,当且仅当,即时取等号,故当(km/ℎ)时,这次行车的总费用最低为元.【答案】g(x)为奇函数,证明如下:,定义域关于原点对称又,∴,故g(x)为奇函数,由(1)可知f(x)=g(x−1)−2且g(x)为单调递增的奇函数,∴f(sinθ+cosθ)+f(sin6θ−t)+4=g(sinθ+cosθ−1)+g(sin3θ−t−1),原不等式等价于:g(sinθ+cosθ−1)+g(sin7θ−t−1)<0,即g(sinθ+cosθ−7)<g(t+1−sin2θ)对任意恒成立,∴sinθ+cosθ−1<t+4−sin2θ⇒t>sin2θ+sinθ+cosθ−5,令,∵,∴,则m2=sin2θ+4,即,由此可得,故实数t的取值范围为.【考点】函数恒成立问题【解析】(1)先判断函数的定义域是否关于原点对称,然后检验g(−x)与g(x)的关系即可判断,(2)结合(1)原不等式等价于g(sinθ+cosθ−1)<g(t+1−sin2θ)对任意恒成立,结合三角函数的性质可求.【解答】g(x)为奇函数,证明如下:,定义域关于原点对称又,∴,故g(x)为奇函数,由(1)可知f(x)=g(x−1)−2且g(x)为单调递增的奇函数,∴f(sinθ+cosθ)+f(sin6θ−t)+4=g(sinθ+cosθ−1)+g(sin3θ−t−1),原不等式等价于:g(sinθ+cosθ−1)+g(sin7θ−t−1)<0,即g(sinθ+cosθ−7)<g(t+1−sin2θ)对任意恒成立,∴sinθ+cosθ−1<t+4−sin2θ⇒t>sin2θ+sinθ+cosθ−5,令,∵,∴,则m2=sin2θ+4,即,由此可得,故实数t的取值范围为.。

福建省福州市-高一数学上学期期末考试试题新人教A版

福建省福州市-高一数学上学期期末考试试题新人教A版

福建师大附中—上学期期末考试 高一数学试题(满分:150分,时间:120分钟)说明:请将答案填写在答卷纸上,考试结束后只交答案卷.第1卷 共100分 一、选择题:(每小题5分,共60分,在每小题给出的四个选项中,只有一项符合要求)1. 下列条件中,能使βα//的条件是(***** )A. 平面α内有无数条直线平行于平面βB. 平面α与平面β同平行于一条直线C. 平面α内有两条直线平行于平面βD. 平面α内有两条相交直线平行于平面β 2、直线10x y ++=的倾斜角与在 y 轴上的截距分别是(***** )A. 135°,1B. 45°,-1C. 45°,1D. 135°,-1 3、三个平面把空间分成7部分时,它们的交线有(***** )A.1条 B.2条 C.3条 D.1或2条4、已知直线1:0l ax y a -+=,2:(23)0l a x ay a -+-=互相平行,则a 的值是(***** ) A .3- B 1 C .1或3- D .05、设,αβ是两个不同的平面,l 是一条直线,以下命题正确的是(***** ) A .若,l ααβ⊥⊥,则l β⊂ B .若//,//l ααβ,则l β⊂ C .若,//l ααβ⊥,则l β⊥ D .若//,l ααβ⊥,则l β⊥6、已知点(,)M a b 在直线1543=+y x 上,则22b a +的最小值为(***** )A .2B . 3C .154D .57、一梯形的直观图是一个如图所示的等腰梯形,且梯形OA /B /C /的面积为2,则原梯形的面积为(***** )A . 2B .2C .22D . 4 8、若(2,1)P -为圆22(1)25x y -+=的弦AB 的中点,则直线AB 的方程为(****) A .30x y --=B .230x y +-=C .10x y +-=D .250x y --=9、长方体的三个相邻面的面积分别为2,3,6,这个长方体的顶点都在同一个球面上,则这个球的表面积为(***** ) A .27π B .56π C .14π D .64π10、已知圆1C :2(1)x ++2(1)y -=1,圆2C 与圆1C 关于直线10x y --=对称, 则圆2C 的方程为(***** )A .2(2)x -+2(2)y +=1B .2(2)x ++2(2)y -=1 C .2(2)x -+2(2)y -=1 D .2(2)x -+2(1)y -=111、点(,)M x y ︒︒是圆222(0)x y a a +=>内不为圆心的一点,则直线2x x y y a ︒︒+=与该圆的位置关系是(***** )A .相切B .相交C .相离D .相切或相交12、如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点E ,F ,且12EF =,则下列结论中错误的是(***** ) A .AC ,BE 为异面直线,且AC BE ⊥B .//EF ABCD 平面C .三棱锥A BEF -的体积为定值D .AEF BEF ∆∆的面积与的面积相等二、填空题:(本大题6小题,每小题5分,共30分,把答案填在答卷上) 13、过点(,4)(1,)A a B a -和的直线的倾斜角等于45︒,则a 的值是_******_14、直线,31k y kx =+-当k 变化时,所有直线都通过定点_******_15、若某空间几何体的三视图如图所示,则该几何体的体积是_******_命题人:黄晓滨 审核人:江 泽O y 'x '45016、两平行线12:10:30l x y l x y -+=-+=与间的距离是_******_17、集合22222{(,)|4},{(,)|(3)(4)}A x y x y B x y x y r =+==-+-=,其中0r >, 若A B 中有且仅有一个元素,则r 的值是_******_18、将正方形ABCD 沿对角线BD 折成直二面角A -BD -C ,有如下四个结论:①AC ⊥BD ;②△ACD 是等边三角形;③二面角A BC D --的度数为60︒; ④AB 与CD 所成的角是60°。

福建省高一上学期期末质量检测数学试题(解析版)

福建省高一上学期期末质量检测数学试题(解析版)

