次函数最值问题及解题技巧
函数极值求解题技巧

函数极值求解题技巧在数学中,求解函数的极值是一个经常遇到的问题。
极值是指在一定区间内,函数取得最大值或最小值的点。
解决函数极值问题的方法有很多,下面介绍一些常用的技巧。
1.求导法求导法是求解函数极值的基本方法之一。
主要步骤如下:(1)对给定的函数,将其关于变量求导,得到导数函数。
(2)将导数函数置为0,求解方程。
(3)解得方程的解即为函数的极值点。
(4)通过二阶导数来判断极值的类型:若二阶导数大于0,则该点是极小值点;若二阶导数小于0,则该点是极大值点;若二阶导数等于0,则需要进一步分析。
2.边界值法边界值法适用于区间上包含有限个点的情况。
主要步骤如下:(1)在区间的边界处计算函数值。
(2)比较边界处的函数值,找出最大值或最小值。
(3)这些最大值或最小值都可能是函数的极值。
3.对称性法对称性法适用于具有一定的对称性质的函数。
主要步骤如下:(1)根据函数的对称性特点,找出函数取极值的位置。
(2)通过计算函数在取极值位置的导数,判断极值的类型。
4.二分法二分法适用于函数在一个区间上单调递增或单调递减的情况。
主要步骤如下:(1)找出一个区间,使得函数在该区间上单调递增或单调递减。
(2)取区间的中点,计算中点的函数值。
(3)根据函数值的大小关系,确定下一次迭代的区间。
(4)重复以上步骤,直到找到函数的极值。
5.最大值和最小值的性质对于连续函数,最大值和最小值都会在闭区间内取得。
所以可以先计算出闭区间的边界值,再计算函数在闭区间内的驻点,最终比较这些值找出极值。
6.二次函数的极值对于二次函数,其形式为y=ax^2+bx+c。
当a>0时,函数开口向上,最小值在顶点处取得;当a<0时,函数开口向下,最大值在顶点处取得。
顶点的横坐标为-b/2a,代入函数求得最大值或最小值。
除了以上提到的方法,求解函数极值还可以利用拉格朗日乘数法、柯西不等式等高级方法。
不同的函数具有不同的特点,需要根据具体情况选择合适的方法进行求解。
如何利用二次函数求解最值问题

数学篇数苑纵横与二次函数有关的最值问题是中考数学中的一个重难点,常与几何图形、三角函数、实际问题等相结合,考查同学们的空间想象能力和逻辑推理能力.不少同学面对这类最值问题时觉得难以下手,但只要我们认真阅读题目,理解问题的实质,构建出二次函数,再运用二次函数的有关性质即可使问题顺利得解.一、求解实际生活中的最值问题在实际生活中,我们总是追求利益最大或者是成本最低,从数学角度看,就是在特定条件下求目标函数的最大值或者最小值.运用二次函数求解实际生活中的最值问题,关键在于如何构建正确的二次函数模型.解题时应把握以下两点:其一,认真审题,提炼出有用信息;其二,根据题干描述以及自身生活经验,通过合理的抽象确定常量与变量间的函数关系,建立函数模型,然后结合模型和实际情况求得最大值或最小值.需要注意的是,实际问题中二次函数的最大值或最小值不一定在图象的顶点处取得,若顶点的横坐标不在自变量的取值范围内,则要借助函数的增减性来求最大值或最小值.例1某商品的进价为每件50元,售价为每件60元,每个月可卖出200件,如果每件商品的售价上涨1元,则每个月少卖10件(每件售价不能高于72元),设每件商品的售价上涨x 元(x 为正整数),每个月的销售利润为y 元.(1)求y 与x 的函数关系式并直接写出自变量x 的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大月利润是多少元?解:(1)设每件商品的售价上涨x 元(x 为正整数),则每件商品的利润为:(60-50+x )元,总销量为:(200-10x )件,商品利润为:y =(60-50+x )(200-10x ),=(10+x )(200-10x ),=-10x 2+100x +2000.∵原售价为每件60元,每件售价不能高于72元,∴0<x ≤12且x 为正整数;(2)y =-10x 2+100x +2000,=-10(x 2-10x )+2000,=-10(x -5)2+2250.故当x =5时,最大月利润y =2250元.这时售价为60+5=65(元).点评:此题主要考查了二次函数的应用及二次函数的最值问题.根据每天的利润=一件的利润×销售量,建立函数关系式.借助二次函数解答实际问题是解题关键.例2李大爷利用坡前空地种植了一片优质草莓.根据市场调查,在草莓上市销售的30天中,其销售价格m (元/公斤)与第x 天之间满足m =ìíî3x +15(1≤x ≤15),-x +75(15<x ≤30).(x 为正整数),销售量n (公斤)与第x 天之间的函数关系如图1所示:图1如果李大爷的草莓在上市销售期间每天如何利用二次函数求解最值问题山西临沂周立恒23数学篇数苑纵横的维护费用为80元.(1)求日销售量n 与第x 天之间的函数关系式;(2)求在草莓上市销售的30天中,每天的销售利润y 与第x 天之间的函数关系式;(日销售利润=日销售额-日维护费)(3)求日销售利润y 的最大值及相应的x .解:(1)当1≤x ≤10时,设n =kx +b ,由图可知ìíî12=k +b ,30=10k +b ,解得ìíîk =2,b =10,∴n =2x +10同理得,当10<x ≤30时,n =-1.4x +44,∴销售量n 与第x 天之间的函数关系式:n =ìíî2x +10(x ≤x ≤10),-1.4x +44(10<x ≤30),(2)∵y =mn -80,∴y =ìíîïï(2x +10)(3x +15)-80(x ≤x ≤10),(-1.4x +44)(3x +15)-80(10<x <15),(-1.4x +44)(-x +75)-80(15≤x ≤30),整理得,y =ìíîïï6x 2+60x +70,(1≤x ≤10),-4.2x 2+111x +580,(10<x <15),1.4x 2-149x +3220,(15≤x ≤30),(3)当1≤x ≤10时,∵y =6x 2+60x +70的对称轴x =-b 2a=602×6=-5,∴此时,在对称轴的右侧y 随x 的增大而增大,∴当x =10时,y 取最大值,则y 10=1270当10<x <15时,∵y =-4.2x 2+111x +580的对称轴是直线x =111-4.2×2=1118.4≈13.2<13.5,∴当x =13时,y 取得最大值,此时y 13=1313.2;当15≤x ≤30时,∵y =1.4x 2-149x +3220的对称轴为直线x =1492.8>30,∴此时,在对称轴的左侧y 随x 的增大而减小∴x =15时,y 取最大值,y 的最大值是y 15=1300,综上,草莓销售第13天时,日销售利润y 最大,最大值是1313.2元.点评:本题在确定函数最大值时,由于此函数是分段函数,所以要分三种情况讨论.第二种情况中顶点的横坐标在自变量取值范围内,可以利用顶点坐标公式来确定函数的最大值;而第一种情况和第三种情况中顶点的横坐标都不在自变量取值范围内,因此必须利用函数的增减性来确定函数的最大值.分别求出三种情况中的最大值后,还要通过比较确定日销售利润的最大值.二、求解几何图形中的最值问题解答几何图形中的最值问题一般根据已知条件设置相关参数,构建对应的函数模型,再借助函数的性质进行解答.构建二次函数求解几何图形中的最值问题时,要全面观察几何图形的结构特征,挖掘出相应的内在性质,综合运用所学的知识,如勾股定理、全等三角形、相似三角形、解直角三角形、图形的面积公式等,寻求等量关系构造出二次函数,结合二次函数性质计算出最终结果.同时,为保证求解最值问题的正确性,应明确自变量的取值范围.例3如图2,梯形ABCD 中,BC ∥AD ,AB =BC =CD =6,∠D =60°,E 、F 分别为BC 、CD 上两个动点(不与端点重合),且∠AEF =120°,设BE =x ,CF =y .(1)求y 与x 的函数关系式;(2)x 取何值时,y 有最大值,最大值是多少?24数学篇数苑纵横图2解:(1)∵AB =BC =CD =6,BE =x ,CF =y ,∴EC =6-x ,∵BC ∥AD ,∴∠C +∠D =180°,又∠D =60°,∴∠C =120°,∴∠CEF +∠CFE =60°,又∠AEF =120°,∴∠CEF +∠AEB =60°,∴∠CFE =∠AEB ,又梯形ABCD 中,BC ∥AD ,AB =CD ,∴∠B =∠C ,∴△ABE ∽△ECF ,∴AB EC =BE CF,即66-x =x y,∴y =-16x 2+x ;(2)函数y =-16x 2+x =-16(x -3)2+32为开口向下的抛物线,由0<x <6可知,当x =3时,y 有最大值,y 的最大值为32.点评:本题的思路为通过已知条件得出相似三角形,由相似三角形的比例式,进而列出y 与x 的函数关系式,最后根据二次函数求最值的方法求出y 的最大值及此时x 的值.同学们在求二次函数最值时一定要注意自变量x 的范围.例4如图3,在△ABC 中,AB =10,AC =25,∠ACB =45°,D 为AB 边上一动点(不与点B 重合),以CD 为边长作正方形CDEF ,连接BE ,则△BDE 面积的最大值等于.图3图4解:如图4,过点E 作EM ⊥BA 于M ,过点C 作CN ⊥BA 交BA 的延长线于N ,过点A 作AH ⊥BC 于H .在Rt△ACH 中,∵∠AHC =90°,∠ACH =45°,AC =25,∴AH =CH =AC ⋅cos 45°=10,在Rt△ABH 中,∵∠AHB =90°,AB =10,AH =10,∴BH =AB 2-AH 2=102-(10)2=310,∴BC =BH +CH =410,∵S △ACB =12⋅BC ⋅AH =12⋅AB ⋅CN ,∴CN =4,在Rt△ACN 中,AN =AC 2-CN 2=(25)2-42=2,∴BN =BA +AN =12,设BD =x ,则DN =12-x ,∵四边形EFCD 是正方形,∴DE =DC ,∠EDC =∠EMD =∠DNC =90°,∴∠EDM +∠ADC =90°,∠ADC +∠DCN =90°,∴∠EDM =∠DCN ,∴△EMD ≌△DNC (AAS),∴EM =DN =12-x ,∴S △DBE =12⋅BD ⋅EM =12⋅x ⋅(12-x )=12x 2+6x =-12(x -6)2+18,∵-12<0,∴当x =6时,△BDE 的面积最大,最大值为18.故答案为18.点评:本题是一道几何函数题,考查了正方形的性质,解直角三角形等知识.求解时应从几何图形入手,充分利用几何图形的性质构造出函数关系,如本题以三角形的面积公式构建二次函数,再利用二次函数的性质解题.25。
小谈升考中常见二次函数最值问题和解题方法

- . .
