八年级数学-一次函数最值的应用例说

合集下载

一次函数的应用

一次函数的应用
(2)设 CD 段的函数解析式为 y=kx+b,将 C(2.5,80),D(4.5,300) 两点的坐标代入,运用待定系数法即可求解;
(3)设货车从甲地出发 x 小时后再与轿车相遇,根据轿车(x-4.5)小时 行驶的路程+货车 x 小时行驶的路程=300 千米列出方程,解方程即可.
考点聚焦
归类探究
回归教材
例 1 [2013·山西] 某校实行学案式教学,需印制若干份数学 学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外, 甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用 y(元)与印刷份数 x(份)之间的关系如图 11-1 所示:
考点聚焦
归类探究
回归教材
(1)填空:甲种收费方式的函数关系式是__y_甲__=__0_.1_x_+___6; 乙种收费方式的函数关系式是___y_乙_=__0_._1_2_x.
段函数是解决问题的关键,一般应从如下几方面入手:(1)寻找分段 函数的分界点;(2)针对每一段函数关系,求解相应的函数解析式; (3)利用条件求未知问题.
考点聚焦
归类探究
回归教材
探究三 利用一次函数解决其他生活实际问题
命题角度: 函数图象在实际生活中的应用.
例 3 甲、乙两地相距 300 千米,一辆货车和一辆轿车先后 从甲地出发向乙地,如图 11-3,线段 OA 表示货车离甲地距 离 y(千米)与时间 x(小时)之间的函数关系;折线 BCD 表示轿车 离甲地距离 y(千米)与 x(小时)之间的函数关系.请根据图象解 答下列问题:
度上升和下降阶段 y 与 x 之间的函数关 系式.
图 11-4
考点聚焦
归类探究
回归教材
解:(1)由图象知,服药后 3 小时血液中药物浓度最高. (2)当 0≤t≤3 时,函数为正比例函数,设关系式为 y=kx(k≠0),