高一数学(必修第一册)模块试卷(考试时间:120分钟 满分:150分)班级___________ 座号__________ 姓名__________一、单项选择题:本大题共8小题,每小题5分,共40分.在每小概给出的四个选项中,只有一项符合题目要求.1. 已知集合,,则( ){}21,S s s n n ==+∈Z {}41,T t t n n ==+∈Z S T Ç=A. B.C.D.∅S T Z 【答案】C 【解析】【分析】分析可得,由此可得出结论.T S ⊆【详解】任取,则,其中,所以,,故, t T ∈()41221t n n =+=⋅+Z n ∈t S ∈T S ⊆因此,. S T T = 故选:C.2. 已知角终边经过点,若,则( )θ)P a 3πθ=-=aA.B.C. D. 【答案】C 【解析】【分析】根据三角函数的定义,列出方程,即可求解.【详解】由题意,角终边经过点,可得,θ)P a OP =又由,根据三角函数的定义,可得且,解得. 3πθ=-1cos 32π⎛⎫-== ⎪⎝⎭a<0a =故选:C.3. 若函数f (x )和g (x )分别由下表给出: x 1 2 3 4 x 1 2 3 4 f (x )2341g (x )2143满足g (f (x ))=1的x 值是( ). A. 1B. 2C. 3D. 4【答案】A 【解析】【分析】从外到内逐步求值. 【详解】解:∵g (f (x ))=1, ∴f (x )=2, ∴x =1, 故选:A .【点睛】本题主要考查函数的表示法——列表法,属于基础题. 4. 为了得到函数的图象,只要把函数图象上所有的点( ) 2sin 3y x =π2sin 35y x ⎛⎫=+ ⎪⎝⎭A. 向左平移个单位长度 B. 向右平移个单位长度 π5π5C. 向左平移个单位长度D. 向右平移个单位长度 π15π15【答案】D 【解析】【分析】根据三角函数图象的变换法则即可求出. 【详解】因为,所以把函数图象上的所有点向右ππ2sin 32sin 3155y x x ⎡⎤⎛⎫==-+ ⎪⎢⎥⎝⎭⎣⎦π2sin 35y x ⎛⎫=+ ⎪⎝⎭平移个单位长度即可得到函数的图象. π152sin 3y x =故选:D.5. 已知,则的值为( ) π3ππsin ,,3526αα⎛⎫⎛⎫+=∈- ⎪ ⎪⎝⎭⎝⎭sin αA.B.C.D.【答案】A 【解析】【分析】先求出,利用差角公式求解答案.πcos 3α⎛⎫+ ⎪⎝⎭【详解】因为,所以,所以ππ,26α⎛⎫∈-⎪⎝⎭πππ,362α⎛⎫+∈- ⎪⎝⎭;π4cos 35α⎛⎫+=== ⎪⎝⎭ππππππsin sin sin cos cos sin 333333αααα⎛⎫⎛⎫⎛⎫=+-=+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 314525=⨯-=故选:A.6. 密位制是度量角的一种方法.将周角等分为6000份,每一份叫做1密位的角.以密位作为角的度量单位,这种度量角的单位制,叫做角的密位制.在角的密位制中,采用四个数码表示角的大小,单位名称密位二字可以省去不写.密位的写法是在百位数字与十位数字之间画一条短线,如:478密位写成“4-78”,1周角等于6000密位,记作1周角.如果一个扇形的半径为2,面积为,则其圆心角可以用密位制表6000=-73π示为( ) A. 25-00 B. 35-00C. 42-00D. 70-00【答案】B 【解析】【分析】利用扇形面积公式先求出圆心角,再根据密位制的定义换算即可.【详解】设扇形的圆心角为,则,则,α217223απ⨯=76απ=由题意可知,其密位大小为密位,用密位制表示为35-00.76600035002ππ⨯=故选:B.7. 若函数与在区间上的单调性相同,则称区间为的“稳定区()y f x =()y f x =-[],m n [],m n ()y f x =间”,若区间为函数的“稳定区间”,则实数的取值范围为( )[]1,2023()12xf x a ⎛⎫=+ ⎪⎝⎭a A. B. C.D.[]2,1--12,2⎡⎤--⎢⎥⎣⎦1,22⎡⎤⎢⎥⎣⎦[]1,2【答案】B 【解析】【分析】有题意可知,函数与在区间上同增或同减,先分和两()y f x =()y f x =-[]1,20230a ≥a<0种情况讨论,再在中根据同增和同减两种情况对函数进行分析讨论即可.a<0【详解】根据题意,,函数与在区间()12xf x a ⎛⎫=+ ⎪⎝⎭()122xx f x a a -⎛⎫-=+=+ ⎪⎝⎭()y f x =()y f x =-上的单调性相同.[]1,2023当时,在上单调递减,在上单调递增,不符合0a ≥()12xf x a ⎛⎫=+ ⎪⎝⎭[]1,2023()2x f x a -=+[]1,2023题意;当时,,则函数在上a<0()()()221,log 2121,log 2xxxa x a f x a a x a ⎧⎛⎫+<--⎪ ⎪⎪⎝⎭⎛⎫=+=⎨ ⎪⎝⎭⎛⎫⎪--≥-- ⎪⎪⎝⎭⎩()y f x =()()2,log a -∞--单调递减,在上单调递增.())2log ,a --+∞⎡⎣,则函数在上单调递减,在()()()222,log 22,log xxx a x a f x a a x a ⎧+≥-⎪-=+=⎨--<-⎪⎩()y f x =-()()2,log a -∞-上单调递增.())2log ,a -+∞⎡⎣①在上单调递增,则,解得.[]1,2023()()221log 1log a a ⎧-⎪⎨≥--⎪⎩122a -≤≤-②在上单调递减,则,不等式组无解.[]1,2023()()22log 2023log 2023a a ⎧->⎪⎨-->⎪⎩综上所述:.12,2a ⎡⎤∈--⎢⎥⎣⎦故选:B.8. 已知函数的定义域为,且,为偶函数,若,()f x R (2)2()f x f x +=-(23)f x -(0)0f =,则的值为()1()123nk f k ==∑n A. 117 B. 118C. 122D. 123【答案】C 【解析】【分析】利用函数的奇偶性和周期性求解即可.【详解】由解得,即是以4为周期的周期函数,所以(2)()2(4)(2)2f x f x f x f x ++=⎧⎨+++=⎩(4)()f x f x +=()f x ,(4)(0)0f f ==因为为偶函数,所以,当时有(23)f x -()()()()233222f x f x f x f x -=+⇒-=+1x =,()()13f f =又因为,所以, ()()132f f +=()()131f f ==所以,,(2)2(0)2f f =-=(3)2(1)1f f =-=所以,1201()30[(1)(2)(3)(4)]120k f k f f f f ==+++=∑所以即,12012011()(121)(122)()(1)(2)123k k f k f f f k f f ==++=++=∑∑1221()123k f k ==∑故选:C二、多项选择题:本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.9. 对于给定的实数a ,不等式ax 2 +(a -1)x -1 < 0的解集可能是( ) A. {} B. {x |x ≠-1} C. {x |x< -1} D. R1|1x x a<<【答案】B 【解析】【分析】根据因式分解求解不等式并分类讨论即可得解. 【详解】①当时,0a >ax 2 +(a -1)x -1 < 0可以转化为, (1)(1)0ax x -+<所以; 11x a-<<②当时,0a =ax 2 +(a -1)x -1 < 0可以转化为, (1)0x -+<所以; 1x >-③当时,a<0(i),解集为,10a -<<(1)(1)0ax x -+<1(,)(1,)a∞∞-⋃-+(ii),可以转化为,解集为 {x |x ≠-1} 1a =-(1)(1)0ax x -+<2(1)0x -+<(iii),解集为, 1a <-(1)(1)0ax x -+<1(,1)(,)a∞∞--⋃+综上所述,不等式ax 2 +(a -1)x -1 < 0的解集可能是B . 故选:B .10. 已知函数(其中)的部分图象如图所示,则下列说法正确()sin()f x A x ωϕ=+0,0,πA ωϕ>><的是( )A. 的图象关于点中心对称 ()f x π,012⎛⎫⎪⎝⎭B. 在区间上单调递增 ()f x ππ,36⎡⎤-⎢⎥⎣⎦C. 的图象关于直线对称 ()f x 2π3x =D. 