:
5
\ I 苷 E
\
,
析式 ; 其次根据题意判断 白变量是 否有 取值范围的限制 ; 再次灵活选 择方 法来 求是其最值 。 例4 : ( 2 0 1 1 l I l 东泰安 ) 某商店经营 种小商晶 , 进 价为每件 2 O 元, 据市场 分析 , 在一个月内, 售价定 为每什 2 5 兀 时, 可卖 出 1 0 5件 , 而售价 每 涨 1 元, 就 少 卖 5什 。 ( 1 ) 当售价定为每件 3 O 元 时, 一个 月 可 获 利 多少 元 ? ( 2 ) 当 售 价 定 为每 件 多 少 C 时, 一 个月的获利最大 ?最大利润是 多少5 d ? 分 析 :此 题 的 第 二 问 就 是 最 值 问 题 , 而 纵 观 题 目只 给 出 自变 量 X ≥2 5 , 考 虑到此类 函数应用题 的答案多 是整 数, 可选择“ 代入法” 。 解: ( 1 )获 干 0 : ( 3 0—2 0 ) I 1 0 5— 5
一
( 3 0— 2 5 ) ] = 8 0 0 ( 元)
丌L 』 r u J 下, 当x = 二 = l 时,
Z × l
y剐、 ∞: - 2 ) : 5 y蛀 小 值= ) ( I =。 例2 : ( 2 0 1 2广 西北 海 ) 大 润 发超 市 进 了 一批 成 本 为 8兀 / 个 的文 具 盒 。 调 查发现 : 这种文具盒每个星期的销售 量 Y ( 个) 它的定价 x ( 冗/ 个) 的关系如
对称轴是x : 2 0  ̄ 4 6: 3 3 时, y : 一 5
‘
( 3 3—2 0 ) ( 3 3 —4 6 ) = 8 4 5 j e 。 故 当 售 价 为定 价 格 为 3 3冗 时 , 一 个 月获 利 最 大 , 最大利润是 8 4 5冗 。 例 5 : ( 2 0 1 0 内蒙古包头 ) 某商场 试销一种成本 为每件 6 0元 的 服 装 , 规 定试 销期间销售单价不低于成本单 价 , 且获利不得高于 4 5 %, 经试销发现 , 销 售最 v ( 件) 与销售单价 x ( 元) 符合一次 函数 y = k x + b ,且 x = 6 5时 , y = 5 5 ; x = 7 5
高中数学二次函数最值与单调性解题方法

高中数学二次函数最值与单调性解题方法二次函数是高中数学中非常重要的一个知识点,掌握二次函数的最值与单调性解题方法对于学生来说是至关重要的。
本文将从最值和单调性两个方面介绍二次函数的解题方法,并通过具体的例题来说明考点和解题技巧。
一、二次函数的最值解题方法1. 最值的概念首先,我们来了解一下最值的概念。
对于一个函数,最大值是指函数在定义域内取得的最大值,最小值是指函数在定义域内取得的最小值。
2. 最值的求解方法对于二次函数,我们可以通过求导数的方法来求解最值。
具体步骤如下:(1)先求出二次函数的导数;(2)令导数等于零,解方程得到临界点;(3)将临界点代入原函数,求出函数在临界点处的函数值;(4)比较函数值,得出最值。
下面通过一个例题来说明最值的求解方法。
例题1:求函数f(x) = x^2 - 2x + 3的最值。
解:首先求导数,f'(x) = 2x - 2。
令f'(x) = 0,解方程得到临界点x = 1。
将临界点代入原函数,f(1) = 1^2 - 2 * 1 + 3 = 2。
因此,函数f(x)的最小值为2。
二、二次函数的单调性解题方法1. 单调性的概念单调性是指函数在定义域内的增减性质。
对于一个函数,如果在定义域内任意两个点x1和x2,当x1 < x2时,有f(x1) < f(x2),则函数为增函数;当x1 < x2时,有f(x1) > f(x2),则函数为减函数。
2. 单调性的判断方法对于二次函数,我们可以通过判断二次函数的二次项系数的正负来判断函数的单调性。
(1)当二次项系数大于零时,二次函数开口向上,函数为增函数;(2)当二次项系数小于零时,二次函数开口向下,函数为减函数。
下面通过一个例题来说明单调性的判断方法。
例题2:判断函数g(x) = -x^2 + 4x - 3的单调性。
解:由于二次项系数为负,所以二次函数开口向下,函数为减函数。
综上所述,通过求导数的方法可以求解二次函数的最值,而通过判断二次项系数的正负可以判断二次函数的单调性。
压轴题07 二次函数中三种面积最值问题(学生版) 2023-2024学年九年级数学上册培优(人教版)

压轴题07 二次函数中三种面积最值问题目录解题知识必备..............................................................Error! Bookmark not defined.压轴题型讲练 (2)题型一、三角形面积最值 (2)题型二、四边形面积最值 (9)题型三、面积和差最值 (18)压轴能力测评(17题) (27)二次函数中的面积最值问题通常有以下3种解题方法:1)当所求图形的面积没有办法直接求出时,通常采用分割或补全图形的方法表示所求图形的面积,如下:一般步骤为:①设出要求的点的坐标;②通过割补将要求的图形转化成通过条件可以表示的图形面积和或差;③列出关系式求解;④检验是否每个坐标都符合题意.2)用铅垂定理巧求斜三角形面积的计算公式:三角形面积等于水平宽和铅锤高乘积的一半.3)利用平行线间的距离处处相等,根据同底等高,将所求图形的面积转移到另一个图形中,如图所示:一般步骤为:①设出直线解析式,两条平行直线k 值相等;②通过已知点的坐标,求出直线解析式;③求出题意中要求点的坐标;④检验是否每个坐标都符合题意.题型一: 三角形面积最值问题【例1】.(23-24九年级上·福建莆田·期末)已知抛物线()21231y mx m x m =++--与x 轴交于不同的两点.(1)求m 的取值范围;(2)证明该抛物线经过象限内的某个定点P ,并求点P 的坐标;(3)设抛物线与x 轴的两个交点分别是A ,B ,当184m -£<-时,ABP V 的面积是否有最大值或最小值?若有,求出该最大值或最小值及对应的m 的值;若没有,请说明理由.交y 轴于点C ,点P 是线段OA 上一动点,PN x ^轴,交直线AC 于点M ,交抛物线于点N .(1)求抛物线的函数表达式;(2)连接,AN CN ,求四边形ANCO 面积的最大值.【变式2】.(23-24九年级上·新疆伊犁·期末)如图,抛物线()230y ax bx a =++¹的对称轴为直线1x =-,抛物线交x 轴于A ,C 两点,与直线1y x =-交于A ,B 两点,直线AB 与抛物线的对称轴交于点E .(1)求抛物线的解析式;(2)求一次函数值大于二次函数值的x 的取值范围;(3)点P 在直线AB 上方的抛物线上运动,若ABP V 的面积最大,求此时点P 的坐标.与y 轴交于点B ,且2,4OA OC OB ===.(1)求这个二次函数的解析式,并求出顶点D 的坐标;(2)若点M 为第一象限内抛物线上一点,求M 点坐标为多少时,BCM V 的面积最大,并求出这个最大面积.题型二: 四边形面积最值问题【例2】.(23-24九年级上·海南海口·期末)如图,直线122y x =-+交y 轴于点A ,交x 轴于点C , 抛物线214y x bx c =-++经过点A ,点C ,且交x 轴于另一点B .(1)直接写出:点A 坐标,点C 坐标 ;(2)求该抛物线的解析式;(3)在直线AC 上方的抛物线上是否存在点M ,使四边形ABCM 面积最大?若存在,求出该最大值;若不存在,请说明理由;(4)将线段OA 绕x 轴上的动点(,0)P m 顺时针旋转90°得到线段O A ¢¢,若线段O A ¢¢与抛物线只有一个公共点,请结合函数图象,求m 的取值范围.【变式1】.(23-24九年级上·云南保山·期末)如图,已知抛物线()220y ax bx a =+-¹与x 轴交于A 、()4,0B -两点,与y 轴交于C 点,直线BD 交抛物线于点()2,3D .(1)求抛物线的解析式;(2)已知点M 为抛物线上一动点,且在第三象限,求四边形BMCA 面积的最大值;并直接写出M 点的坐标.【变式2】.(22-23九年级上·广东惠州·期中)如图,已知二次函数2y x bx c =++的图象与x 轴交于点(1,0)A ,(3,0)B ,与y 轴交于点C .(1)求二次函数的解析式;(2)点E 是二次函数第四象限图象上一点,过点E 作x 轴的垂线,交直线BC 于点D ,求四边形AEBD 面积的最大值及此时点E 的坐标;(3)若点P 为抛物线上的一点,点F 为对称轴上的一点,且以点A ,B ,P ,F 为顶点的四边形为平行四边形,直接写出点P 的坐标.【变式3】.(23-24九年级上·山东枣庄·期中)已知,如图抛物线2(0)y x bx c a =++>与y 轴交于点C ,与x 轴交于A ,B 两点,点A 在点B 左侧.点B 的坐标为(1,0),3OC OB =.(1)求抛物线的解析式.(2)点M 是抛物线对称轴l 上的一个动点,当MB MC +的值最小时,求点M 的坐标.(3)若点D 是线段AC 下方抛物线上的动点,求四边形ABCD 面积的最大值.题型三: 面积和差最值问题【例3】.(23-24九年级上·广东东莞·期末)如图,抛物线26y ax bx =+-与x 轴交于A (−2,0),()6,0B ,交y 轴于点C ,点P 是线段BC 下方抛物线上一动点,过点P 作PQ AC ∥交BC 于点Q ,连接AQ ,OQ ,PA ,PB .(1)求抛物线的函数解析式;(2)求AOQ △周长的最小值;(3)假设PAQ △与PBQ V 的面积分别为1S ,2S ,且12S S S =+,求S 的最大值.【变式1】(2024·安徽合肥·一模)已知抛物线()2222230y a x a x a a =--¹与x 轴交于A 、B 两点(点A 在点B的左侧),与y 轴交于点C ,直线y ax b =+经过点A .(1)求A 、B 两点的坐标;(2)若直线y ax b =+与抛物线222223y a x a x a =--的对称轴交于点E .①若点E 为抛物线的顶点,求a 的值;②若点E 在第四象限并且在抛物线的上方,记ACE △的面积为1S ,记ABE V 的面积为2S ,21S S S =-,求S 与x 的函数表达式,并求出S 的最大值.【变式2】(2024·安徽淮北·模拟预测)已知抛物线()()24y a x x =+-(a 为常数,且a<0)与x 轴交于A B ,两点(点A 在点B 的右侧),与y 轴交于点C ,经过点B 的直线12y x b =+与抛物线的另一交点为点D ,与y 轴的交点为点E .(1)如图1,若点D 的横坐标为3,试求抛物线的函数表达式;(2)如图2,若DE BE =,试确定a 的值;(3)如图3,在(1)的情形下,连接AC BC ,,点P 为抛物线在第一象限内的点,连接BP 交AC 于点Q ,当APQ BCQ S S -△△取最大值时,试求点P 的坐标.【变式3】(2024·广东广州·一模)综合应用如图,抛物线2y x bx c =-++与x 轴交于点()1,0A B ,,与y 轴交于点()0,3C .(1)求抛物线的解析式;(2)直线y x =-与抛物线在第二象限交于点M ,若动点N 在OM 上运动,线段CN 绕点N 顺时针旋转,点C 首次落在x 轴上时记为点D ,在点N 运动过程中,判断CND Ð的大小是否发生变化?并说明理由.(3)在(2)的条件下,连接CD ,记CND △的外接圆的最小面积为1S ,记CND △的外接圆的最大面积为2S ,试求21S S -的值(结果保留p ).1.(23-24九年级上·广东梅州·期末)已知二次函数223y x x =--+的图象和x 轴交于点A 、B ,与y 轴交于点C ,点P 是直线AC 上方的抛物线上的动点.(1)求直线AC 的解析式.(2)当P 是抛物线顶点时,求APC △面积.(3)在P 点运动过程中,求APC △面积的最大值.2 .(23-24九年级上·海南省直辖县级单位·期末)如图,抛物线2y x bx c =++经过()3,0B 、C (0,−3)两点,与x 轴的另一个交点为A ,顶点为D .(1)求该抛物线的解析式;(2)点E 为该抛物线上一动点(与点B 、C 不重合),①当点E 在直线BC 的下方运动时,求CBE △的面积的最大值;②在①的条件下,点M 是抛物线的对称轴上的动点,点P 是抛物线上的动点,若以C 、E 、P 、M 为顶点的四边形是平行四边形,请直接写出所有符合条件的点P 的坐标.3.