北师大版数学八年级上册4《一次函数的应用》说课稿3

北师大版数学八年级上册4《一次函数的应用》说课稿3

北师大版数学八年级上册4《一次函数的应用》说课稿3一. 教材分析《一次函数的应用》是北师大版数学八年级上册第4节的内容。

本节主要让学生了解一次函数在实际生活中的应用,学会用一次函数解决实际问题。

教材通过实例引导学生认识一次函数的图像和性质,以及如何用一次函数解决实际问题。

二. 学情分析八年级的学生已经学习了初中数学的前置知识,对函数的概念和性质有了一定的了解。

但学生在解决实际问题时,往往不知道如何将数学知识与实际问题相结合。

因此,在教学过程中,教师需要引导学生将数学知识运用到实际问题中,提高学生的应用能力。

三. 说教学目标1.让学生了解一次函数在实际生活中的应用,体会数学与生活的紧密联系。

2.培养学生用数学的眼光观察生活,提高学生的数学应用能力。

3.帮助学生掌握一次函数的图像和性质,为后续学习打下基础。

四. 说教学重难点1.教学重点:一次函数在实际生活中的应用,一次函数的图像和性质。

2.教学难点:如何将一次函数与实际问题相结合,解决实际问题。

五. 说教学方法与手段1.采用问题驱动的教学方法,引导学生从实际问题中发现数学规律。

2.利用多媒体课件,展示一次函数的图像,帮助学生直观理解一次函数的性质。

3.创设生活情境,让学生在实践中感受一次函数的应用。

4.分组讨论与合作,培养学生团队合作精神,提高学生的解决问题能力。

六. 说教学过程1.导入:通过展示实际问题,引导学生思考如何用数学知识解决问题。

2.新课导入:介绍一次函数的定义和性质,让学生了解一次函数的基本概念。

3.实例讲解:通过生活实例,讲解一次函数在实际中的应用,让学生体会数学与生活的联系。

4.课堂练习:让学生独立解决实际问题,巩固一次函数的应用。

5.分组讨论:让学生围绕实际问题展开讨论,探讨如何用一次函数解决问题。

6.总结提升:总结一次函数的图像和性质,强化学生对一次函数的认识。

7.课后作业:布置相关练习题,巩固课堂所学知识。

七. 说板书设计板书设计应突出一次函数的图像和性质,以及一次函数在实际中的应用。

一次函数的最值与极值

 一次函数的最值与极值

一次函数的最值与极值一次函数是数学中最简单的函数之一,也是初中数学必学的知识点之一。

研究一次函数的最值和极值有助于我们深入理解函数的变化规律,更好地解决数学问题。

本文将简要介绍一次函数最值和极值的概念,以及如何求解它们。

一、最值和极值的概念1. 最值最值是函数在定义域内的最大值和最小值。

例如设函数 f(x) 在区间 [a, b] 上有定义,如果对于任何 x ∈ [a, b],都有f(x) ≤ f(x0)(或f(x) ≥ f(x0)),则称 f(x0) 是 f(x) 在 [a, b] 上的最小值(或最大值),而 f(x) 在 [a, b] 上的最小值和最大值统称为 f(x) 在 [a, b] 上的最值。

2. 极值极值是函数在某个点处取得的最值。

设函数f(x) 的定义域为I,x0 ∈ I,如果存在ε > 0,对于任何 x ∈ I∩(x0 - ε, x0) 或 x ∈ I∩(x0, x0 + ε),都有f(x) ≤ f(x0),则称 f(x0) 是 f(x) 的一个极大值点;如果存在ε > 0,对于任何 x ∈ I∩(x0 - ε, x0) 或 x ∈ I∩(x0, x0 + ε),都有f(x) ≥ f(x0),则称 f(x0) 是 f(x) 的一个极小值点。

二、如何求解一次函数的最值和极值我们知道,一次函数是指形如 y = kx + b 的函数,其中 k 和 b是常数。

因此,一次函数最值和极值的求解相对较为简单。

我们可以根据以下步骤来求解。

1. 最值首先,我们需要分析一次函数的单调性,并确定函数的最小值和最大值。

根据定义可知,当 k > 0 时,函数单调增加,最小值在定义域最小处取得;当 k < 0 时,函数单调减少,最大值在定义域最小处取得。

2. 极值对于一次函数来说,由于其呈直线形状,每个点的斜率都是一致的,因此其不存在极值。

三、例题解析1. 求函数 y = 2x + 1 在区间 [-1, 2] 上的最大值和最小值。

一次函数的函数图像与方程解析解的实际应用

一次函数的函数图像与方程解析解的实际应用

一次函数的函数图像与方程解析解的实际应用一次函数是数学中常见的一种函数类型,它可以表示为y = ax + b的形式,其中a和b为已知值,x和y为自变量和因变量。

在这篇文章中,我们将讨论一次函数的函数图像以及如何使用方程解析解来解决实际应用问题。

一、一次函数的函数图像一次函数的函数图像是一条直线,其斜率确定了直线的倾斜程度,截距则决定了直线与y轴的交点。

根据斜率的正负,可以判断直线是上升还是下降。

下面我们来看几个具体的例子。

1. 实例一:y = 2x + 1这个函数表示了一个斜率为2,截距为1的直线。

根据斜率的正值,我们知道这条直线上升。

当x增加1个单位时,y增加2个单位。

当x减小1个单位时,y减小2个单位。

通过这些关系,我们可以画出该函数的函数图像。

2. 实例二:y = -3x + 2这个函数表示了一个斜率为-3,截距为2的直线。

根据斜率的负值,我们知道这条直线下降。

当x增加1个单位时,y减小3个单位。

当x减小1个单位时,y增加3个单位。

同样地,我们可以通过这些关系画出该函数的函数图像。

通过观察这些例子,我们可以发现直线的倾斜程度(斜率)以及它与y轴的交点(截距)等信息可以从一次函数的解析解中推导出来。

这样,我们可以在解析解的基础上直观地了解一次函数的函数图像。

二、一次函数方程解析解的实际应用一次函数的解析解除了可以用来绘制函数图像之外,还可以应用于解决实际问题。

我们将通过以下两个实际应用问题来说明。

1. 实例一:销售收入问题假设一个公司以每件产品x销售价y的方式进行销售。

已知该公司每个月的固定成本是1000元,每件产品的可变成本是30元。

我们希望找到销售多少件产品时,公司能够实现盈亏平衡。

根据以上信息,我们可以写出一次函数的方程:总收入 = 总成本根据题意,总收入为yx,总成本为1000 + 30x。

将它们相等并整理方程,可得:yx = 1000 + 30x解这个一次方程,我们可以求得x的解析解。

初中数学函数教学研究—以一次函数为例

初中数学函数教学研究—以一次函数为例

228 爱因斯坦曾说过:“教育应该使提供的东西,让学生直接轻松地作为一种宝贵的礼物来享受,留下深刻印象,而不是作为一种艰苦的任务要他负担。

”因而在讲解新课时要求老师在重点、难点讲解阶段,由浅入深、由易到难、由具体到抽象,这就需要运用多媒体的形象具体、动静结合,来展示事物发展或定理推理的全过程,将抽象的、理论的东西形象化,将空间的、难以想象的内容平面化。