直线与图象的所有交点的横坐标之和为 1y =π23π()(1212y f x x =-≤≤8π3【答案】BCD 【解析】【分析】先根据图象求出函数的解析式,再结合选项及三角函数的性质进行判断即可. ()f x 【详解】由图可知,周期为,所以,又,故;2A =2π5ππ3124T ⎛⎫-⎝== ⎪⎭2π2T ω==0ω>2ω=所以,()()2sin 2f x x ϕ=+因为经过点,所以,即, ()f x 2π,23⎛⎫- ⎪⎝⎭4π2sin 23ϕ⎛⎫+=- ⎪⎝⎭4πsin 13ϕ⎛⎫+=- ⎪⎝⎭所以,即, 4π3π2π,Z 32k k ϕ+=+∈ππZ 62,k k ϕ=+∈因为,,所以取,;π<ϕZ k ∈0k =π6ϕ=所以. π()2sin 26f x x ⎛⎫=+⎪⎝⎭对于A ,令,则,A 不正确; π12x =ππsin 20126⎛⎫⨯+=≠ ⎪⎝⎭对于B ,当时,,所以在区间上单调递增, B 正确;ππ,36x ⎡⎤∈-⎢⎥⎣⎦πππ2,622x ⎡⎤+∈-⎢⎥⎣⎦()f x ππ,36⎡⎤-⎢⎥⎣⎦对于C ,时,,所以的图象关于直线对称,C 正确; 2π3x =2ππsin 2136⎛⎫⨯+=- ⎪⎝⎭()f x 2π3x =对于D ,令,则, ()1f x =π1sin 262x ⎛⎫+= ⎪⎝⎭因为,所以, π23π1212x -≤≤π024π6x ≤+≤所以或或或,解得或或或,ππ266x +=5π613π617π610x =2π3x =3πx =44π3x =所有交点的横坐标之和为,D 正确. 12348π3x x x x +++=故选:BCD.11. 已知x ,y 是正数,且满足,则下列叙述正确的是( )221x y +=A.B.C. D.126x y+≥+ln ln 4ln 2x y +≥-2x y ->221tan tan 26x y ⎛⎫≥- ⎪⎝⎭【答案】ACD 【解析】【分析】A 选项,利用基本不等式“1”的妙用求解最小值;B 选项,先计算出,结合对21216x y xy +⎛⎫≤= ⎪⎝⎭数函数的单调性得到答案;C 选项,由得到,结合得到D 选项,221x y +=12y x =-102x <<2x y ->计算出,结合正切函数在上的单调性得到答案.22211123366x y x ⎛⎫+=-+≥ ⎪⎝⎭ππ,22⎛⎫- ⎪⎝⎭【详解】A 选项,因为x ,y 是正数,且满足,221x y +=则, ()221212646224y x x x y x y x y y ⎛⎫+=+≥+=+ ⎪⎝+=+++⎭当且仅当,即时,等号成立,A 正确; 24y x x y=x y ==B 选项,,则, 21216x y xy +⎛⎫≤= ⎪⎝⎭1ln ln ln ln 4ln 216x y xy +=≤=-当且仅当时,等号成立,故B 错误; 14x y ==C 选项,因为,所以,221x y +=12y x =-因为为正数,故, ,x y 102x <<则,C 正确;11222222x x y---=>=D 选项,由得到, 12y x =-222222111112232322366x y x x x x x ⎛⎫⎛⎫+=+-=-+=-+≥ ⎪ ⎪⎝⎭⎝⎭当且仅当时,等号成立, 13x =故,即,22126x y +≥22126x y ≥-因为,,所以, 10,2x ⎛⎫∈ ⎪⎝⎭10,2y ⎛⎫∈ ⎪⎝⎭21112,636y ⎛⎫-∈- ⎪⎝⎭因为在上单调递增, tan y z =ππ,22z ⎛⎫∈-⎪⎝⎭故,D 正确. 221tan tan 26x y ⎛⎫≥- ⎪⎝⎭故选:ACD12. 已知函数,则下列结论正确的有( ) ()cos sin f x x x =-A. 的一个周期是B. 在上单调递增 ()f x 2π()f x 3π7π,24⎡⎤⎢⎥⎣⎦C.D. 方程在上有7个解()f x ()10f x -=[]2π,2π-【答案】BCD 【解析】【分析】根据的值即可判断A ;写出函数在上的解析式,再根据余弦函数的π7π,44f f ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭3π7π,24⎡⎤⎢⎥⎣⎦单调性即可判断B ;易得函数为偶函数及当时,函数是以为周期的周期函数,求出()f x 0x ≥()f x 2π函数在的最大值即可判断C ;求出当时,方程的根的个数,再根据函数的奇偶性即[]0,2πx ∈(]0,2πx ∈可判断D .【详解】对于A ,因为,π7π0,44f f ⎛⎫⎛⎫-==== ⎪ ⎪⎝⎭⎝⎭所以不是函数的一个周期,故A 错误; 2π()f x 对于B ,当,,3π7π,24x ⎡⎤∈⎢⎥⎣⎦()πcos sin 4f x x x x ⎛⎫=-=+ ⎪⎝⎭由,可得, 3π7π,24x ⎡⎤∈⎢⎥⎣⎦π7π,2π44x ⎡⎤+∈⎢⎥⎣⎦所以在上单词递增,故B 正确; ()f x 3π7π,24⎡⎤⎢⎥⎣⎦对于C ,因为,所以函数为偶函数, ()()cos sin f x x x f x -=-=()f x 则当时,,0x ≥()cos sin f x x x =-因为, ()()()2πcos 2πsin 2πcos sin f x x x x x +=+-+=-所以当时,函数是以为周期的周期函数, 0x ≥()f x 2π则当时,[]0,2πx ∈,()ππ3π,0,,2π422cos sin ππ3π,,422x x f x x x x x ⎛⎫⎡⎤⎡⎤+∈⋃ ⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦=-=⎨⎛⎫⎛⎫⎪-∈ ⎪ ⎪⎪⎝⎭⎝⎭⎩当时,, π3π0,,2π22x ⎡⎤⎡⎤∈⎢⎥⎢⎥⎣⎦⎣⎦U ππ3π7π9π,,44444x ⎡⎤⎡⎤+∈⋃⎢⎥⎢⎥⎣⎦⎣⎦则,则, πcos 4x ⎡⎤⎛⎫+∈⎢⎥ ⎪⎝⎭⎣⎦()f x ∈-⎡⎣当时,,π3π,22x ⎛⎫∈⎪⎝⎭ππ5π,444x ⎛⎫-∈ ⎪⎝⎭则,则, πcos 4x ⎡⎛⎫-∈-⎢ ⎪⎝⎭⎣()f x ⎡∈-⎣综上,()f x ∈-⎡⎣所以,故C 正确; ()f x对于D ,当时,,π3π0,,2π22x ⎡⎤⎡⎤∈⎢⎥⎢⎥⎣⎦⎣⎦U ()π4f x x ⎛⎫=+ ⎪⎝⎭由,得 ()10f x -=πcos 4x ⎛⎫+= ⎪⎝⎭所以或, ππ2π44x k +=-+ππ2π44x k +=+所以或, π2π2x k =-+2π,Z x k k =∈又,所以或或,π3π0,,2π22x ⎡⎤⎡⎤∈⎢⎥⎢⎥⎣⎦⎣⎦U 0x =3π22π当时,,π3π,22x ⎛⎫∈⎪⎝⎭()π4f x x ⎛⎫=- ⎪⎝⎭由,得, ()10f x -=πcos 4x ⎛⎫-= ⎪⎝⎭所以或, π3π2π44x k -=+π5π2π44x k -=+所以或, π2πx k =+3π2π,Z 2x k k =+∈又,所以, π3π,22x ⎛⎫∈⎪⎝⎭πx =综上可得当时,方程有3个解,(]0,2πx ∈()10f x -=又函数为偶函数,所以当时,方程有3个解, [)2π,0x ∈-()10f x -=综上所述方程在上有7个解,故D 正确.()10f x -=[]2π,2π-故选:BCD .【点睛】本题考查了三角函数的周期性单调性及最值问题,考查了分类讨论思想三、填空题:本题共4小题,每小题5分,共20分.13. 写出一个定义域不是R ,但值域是R 的奇函数f (x )=___.【答案】tan x (答案不唯一,合理即可)【解析】【分析】根据所学函数合理构造选择即可.【详解】由正切函数性质可知满足条件,即. (tan f x x =)故答案为:(答案不唯一)tan x14. 已知为第四象限的角,________. θsin cos θθ+=cos 2θ=【解析】【分析】给两边平方先求出,然后利用完全平方公式求出,再利用公式sin cos θθ+=2sin cos θθcos sin θθ-可得结果.22cos 2cos sin θθθ=-【详解】∵,∴, sin cos θθ+=11sin 23θ+=2sin 23θ=-∴, ()25sin cos 1sin 23θθθ-=-=∵为第四象限角,∴,,∴, θsin 0θ<cos 0θ>cos sin θθ-=∴()()cos 2cos sin cos sin θθθθθ=-+=【点睛】此题考查的是同角三角函数的关系和二倍角公式,属于基础题.15. 函数,若命题“”是假命题,则实数a 的取值范围为()22f x ax ax =-[]()0,1,3x f x a ∃∈≤-___________.【答案】 24,7⎛⎫+∞⎪⎝⎭【解析】【分析】由命题“”是假命题,可得其否定为真命题,再分离参数,即可得解.[]()0,1,3x f x a ∃∈≤-【详解】因为命题“”是假命题,[]()0,1,3x f x a ∃∈≤-所以命题“”是真命题,[]()0,1,3x f x a ∀∈>-即在上恒成立, ()2213a x x -+>[]0,1x ∈因为当时,, []0,1x ∈2721,28x x ⎡⎤+∈⎢⎣-⎥⎦所以在上恒成立, 2321a x x >-+[]0,1x ∈而, 2max 332472178x x ⎛⎫== ⎪-+⎝⎭所以, 247a >所以实数a 的取值范围为. 24,7⎛⎫+∞ ⎪⎝⎭故答案为:. 24,7⎛⎫+∞ ⎪⎝⎭16. 设,函数,若函数在区间内恰有6个零R a ∈()()()22tan 2π,249,x a x a f x x a x a x a⎧⎡⎤-≤⎪⎣⎦=⎨-+++>⎪⎩()f x ()0,∞+点,则a 的取值范围是_______.【答案】 395,2,242⎛⎤⎡⎤⋃⎥⎢⎥⎝⎦⎣⎦【解析】【分析】由题意,分别求出当时,零点分别为0个,1个,2个时,x a >()()22249f x x a x a -++=+的范围,再分别求出当时,零点分别为4个,5个,6个时,的范围,a (]0,x a ∈()()tan 2πf x x a =-⎡⎤⎣⎦a从而可得出答案.