(23-24九年级上·江西赣州·期末)抛物线()223y x m x m =-++++与x 轴交于点A ,B (点A 在点B 左侧),与y 轴交于点C ,点P 是抛物线上一点,其横坐标为a .(1)已知点()0,5C ,求抛物线的解析式.(2)若1m =,①如图,当点P 位于第二象限时,过点P 分别作PM BC ^于点E ,PN y ^轴于点N ,当PM PN +取得最大值时,求a 的值;②在①的条件下,连接PB ,PC ,判断此时PBC △的面积是否为最大,并说明理由.4.(23-24九年级上·广东深圳·期末)如图,在平面直角坐标系xOy 中,直线122y x =+与x 轴交于点A ,与y 轴交于点C .抛物线2y ax bx c =++的对称轴是32x =-,且经过A C 、两点,与x 轴的另一交点为点B .(1)求抛物线解析式.(2)若点P 为直线AC 上方的抛物线上的一点,连接PA PC ,.求PAC V 的面积的最大值,并求出此时点P 的坐标.5.(23-24九年级下·山东临沂·期中)如图,抛物线234y x bx c =-++与x 轴交于A 、B 两点,与y 轴交于点C ,直线334y x =+经过A 、C 两点,点D 是第二象限内抛物线上一点.(1)求抛物线的解析式;(2)连接AD 、CD ,求ACD V 面积的最大值;(3)若点D 关于直线BC 的对称点D ¢恰好落在直线AC 上,求点D 的坐标.6.(22-23九年级上·广东湛江·期中)已知抛物线2y x bx c =--+的图像与x 轴交于点()3,0A -和点C ,与y 轴交于点B (0,3).(1)求抛物线的解析式;(2)设点P 为抛物线的对称轴上一动点,当PBC △的周长最小时,求点P 的坐标;(3)在第二象限的抛物线上,是否存在一点Q ,使得ABQ V 的面积最大?若存在,求出点Q 的坐标;若不存在,请说明理由.7.(23-24九年级上·广西柳州·期中)如图,已知抛物线22y x mx m =-++-的顶点为A ,且通过点()3,3B -.(1)求顶点A 的坐标;(2)点C 为直线AB 上方抛物线上一动点,求ABC V 面积的最大值;(3)在抛物线上存在一点P ,使得PAB 45Ð=°,求点P 坐标.8.(23-24九年级上·四川自贡·期末)将拋物线()212y x =-+平移到图中2l 的位置,且与直线1l 交于A (0,−1),B (2,1)两点.(1)抛物线2l 是由抛物线()212y x =-+向左平移______个单位,再向下平移______个单位得到的;(2)求抛物线2l 的顶点坐标;(3)动点P 在直线1l 下方的抛物线2l 上,求以点O A P B ,,,为顶点的四边形的最大面积.9.(23-24九年级上·甘肃兰州·期末)如图,在平面直角坐标系中,二次函数243y ax x =+-图象的顶点是A ,与x 轴交于B ,C 两点,与y 轴交于点D ,点B 的坐标是10(,).(1)求A ,C 两点的坐标.(2)平移该二次函数的图象,使点D 恰好落在点A 的位置上,求平移后图象所对应的二次函数的表达式.(3)在直线CD 上方的抛物线上是否存在点P ,使PCD △的面积最大?若存在,求P 点的坐标及PCD △面积的最大值.10.(23-24九年级上·辽宁抚顺·期末)如图,抛物线22y ax bx =++与x 轴交于点(1,0)A -和点(4,0)B ,与y 轴交于点C ,连接BC ,点D 在抛物线上.(1)求抛物线的解析式;(2)如图1,点D 在第一象限内的抛物线上,连接BD ,CD ,请求出BCD △面积的最大值;(3)点D 在抛物线上移动,连接CD ,存在DCB ABC Ð=Ð,请直接写出点D 的坐标.11.(22-23九年级上·天津河西·期末)如图所示,在ABC V 中,90B Ð=°,5cm AB =,7cm BC =,点P 从点A 开始沿AB 边向点B 以1cm /s 的速度运动,点Q 从点B 开始沿BC 边向点C 以2cm /s 的速度运动.P 、Q 分别从A 、B 同时出发,当P 、Q 两点中有一点停止运动时,则另一点也停止运动.设运动的时间为s t .(0)t ≥(1)当t 为何值时,PQ 的长度等于5cm ;(2)求出V BPQ S 关于t 的函数解析式,计算P 、Q 出发几秒时,V BPQ S 有最大值,并求出这个最大面积?12.(22-23九年级上·海南海口·期末)如图1,抛物线23 2y ax x c=++与x轴交于点A、B(4,0)(A点在B点左侧),与y轴交于点C(0,6),点P是抛物线上一个动点,连接PB,PC,BC(1)求抛物线的函数表达式;(2)若点P的横坐标为3,求BPCV的面积;(3)如图2所示,当点P在直线BC上方运动时,连接AC,求四边形ABPC面积的最大值,并写出此时P点坐标.(4)若点M是x轴上的一个动点,点N是抛物线上一动点,P的横坐标为3.试判断是否存在这样的点M,使得以点B,M,N,P为顶点的四边形是平行四边形,若存在,请直接写出点M的坐标;若不存在,请说明理由.13.(22-23九年级上·辽宁沈阳·期末)已知,抛物线22y ax bx =++与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,抛物线过()2,3D --,()3,2E ,点P 为第一象限内抛物线上一动点:(1)求抛物线的函数表达式和直线DE 的函数表达式;(2)在y 轴上取F (0,1),连接PF ,PB ,当OBPF S 四边形面积最大时,求点P 横坐标;(3)当7OBPF S =四边形时,点P 在抛物线对称轴右侧时,直线DE 上存在两点MN (M 在N 上方),MN =动点Q 从P 出发,沿P M N A ®®®运动到终点A ,当Q 运动路程最短时,直接写出点N 坐标.14.(23-24九年级上·天津·期中)已知如图,抛物线22(0)y ax ax c a =++>与y 轴交于点C ,与x 轴交于A B 、两点,点A 在点B 的左侧,点B 的坐标为(1,0),点C 的坐标()0,3-(1)求抛物线的解析式;(2)若点D 是线段AC 下方抛物线上的动点,求四边形ABCD 面积的最大值;(3)若点E 在x 轴上,点P 在抛物线上,是否存在以A C E P 、、、为顶点,且以AC 为一边的平行四边形呢?若存在,直接写出点P 的坐标;若不存在,请说明理由.15.(22-23九年级上·海南海口·期中)如图①,已知二次函数23y ax bx =+-与x 轴相交于()1,0A -、()3,0B 两点,与y 轴相交于点C .(1)求二次函数的表达式;(2)如图②,连结AC 、BC .①求直线BC 的表达式;②在对称轴上是否存在一个点P ,使PAC V 的周长最小?若存在,请求出点P 的坐标和此时PAC V 的周长;若不存在,请说明理由;③点D 为抛物线在第四象限内图象上一个动点,是否存在点D ,使得BDC V 的面积最大?若存在,请求出点D 的坐标和此时BDC V 面积的最大值;若不存在,请说明理由.16.(22-23九年级上·贵州黔南·期中)已知,如图抛物线()20y ax bx c a =++>与y 轴交于点()0,4C -,与x轴交于A (−4,0)、()1,0B 两点.(1)求抛物线的解析式;(2)若点D 是线段AC 下方抛物线上的动点,求四边形ABCD 面积的最大值.(3)点P 是抛物线对称轴上一动点,点Q 是直线AC 上一动点,且以点A B Q P 、、、为顶点的四边形是平行四边形,请直接写出点Q 的坐标.17.(23-24九年级上·湖北襄阳·期中)如图,抛物线214y x bx c =++经过点B (−2,0)和点()0,2C -,与x 轴交于点A .(1)求抛物线的解析式;(2)点M 是第四象限内抛物线上的动点,求四边形AOCM 的面积的最大值和此时点M 的坐标;(3)点()0,P n 是y 轴上的一个动点,将线段OB 绕点P 顺时针旋转90°,得到线段O B ¢¢,若线段O B ¢¢与抛物线有一个公共点,结合函数图像,请直接写出n 的取值范围.。
一类二次函数线段最值问题的秒杀技巧(1)

一类二次函数最值问题的秒杀技巧在开始正文之前,我们还是先来解决以下几个小问题如图所示,抛物线解析式为y =-x2 +7x + 2,抛物线与坐标轴分别交于点A 和B 两点,2点M 为第一象限内的一个动点,MN⊥x 轴,问①线段MN 的长度如何表示?②MN 长度取得最大值时,点M 的横坐标和点 B 的横坐标之间存在什么样的数量关系?③MN 长度取得最大值时的一般性结论是什么?④△MAB 的面积应该如何表示?⑤当M 运动到什么位置时,△MAB 的面积取得最大值?⑥△MAB 的面积最大值的一般性结论是什么?这篇文章以这 6 个问题进行展开叙述,①线段MN 的长度如何表示?【答】点M 在抛物线的第一象限,通过图象可以得知点M 始终在点N 的上方,即MN =y M -y N ;②MN 长度取得最大值时,点M 的横坐标和点 B 的横坐标之间存在什么样的数量关系?【答】设点M(t,t2-7t+2),容易求得A(0,2)、B(4,0)2利用待定系数法求得直线AB 解析式为∴MN =-t 2 +7t + 2 - (-1t + 2)2 2y =-1x + 22 ,则N (t, -1t + 2)2=-t 2 + 4t=-(t - 2)2 + 4 ,当t = 2时,MN 有最大值,最大值为4;) - 1 2 2 容易发现当 t=2 时,MN 长度取得最大值,此时点 M 的横坐标刚好是点 B 横坐标的一半, 这个是偶然的还是必然呢?为了让结论具有一般性,我们不妨设抛物线解析式为y = ax 2 + bx + c (a <0),设 M (m , am 2 + bm + c ),B ( x 0 ,0),A (0,c ).容易得知 ax 0 + bx 0+ c = 0 . 准备工作到位以后我们接下来开始利用上述坐标表示线段 MN 的长度,利用待定系数法可以求得 AB 的解析式为 y = - c x 0 x + c ,则点 N (m , - c x 0 m + c )b +c 从而 MN= am 2 + bm + c -( - c x 0 m + c )= am 2 + (b + c )m ,求出对称轴为 m = - x 0x 0 2a接下来我们需要证明当 MN 取得最大值时,点 M 的横坐标刚好是点 B 横坐标的一半b +c 只需证明 -x 0 = 1 x 即可;接下来我利用作差法进行说明2a 2 0b +c x1bx + c ax 2 ax 2 + bx + c 0 + x 0 = 0 + 0 = 0 0 = 0 ,问题得到证明,也就是说:MN 长度取 2a 2 2ax 0 2ax 0 2ax 0 得最大值,此时点 M 的横坐标刚好是点 B 横坐标的一半.③MN 长度取得最大值时的一般性结论是什么?我们已经得知 MN 长度取得最大值,此时点 M 的横坐标刚好是点 B 横坐标的一半.即 m =x 02 x x c 1 ax 2 a 2 则 MN= a ( 0 ) 2 + b 0 + c - = ( 0 + bx 0 + c ) = - x 02 2 2 2 2 4 此时问题得到了说明,当抛物线开口向下时 MN 长度的最大值为- a x 4 02 ,开口向上时 MN长度的最大值为 a x 4 0 2 ,为了方便记忆我们不妨把公式总结为MN= a x 2 (其中 a 是指二次项系数, x 是指抛物线与 x 轴交点坐标) max 4 0 0掌握了这个公式我们可以实现秒杀: MN max = 4⨯ 4 2 =4 【练习 1】抛物线解析式为 y=﹣x 2﹣x+2,A (﹣2,0),C (0,2DN max = ⨯ 2 2 = 14 - 1④△MAB 的面积应该如何表示?学习过铅锤法之后我们可得知S△MAB=1OB •MN ,OB 是一个定值保持不变,MN 是一个2变化的长度,也就是说MN 的变化影响了△MAB 的面积,因此我们可以确定当MN 取得最大值时,△MAB 的面积也同时取得最大值;⑤当M 运动到什么位置时,△MAB 的面积取得最大值?当MN 取得最大值时,点M 的横坐标为x02,同样可以简单的理解为点M 的横坐标为x0时,2△MAB 的面积取得最大值;⑥△MAB 的面积最大值的一般性结论是什么?S△MAB=1OB •MN2=1x ⋅2 0a4x02 = 1 a x38【练习】(2018 天津模拟节选)如图6-1,在平面直角坐标系中,二次函数y=x2﹣x﹣6 的图象交坐标轴于A(﹣2,0),B(3,0)两点,抛物线与y轴相交于点C,抛物线上有一动点P 在直线BC 下方.求动点P 运动到什么位置时,△PBC 面积最大.求出此时P 点坐标和△PBC 的最大面积.【答】利用结论可知:当P 横坐标为3时,△PBC 的面积取得最大值,此时面积最大值为2S 最大值=1a x 03 =1⨯ 1 ⨯ 33=27.△PBC 8 8 8。