解决教师难以讲清、学生难以听懂的内容,从而有效地突出重点,突破难点,实现精讲精练。

例如在讲解圆锥曲线的统一定义时,为使学生更好地体会圆锥曲线是怎样随着e的变化而发生变化的,笔者利用FLASH动画展示曲线的形状随着e的变化而改变,使学生能快速理解圆锥曲线之间的区别与联系,真正掌握圆锥曲线的性质及应用。

多媒体是现代化的教学手段和教育工具,具有很多优点,在高中数学教学过程中,应该适时、适当的使用多媒体技术,掌握多媒体的使用规律,才能优化课堂结构,激发学生的兴趣和思维,才能够收到良好的教学效果。

如果违背多媒体的应用规律和数学教学规律,那么就会减少学生独立思考和解决问题的时间,制约学生能力的发展。

总之,只有合理运用,多媒体才能够发挥其在教育教学中的最佳的辅助性作用。

参考文献[1]李秀春.浅谈多媒体辅助高中数学教学[J].在线教育,2011(5):2-9.[2]张洪武.初探多媒体辅助高中数学教学[J].青少年日记(教育教学研究),2012(11):13-18.初中数学函数教学研究—以一次函数为例■徐晓光 (广东省深圳市龙华区外国语学校 518110)【摘 要】函数是中学数学教学的一条主线,同时是教学的重点及难点。

函数是用运动、变化的观点来分析问题中的数量关系,是量化地描述运动变化现象的重要数学模型,它刻画了变化过程中变量之间的对应关系。

本文以一次函数教学为例来研究函数,把握函数的本质概念,体会数形结合思想,对以后研究函数的图象及性质至关重要,同时为以后学习二次函数、反比例函数等打下基础。

北师大版八年级上册一次函数的应用说课稿

北师大版八年级上册一次函数的应用说课稿

北师大版八年级上册一次函数的应用说课稿一. 教材分析北师大版八年级上册数学教材中,一次函数的应用是本节课的主要内容。

一次函数是初中数学中的重要知识点,也是解决实际问题的重要工具。

本节课通过引入一次函数的概念和性质,使学生能够理解和掌握一次函数的基本特征,并能够运用一次函数解决实际问题。

二. 学情分析学生在学习本节课之前,已经学习了代数知识,对数学概念和符号有一定的理解。

但是,对于一次函数的应用,学生可能还比较陌生,需要通过实例和练习来逐渐理解和掌握。

此外,学生可能对于解决实际问题感到困惑,需要教师进行引导和指导。

三. 说教学目标1.知识与技能目标:学生能够理解一次函数的概念和性质,能够运用一次函数解决实际问题。

2.过程与方法目标:学生能够通过实例和练习,掌握一次函数的应用方法,培养解决实际问题的能力。

3.情感态度与价值观目标:学生能够对数学产生兴趣和自信心,培养积极的学习态度和合作精神。

四. 说教学重难点1.教学重点:一次函数的概念和性质,一次函数的应用方法。

2.教学难点:一次函数在实际问题中的应用,理解函数的图像和性质。

五. 说教学方法与手段1.教学方法:采用问题驱动的教学方法,通过实例和练习,引导学生自主学习和合作学习。

2.教学手段:利用多媒体课件和板书,展示一次函数的图像和性质,帮助学生直观理解。

六. 说教学过程1.导入:通过引入一次函数的实例,激发学生的兴趣,引导学生思考一次函数的应用。

2.新课导入:介绍一次函数的概念和性质,引导学生通过实例和练习来理解和掌握一次函数的应用方法。

3.课堂讲解:通过多媒体课件和板书,展示一次函数的图像和性质,引导学生直观理解。

4.练习与讨论:学生进行练习,教师进行个别指导和解答疑问,引导学生通过合作学习来解决问题。

5.总结与反思:教师引导学生总结一次函数的应用方法,反思自己在学习过程中的收获和不足。

七. 说板书设计板书设计要简洁明了,突出一次函数的概念和性质,以及一次函数的应用方法。

北师版一次函数的应用说课稿9篇

北师版一次函数的应用说课稿9篇

北师版一次函数的应用说课稿9篇北师版一次函数的应用说课稿9篇说课稿的撰写应该与教材内容有机结合,形成统一的教学体系和教学评价体系,并包括相关的教学调整和教学反思。