【详解】因为函数在区间内恰有6个零点,且二次函数最多2个零点,()f x ()0,∞+所以当时,函数至少有4个零点,则,x a ≤()f x 0a >①当时,, x a >()()22249f x x a x a -++=+,22416163641620a a a a ∆=++--=-当,即时,无零点, Δ0<54a <()()22249f x x a x a -++=+当,即时,有1个零点, Δ0=54a =()()22249f x x a x a -++=+当时,, 54a >()()2224949f a a a a a a =-+++=-+函数的对称轴为, ()()22249f x x a x a -++=+2x a =+则在对称轴的左边,x a =当,即时,有2个零点, 490a -+>5944a <<()()22249f x x a x a -++=+当,即时,有1个零点, 490a -+≤94a ≥()()22249f x x a x a -++=+综上所述,当时,无零点, 54a <()()22249f x x a x a -++=+当或时,有1个零点, 54a =94a ≥()()22249f x x a x a -++=+当时,有2个零点, 5944a <<()()22249f x x a x a -++=+②当时,, (]0,x a ∈()()tan 2πf x x a =-⎡⎤⎣⎦因为,所以,(]0,x a ∈()(]2π2π,0x a a -∈-当,即时,有4个零点, 4π2π3πa -≤-<-322a <≤()()tan 2πf x x a =-⎡⎤⎣⎦当,即时,有5个零点, 5π2π4πa -≤-<-522a <≤()()tan 2πf x x a =-⎡⎤⎣⎦当,即时,有6个零点, 6π2π5πa -≤-<-532a <≤()()tan 2πf x x a =-⎡⎤⎣⎦由①②可得,要使函数在区间内恰有6个零点,()f x ()0,∞+则或或,解得或, 53254a a ⎧<≤⎪⎪⎨⎪<⎪⎩5225944a a a ⎧<≤⎪⎪⎨⎪=≥⎪⎩或3225944a a ⎧<≤⎪⎪⎨⎪<<⎪⎩9542a ≤≤322a <≤所以a 的取值范围是. 395,2,242⎛⎤⎡⎤⋃ ⎥⎢⎥⎝⎦⎣⎦故答案为:. 395,2,242⎛⎤⎡⎤⋃ ⎥⎢⎥⎝⎦⎣⎦【点睛】本题考查了根据零点的个数求参数的范围,考查了正切函数和二次函数的性质,考查了分类讨论思想,综合性较强,属于难题.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17. 已知集合,集合,定义集合6{|211}x A x x -=<-()222{|10}B x x a x a a =-+++<{|A B x x A -=∈且}x B ∉(1)若,求.2a =A B -(2)若,求a 的取值范围.A B A -=【答案】(1)(][)1,23,5⋃(2)(][),05,-∞+∞ 【解析】【分析】(1)化简A 、B ,根据定义求即可;A B -(2)由得,列不等式组求解即可. A B A -=A B ⋂=∅【小问1详解】, ()()()()261265{|1}{|0}{|0}{|510}1,5111x x x x A x x x x x x x x x -----=<=<=<=--<=---.()()()()2221{|{|10}10},B x x a x a a x x a x a a a éù=-+++<=-+-<=+ëû由,则,故.2a =()2,3B =(][)1,23,5A B -= 【小问2详解】由得,即有或,故.A B A -=A B ⋂=∅11a +≤5a ≥(][),05,a ∞∞∈-⋃+故a 的取值范围为.(][),05,-∞+∞ 18. 已知函数(其中,,)的图象过点,且图象上与()()cos f x A x ωϕ=+0A >0ω>π2ϕ<π,03P ⎛⎫ ⎪⎝⎭点最近的一个最低点的坐标为. P 7,212π⎛⎫ ⎪⎝⎭-(1)求函数的解析式并用“五点法”作出函数在一个周期内的图象简图;()f x (2)将函数的图象向右平移个单位长度得到的函数是偶函数,求的最小()f x ()0m m >()y g x =m 值.【答案】(1),图象见解析; ()π2cos 26f x x ⎛⎫=-⎪⎝⎭(2) 5π12【解析】【分析】(1)由最低点的坐标得出,由周期求出,利用五点作图法得出,求出函数的解析式,A ωϕ()f x 进而画出图象;(2)通过平移得出的解析式,利用函数为偶函数列方程求出的最小值.()y g x =m 【小问1详解】由题意可得,,且周期,则, 2A =7ππ4π123T ⎛⎫=-= ⎪⎝⎭2π2T ω==()()2cos 2f x x ϕ=+又,解得,,,()7π2π2πZ 12k k ϕ⨯+=+∈()π2πZ 6k k ϕ=-+∈π2ϕ< π6ϕ∴=- ()π2cos 26f x x ⎛⎫=- ⎪⎝⎭【小问2详解】, ()()ππ2cos 22cos 2266y g x x m x m ⎡⎤⎛⎫==--=-- ⎪⎢⎥⎣⎦⎝⎭函数是偶函数,则,解得 ()y g x =()π2πZ 6m k k --=∈()ππZ 212k m k -=-∈又,则当时,的最小值为. 0m >1k =-m 5π1219. 已知函数 ()1lg 1x f x x -+=(1)判断函数的单调性并用定义法加以证明()y f x =(2)求不等式的解集()()()lg 30f f x f +>【答案】(1)减函数;证明见解析;(2) 19,211⎛⎫ ⎪⎝⎭【解析】【分析】(1)用单调性的定义证明即可;(2)结合奇偶性与单调性求解,注意函数定义域的作用.【小问1详解】为减函数.()y f x =证明如下: 的定义域为,()y f x =()1,1-任取两个实数,且,12x x ,1211x x -<<<, ()()21212111lg lg 11x x f x f x x x ---=-++()()()()212111lg 11x x x x -+=+-()()()()21211111x x x x -+-+- ()()2112211211x x x x x x x x =----++-,()1220x x =-<,()()()()2121110,110x x x x -+>+-> , ()()()()212111111x x x x -+∴<+-, ()()()()212111lg011x x x x -+∴<+-,()()21f x f x ∴<所以在上为单调减函数.()y f x =()1,1-【小问2详解】对,, ()1,1x ∀∈-11()lglg ()11x x f x f x x x +--==-=--+故函数为奇函数,()y f x =由可得,()()()lg 30f f x f +>()()()()lg 3lg 3f f x f f -=->由(1)知在上为单调减函数,()y f x =()1,1-, 1()1,()lg 3f x f x -<<⎧∴⎨<-⎩11lg 11,11lg lg 13x x x x -⎧-<<⎪⎪+∴⎨-⎪<⎪+⎩111lg lg 13x x -∴-<<+解可得, 111,1013x x -∴<<+19211x <<故不等式的解集为. 19,211⎛⎫⎪⎝⎭20. 摩天轮是一种大型转轮状的机械建筑设施,游客坐在摩天轮的座舱里慢慢往上升,可以俯瞰四周景色,某摩天轮最高点距离地面的高度为110m ,最低点距离地面10m ,已知摩天轮共有40个座舱,开动后摩天轮按逆时针方向匀速旋转,转动一周的时间大约为20min .游客在座舱转到距离地面最近的位置进舱,转完一周后下舱.(1)当游客距离地面高度不低于85m 时,可以看到游乐园全貌,问在游客乘坐摩天轮旋转一周的过程中,有多少分钟可以看到游乐园全貌?(2)当甲、乙两人先后坐上相邻的座舱,何时二人距离地面的的高度相等?【答案】(1)203(2) 41min 4【解析】【分析】(1)建立平面直角坐标系,求出旋转角速度,得到距离地面的高度距离关于时间的函数关系式,解不等式求出,得到答案; 204033t ≤≤(2)设游客甲坐上座舱开始转动后,甲乙距离地面的高度分别为m 和m ,从而求出和min t 1H 2H 1H 2H 关于时间的解析式,解方程,得到时二人距离地面的的高度相等. 41min 4【小问1详解】以摩天轮轴心为原点,与地面平行的直线为x 轴,建立平面直角坐标系,设座舱距离地面最近的位置为点P ,游客坐上座舱开始转动后距离地面的高度为, min t m H当时,游客位于点,以为终边的角为, 0min t =()0,50P -OP π2-因为摩天轮半径,旋转角速度为, 1101050m 2r -==2ππ2010ω==()/min rad 所以,, ππ50sin 60102H t ⎛⎫=-+ ⎪⎝⎭020t ≤≤当,即,, ππ50sin 6085102H t ⎛⎫=-+≥⎪⎝⎭ππ1sin 1022t ⎛⎫-≥ ⎪⎝⎭π1cos 102t ≤-解得:,解得:, 2ππ4π3103t ≤≤204033t ≤≤因为min , 402020333-=故摩天轮旋转一周的过程中,有分钟可以看到游乐园全貌 203【小问2详解】设游客甲坐上座舱开始转动后,甲乙距离地面的高度分别为m 和m ,min t 1H 2H ,, 1ππ50sin 60102H t ⎛⎫=-+ ⎪⎝⎭020t ≤≤因为摩天轮共有40个座舱,故相邻两个座舱之间的圆心角为, 2ππ4020=故,, 2ππππ11π50sin 6050sin 60102201020H t t ⎛⎫⎛⎫=--+=-+ ⎪ ⎪⎝⎭⎝⎭020t ≤≤因为,所以, 12H H =πππ11πsin sin 1021020t t ⎛⎫⎛⎫-=-⎪ ⎪⎝⎭⎝⎭因为,所以,解得:, 020t ≤≤πππ11ππ1021020t t ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭41min 4t =所以当甲、乙两人先后坐上相邻的座舱,时二人距离地面的的高度相等. 