《二次函数的最值问题》教案
二次函数的最值问题一、内容与内容解析1.内容含参二次函数在m x n ≤≤内的最值问题.2.内容解析本节课在讨论了影响0a >时二次函数在m x n ≤≤内最值的因素后对0a >时含参二次函数在m x n ≤≤内最值问题进行探究.主要的研究方法是从函数图像入手,通过几何画板动态演示,确定分类标准,进行分类讨论,进而对分类标准进行优化,得到解决此类问题的一般方法,并运用此方法解决相关的最值问题.基于以上分析,确定本节课的教学重点是:从函数图像入手,运用分类讨论思想求含参二次函数在m x n ≤≤内最值.二、目标和目标解析1.目标(1)通过复习二次函数图像的特征和性质,能够借助二次函数的图像研究二次函数的最值.(2)通过对二次函数在m x n ≤≤内最值问题初探、对含参二次函数在m x n ≤≤内最值问题的探究,经历直观感知、抽象概括、运算求解、反思与构建等思维过程,体会函数思想,分类讨论等数学思想方法,发展数学感知、数学表征、抽象概括、运算能力等.2.目标解析达成目标(1)的标志是:学生会借助二次函数的图像研究二次函数在m x n ≤≤内的最值,并能由此得到二次函数在m x n ≤≤内最值的影响因素,进一步体会函数思想.达成目标(2)的标志是:借助二次函数的图像求解含参二次函数在m x n ≤≤内最值,进一步体会函数思想和分类讨论的思想.三、教学问题诊断分析学生已学习了二次函数的概念、图像和性质,已经具备了一定的识图能力、分析图形特征的能力、数学说理能力,这为本节课的学习奠定了基础.但对于含参二次函数在m x n ≤≤内的图像及最值问题,由于其抽象程度较高,学生可能会在为什么要进行分类讨论以及如何确定分类标准这两个问题上产生一定的困难.基于以上分析,本节课的教学难点是:如何确定分类标准.四、教学过程设计引言:(展现生活实例,体现研究二次函数在m x n ≤≤内最值的必要性)本节课,我们将结合二次函数的相关知识深入研究二次函数的最值问题.1.复习导入,自主发现问题1如图,(5,),(8,),(1,),( 3.9,)A B C D A y B y C y D y --在二次函数2134y x x =--的图像上,请比较:(1)B y A y ;(2) D y C y ;(3)D y B y ;(4)C y A y .问题2根据问题1的结论填空:(1)二次函数2134y x x =--(58x ≤≤),当x =时,y 取到最大值;当x =时,y 取到最小值.(2)二次函数2134y x x =-- ( 3.91x -≤≤-),当x =时,y 取到最大值;当x =时,y 取到最小值.(3)二次函数2134y x x =--( 3.98x -≤≤),当x =时,y 取到最大值;当x =时,y 取到最小值.(4)二次函数2134y x x =--(15x -≤≤),当x =时,y 取到最大值;当x =时,y 取到最小值.师生活动: 教师提出问题,学生尝试用已有知识解决这些问题,并交流问题中蕴含的函数知识和对这些知识的理解.追问1:这些二次函数的图像是完整的抛物线吗?追问2:为什么有的(二次函数的)最值能在顶点处取到,有的却不能呢?追问3:通过对上面问题的研究,你认为二次函数在 内的最值的取得与什么有关?师生活动:通过对前面问题的研究,自主发现影响二次函数在 内的最值的因素:对称轴和m x n ≤≤的相对位置.若对称轴不在m x n ≤≤内时,最值在端点处取得;对称轴在m x n ≤≤内时,最值在顶点和端点处分别取得.遇到这类问题时,我们通常要结合函数图象进行分析.设计意图:引导学生通过观察函数图像,直观地发现对称轴和 的相对位置影响了二次函数的最值.为下一步解决0a >时含参二次函数在 内的最值问题做铺垫. 2.问题剖析,合作探究探究1:求二次函数2134y x tx =--(21x -≤≤)的最小值. 师生活动:教师引导学生先观察函数解析式,分析参数t 的变化对二次函数图像的影响,然后借助计算机软件,直观感受对称轴和m x n ≤≤的相对位置如何影响二次函数的最小值.最后全班交流,确定分类标准,学生独立补全解题过程.追问1:观察本题中的函数解析式与前面 有什么区别? m x n ≤≤2134y x x =--m x n ≤≤m x n ≤≤m x n ≤≤追问2:随着参数t 的变化,二次函数2134y x tx =--图象的开口方向和开口大小会改变吗?对称轴呢?追问3:二次函数2134y x tx =--(21x -≤≤)的最小值是唯一确定的吗? 师生活动:关注学生是否明确此处为什么要进行分类讨论,体会分类讨论的必要性. 追问4:如何确定分类标准?如何用数学符号表达这种关系呢?师生活动: 师生共同讨论写出分类标准.教师规范格式以后要求学生将过程补齐. 设计意图:探究0a >时含参二次函数在 内的最小值问题,让学生体会解决这一类问题的基本方法.培养学生直观感知、抽象概括、数学表征能力,激发自主学习的积极性和探究意识.引导观察,发现分类依据,培养探究意识.探究2:已知关于x 的二次函数y 1=x 2+bx +c (实数b ,c 为常数).(1)若二次函数的图象经过点(0,4),对称轴为x =1,求此二次函数的表达式;(2)若b 2﹣c =0,当b ﹣3≤x ≤b 时,二次函数的最小值为21,求b 的值;(3)记关于x 的二次函数y 2=2x 2+x +m ,若在(1)的条件下,当0≤x ≤1时,总有y 2≥y 1,求实数m 的最小值.师生活动:要求学生独立解决,写出分析过程,小组内交流讨论,最后全班汇报交流.对于学生展示的分类方法,教师适当引导和纠正,让学生理解如何进行分类讨论(不重复,不遗漏),并对分类方法进行优化.最后共同归纳出求含参二次函数在m x n ≤≤内最值的一般方法:一般先确定对称轴与m x n ≤≤的相对位置关系,分别画出示意图,确定分类标准,再进行分类讨论.设计意图:在探究1的基础上进一步探究 时含参二次函数在 内的最大值问题,重点体会解题过程中分类标准的确定.师生活动:回顾探究1和探究2的过程,体会它们的相同与不同之处.追问1:为什么有时候分3类,有时候分2类就可以了?什么时候分2类,什么时候分3类呢?追问2:你能直接判断它们分别分几类进行讨论吗:师生活动:通过类比探究1和探究2归纳:求二次函数在m x n ≤≤上的最值不仅min 2min min 2min 10242,12,2211,2321111,1,2422(1)13()2111()42x t t t x y t t t x t y t t t x y t t t y t t t t =--=-=---==---==--⎧⎪--⎪⎪=---⎨⎪⎪--⎪⎩解:>,对称轴:(1)当2<即<时:(2)当2≤2≤即1≤≤时:,(3)当2>即>-时:<综上所述:1≤≤>-m x n≤≤m x n ≤≤0a >要看对称轴与m x n ≤≤的相对位置,还要看开口方向.开口向下时,可类比开口向上的数学模型进行讨论.设计意图:讨论0a >时含参二次函数在 内最小值的分类问题,体会开口方向对函数最值的影响.3.归纳总结师生共同回顾本节课所学主要内容,并请学生回答以下问题:(1)本节课我们研究了哪些问题?(2)我们是如何分析、解决这些问题的?(3)在研究过程中你遇到的问题是什么?怎么解决的?设计意图:通过小结,理清本节课的研究内容和研究方法.让学生体会提出问题、分析问题、解决问题的方法.4.课外作业(1) 必做题:①求二次函数223y x ax =--+(45x -≤≤)的最值.②已知二次函数221y ax ax =++(12x -≤≤)有最大值4,求实数a 的值.(2) 选做题:求二次函数223y x x =-+(2t x t ≤≤+)上的最值.(3)兴趣作业:通过本节课的学习,你能自己提出一个二次函数最值相关的问题并进行解答吗?试试看,和同伴交流你的想法.设计意图:巩固本节课所学内容,利用前面归纳的结论来解决二次函数最值的相关问题,加深对含参二次函数在 内的最值问题的认识.体会函数思想.提升学生分析问题,解决问题的能力.m x n ≤≤m x n≤≤。
考点08 二次函数在闭区间上的最值(值域)问题的解法(解析版)
专题二函数考点8 二次函数在闭区间上的最值(值域)问题的解法【方法点拨】一、知识梳理二、二次函数在闭区间上的最值(值域)问题的解法【高考模拟】1.已知函数()bf x ax x=+,若存在两相异实数,m n 使()()f m f n c ==,且40a b c ++=,则||m n -的最小值为( )A .22B 3C 2D 3【答案】B 【分析】由题设可得20(0)ax cx b x -+=≠,又()()f m f n c ==即,m n 为方程两个不等的实根,即有,c bm n mn a a+==,结合2||()4m n m n mn -=+-40a b c ++=得2||16()41b bm n a a-=⋅+⋅+.【解析】由题意知:当()bf x ax c x=+=有20(0)ax cx b x -+=≠, ∵()()f m f n c ==知:,m n 是20(0,0,0)ax cx b x a b -+=≠≠≠两个不等的实根.∴,c b m n mn a a +==,而2224||()4c ab m n m n mn a--=+-= ∵40a b c ++=,即4c b a =--,∴||m n -=b t a =,则||m n -==∴当18t =-时,||m n -故选:B 【点睛】关键点点睛:由已知条件将函数转化为一元二次方程的两个不同实根为,m n ,结合韦达定理以及||m n -=.2.已知函数2()f x ax bx c =++,满足(3)(3)f x f x +=-,且(4)(5)f f <,则不等式(1)(1) f x f -<的解集为( )A .(0,)+∞B .(2,)-+∞C .(4,0)-D .(2,4)【答案】C 【分析】由题设知()f x 关于3x =对称且开口向上,根据二次函数的对称性(1)(1)f x f -<有115x <-<,求解集. 【解析】依题意,有二次函数关于3x =对称且开口向上,∴根据二次函数的对称性:若(1)(1)f x f -<,即有115x <-<, ∴40x -<<. 故选:C 【点睛】关键点点睛:由题设可得()f x 关于3x =对称且开口向上,根据对称性求函数不等式的解集即可. 3.已知函数()sin f x x x =+,若存在[0,]x π∈使不等式(sin )(cos )f x x f m x ≤-成立,则整数m 的最小值为( ) A .1-B .0C .1D .2【答案】A 【分析】先对()f x 求导可得()1cos 0f x x '=+≥,()f x 单调递增,原不等式可化为存在[0,]x π∈ 使得sin cos x x m x ≤-有解,即sin cos m x x x ≥+对于[0,]x π∈有解,只需()min m g x ≥, 利用导数判断()g x 的单调性求最小值即可. 【解析】由()sin f x x x =+可得()1cos 0f x x '=+≥, 所以()sin f x x x =+在[0,]x π∈单调递增,所以不等式(sin )(cos )f x x f m x ≤-成立等价于sin cos x x m x ≤-, 所以sin cos m x x x ≥+对于[0,]x π∈有解, 令()sin cos g x x x x =+,只需()min m g x ≥, 则()sin cos sin cos g x x x x x x x '=+-=, 当02x π≤≤时,()cos 0g x x x '=≥,()g x 在0,2π⎡⎤⎢⎥⎣⎦单调递增, 当2x ππ<≤时,()cos 0g x x x '=<,()g x 在,2ππ⎡⎤⎢⎥⎣⎦单调递减, ()0cos01g ==,()sin cos 1g ππππ=+=-,所以()()min 1g x g π==-, 所以1m ≥-,整数m 的最小值为1-, 故选:A. 