通过不断地讲解和反思,进一步提高自身的教学水平和教学效果。

现在随着小编一起往下看看北师版一次函数的应用说课稿,希望你喜欢。

北师版一次函数的应用说课稿精选篇1大家好!我今天说课的内容是八年级上册第七章第三节《一次函数》第1课时,下面我将从教材分析、教法学法分析、教学过程分析和设计说明等几个环节对本节课进行说明。

一、教材分析1、教材地位和作用本节课是在学生学习了常量和变量及函数的基本概念的基础上学习的,学好一次函数的概念将为接下来学习一次函数的图象和应用打下坚实的基础,同时也有利于以后学习反比例函数和二次函数,所以学好本节内容至关重要。

2、教学目标分析根据新课程标准,我确定以下教学目标:知识和技能目标:理解正比例函数和一次函数的概念,会根据数量关系求正比例函数和一次函数的解析式。

过程和方法目标:经历一次函数、正比例函数的形成过程,培养学生的观察能力和总结归纳能力。

情感和态度目标:运用函数可以解决生活中的一些复杂问题,使学生体会到了数学的使用价值,同时也激发了学生的学习兴趣。

3、教学重难点本节教学重点是一次函数、正比例函数的概念和解析式,由于例2的问题情境比较复杂,学生缺乏这方面的经验,是本节教学的难点。

二、教法学法分析八年级的学生具备一定的归纳总结和表达能力,所以本节课采用创设情境,归纳总结和自主探索的学习方式,让学生积极主动地参与到学习活动中去,成为学习的主体,同时教师引导性讲解也是不可缺少的教学手段。

根据教材的特点,为了更有效地突出重点,突破难点,采用了现代教学技术————多媒体和实物投影。

三、教学过程分析本节教学过程分为:创设情境,引入新课→归纳总结,得出概念→运用概念体验成功→梳理概括,归纳小结→布置作业,巩固提高。

为了引入新课,我创设了以下四个问题情境,请学生列出函数关系式:(1)梨子的单价为6元/千克,买t千克梨子需m元钱,则m与t的函数关系式为m=6t(2)小明站在广场中心,记向东为正,若他以2千米/时的速度向正西方向行走x小时,则他离开广场中心的距离y与x之间的函数关系式为y=—2x (3)小芳的储蓄罐里原来有3元钱,现在她打算每天存入储蓄罐2元钱,则x天后小芳的储蓄罐里有y元钱,那么y与x之间的函数关系式为y=2x+3 (4)游泳池里原有水936立方米,现以每小时312立方米的速度将水放出,设放水时间为t时,游泳池内的存水量为Q立方米,则Q关于是t的函数关系式为Q=936—312t然后请学生观察这些函数,它们有哪些共同特征?m=6t;y=—2x;y=2x+3;Q=936—312t学生们各抒己见,最后由教师引导学生得出:它们中含自变量的代数式都是整式,并且自变量的次数都是一次。