41min 421. 已知函数,,且满足,恒()πsin 4f x x ω⎛⎫=+ ⎪⎝4π()2sin 133g x x ⎛⎫=-- ⎪⎝⎭,π[]0x ∀∈()()0f x g x ⋅≤成立. (1)求解的零点以及的函数解析式.()g x ()f x (2)求函数在区间上最大值与最小值之差的取值范围. ()f x π,4t t ⎡⎤+⎢⎥⎣⎦【答案】(1)零点为或 ,;解析式为; 3π3π82k x =+7π3π82k x =+Z k ∈()πsin 24f x x ⎛⎫=+ ⎪⎝⎭(2).【解析】【分析】(1)令得的零点,根据的图象可知的图象经过,()0g x =()g x ()g x ()f x 3π7π0088A B ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,求得的值; ω(2)若的对称轴在区间内,当满足时最大值与最小值之差最小;若当()f x π,4t t ⎡⎤+⎢⎥⎣⎦π()4f t f t ⎛⎫+= ⎪⎝⎭的对称轴不在区间内,直接求的最大值即可. ()f x π,4t t ⎡⎤+⎢⎥⎣⎦π()4f t f t ⎛⎫+- ⎪⎝⎭【小问1详解】令得,, 4π()2sin 1033g x x ⎛⎫=--= ⎪⎝⎭4π1sin 332x ⎛⎫-= ⎪⎝⎭所以或 ,, 4ππ2π336x k -=+4π5π2π336x k -=+Z k ∈解得或 ,, 3π3π82k x =+7π3π82k x =+Z k ∈的图象恒过定点, ()πsin 4f x x ω⎛⎫=+ ⎪⎝⎭⎛ ⎝当时,令得或 , [0,π]x ∈4π()2sin 1033g x x ⎛⎫=--= ⎪⎝⎭3π8x =7π8x =当时,;当时;当时,, 3π0,8[x ∈()0g x ≤3π7π,88[]x ∈()0g x ≥7π[],π8x ∈()0g x ≤故的图象如图所示: 4π()2sin 133g x x ⎛⎫=--⎪⎝⎭故依条件可知当且仅当函数的图象经过 时满足条件 ()f x 3π7π,0,,088A B ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭()()0f x g x ⋅≤此时最小正周期为,所以或, ()f x 7π3π2π2(88ω-=2ω=2ω=-当时,,故, 2ω=-()3πππsin 2sin 0842f x ⎛⎫⎛⎫=-⨯+=-≠ ⎪ ⎪⎝⎭⎝⎭2ω=下面验证当时满足,此时, 2ω=()()0f x g x ⋅≤()πsin 24f x x ⎛⎫=+⎪⎝⎭当时,,,,故成立; 3π0,8[x ∈ππ2[,π]44x +∈()0f x ≥()0g x ≤()()0f x g x ⋅≤当时,,,,故成立; 3π7π,88[x ∈π2[π,2π]4x +∈()0f x ≤()0g x ≥()()0f x g x ⋅≤当时,,,,故成立, 7π[],π8x ∈ππ2[2π,2π44x +∈+()0f x ≥()0g x ≤()()0f x g x ⋅≤所以的函数解析式. ()f x ()πsin 24f x x ⎛⎫=+ ⎪⎝⎭【小问2详解】区间的长度为,函数的周期为, π,4t t ⎡⎤+⎢⎥⎣⎦π4()πsin 24f x x ⎛⎫=+ ⎪⎝⎭π若的对称轴在区间内, ()f x π,4t t ⎡⎤+⎢⎥⎣⎦不妨设对称轴在内,最大值为1, π8x =π,4t t ⎡⎤+⎢⎥⎣⎦当即时,函数在区间上的最大值与最小值之差取得π()4f t f t ⎛⎫+= ⎪⎝⎭π(0)4f f ⎛⎫== ⎪⎝⎭()f x π,4t t ⎡⎤+⎢⎥⎣⎦最小值为;其它的对称轴在内时结果同上. 1=π,4t t ⎡⎤+⎢⎥⎣⎦若的对称轴不在区间内,则在区间内单调,在两端点处取得最大值与最小()f x π,4t t ⎡⎤+⎢⎥⎣⎦()f x π,4t t ⎡⎤+⎢⎥⎣⎦值,则最大值与最小值之差为:ππππ()sin 2sin 24244f t f t t t ⎛⎫⎛⎫⎛⎫+-=++-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()ππcos 2sin 22244t t t t ⎛⎫⎛⎛=+-+-≤ ⎪ ⎝⎭⎝⎝故函数在区间上的最大值与最小值之差的取值范围为. ()πsin 24f x x ⎛⎫=+ ⎪⎝⎭π,4t t ⎡⎤+⎢⎥⎣⎦22. 设函数和的定义域分别为和,若对,都存在个不同的实数()f x ()g x 1D 2D 01x D ∀∈n ,使(其中,),则称为的“重1232,,,,n x x x x D ∈L ()()0i g x f x =1,2,3,,i n = *n ∈N ()g x ()f x n 覆盖函数”.(1)试判断是否为的“4重覆盖函数”?并说明理()π2sin 23g x x ⎛⎫=- ⎪⎝⎭()02πx ≤≤()12x f x ⎛⎫=- ⎪⎝⎭由;(2)已知函数为的“2重覆盖函数”,求实数()()2223121log ,1ax a x x g x x x ⎧+-+-≤≤=⎨>⎩,()222log 21x x f x +=+的取值范围. a 【答案】(1)答案见解析;(2). 2,3⎛⎤-∞ ⎥⎝⎦【解析】【分析】(1)作出在上的图象,求出函数的值域为,结合图象,即可2sin y x =π11π,33⎡⎤-⎢⎥⎣⎦()f x [)1,0-得出判断; (2)求出的值域为.易知,时,显然对任意,有1个实()222log 21x x f x +=+()0,11x >01k <<()g x k =根.然后根据在有且只有一个实根,结合二次函数的性质,即可得出实数的取值范围.()g x k =[]2,1-a 【小问1详解】因为,所以. 02x π≤≤ππ11π2333x -≤-≤作出在上的图象如下图, 2sin y x =π11π,33⎡⎤-⎢⎥⎣⎦当时,为单调递增函数,则, 0x ≥()12x f x ⎛⎫=- ⎪⎝⎭()10f x -≤<又为偶函数,所以函数的值域为. ()12x f x ⎛⎫=- ⎪⎝⎭()f x [)1,0-由图象可知,当时,函数与在上的图象恒有4个交点, 10t -≤<y t =2sin y x =π11π,33⎡⎤-⎢⎥⎣⎦根据定义可得,是的“4重覆盖函数”. ()π2sin 23g x x ⎛⎫=- ⎪⎝⎭()02πx ≤≤()12x f x ⎛⎫=- ⎪⎝⎭【小问2详解】可得的定义域为, 22221()log log (1)2121x x x f x +==+++R 即对任意,存在2个不同的实数,使得(其中). 0x ∈R [)12,2,x x ∈-+∞0()()i g x f x =1,2i =因为,所以,所以,则,所以, x ∈R 20x >211x +>10121x <<+111221x <+<+所以. ()222()log 0,121x x f x ++=∈即, ()00121()()log (1)0,121i x g x f x ==+∈+即对任意,有2个实根.01k <<()g x k =当时,,则在上必有一个根,1x >2()log 0g x x =>()g x k =()1,+∞故只需时,仅有1个根.1x ≤()g x k =当时,,0a =()31g x x =-+因为,所以,即,根据一次函数的性质知,在21x -≤≤2317x -≤-+≤()27g x -≤≤()g x k =仅有1个根,符合题意;[]2,1-当时,. 0a >()()2231g ax x a x =+-+因为,要使在仅有1个根,则需满足()()2231724g a a =-+--=()g x k =[]2,1-,解得; (1)231320g a a a =+-+=-≤203a <≤当时,,图象为抛物线开口向下.a<0()()2231g ax x a x =+-+因为,要使在仅有1个根,则需满足, ()27g -=()g x k =[]2,1-(1)320g a =-≤解得,所以满足. 23a ≤a<0综上,实数a 的取值范围是. 2,3⎛⎤-∞ ⎥⎝⎦【点睛】关键点点睛:小问2中,根据“重覆盖函数”的概念,对任意,存在2个不同的实数20x ∈R ,使得(其中).进而根据分段函数可推得,任意,[)12,2,x x ∈-+∞0()()i g x f x =1,2i =01k <<在上仅有1个实根.()g x k =[]2,1-。