【点睛】方法点睛:若不等式(),0f x λ≥()x D ∈(λ是实参数)有解,将(),0f x λ≥转化为()g x λ≥或()()g x x D λ≤∈有解,进而转化为()max g x λ≤或()()min g x x D λ≥∈,求()g x 的最值即可.4.已知函数2()26f x x ax =+--,若存在a R ∈,使得()f x 在[2,]b 上恰有两个零点,则实数b的最小值为( )A .B .4C .2+D .2+【答案】C 【分析】由函数在[2,]b 上恰好有2个零点可得,可得零点必在区间的端点,讨论零点为2和b 时,解得a 的值,将a 的值代入使得函数值f (b )0=求出b 的值即可. 【解析】因为函数2())|2|6f x x ax =+--在[2,]b 上恰有两个零点,所以在2x =与x b =时恰好取到零点的最小值和最大值时,实数b 取最小值, 若2x =,()f x 的零点满足f (2)2|222|60a =+--=,解得2a =,或4a =-,当2a =,2()|22|6f x x x =+--,满足()f x 在[2,]b 上恰好有2个零点,则f (b )2|22|60b b =+--=,且2b >,解得2b =(舍)或4b =-(舍),当4a =-时,2()|42|6f x x x =---且2b >,满足()f x 在[2,]b 上恰好有2个零点, 则f (b )2|42|60b b =---=,2b >,所以2|42|6b b --=,即2426b b --=-整理2440b b -+=,解得2b =(舍),或2480b b --=解得:2b =-(舍)或2b =+综上所述,当2b =+()f x 在[2,]b 上恰好有2个零点.故答案为:2+ 【点睛】本题考查函数的零点和方程根的关系,考查了计算能力,同时考查了转化思想与分类讨论思想的应用,属于难题.5.已知数列{}n a 的前n 项和为n S ,22n n S a =-,若存在两项m a ,n a ,使得64m n a a =,则19m n+的最小值为( ) A .145B .114C .83D .103【答案】B【分析】运用数列的递推式和等比数列的定义、通项公式可得2nn a =.求得6m n +=,()19119191066m m n m n n n m n m ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭,运用基本不等式,检验等号成立的条件,根据单调性即可得出结果. 【解析】解:22n n S a =-,可得11122a S a ==-,即12a =,2n ≥时,1122n n S a --=-,又22n n S a =-,相减可得1122n n n n n a S S a a =-=-﹣﹣,即12n n a a -=,{}n a 是首项为2,公比为2的等比数列.所以2nn a =.64m n a a =,即2264m n ⋅=,得6m n +=,所以()191191911010666m m n m n m n m n n ⎛⎛⎫⎛⎫+=++=++≥+ ⎪ ⎪ ⎝⎭⎝⎭⎝ 181663=⨯=, 当且仅当9n m m n=时取等号,即为32m =,92n =.因为m ,n 取整数,所以均值不等式等号条件取不到,则1983m n +>, 因为19196m n y m m +=+=-,在30,2⎛⎫⎪⎝⎭上单调递减,在3(,)2+∞上单调递增,所以当2m =,4n =时,19m n+取得最小值为114.故选:B. 【点睛】本题考查数列的通项公式的求法,运用数列的递推式和等比数列的定义、通项公式,考查基本不等式的运用,考查化简运算能力,属于中档题.6.已知函数()11,021,232x x x f x x -⎧-≤≤⎪=⎨⎛⎫<≤⎪ ⎪⎝⎭⎩,若存在实数123,,x x x ,当12303x x x ≤<<≤时,()()()123f x f x f x ==,则()2312x f x x x +的最小值是( ).A .58B .516C .532D .564【答案】C 【分析】作出分段函数的图像,结合图像确定123,,x x x 的范围及等量关系,再将所求式子转化为关于3x 的函数,利用函数的单调性求解最小值. 【解析】 如图:122x x += ,312112x x -⎛⎫-= ⎪⎝⎭即312112x x -⎛⎫=+ ⎪⎝⎭,()33112312111222x x x f x x x --⎡⎤⎛⎫⎛⎫+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦=+ 令311,2x t t -⎛⎫=∈ ⎪⎝⎭1142⎡⎫⎪⎢⎣⎭,,则()()2321212x f x t t x x =++ 当14t =时取得最小值532. 故选C【点睛】本题主要考查分段函数图像、函数零点、函数最小值的应用,解题中主要应用了数形结合的思想、换元思想、函数思想,属于中档题;解题的关键有两个:一是准确作出分段函数图像,利用已知条件确定出123,,x x x 范围以及122x x +=;二是将所求式子转化为关于3x 的函数,利用函数的性质求最小值.7.已知实数x 、y 满足{24 2y xx y y ≤+≤≥-,若存在x 、y 满足()()22211(0)x y r r ++-=>,则r 的最小值为( )A .1B .2C .423D .523【答案】B【解析】试题分析:可行域为直线,24,2y x x y y =+==-围成的三角形区域, (),x y 到点()1,1-的距离最小值为2,所以r 的最小值为2考点:线性规划问题8.若实数a 、b 、c +∈R ,且2256ab ac bc a +++=-,则2a b c ++的最小值为( ) A .51- B .51+C .252+D .252-【答案】D 【解析】因为2256ab ac bc a +++=-,所以2ab a ac bc +++()()a a b c a b =+++()()a c a b =++()262551=-=- ,所以()()()()22a b c a c a b a c a b ++=+++≥++=252-,当且仅当()()a c a b +=+时,等号成立. 故选D.点睛:本题主要考查均值不等式的灵活应用,关键是对已知等式分解为()()()2=51a c a b ++-.9.已知圆和两点,若圆上存在点,使得,则的最小值为( )A .B .C .D . 【答案】D 【解析】试题分析:由题意以为直径的圆与圆有公共点,则,解得.所以的最小值为1,故选D .考点:两圆的位置关系.【名师点睛】1.两圆位置关系的判断常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.2.若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差得到. 10.已知函数()1ln ax f x xe x ax -=--,21,a e ⎛⎤∈-∞- ⎥⎝⎦,函数()f x 的最小值M ,则实数M 的最小值是() A .1- B .1e-C .0D .31e-【答案】C 【分析】求得()()11'1ax f x ax e x -⎛⎫=+- ⎪⎝⎭,先证明110ax e x --≤,可得当10,x a ⎛⎫∈- ⎪⎝⎭时,()f x 单调递减,当1,x a ⎛⎫∈-+∞ ⎪⎝⎭时,(),f x 单调递增,则()2min 1111ln f x f e a a a -⎛⎫⎛⎫=-=-+-- ⎪ ⎪⎝⎭⎝⎭,设(2210,,1ln t e M t e t a -⎤-=∈=-+⎦,()()22ln 10,t h t t t e e=-+<≤可证明()h t 在(20,e ⎤⎦上单调递减,()()20h t h e ≥=,从而可得结果.【解析】 求得()()()1111111'11ax ax ax ax ax f x eaxe a e ax ax e x x x ----+⎛⎫=+--=+-=+- ⎪⎝⎭ 考察11ax y ex -=-是否有零点,令0y =, 可得1ln x a x -=,记()1ln xx xϕ-=,()2ln 2'x x xϕ-=,()x ϕ在()20,e 上递减,在()2,e +∞上递增, 所以()min x ϕ= ()2e ϕ 21e =-,即21ln 1x x e-≥-, 因为21a e ≤-,所以11ln 10ax x a e x x--≤⇔-≤, 故可知,当10,x a ⎛⎫∈-⎪⎝⎭时,()()10,'0,ax f x f x +>≤单调递减, 当1,x a ⎛⎫∈-+∞ ⎪⎝⎭时,()()10,'0,ax f x f x +<≥单调递增,从而由上知()2min 1111ln f x f e a a a -⎛⎫⎛⎫=-=-+-- ⎪ ⎪⎝⎭⎝⎭, 设(()222210,,1ln 10t t e M t e t lnt t e a e -⎤-=∈=-+=-+<≤⎦, 记()()()22211ln 10,'0,t h t t t e h t e e t=-+<≤=-≤()h t 在(20,e ⎤⎦上单调递减,()()20h t h e ∴≥=,M ∴的最小值为0.故选C.【点睛】本题主要考查利用导数判断函数的单调性以及函数的最值,属于难题.求函数()f x 最值步骤:(1) 求导数()f x ';(2)判断函数的单调性;(3)若函数单调递增函数或单调递减,利用单调性求最值;(4) 如果只有一个极值点,则在该处即是极值也是最值;(5)如果求闭区间上的最值还需要比较端点值的函数值与极值的大小. 11.已知函数()1f x x a =+,若存在,42ππϕ⎛⎫∈ ⎪⎝⎭,使()()sin cos 0f f ϕϕ+=,则实数a 的取值范围是( )A .1,22⎛⎝⎭B .122⎛⎫-- ⎪ ⎪⎝⎭C .10,2⎛⎫ ⎪⎝⎭D .1,02⎛⎫-⎪⎝⎭【答案】B【解析】 由题意,110sin cos aaφφ+=++ 有解∴sinφ+a+cosφ+a=0∴-(φ+4π) ∵φ∈(4π,2π), ∴φ+4π∈(2π,34π),∴sin (φ+4π)∈(2,1)(φ+4π)∈(1∴-2a ∈(1∴a ∈12⎛⎫- ⎪ ⎪⎝⎭。
二次函数的最值问题(课件)
二次函数的单调性
探讨二次函数在定义域内的单调性及其应用。
递增
当二次函数在定义域内递增时,函数值随自变量的 增加而增加。
递减
当二次函数在定义域内递减时,函数值随自变量的 增加而减小。
二次函数的最值存在性定理
研究二次函数在定义域内的最值及其实际应用。
1
最大值存在
当二次函数的系数a为负时,函数在定义域内存在最大值。
2
最小值存在
当二次函数的系数a为正时,函数在定义域内存在最小值。
3
应用举例
高空抛物运动和经济生产成本最小化问题。
求解二次函数的最值
介绍三种方法求解二次函数的最值,并提供实例演示。
配方法
通过坐标变换将二次函数转化 为标准形式,再求解最值。
求导数法
求二次函数的导数,找出极值 点,进而量值。
1 常见错误
对最值问题中容易出现的错误进行梳理和解答。
2 纠正方法
针对学生常见错误,提供具体纠正方法和建议。
3 信息搜索
介绍如何搜索最值问题解题思路和方法的有效途径。
联系与拓展
探讨二次函数最值问题与其他数学知识的联系,以及应用在其他领域的延伸。 如与最优化问题的关系,以及在物理、经济等领域中的应用。
2 完全平方公式
利用完全平方公式,将二次函数转化为平方 项相加的形式,求出零点。
二次函数的图像特点
了解二次函数图像的对称轴和开口方向,以及与函数系数之间的关系。
对称轴
二次函数图像关于垂直于x轴 的直线对称。
开口方向
由二次项系数的正负确定开 口的方向。
函数系数
了解函数系数与图像形状的 关系,如变量a的变化。
二次函数的最值问题
本课件介绍了二次函数的最值问题。包括二次函数的定义和特点、求零点的 因式分解法和完全平方公式、二次函数的图像与对称轴、单调性、最值存在 性定理等。
二次函数中的线段最值问题(解析版)-2023年中考数学重难点解题大招复习讲义-函数