初二一次函数经典例题

初二一次函数经典例题

初二一次函数经典例题一、题目背景在初中数学中,学生常常遇到关于一次函数的问题。

一次函数是一种非常基础的函数类型,在数学中具有很重要的地位。

通过学习一次函数的性质和应用,可以为学生建立起一种较为系统的数学思维方式和解决问题的方法。

本文将给出一些初二一次函数的经典例题,以帮助学生更好地理解一次函数的概念和应用。

二、例题一题目:某种商品的价格与销量之间存在一种线性关系,已知当销量为0时,价格为100元;当销量为200时,价格为50元。

那么销量为350时,价格是多少元?解析:我们可以设商品的价格为P,销量为S。

根据题目中给出的信息,可以列出两个点的坐标:(0, 100)和(200, 50)。

由于这两个点在直线上,我们可以利用直线的斜率公式来求解。

首先,我们需要计算出直线的斜率k。

斜率可以通过两个点的纵坐标之差除以横坐标之差来计算。

在这个例子中,斜率k为:k = (50 - 100) / (200 - 0) = -50 / 200 = -1/4接下来,我们可以利用直线的斜截式方程来求解。

斜截式方程的一般形式为:y = kx + b,其中k为斜率,b为截距。

已知斜率k为-1/4,我们可以将一个已知点的坐标代入方程来求解截距b。

以(0, 100)代入方程:100 = (-1/4) * 0 + b,可以得到b = 100。

因此,直线的方程为:y = (-1/4)x + 100。

最后,我们可以代入销量为350的坐标x = 350,得到价格y = (-1/4) * 350 + 100 = 25。

所以销量为350时,价格为25元。

三、例题二题目:某家电商网站进行促销活动,设定了一次函数来计算用户购买商品的折扣。

已知当购买1件商品时,折扣为10%;当购买10件商品时,折扣为30%。

那么购买20件商品时,折扣是多少?解析:同样地,我们可以设折扣为D,购买商品的数量为N。

根据题目中给出的信息,可以列出两个点的坐标:(1, 0.1)和(10, 0.3)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学-一次函数最值的应用例说
在经济问题中,常会遇到求函数的最大值和最小值问题,如求最大利润、最小成本、确定最优的生产方案等问题,以图达到最经济、最节约和最高的经济效率.
谈到最值问题,人们关心的是二次函数的最值问题.而对一次函数最值的应用问题却很少了解,但在实际问题中,一次函数的最值的应用极为广泛.
一次函数y=kx+b(k≠0)的自变量x的取值范围是一切实数,所以一次函数没有最大(小)值,但是,当自变量在某个闭区间a≤x≤b内取值时(a,b为实数),一次函数y =kx+b却存在着最大(小)值.
例1 20个农场职工种50亩地,这些地可以种蔬菜、棉花或水稻,如果种这些农作物每亩地所需的职工和预计的产值如下:
问怎样安排,才能使每亩地都种上作物,所有职工都有工作,而且农作物的预计总产值达到最高?
解设种蔬菜、棉花、水稻的土地分别为x亩、y亩、z亩,预计总产值为w元.根据已知条件,得:
x+y+z=50, (1)
W=1100x+750y+600z. (3)
由(1)、(2)可得:
y=90-3x (4)
z =2x-40 (5)
把(4)、(5)代入(3)得:
W=50x+43500.
由x≥0,y =90-3x≥0,z=2x-40≥0得:
20≤x≤30.
所以当x=30时,W取最大值45000元
此时y =0,z =20.
即种30亩蔬菜,20亩水稻才能使预计总产值最高,可达45000元.
例2 48人划船,每只小船坐3人,租金2元;每只大船坐5人,租金3元,最少要付租金多少元?
解设用x只大船,y只小船;要付租金W元.
由题意可知:
5x+3y =48, (1)
W =3x+2y. (2)
把(3)代入(2)得:
W=3x+2y
由于人数是48人,每只大船坐5人,由此可知:0<5x<48,得0<x<10,要使W最小,x应取最大整数值.即当x =9时,W的值最小.
答:最少要付租金29元.
例3 在边防沙漠地带,巡逻车每天行驶200公里,每辆巡逻车可装载供行驶14天的汽油.现有5辆巡逻车同时从驻地A出发,完成任务后再沿原路返回驻地,为了让其中三辆尽可能向更远的距离巡逻(然后再一起返回),甲、乙两车行至途中B处后,仅留足自己返回驻地所必须的汽油,将多余的汽油留给另外三辆使用,问其它三辆车可行进的最远距离是多少公里?(1995年河北省初中数学联合竞赛试题)
解设巡逻车行驶到途中B处时用了x天,其中的三辆车从B到最远处用y天,则有2[3(x+y)+2x]=14×5,
即 5x+3y=35。

(1)
由题意可知x>0,y>0且
14×5-(5+2)x≤14×3
即x≥4.
要使行进的距离最远,即求y的最大值,由上式可知此时x应取最小值.即x=4,
∴y=5.
这样200×(4+5)=1800(公里).
即为其它三辆车可行进的最远距离.
内蒙古自治区通辽市大林镇马家中学包双喜韩才。

相关文档
最新文档