2024届福建福州市第一高级中学高一数学第一学期期末经典试题含解析

2024届福建福州市第一高级中学高一数学第一学期期末经典试题含解析

2024届福建福州市第一高级中学高一数学第一学期期末经典试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。

在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.已知角(0360)αα≤<︒︒终边上A 点的坐标为(sin120,cos120)︒︒,则α=() A.330︒ B.300︒ C.120︒D.60︒2.郑州地铁1号线的开通运营,极大方便了市民的出行.某时刻从二七广场站驶往博学路站的过程中,10个车站上车的人数统计如下:70,60,60,60,50,40,40,30,30,10.这组数据的平均数,众数,90%分位数的和为() A.125 B.135 C.165D.1703.已知函数()cos2f x x x =--,将()f x 的图象上所有点沿x 轴平移()0θθ>个单位长度,再将图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到函数()g x 的图象,且函数()g x 的图象关于y 轴对称,则θ的最小值是() A.12πB.6πC.4π D.3π 4.设函数()2sin()3f x x π=+,若对任意x ∈R ,都有f (x 1)≤f (x )≤f (x 2)成立,则|x 1﹣x 2|的最小值是( )A.4πB.2πC.πD.2π 5.函数()cos lg f x x x =-零点的个数为() A.4 B.3 C.2D.06.cos120︒的值是A. B.12-C.12D.327.已知α,β为锐角,()1sin 25αβ+=,1cos 3β=,则()sin αβ+的值为()A.18315+ B.18315± C.262215+D.18315- 8.已知()y f x =是奇函数,且满足(1)(1)f x f x +=-,当(0,1)x ∈时,21()log 1f x x=-,则()y f x =在(1,2)内是A.单调增函数,且()0f x <B.单调减函数,且()0f x >C.单调增函数,且()0f x >D.单调减函数,且()0f x <9.已知函数317(),3()28log ,03x x f x x x ⎧+≥⎪=⎨⎪<<⎩,若函数()()=-g x f x k 恰有两个零点,则实数k 的取值范围是 A.7(,1)8B.7[,1)8C.7[,1]8D.(0,1)10.已知2x >-,则42x x ++的最小值为( ) A.2 B.3 C.4D.5二、填空题:本大题共6小题,每小题5分,共30分。

福建省福州市高一数学上学期期末测试试题 新人教A版

高一上学期期末测试必修1、必修4综合测试一、选择题:1、cos300o的值是 ( )A 、12B 、12- C D 、-2、满足{1,3}{1,3,5}A =U 的所有集合A 的个数是 ( )A 、1B 、2C 、3D 、43、下列函数中,在(0,π)上单调递增的是 ( )A .y=sin (2π-x )B .y=cos (2π-x )C .y=tan 2x D .y=tan2x 4、已知a ,b ,(1,)N ∈+∞,下列关系中,与b a N =不等价的是 ( )A 、log a b N =B 、1log a b N =-C 、b a N-= D 、1ba N = 5.方程5x 21x =+-的解所在的区间是 ( ) A(0,1) B(1,2) C(2,3) D(3,4)6. 已知3.0log a 2=,3.02b =,2.03.0c =,则c b a ,,三者的大小关系是 ( )A 、a c b >>B 、c a b >>C 、c b a >>D 、a b c >>7.把函数y=sinx 的图象上所有点向右平移3π个单位,再将图象上所有点的横坐标缩小到原来的21(纵坐标不变),所得解析式为y=sin(ωx +ϕ),则 ( ) A.ω=2,ϕ=6π B.ω=2,ϕ=-3π C.ω=21,ϕ=6π D.ω=21,ϕ=-12π 8.已知sinx+cosx=51且x ∈(0,π),则tanx 值 ( ) A.-34 B.-43 C.-34或-43 D.34 9、奇函数()f x 在区间[,]a b 上是减函数且有最小值m ,那么()f x 在[,]b a --上是 ( )A 、减函数且有最大值m -B 、减函数且有最小值m -C 、增函数且有最大值m -D 、增函数且有最小值m -10、函数y=log 2(2cosx-1)的定义域为 ( ) A.)3,3(ππ- B.]3,3[ππ- C.{x|-3π+2k π<x<3π+2k π,k ∈Z} D.{x|-3π+2k π≤x ≤3π+2k π,k ∈Z}11. 函数lg(1)lg(1)y x x =-++的图象关于 ( )A 、直线0x =B 、直线0y =对称C 、点(0,0)对称D 、点(1,1)对称12、下列6个命题中正确命题个数是 ( )(1)第一象限角是锐角 (2)y=sin(4π-2x)的单调增区间是(π+ππ+π87k ,83k ),k ∈Z (3)角α终边经过点(a,a)(a ≠0)时,sin α+cos α=2(4)若y=21sin(ωx)的最小正周期为4π,则ω=21 (5)若cos(α+β)=-1,则sin(2α+β)+sin β=0(6)若定义在R 上函数f(x)满足f(x+1)=-f(x),则y=f(x)是周期函数A.1个B.2个C.3个D.4个二、填空题:13. 若扇形的面积是1㎝ 2它的周长是4㎝,则圆心角的弧度数是________________.14.四边形ABCD 中,=2DC ,则四边形ABCD 为 (填“梯形、矩形、菱形、平行四边形”之一)15.已知tanx=2,则x cos x sin 4x cos 4x sin 3--=_____________ 16.函数y=x sin -+216x -的定义域是_________________.三、解答题:17.已知函数())6f x x π=+,求函数: (1)最小正周期 (2)对称中心 (3)单调递增区间.18.设函数2()21x f x a =-+,⑴ 求证: 不论a 为何实数()f x 总为增函数; ⑵ 确定a 的值,使()f x 为奇函数;19.二次函数f (x )满足f (x +1)-f (x )=2x 且f (0)=1.⑴求f (x )的解析式;⑵当x ∈[-1,1]时,不等式:f (x ) 2x m >+恒成立,求实数m 的范围.20、设函数()2sin()(0,)22f x x ππωϕωϕ=+>-<<,给出三个论断:①它的图象关于8π=x对称;②它的最小正周期为π;③它在区间]83,4[ππ.以其中的两个论断作为条件,另一个作为结论,试写出你认为正确的一个命题并给予证明.参考答案2013-1-1班级: 姓名: 座号: 成绩:二、填空题:(每题6分,满分24分)13.2; 14.梯形 15..]4,[]0,[ππ⋃-;三、解答题:(满分76分)17、 T=2π,中心(,0),()6k k Z ππ-∈,递增区间22,2,()33k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦18、解: (1) ()f x Q 的定义域为R, 12x x ∴<, 则121222()()2121x x f x f x a a -=--+++=12122(22)(12)(12)x x x x ⋅-++, 12x x <Q , 1212220,(12)(12)0x x x x ∴-<++>,12()()0,f x f x ∴-<即12()()f x f x <,所以不论a 为何实数()f x 总为增函数.…………6分(2) ()f x Q 为奇函数, ()()f x f x ∴-=-,即222121x x a a --=-+++,解得: 1.a = 2()1.21x f x ∴=-+ ………………12分19、解: (1)设f (x )=ax 2+bx +c ,由f (0)=1得c =1,故f (x )=ax 2+bx +1.∵f(x+1)-f(x)=2x ,∴a(x+1)2+b(x +1)+1-(ax 2+bx +1)=2x .即2ax +a +b =2x ,所以221,01a a ab b ==⎧⎧∴⎨⎨+==-⎩⎩,∴f(x)=x 2-x +1.-------------6分(2)由题意得x 2-x +1>2x +m 在[-1,1]上恒成立.即x 2-3x +1-m>0在[-1,1]上恒成立. 设g(x)= x 2-3x +1-m ,其图象的对称轴为直线x =32 ,所以g(x) 在[-1,1]上递减.故只需g(1)>0,即12-3×1+1-m>0,解得m<-1.-------------------------12分20、①② ⇒ ③ 解略。