例题精讲【例1】.如图,已知抛物线y=﹣x2+2x+3与x轴交于A,B两点(点A在点B左侧),与y 轴交于点C,连接BC,点P是线段BC上方抛物线上一点,过点P作PM⊥BC于点M,求线段PM的最大值.解:过P点作PQ∥y轴交BC于Q,如图,当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,则B(3,0),A(﹣1,0),当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线BC的解析式为y=kx+b,把B(3,0),C(0,3)代入得,,解得,∴直线BC的解析式为y=﹣x+3,∵OB=OC=3,∴△OBC为等腰直角三角形,∴∠OCB=45°,∵PQ∥y轴,∴∠PQM=45°,∵PM⊥BC,∴△PMQ为等腰直角三角形,∴PM=PQ,设P(t,﹣t2+2t+3)(0<t<3),则Q(t,﹣t+3),∴PQ=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t,∴PM=(﹣t2+3t)=﹣(t﹣)2+,当t=时,PM的最大值为.变式训练【变1-1】.如图,抛物线y=x2+bx+c经过点B(3,0)、C(0,﹣2),直线L:y=﹣x ﹣交y轴于点E,且与抛物线交于A、D两点,P为抛物线上一动点(不与A、D重合).(1)求抛物线的解析式;(2)当点P在直线L下方时,过点P作PN∥y轴交L于点N,求PN的最大值.(3)当点P在直线L下方时,过点P作PM∥x轴交L于点M,求PM的最大值.解:(1)把B(3,0),C(0,﹣2)代入y=x2+bx+c得,,∴∴抛物线的解析式为:y=x2﹣x﹣2;(2)设P(m,m2﹣m﹣2),∵PN∥y轴,N在直线AD上,∴N(m,﹣m﹣),∴PN=﹣m﹣﹣m2+m+2=﹣m2+m+.∴当m=时,PN的最大值是;(3)设P(m,m2﹣m﹣2),∵PM∥x轴,M在直线AD上,M与P纵坐标相同,把y=m2﹣m﹣2,代入y=﹣x﹣中,得x=﹣m2+2m+2∴M(﹣m2+2m+2,m2﹣m﹣2)∴PM=﹣m2+2m+2﹣m=﹣m2+m+2∴当m=时,PM的最大值是.【变1-2】.如图,抛物线y=+mx+n与x轴交于A,B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)线段BC上有一动点P,过点P作y轴的平行线,交抛物线于点Q,求线段PQ的最大值.解:(1)抛物线y=﹣+mx+n与x轴交于A,B两点,与y轴交于点C,A(﹣1,0),C(0,2).∴,解得:,故抛物线解析式为:y=﹣x2+x+2;(2)令y=0,则﹣x2+x+2=0,解得x1=﹣1,x2=4,∴B(4,0),设直线BC的解析式为y=kx+b,∴,解得,∴直线BC的解析式为y=﹣x+2,设P(m,﹣m+2);则Q(m,﹣m2+m+2),则PQ=(﹣m2+m+2)﹣(﹣m+2)=﹣m2+2m=﹣(m﹣2)2+2,此时PQ的最大值为2.【例2】.已知:如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,OA=OC=3,顶点为D.(1)求此函数的关系式;(2)在对称轴上找一点P,使△BCP的周长最小,求出P点坐标;(3)在AC下方的抛物线上有一点N,过点N作直线l∥y轴,交AC与点M,当点N坐标为多少时,线段MN的长度最大?最大是多少?解:(1)如图1,∵OA=OC=3,∴A(﹣3,0),C(0,﹣3),∵抛物线y=x2+bx+c经过点A(﹣3,0),C(0,﹣3),∴将A(﹣3,0),C(0,﹣3),分别代入抛物线y=x2+bx+c,得,解得.故此抛物线的函数关系式为:y=x2+2x﹣3;(2)如图,连接AP,BP,BC,AC,AC与抛物线对称轴交于点P′,∵抛物线的解析式为:y=x2+2x﹣3,∴抛物线的对称轴为直线x=﹣1,∵B是抛物线与x轴的另一个交点,A(﹣3,0),∴B(1,0),∴BC===,∵点A,B关于抛物线对称轴对称,∴AP=BP,∴PB+PC的最小值即为PA+PC的最小值,此时PA+PC+BC最小,即△BCP的周长最小,∴当P、A、C三点共线时,△BCP的周长最小,即P在P′所在的位置,设直线AC的解析式为y=kx+b1,∴,解得:,∴直线AC的解析式为:y=﹣x﹣3,∴当x=﹣1时,y=﹣2,∴点P的坐标为(﹣1,﹣2);(3)如图3,设N(t,t2+2t﹣3),则M(t,﹣t﹣3),∴MN=﹣t﹣3﹣(t2+2t﹣3)=﹣t2﹣3t=﹣(t+)2+,∵﹣1<0,∴当t=﹣,即点N的坐标为(﹣,)时,线段MN的长度最大,最大值为.变式训练【变2-1】.如图1,在平面直角坐标系中,已知B点坐标为(1,0),且OA=OC=3OB,抛物线y=ax2+bx+c(a≠0)图象经过A,B,C三点,其中D点是该抛物线的顶点.(1)求抛物线的解析式;(2)判断△ADC的形状并且求△ADC的面积;(3)如图2,点P是该抛物线第三象限部分上的一个动点,过P点作PE⊥AC于E点,当PE的值最大时,求此时P点的坐标及PE的最大值.解:(1)∵B点坐标为(1,0),∴OB=1,又∵OA=OC=3OB,∴OA=OC=3,∴A(﹣3,0),C(0,﹣3),将A,B,C三点代入解析式得,,解得,∴抛物线的解析式为:y=x2+2x﹣3;(2)由(1)知抛物线的解析式为y=x2+2x﹣3,∴对称轴为直线x=﹣=﹣1,当x=﹣1时,y=(﹣1)2+2×(﹣1)﹣3=﹣4,∴D点的坐标为(﹣1,﹣4),∴|AD|==2,|AC|==3,|CD|==,∵|AD|2=|AC|2+|CD|2,∴△ACD是直角三角形,S△ABC=|AC|•|CD|=×=3;(3)设直线AC的解析式为y=sx+t,代入A,C点坐标,得,解得,∴直线AC的解析式为y=﹣x﹣3,如右图,过点P作y轴的平行线交AC于点H,∵OA=OC,∴∠OAC=∠OCA=45°,∵PH∥y轴,∴∠PHE=∠OCA=45°,设点P(x,x2+2x﹣3),则点H(x,﹣x﹣3),∴PH=﹣x﹣3﹣(x2+2x﹣3)=﹣x2﹣3x,∴PE=PH•sin∠PHE=(﹣x2﹣3x)×=﹣(x+)2+,∴当x=﹣时,PE有最大值为,此时P点的坐标为(﹣,﹣).【变2-2】.如图,二次函数y=ax2+bx+c(a≠0)的图象交x轴于A、B两点,交y轴于点D,点B的坐标为(3,0),顶点C的坐标为(1,4).(1)求二次函数的解析式;(2)点P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P 在第一象限时,求线段PM长度的最大值;(3)在抛物线上是否存在点Q,且点Q在第一象限,使△BDQ中BD边上的高为?若存在,直接写出点Q的坐标;若不存在,请说明理由.解:(1)由二次函数顶点C(1,4),设y=a(x﹣1)2+4,将B(3,0)代入得:4a+4=0,∴a=﹣1,∴y=﹣(x﹣1)2+4=﹣x2+2x+3,答:二次函数的解析式为y=﹣x2+2x+3;(2)在y=﹣x2+2x+3中,令x=0得y=3,∴D(0,3),设直线BD解析式为y=kx+3,将B(3,0)代入得:3k+3=0,解得k=﹣1,∴直线BD解析式为y=﹣x+3,设P(m,﹣m+3),则M(m,﹣m2+2m+3),∴PM=﹣m2+2m+3+m﹣3=﹣m2+3m=﹣(m﹣)2+,∵﹣1<0,∴当m=时,PM取最大值,最大值为;(3)存在点Q,使△BDQ中BD边上的高为,理由如下:过Q作QG∥y轴交BD于点G,交x轴于点E,作QH⊥BD于H,如图:设Q(x,﹣x2+2x+3),则G(x,﹣x+3),∴QG=|﹣x2+2x+3﹣(﹣x+3)|=|﹣x2+3x|,∵OB=OD,∴∠OBD=45°,∴∠BGE=45°=∠QGH,∴△QGH是等腰直角三角形,当△BDQ中BD边上的高为时,即QH=HG=,∴QG=2,∵点Q在第一象限,QG=|﹣x2+3x|,∴﹣x2+3x=2,解得x=1或x=2,∴Q(1,4)或(2,3),综上可知存在满足条件的点Q,坐标为(1,4)或(2,3).1.已知抛物线的顶点A(﹣1,4),且经过点B(﹣2,3),与x轴分别交于C,D两点.(1)求直线OB和该抛物线的解析式;(2)如图1,点M是抛物线上的一个动点,且在直线OB的上方,过点M作x轴的平行线与直线OB交于点N,求MN的最大值;(3)如图2,AE∥x轴交x轴于点E,点P是抛物线上A、D之间的一个动点,直线PC、PD与AE分别交于F、G,当点P运动时,求tan∠PCD+tan∠PDC的值.解:(1)设直线OB的解析式为y=kx,∵B(﹣2,3),∴﹣2k=3,∴k=﹣,∴直线OB的解析式为y=﹣x,∵抛物线的顶点为A(﹣1,4),∴设抛物线对应的函数表达式为y=a(x+1)2+4.将B(﹣2,3)代入y=a(x+1)2+4,得:3=a+4,解得:a=﹣1,∴抛物线对应的函数表达式为y=﹣(x+1)2+4,即y=﹣x2﹣2x+3.(2)设M(t,﹣t2﹣2t+3),MN=s,则N的横坐标为t﹣s,纵坐标为﹣(t﹣s),∵,∴x1=﹣2,x2=,∵点M是直线OB的上方抛物线上的点,∴﹣2<t<,∵MN∥x轴,∴﹣t2﹣2t+3=﹣(t﹣s),∴s=﹣+2=﹣,∵﹣2<t<,∴当t=﹣时,MN的最大值为;(3)解:过点P作PQ∥y轴交x轴于Q,设P(t,﹣t2﹣2t+3),则PQ=﹣t2﹣2t+3,CQ=t+3,DQ=1﹣t,∴tan∠PCD+tan∠PDC=,=,=,=1﹣t+t+3,=4.2.如图,抛物线y=x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)若点M是抛物线在x轴下方上的动点,过点M作MN∥y轴交直线BC于点N,求线段MN的最大值;(3)在(2)的条件下,当MN取得最大值时,在抛物线的对称轴l上是否存在点P,使△PBN是等腰三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.解:(1)将点B(3,0)、C(0,3)代入抛物线y=x2+bx+c中,得:,解得:,∴抛物线的解析式为y=x2﹣4x+3.(2)设点M的坐标为(m,m2﹣4m+3),设直线BC的解析式为y=kx+3,把点B(3,0)代入y=kx+3中,得:0=3k+3,解得:k=﹣1,∴直线BC的解析式为y=﹣x+3.∵MN∥y轴,∴点N的坐标为(m,﹣m+3).∵抛物线的解析式为y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的对称轴为x=2,∴点(1,0)在抛物线的图象上,∴1<m<3.∵线段MN=﹣m+3﹣(m2﹣4m+3)=﹣m2+3m=﹣+,∴当m=时,线段MN取最大值,最大值为.(3)假设存在.设点P的坐标为(2,n).当m=时,点N的坐标为(,),∴PB==,PN=,BN==.△PBN为等腰三角形分三种情况:①当PB=PN时,即=,解得:n=,此时点P的坐标为(2,);②当PB=BN时,即=,解得:n=±,此时点P的坐标为(2,﹣)或(2,);③当PN=BN时,即=,解得:n=,此时点P的坐标为(2,)或(2,).综上可知:在抛物线的对称轴l上存在点P,使△PBN是等腰三角形,点P的坐标为(2,)、(2,﹣)、(2,)、(2,)或(2,).3.已知,如图,抛物线与x轴交点坐标为A(1,0),C(﹣3,0),(1)如图1,已知顶点坐标D为(﹣1,4)或B点(0,3),选择适当方法求抛物线的解析式;(2)如图2,在抛物线的对称轴DH上求作一点M,使△ABM的周长最小,并求出点M 的坐标;(3)如图3,将图2中的对称轴向左移动,交x轴于点P(m,0)(﹣3<m<﹣1),与抛物线,线段BC的交点分别为点E、F,用含m的代数式表示线段EF的长度,并求出当m为何值时,线段EF最长.解:(1)由抛物线的顶点D的坐标(﹣1,4)可设其解析式为y=a(x+1)2+4,将点C(﹣3,0)代入,得:4a+4=0,解得a=﹣1,则抛物线解析式为y=﹣(x+1)2+4=﹣x2﹣2x+3;(2)连接BC,交DH于点M,此时△ABM的周长最小,当y=0时,﹣(x+1)2+4=0,解得x=﹣3或x=1,则A(1,0),C(﹣3,0),当x=0时,y=3,则B(0,3),设直线BC的解析式为y=kx+b,将B(0,3),C(﹣3,0)代入得,解得:,∴直线BC解析式为y=x+3,当x=﹣1时,y=﹣1+3=2,所以点M坐标为(﹣1,2);(3)由题意知E(m,﹣m2﹣2m+3),F(m,m+3),则EF=EP﹣FP=﹣m2﹣2m+3﹣(m+3)=﹣m2﹣3m=﹣(m+)2+,∴当m=﹣时,线段EF最长.4.在平面直角坐标系中,直线y=mx﹣2m与x轴,y轴分别交于A,B两点,顶点为D的抛物线y=﹣x2+2mx﹣m2+2与y轴交于点C.(1)如图,当m=2时,点P是抛物线CD段上的一个动点.①求A,B,C,D四点的坐标;②当△PAB面积最大时,求点P的坐标;(2)在y轴上有一点M(0,m),当点C在线段MB上时,①求m的取值范围;②求线段BC长度的最大值.解:(1)∵直线y=mx﹣2m与x轴,y轴分别交于A,B两点,∴A(2,0),B(0,﹣2m);∵y=﹣(x﹣m)2+2,∴抛物线的顶点为D(m,2),令x=0,则y=﹣m2+2,∴C(0,﹣m2+2).①当m=2时,﹣2m=﹣4,﹣m2+2=﹣2,∴B(0,﹣4),C(0,﹣2),D(2,2).②由上可知,直线AB的解析式为:y=2x﹣4,抛物线的解析式为:y=﹣x2+4x﹣2.如图,过点P作PE∥y轴交直线AB于点E,设点P的横坐标为t,∴P(t,﹣t2+4t﹣2),E(t,2t﹣4).∴PE=﹣t2+4t﹣2﹣(2t﹣4)=﹣t2+2t+2,∴△PAB的面积为:×(2﹣0)×(﹣t2+2t+2)=﹣(t﹣1)2+3,∵﹣1<0,∴当t=1时,△PAB的面积的最大值为3.此时P(1,1).(2)由(1)可知,B(0,﹣2m),C(0,﹣m2+2),①∵y轴上有一点M(0,m),点C在线段MB上,∴需要分两种情况:当m≥﹣m2+2≥﹣2m时,可得≤m≤1+,当m≤﹣m2+2≤﹣2m时,可得﹣3≤m≤1﹣,∴m的取值范围为:≤m≤1+或﹣3≤m≤1﹣.②当≤m≤1+时,∵BC=﹣m2+2﹣(﹣2m)=﹣m2+2m+2=﹣(m﹣1)2+3,∴当m=1时,BC的最大值为3;当m≤﹣m2+2≤﹣2m时,即﹣3≤m≤1﹣,∴BC=﹣2m﹣(﹣m2+2)=m2﹣2m﹣2=(m﹣1)2﹣3,当m=﹣3时,点M与点C重合,BC的最大值为13.∴当m=﹣3时,BC的最大值为13.5.如图1,抛物线y=ax2+bx+3与x轴交于A(﹣1,0),B两点,与y轴交于点C,且CO =BO,连接BC.(1)求抛物线的解析式;(2)如图2,抛物线的顶点为D,其对称轴与线段BC交于点E,求线段DE的长度;(3)如图3,垂直于x轴的动直线l分别交抛物线和线段BC于点P和点F,连接CP,CD,抛物线上是否存在点P,使△CDE∽△PCF,如果存在,求出点P的坐标,如果不存在,请说明理由.解:(1)在抛物线y=ax2+bx+3中,令x=0,得y=3,∴C(0,3),∴CO=3,∵CO=BO,∴BO=3,∴B(3,0),∵A(﹣1,0),∴,解得:,∴抛物线的解析式为:y=﹣x2+2x+3;(2)设直线BC的解析式为y=kx+b,∵B(3,0),C(0,3),∴,解得:,∴直线BC的解析式为y=﹣x+3,∵抛物线y=﹣x2+2x+3的顶点D坐标为(1,4),∴当x=1时,y=﹣1+3=2,∴E(1,2),∴DE=2;(3)∵PF∥DE,∴∠CED=∠CFP,当=时,△PCF∽△CDE,由D(1,4),C(0,3),E(1,2),利用勾股定理,可得CE==,DE=4﹣2=2,设点P坐标为(t,﹣t2+2t+3),点F坐标为(t,﹣t+3),∴PF=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t,CF==t,∴=,∵t≠0,∴t=2,当t=2时,﹣t2+2t+3=﹣22+2×2+3=3,∴点P坐标为(2,3).6.如图1,已知在平面直角坐标系xOy中,四边形OABC是边长为3的正方形,其中顶点A,C分别在x轴的正半轴和y轴的正半轴上.抛物线y=﹣x2+bx+c经过A,C两点,与x轴交于另一个点D.(1)①求点A,B,C的坐标;②求b,c的值.(2)若点P是边BC上的一个动点,连结AP,过点P作PM⊥AP,交y轴于点M(如图2所示).当点P在BC上运动时,点M也随之运动.设BP=m,CM=n,试用含m 的代数式表示n,并求出n的最大值.解:(1)①四边形OABC是边长为3的正方形,∴A(3,0),B(3,3),C(0,3);②把A(3,0),C(0,3)代入抛物线y=﹣x2+bx+c中得:,解得:;(2)∵AP⊥PM,∴∠APM=90°,∴∠APB+∠CPM=90°,∵∠B=∠APB+∠BAP=90°,∴∠BAP=∠CPM,∵∠B=∠PCM=90°,∴△MCP∽△PBA,∴=,即=,∴3n=m(3﹣m),∴n=﹣m2+m=﹣(m﹣)2+(0≤m≤3),∵﹣<0,∴当m=时,n的值最大,最大值是.7.已知二次函数y=x2﹣x﹣2的图象和x轴相交于点A、B,与y轴相交于点C,过直线BC 的下方抛物线上一动点P作PQ∥AC交线段BC于点Q,再过P作PE⊥x轴于点E,交BC于点D.(1)求直线AC的解析式;(2)求△PQD周长的最大值;(3)当△PQD的周长最大时,在y轴上有两个动点M、N(M在N的上方),且MN=1,求PN+MN+AM的最小值.解:(1)对于二次函数y=x2﹣x﹣2,令x=0得y=﹣2,令y=0,得x2﹣x﹣2=0,解得x=﹣1或2,∴A(﹣1,0),B(2,0),C(0,﹣2),设直线AC的解析式为y=kx+b,则有,解得,∴直线AC的解析式为y=﹣2x﹣2.(2))∵B(2,0),C(0,﹣2),∴直线BC的解析式为y=x﹣2,OB=OC=2,∴∠OCB=∠OBC=45°,∵PE⊥x轴,∴∠DEB=90°,∴∠EDB=∠QDP=∠EBD=45°,∵PQ∥AC,∴∠PQC=∠ACQ,∴∠PQD,∠PDQ是定值,∴PD最长时,△PDQ的最长最大,设P(m,m2﹣m﹣2),则D(m,m﹣2),∴PD=m﹣2﹣(m2﹣m﹣2)=﹣m2+2m=﹣(m﹣1)2+1,∵﹣1<0,∴m=1时,PD的值最大,PD最大值为1,此时P(1,﹣2),D(1,﹣1),∴直线PQ的解析式为y=﹣2x,由,解得,∴Q(,﹣),∴PD=1,PQ=,DQ=,∴△PDQ的最长的最大值为1++.(3)如图2中,作PP′∥y轴,使得PP′=MN=1,连接AP′交y轴于M,此时PN+NM+AM的值最小.由(2)可知P(1,﹣2),∴P′(1,﹣1),∵A(﹣1,0),∴直线AP′的解析式为y=﹣x﹣,∴M(0,﹣),N(0,﹣),∴AM==,PN==,∴AM+MN+PN的最小值为+1.8.如图,抛物线y=ax2﹣3ax﹣4a(a<0)与x轴交于A,B两点,直线y=x+经过点A,与抛物线的另一个交点为点C,点C的横坐标为3,线段PQ在线段AB上移动,PQ =1,分别过点P、Q作x轴的垂线,交抛物线于E、F,交直线于D,G.(1)求抛物线的解析式;(2)当四边形DEFG为平行四边形时,求出此时点P、Q的坐标;(3)在线段PQ的移动过程中,以D、E、F、G为顶点的四边形面积是否有最大值,若有求出最大值,若没有请说明理由.解:(1)∵点C的横坐标为3,∴y=×3+=2,∴点C的坐标为(3,2),把点C(3,2)代入抛物线,可得2=9a﹣9a﹣4a,解得:a=,∴抛物线的解析式为y=;(2)设点P(m,0),Q(m+1,0),由题意,点D(m,m+)m,E(m,),G(m+1,m+1),F(m+1,),∵四边形DEFG为平行四边形,∴ED=FG,∴()﹣(m+)=()﹣(m+1),即=,∴m=0.5,∴P(0.5,0)、Q(1.5,0);(3)设以D、E、F、G为顶点的四边形面积为S,由(2)可得,S=()×1÷2=(﹣m2+m+)=,∴当m=时,S最大值为,∴以D、E、F、G为顶点的四边形面积有最大值,最大值为.9.如图所示,二次函数y=ax2﹣x+c的图象经过点A(0,1),B(﹣3,),A点在y 轴上,过点B作BC⊥x轴,垂足为点C.(1)求直线AB的解析式和二次函数的解析式;(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;(3)点N是二次函数图象上一点(点N在AB上方),是否存在点N,使得BM与NC 相互垂直平分?若存在,求出所有满足条件的N点的坐标;若不存在,说明理由.解:(1)设直线AB的解析式为:y=kx+b,∴,∴,∴直线AB的解析式为:y=﹣x+1;把A(0,1),B(﹣3,)代入y=ax2﹣x+c得,,∴二次函数的解析式为:y=﹣x2﹣x+1;(2)设点N的坐标为(m,﹣m2﹣m+1)(﹣3<m<0),则点M的坐标为(m,﹣m+1),∴MN=﹣m2﹣m+1﹣(﹣m+1)=﹣m2﹣m+1=﹣(m+)2+,∴当m=﹣时,MN取最大值,最大值为;(3)假设存在,设点N的坐标为(m,﹣m2﹣m+1)(﹣3<m<0),连接BN、CM,如图所示.若要BM与NC相互垂直平分,只需四边形BCMN为菱形即可.∵点B坐标为(﹣3,),点C的坐标为(﹣3,0),∴BC=.∵四边形BCMN为菱形,∴MN=﹣m2﹣m=BC=,解得:m1=﹣2,m2=﹣1.当m=﹣2时,点N的坐标为(﹣2,),∴BN==,BC=,BN≠BC,故m=﹣2(舍去);当m=﹣1时,点N的坐标为(﹣1,4),∴BN==,BC=,BN=BC,∴点N(﹣1,4)符合题意.故存在点N,使得BM与NC相互垂直平分,点N的坐标为(﹣1,4).10.如图所示,抛物线y=ax2+bx﹣3交x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)如图,直线BC下方的抛物线上有一点D,过点D作DE⊥BC于点E,作DF平行x轴交直线BC点F,求△DEF周长的最大值;(3)已知点M是抛物线的顶点,点N是y轴上一点,点Q是坐标平面内一点,若点P 是抛物线上一点,且位于抛物线对称轴的右侧,是否存在以点P、M、N、Q为顶点且以PM为边的正方形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.解:(1)∵抛物线y=ax2+bx﹣3交x轴交于A(﹣1,0),B(3,0)两点,∴解得:∴抛物线的解析式为y=x2﹣2x﹣3(2)∵抛物线y=x2﹣2x﹣3与y轴交于点C∴点C坐标为(0,﹣3)∴直线BC解析式为:y=x﹣3∵点B(3,0),点C(0,﹣3)∴OB=OC=3,∴∠OBC=∠OCB=45°∵DF∥AB,∴∠EFD=45°=∠OBC,∵DE⊥BC,∴∠EFD=∠EDF=45°,∴DE=EF,∴DF=EF,∴EF=DE=DF,∴△DEF周长=DE+EF+DF=(1+)DF,设点D(a,a2﹣2a﹣3),则F(a2﹣2a,a2﹣2a﹣3)∴DF=a﹣a2+2a=﹣a2+3a=﹣(a﹣)2+∴当a=时,DF有最大值为,即△DEF周长有最大值为(1+)×=,(3)存在,如图1,过点M作GH⊥OC,过点P作PH⊥GH,连接MN,PM,∵抛物线的解析式为y=x2﹣2x﹣3=(x﹣1)2﹣4∴点M(1,4)∵以点P、M、N、Q为顶点且以PM为边的正方形,∴PM=MN,∠PMN=90°,∴∠PMH+∠NMG=90°,且∠PMH+∠MPH=90°,∴∠NMG=∠MPH,且MN=PM,∠H=∠NGM=90°,∴△MNG≌△PMH(AAS)∴GM=PH=1,∴点P的纵坐标为﹣3,∴﹣3=x2﹣2x﹣3∴x=0(不合题意舍去),x=2,∴点P的横坐标为2,如图2,过点P作GH⊥AB,过点N作NG⊥GH,过点M作MH⊥GH,易证:△NGP≌△PHM,可得NG=PH,GP=MH,设点P横坐标为a,(a>1)∴NG=PH=a,∴点P纵坐标为﹣4+a,∴﹣4+a=a2﹣2a﹣3∴x=(不合题意舍去),x=综上所述:点P的横坐标为2或11.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE 长度的最大值;(2)在抛物线上是否存在点Q,使得△BDQ中BD边上的高为.若存在,请求出点Q的坐标;若不存在,请说明理由;(3)点G是抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,直接写出所有满足条件的F点坐标;如果不存在,请说明理由.