福建省福州市鼓楼区福州一中2023-2024学年数学高一上期末综合测试试题含解析

福建省福州市鼓楼区福州一中2023-2024学年数学高一上期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(本大题共12 小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.直线l :mx y 10-+=与圆C :22x (y 1)5+-=的位置关系是( )A.相切B.相离C.相交D.不确定2.已知函数()f x 在区间[]22-,上单调递增,若()()()24log log 2f m f m <+成立,则实数m 的取值范围是( ) A.1,24⎡⎫⎪⎢⎣⎭B.1,14⎡⎫⎪⎢⎣⎭C.(]1,4D.[]2,43.若α是钝角,则2α-是() A.第一象限角 B.第二象限角 C.第三象限角D.第四象限角4.已知a b >,那么下列结论正确的是() A.0a b -< B.0a b -> C.0a b +<D.0a b +>5.过原点和直线1:340l x y -+=与2:250l x y ++=的交点的直线的方程为() A.1990x y -= B.9190x y += C.3190x y +=D.1930x y +=6.如图所示,在ABC 中,2BD DC =.若AB a =,AC b =,则AD =()A.2133a bB.2133a b - C.1233a b + D.1233a b - 7.已知函数()()2122x x f x g x x ⎧->⎪=⎨≤⎪⎩,,,在R 上是单调函数,则()g x 的解析式可能为( )A.21x +B.()ln 3x -C.21x -D.12x⎛⎫ ⎪⎝⎭8.为了得到sin(2)6y x π=-的图象,可以将sin 2y x =的图象( )A.向左平移1112π个单位 B.向左平移12π个单位C.向右平移6π个单位 D.向右平移3π个单位 9.命题2:,10∀∈+>R p x x ,则命题p 的否定是() A.2,10∃∈+≤R x x B.2R 10,xxC.2,10∀∈+≤R x xD.2,10∀∉+>R x x 10.已知,,,则的大小关系A. B. C.D.11.设(0,),(0,),22ππαβ∈∈且1sin tan ,cos βαβ+=则 A.32παβ-= B.32παβ+= C.22παβ-=D.22παβ+=12.已知函数()21,12,1x x f x x x⎧+≤⎪=⎨>⎪⎩,则()()3f f =( )A.53 B.3 C.23D.139二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.) 13.写出一个同时具有下列性质①②的函数()f x =______.(注:()f x 不是常数函数) ①()102f =;②()()πf x f x +=. 14.若弧度数为2的圆心角所对的弦长为2,则这个圆心角所夹扇形的面积是___________15.已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+,则(2)f =__________.16.8πtan3等于_______. 三、解答题(本大题共6个小题,共70分。

2010-2023历年福建省福州市高级中学高一上学期期末考试数学试卷

2010-2023历年福建省福州市高级中学高一上学期期末考试数学试卷第1卷一.参考题库(共12题)1.(本小题满分10分)通过点A(0,a)的直线与圆相交于不同的两点B、C,在线段BC上取一点P,使=,设点B在点C的左边,(1)试用a和k表示P点的坐标;(2)求k变化时P点的轨迹;(3)证明不论a取何值时,上述轨迹恒过圆内的一定点.2.((本小题满分5分)三棱锥的高为,若三个侧面两两垂直,则为△的()A.内心B.外心C.垂心D.重心3.点A(1,0)到直线的距离是.4.(本小题满分13分)设.(1)求使≥1的x的取值范围;(2)若对于区间 [2,3]上的每一个x的值,不等式>恒成立,求实数m的取值范围.5.正方体的一条对角线与正方体的棱可组成n对异面直线,则n等于()A.2B.3C.6D.126.已知A(1,2,3),B(0,4,5),则线段AB的长度为.7.(本小题满分13分)已知是腰长为2的等腰直角三角形(如图1),,在边上分别取点,使得,把沿直线折起,使=90°,得四棱锥(如图2).在四棱锥中,(I)求证:CE⊥AF;(II)当时,试在上确定一点G,使得,并证明你的结论.8.圆上的点到直线的距离的最小值 .9.((本小题满分14分)如图,正方体中,棱长为(1)求直线与所成的角;(2)求直线与平面所成角的正切值;(3)求证:平面平面.10.(本小题满分12分)三角形ABC中,AB=6,BC=8,CA=10,绕AB边旋转一周形成一个几何体,(1)求出这个几何体的表面积;(2)求出这个几何体的体积.11.(本小题满分5分)直线a,b相交于O,且a,b成角600,过O与a,b都成600角的直线有( )A.1条B.2条C.3条D.4条12.(本小题满分12分)已知AD是Rt斜边BC的中线,用解析法证明.第1卷参考答案一.参考题库1.参考答案:解:(1)得(2)由,的表达式中消去得,∴点P的轨迹是直线在圆内的部分。

福建省福州市高一上学期数学期末考试试卷

福建省福州市高一上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)下列程序语句不正确的是()A . INPUT“MATH=”;a+b+cB . PRINT“MATH=”;a+b+cC . a=b+cD . a=b-c2. (2分)“一名同学一次掷出3枚骰子,3枚全是6点”的事件是()A . 不可能事件B . 必然事件C . 可能性较大的随机事件D . 可能性较小的随机事件3. (2分)阅读如图的程序框图,若运行相应的程序,则输出的S的值是()A . 102B . 39C . 81D . 214. (2分)某班共有52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号是()A . 10B . 11C . 12D . 165. (2分) (2018高一下·汪清期末) 某超市有三类食品,其中果蔬类、奶制品类及肉制品类分别有20种、15种和10种, 现采用分层抽样的方法抽取一个容量为n的样本进行安全检测,若果蔬类抽取4种,则n为()A . 3B . 2C . 5D . 96. (2分)某公司有1000名员工。