解:(1)令y=0,解得x=﹣1或x=3,∴A(﹣1,0),B(3,0);将C点的横坐标x=2代入y=x2﹣2x﹣3得y=﹣3,则C(2,﹣3),设直线AC的表达式为y=kx+b,则,解得,∴直线AC的函数解析式是y=﹣x﹣1,设P点的横坐标为x(﹣1≤x≤2),则P、E的坐标分别为:P(x,﹣x﹣1),E(x,x2﹣2x﹣3),∵P点在E点的上方,PE=(﹣x﹣1)﹣(x2﹣2x﹣3)=﹣x2+x+2,∴当x=时,PE的最大值=;(2)存在,点Q的坐标为:(﹣1,0)或(4,5);令x=0,则y=x2﹣2x﹣3=﹣3,即D(0,﹣3),由B(3,0),D(0,﹣3)得到直线BD的解析式是y=x﹣3,如上图,过点Q作QE⊥BD交BD的延长线于点E,则QE=2,过点Q作QN⊥x轴于点N,交BD于点H,由直线BD的表达式知,∠HBN=45°=∠QHE,则QH=QE==4,设点Q(m,m,m2﹣2m﹣3),则点H(m,m﹣3),则QH=|y Q﹣y H|=4,即m2﹣2m﹣3﹣(m﹣3)=±4,解得m=﹣1或4,∴Q的坐标为:(﹣1,0)或(4,5);(3)存在,点F的坐标为(1,0)或(﹣3,0)或(4+,0)或(4﹣,0),理由:设点F的坐标为(x,0),点G的坐标为(m,m2﹣2m﹣3),而点A、C的坐标分别为(﹣1,0)、(2,﹣3),①当AC为平行四边形的对角线时,由中点坐标公式得:,解得(舍去),故点F的坐标为(1,0);②当AF为平行四边形的对角线时,由中点坐标公式得解得,即点F的坐标为(4+,0)或(4﹣,0);③当AG为平行四边形的对角线时,由中点坐标公式得,解得(舍去),故点F的坐标为(﹣3,0),综上,点F的坐标为(1,0)或(﹣3,0)或(4+,0)或(4﹣,0).12.已知抛物线y=ax2+2x+c(a≠0)与x轴交于点A(﹣1,0)和点B,与直线y=﹣x+3交于点B和点C,M为抛物线的顶点,直线ME是抛物线的对称轴.(1)求抛物线的解析式及点M的坐标.(2)点P为直线BC上方抛物线上一点,设d为点P到直线CB的距离,当d有最大值时,求点P的坐标.(3)若点F为直线BC上一点,作点A关于y轴的对称点A',连接A'C,A'F,当△FA'C 是直角三角形时,直接写出点F的坐标.解:(1)直线y=﹣x+3过点B和点C,则点B、C的坐标分别为:(3,0)、(0,3),抛物线的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),故﹣2a=2,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+3,函数的对称轴为:x=1,当x=1时,y=4,故点M(1,4);(2)过点P作y轴的平行线交BC于点H,过点P作PD⊥BC于点D,OC=OB=3,则∠DPH=∠CBA=45°,设点P(x,﹣x2+2x+3),则点H(x,﹣x+3),d=PD=PH=(﹣x2+2x+3+x﹣3)=(﹣x2+3x),∵<0,故d有最大值,此时x=,则点P(,);(3)点A关于y轴的对称点A'(1,0),设点F(m,3﹣m),而点C(0,3),A′C2=10,A′F2=(m﹣1)2+(3﹣m)2,FC2=2m2,由题目知,∠A′CF≠90°,则当△FA'C是直角三角形时,分以下两种情况:当CF为斜边时,即10+(m﹣1)2+(3﹣m)2=2m2,解得:m=;当A′C为斜边时,同理可得:m=2,故点F的坐标为:(,)或(2,1).13.如图①,已知抛物线C1:y=a(x+1)2﹣4的顶点为C,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1.(1)求点C的坐标及a的值;(2)如图②,抛物线C2与C1关于x轴对称,将抛物线C2向右平移4个单位,得到抛物线C3.C3与x轴交于点B、E,点P是直线CE上方抛物线C3上的一个动点,过点P 作y轴的平行线,交CE于点F.①求线段PF长的最大值;②若PE=EF,求点P的坐标.解:(1)顶点C为(﹣1,﹣4).∵点B(1,0)在抛物线C1上,∴0=a(1+1)2﹣4,解得,a=1;(2)①∵C2与C1关于x轴对称,∴抛物线C2的表达式为y=﹣(x+1)2+4,抛物线C3由C2平移得到,∴抛物线C3为y=﹣(x﹣3)2+4=﹣x2+6x﹣5,∴E(5,0),设直线CE的解析式为:y=kx+b,则,解得,∴直线CE的解析式为y=x﹣,设P(x,﹣x2+6x﹣5),则F(x,x﹣),∴PF=(﹣x2+6x﹣5)﹣(x﹣)=﹣x2+x﹣=﹣(x﹣)2+,∴当x=时,PF有最大值为;②若PE=EF,∵PF⊥x轴,∴x轴平分PF,∴﹣x2+6x﹣5=﹣x+,解得x1=,x2=5(舍去)∴P(,).14.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a>0)与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P为直线BC下方抛物线上的一动点,PM⊥BC于点M,PN∥y轴交BC于点N.求线段PM的最大值和此时点P的坐标;(3)点E为x轴上一动点,点Q为抛物线上一动点,是否存在以CQ为斜边的等腰直角三角形CEQ?若存在,请直接写出点E的坐标;若不存在,请说明理由.解:(1)将A(﹣1,0),B(3,0)代入函数y=ax2+bx﹣3(a>0)中,得,解得,∴解析式为y=x2﹣2x﹣3,故抛物线解析式为y=x2﹣2x﹣3;(2)当x=0时,y=3,∴C(0,﹣3),∵B(3,0),∴∠OCB=∠OBC=45°,∵PN∥y轴,∴∠MNP=45°,∵PM⊥BC,∴PM=PN,则当PN最大时,PM也最大,设BC的解析式为y=mx+n,∴,解得,∴BC解析式为y=x﹣3,设P(x,x2﹣2x﹣3),N(x,x﹣3),∴PN=x﹣3﹣(x2﹣2x﹣3)=﹣(x﹣)2+,当x=时,PN最大,则PM=PN=×=,∴P(,),故PM最大值为,P点坐标为(,﹣);(3)存在,点E的坐标为(﹣5,0),(,0),(0,0),(,0).∵CEQ是以CQ为斜边的等腰直角三角形,∴设Q(x,x2﹣2x﹣3),①如图,过点E作x轴的垂线l,再分别过点C和点Q作垂线l的垂线,分别交于点M 和点N,∵∠CEQ=90°,∴∠QEM+∠CEN=90°,∵∠QEM+∠MQE=90°,∴∠EQM=∠CEN,∵∠CNE=∠QME=90°,EC=EQ,∴△EMQ≌△CNE(AAS),∴CN=EM=x2﹣2x﹣3,MQ=EN=3,∴|x Q|+MQ=CN,﹣x+3=x2﹣2x﹣3,解得x=﹣2,x=3(舍去),∴OE=CM=2+3=5,E(﹣5,0),②如图,过点E作x轴的垂线l,再分别过点C和点Q作垂线l的垂线,分别交于点M 和点N,同理:△EMC≌△QNE(AAS),CM=EN=x2﹣2x﹣3,NQ=EM=3,∴﹣x+x2﹣2x﹣3=3,解得x=,x=(舍去),∴OE=CM=,E(,0),③如图,点E和点O重合,点Q和点B重合,此时E(0,0),④如图,过点E作x轴的垂线l,再分别过点C和点Q作垂线l的垂线,分别交于点M和点N,同理:△EMC≌△QNE(AAS),CM=EN=x2﹣2x﹣3,NQ=EM=3,∴x+3=x2﹣2x﹣3,解得x=,x=(舍去),∴OE=CM=,E(,0),综上所述,点E的坐标为(﹣5,0),(,0),(0,0),(,0).15.已知抛物线C:y=ax2+bx+c(a>0,c<0)的对称轴为x=4,C为顶点,且A(2,0),C(4,﹣2)【问题背景】求出抛物线C的解析式.【尝试探索】如图2,作点C关于x轴的对称点C′,连接BC′,作直线x=k交BC′于点M,交抛物线C于点N.①连接ND,若四边形MNDC′是平行四边形,求出k的值.②当线段MN在抛物线C与直线BC′围成的封闭图形内部或边界上时,请直接写出线段MN的长度的最大值.【拓展延伸】如图4,作矩形HGOE,且E(﹣3,0),H(﹣3,4),现将其沿x轴以1个单位每秒的速度向右平移,设运动时间为t,得到矩形H′G′O′E′,连接AC′,若矩形H′G′O′E′与直线AC′和抛物线C围成的封闭图形有公共部分,请求出t的取值范围.解:【问题背景】A(2,0),对称轴为x=4,则点B(6,0),则抛物线的表达式为:y=a(x﹣2)(x﹣6),将点C的坐标代入上式得:﹣2=a(4﹣2)•(4﹣6),解得:a=,故抛物线的表达式为:…①;【尝试探索】①点C′(4,2),由点B、C′的坐标可得,直线BC′的表达式为:y=﹣x+6…②,四边形MNDC′是平行四边形,则MN=DC′=2,设点N的坐标为:(x,k2﹣4k+6),则点M(k,﹣k+6),即|k2﹣4k+6﹣(﹣k+6)|=2,解得:k=3或3,故k的值为:;②联立①②并解得:x=0或6,故抛物线C与直线BC′围成的封闭图形对应的k值取值范围为:0≤k≤6,MN=(﹣k+6)﹣(k2﹣4k+6)=﹣k2+3k,∵0,故MN有最大值,最大值为;【拓展延伸】由点A、C′的坐标得,直线AC′表达式为:y=x﹣2…③,联立①③并解得:x=2或8,即封闭区间对应的x取值范围为:2≤x≤8,(Ⅰ)当t=2时,矩形过点A,此时矩形H′G′O′E′与直线AC′和抛物线C围成的封闭图形有公共部分,(Ⅱ)当H′E′与对称轴右侧抛物线有交点时,此时y=H′E′=4,即x2﹣4x+6=4,解得:x=4(舍去4﹣2),即x=4+2,则t=3+4+2=7+2,故t的取值范围为:2≤t≤.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、二次函数线段最值问题
1、平行于x轴的线段最值问题
1)首先表示出线段两个端点的坐标
2)用右侧端点的横坐标减去左侧端点的横坐标
3)得到一个线段长关于自变量的二次函数
4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值
2、平行于y轴的线段最值问题
1)首先表示出线段两个端点的坐标
2)用上面端点的纵坐标减去下面端点的纵坐标
3)得到一个线段长关于自变量的二次函数解析式
4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值
3、既不平行于x轴,又不平行于y轴的线段最值问题
1)以此线段为斜边构造一个直角三角形,并使此直角三角形的两条直角边分别平行于
x轴、y轴
2)根据线段两个端点的坐标表示出直角顶点坐标
3)根据“上减下,右减左”分别表示出两直角边长
4)根据勾股定理表示出斜边的平方(即两直角边的平方和)
5)得到一个斜边的平方关于自变量的二次函数
6)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值
7)根据所求得的斜边平方的最值求出斜边的最值即可
二、二次函数周长最值问题
1、矩形周长最值问题
1)一般会给出一点落在抛物线上,从这点向两坐标轴引垂线构成一个矩形,求其周长
最值
2)可先设此点坐标,点p到x轴、y轴的距离和再乘以2,即为周长
3)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值
2、利用两点之间线段最短求三角形周长最值
1)首先判断图形中那些边是定值,哪些边是变量
2)利用二次函数轴对称性及两点之间线段最短找到两条变化的边,并求其和的最小值
3)周长最小值即为两条变化的边的和最小值加上不变的边长
三、二次函数面积最值问题
1、规则图形面积最值问题(这里规则图形指三角形必有一边平行于坐标轴,四边形必有一
组对边平行于坐标轴)
1)首先表示出所需的边长及高
2)利用求面积公式表示出面积
3)得到一个面积关于自变量的二次函数
4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值
2、不规则图形面积最值问题
1)分割。将已有的不规则图形经过分割后得到几个规则图形
2)再分别表示出分割后的几个规则图形面积,求和
3)得到一个面积关于自变量的二次函数
4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值
或1)利用大减小,不规则图形的面积可由规则的图形面积减去一个或几个规则小图形的
面积来得到
2)得到一个面积关于自变量的二次函数
3)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值