其中高层管理人员为50名,属于高收入者;中层管理人员为150名,属于中等收入者;一般员工800名,属于低收入者。

要对该公司员工的收入情况进行调查,欲抽取200名员工进行调查,应从中层管理人员中抽取的人数为()A . 10B . 15C . 20D . 307. (2分)阅读下边程序框图,下列说法正确的是()A . 该框图只含有顺序结构、条件结构B . 该框图只含有顺序结构、循环结构C . 该框图只含有条件结构、循环结构D . 该框图包含顺序结构、条件结构、循环结构8. (2分)一个单位有职工800人,其中具有高级职称的有160人,具有中级职称的有320人,具有初级职称的有200人,其余人员有120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是()A . 12,24,15,9B . 9,12,12,7C . 8,15,12,5D . 8,16,10,69. (2分)程序框图如图所示,该程序运行后输出的S的值是()A . 2B .C . -3D .10. (2分)下列运算不属于我们所讨论算法范畴的是()A . 已知圆的半径求圆的面积B . 随意抽4张扑克牌算到二十四点的可能性C . 已知坐标平面内两点求直线方程D . 加减乘除法运算法则11. (2分) (2017高一下·郴州期中) 用“辗转相除法”求得459和357的最大公约数是()A . 3B . 9C . 17D . 5112. (2分)若右框图所给的程序运行结果为S=90,那么判断框中应填入的关于k的条件是()A . k=9B . k<8C . k≤8D . k>8二、填空题 (共4题;共4分)13. (1分)小明晚上放学回家要做如下事情:复习功课用30分钟,休息用30分钟,烧水用15分钟,做作业用25分钟,要完成这些事情,小明要花费的最少时间为________ 分钟.14. (1分)三进制数2 022(3)化为六进制数为abc(6) ,则a+b+c=________.15. (1分)(2017·江苏模拟) 某高级中学共有900名学生,现用分层抽样的方法从该校学生中抽取1个容量为45的样本,其中高一年级抽20人,高三年级抽10人,则该校高二年级学生人数为________.16. (1分) (2018高一下·唐山期末) 执行如图所示的程序框图,若输入的,,则输出的是________.三、解答题 (共6题;共52分)17. (5分)有甲、乙、丙三种溶液分别重147g,343g,133g,现要将它们分别全部装入小瓶中,每个小瓶装入液体的质量相同,每瓶最多装多少克溶液?18. (10分)设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18,先采用分层抽样的方法从这三个协会中抽取6名运动员参加比赛(1)求应从这三个协会中分别抽取的运动员人数(2)将抽取的6名运动员进行编号,编号分别为 ,从这6名运动员中随机抽取2名参加双打比赛.(1)用所给编号列出所有可能的结果;(2)设为事件“编号为的两名运动员至少有一人被抽到”,求事件发生的概率19. (5分)设计算法,交换两个变量a,b的值,并输出交换前后的值.20. (10分) (2018高一下·临沂期末) 为了了解高一学生的体能情况,某校抽取部分高一学生进行一分钟跳绳次数测试,将所得数据整理后分成组:第一组,第二组,第三组,第四组,第五组,第六组,第七组,得到如图所示的频率分布直方图(不完整).(1)求第四组的频率并补全频率分布直方图;(2)现采取分层抽样的方法从第三、四、五组中随机抽取名学生测量肺活量,求每组抽取的学生数.21. (7分) (2016高一下·福州期中) 如图是计算1+2+ +3+ +…+2010+ 的值的程序框图,(1)图中空白的判断框应填________?处理框应填________;(2)写出与程序框图相对应的程序.22. (15分) (2017高二上·抚州期末) 调查某车间20名工人的年龄,第i名工人的年龄为ai,具体数据见表:i1234567891011121314151617181920ai2928301931283028323130312929313240303230(1)作出这20名工人年龄的茎叶图;(2)求这20名工人年龄的众数和极差;(3)执行如图所示的算法流程图(其中是这20名工人年龄的平均数),求输出的S值.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共52分)17-1、18-1、18-2、19-1、20-1、20-2、21-1、21-2、22-1、22-2、22-3、第11 页共11 页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

福建省福州市高一上学期数学期末考试试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共12题;共27分)
1. (2分)函数的零点的个数是()
A . 0
B . 1
C . 2
D . 3
2. (2分)已知函数f(x)=|log2|x﹣1||,且关于x的方程[f(x)]2+af(x)+2b=0有6个不同的实数解,若最小的实数解为﹣1,则a+b的值为()
A . -2
B . -1
C . 0
D . 1
3. (2分) (2018高一下·伊通期末) 已知,那么是()
A . 第三或第四象限角
B . 第二或第三象限角
C . 第一或第二象限角
D . 第一或第四象限角
4. (2分)已知弧度数为的圆心角所对的弦长为2,则这个圆心角所对的弧长是()
A .
B .
C .
D .
6. (2分) (2019高三上·佛山月考) 已知角的顶点与原点重合,始边与轴的正半轴重合,若它的终边经过点,则()
A . -7
B .
C .
D . 7
7. (2分) (2019高一上·黑龙江月考) 在平面直角坐标系中,角的顶点与原点重合,始边与x轴的非负半轴重合,终边过点,则()
A .
B .
C .
D .
8. (2分)要得到函数的图象,只要将函数的图象()
A . 向左平移单位
B . 向右平移单位
C . 向左平移单位
D . 向右平移单位
9. (2分)将函数y=sin(x+)图像上各点的横坐标缩短到原来的倍(纵坐标不变),再向右平移个单位,那么所得图像的一条对称轴方程为()
A . x=-
B . x=-
C . x=
D . x=
10. (2分)关于函数的四个结论:
P1:最大值为;
P2:把函数的图象向右平移个单位后可得到函数的图象;
P3:单调递增区间为[],;
P4:图象的对称中心为(,.
其中正确的结论有()
A . 1个
B . 2个
C . 3个
D . 4个
11. (2分) (2016高一下·淄川期中) 已知函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,丨φ丨<)
的部分图象如图所示,则f(x)的解析式为()
A . f(x)=2sin(x+ )
B . f(x)=2sin(2x+ )
C . f(x)=2sin(2x﹣)
D . f(x)=2sin(4x﹣)
12. (5分)已知函数f(x)=﹣sinx+3cosx,若x1•x2>0,且f(x1)+f(x2)=0,则|x1+x2|的最小值为()
A .
B .
C .
D .
二、填空题 (共4题;共4分)
13. (1分) (2020高一上·武汉期末) 函数的最大值是________,最小值是________.
14. (1分)已知,则tanα=________.
15. (1分) (2017高一上·定州期末) 若函数的零点,且,
则 ________.
三、解答题 (共6题;共50分)
17. (5分) (2018高一上·鹤岗月考) 已知角的终边过点,且,求和的值.
18. (10分) (2016高一下·邵东期中) 解答
(1)已知函数,求函数在区间[﹣2π,2π]上的单调增区间;
(2)计算:.
19. (10分)(2018·普陀模拟) 已知函数, .
(1)若函数在区间上递增,求实数的取值范围;
(2)若函数的图像关于点对称,且,求点的坐标.
20. (10分) (2020高一上·铜仁期末) 已知函数 .
(1)求的值;
(2)当时,求的值域;
(3)当时,求的单调递减区间.
21. (5分) (2016高一上·吉林期中) 若函数f(x)=(a2﹣3a+3)•ax是指数函数,试确定函数y=loga(x+1)在区间(0,3)上的值域.
参考答案一、单选题 (共12题;共27分)
1-1、
2-1、
3-1、
4-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
二、填空题 (共4题;共4分)
13-1、
14-1、
15-1、
三、解答题 (共6题;共50分)
17-1、
18-1、
18-2、
19-1、
19-2、
20-1、
20-2、20-3、21-1、。

相关文档
最新文档