中考数学压轴题100题(附答案)

中考数学压轴题100题(附答案)

一、中考压轴题

1.如图,△ABC内接于⊙O,AB=6,AC=4,D是AB边上一点,P是优弧BAC的中点,连接P A、PB、PC、PD.

(1)当BD的长度为多少时,△P AD是以AD为底边的等腰三角形?并证明;

(2)在(1)的条件下,若cos∠PCB=,求P A的长.

【分析】(1)根据等弧对等弦以及全等三角形的判定和性质进行求解;

(2)过点P作PE⊥AD于E.根据锐角三角函数的知识和垂径定理进行求解.

【解答】解:(1)当BD=AC=4时,△P AD是以AD为底边的等腰三角形.

∵P是优弧BAC的中点,

∴=.

∴PB=PC.

又∵∠PBD=∠PCA(圆周角定理),

∴当BD=AC=4,△PBD≌△PCA.

∴P A=PD,即△P AD是以AD为底边的等腰三角形.

(2)过点P作PE⊥AD于E,

由(1)可知,

当BD=4时,PD=P A,AD=AB﹣BD=6﹣4=2,

则AE=AD=1.

∵∠PCB=∠P AD(在同圆或等圆中,同弧所对的圆周角相等),

∴cos∠P AD=cos∠PCB=,

∴P A=.

【点评】综合运用了等弧对等弦的性质、全等三角形的判定和性质、锐角三角函数的知识以及垂径定理.

2.如图,一次函数y=﹣x﹣2的图象分别交x轴、y轴于A、B两点,P为AB的中点,PC⊥x轴于点C,延长PC交反比例函数y=(x<0)的图象于点Q,且tan∠AOQ=.

(1)求k的值;

(2)连接OP、AQ,求证:四边形APOQ是菱形.

【分析】(1)由一次函数解析式确定A点坐标,进而确定C,Q的坐标,将Q的坐标代入反比例函数关系式可求出k的值.

(2)由(1)可分别确定QC=CP,AC=OC,且QP垂直平分AO,故可证明四边形APOQ是菱形.

【解答】(1)解:∵y=﹣x﹣2

令y=0,得x=﹣4,即A(﹣4,0)

由P为AB的中点,PC⊥x轴可知C点坐标为(﹣2,0)

又∵tan∠AOQ=可知QC=1

∴Q点坐标为(﹣2,1)

将Q点坐标代入反比例函数得:1=,

∴可得k=﹣2;

(2)证明:由(1)可知QC=PC=1,AC=CO=2,且A0⊥PQ

∴四边形APOQ是菱形.

【点评】本题考查了待定系数法求函数解析式,又结合了几何图形进行考查,属于综合性比较强的题目,有一定难度.

3.某公司经营杨梅业务,以3万元/吨的价格向农户收购杨梅后,分拣成A、B两类,A类杨梅包装后直接销售;B类杨梅深加工后再销售.A类杨梅的包装成本为1万元/吨,根据市场调查,它的平均销售价格y(单位:万元/吨)与销售数量x(x≥2)之间的函数关系如图;B类杨梅深加工总费用s(单位:万元)与加工数量t(单位:吨)之间的函数关系是s=12+3t,平均销售价格为9万元/吨.

(1)直接写出A类杨梅平均销售价格y与销售量x之间的函数关系式;

(2)第一次,该公司收购了20吨杨梅,其中A类杨梅有x吨,经营这批杨梅所获得的毛利润为w万元(毛利润=销售总收入﹣经营总成本).

①求w关于x的函数关系式;

②若该公司获得了30万元毛利润,问:用于直销的A类杨梅有多少吨?

(3)第二次,该公司准备投入132万元资金,请设计一种经营方案,使公司获得最大毛利润,并求出最大毛利润.

【分析】(1)这是一个分段函数,分别求出其函数关系式;

(2)①当2≤x<8时及当x≥8时,分别求出w关于x的表达式.注意w=销售总收入﹣经营总成本=w A+w B﹣3×20;

②若该公司获得了30万元毛利润,将30万元代入①中求得的表达式,求出A类杨梅的数量;

(3)本问是方案设计问题,总投入为132万元,这笔132万元包括购买杨梅的费用+A类杨梅加工成本+B类杨梅加工成本.共购买了m吨杨梅,其中A类杨梅为x吨,B类杨梅为(m﹣x)吨,分别求出当2≤x<8时及当x≥8时w关于x的表达式,并分别求出其最大值.

【解答】解:(1)①当2≤x<8时,如图,

设直线AB解析式为:y=kx+b,

将A(2,12)、B(8,6)代入得:

,解得,

∴y=﹣x+14;

②当x≥8时,y=6.

所以A类杨梅平均销售价格y与销售量x之间的函数关系式为:

y=;

(2)设销售A类杨梅x吨,则销售B类杨梅(20﹣x)吨.

①当2≤x<8时,

w A=x(﹣x+14)﹣x=﹣x2+13x;

w B=9(20﹣x)﹣[12+3(20﹣x)]=108﹣6x

∴w=w A+w B﹣3×20

=(﹣x2+13x)+(108﹣6x)﹣60

=﹣x2+7x+48;

当x≥8时,

w A=6x﹣x=5x;

w B=9(20﹣x)﹣[12+3(20﹣x)]=108﹣6x

∴w=w A+w B﹣3×20

=(5x)+(108﹣6x)﹣60

=﹣x+48.

∴w关于x的函数关系式为:

w=.

②当2≤x<8时,﹣x2+7x+48=30,解得x1=9,x2=﹣2,均不合题意;

当x≥8时,﹣x+48=30,解得x=18.

∴当毛利润达到30万元时,直接销售的A类杨梅有18吨.

(3)设该公司用132万元共购买了m吨杨梅,其中A类杨梅为x吨,B类杨梅为(m﹣x)吨,

则购买费用为3m万元,A类杨梅加工成本为x万元,B类杨梅加工成本为[12+3(m﹣x)]万元,

∴3m+x+[12+3(m﹣x)]=132,化简得:x=3m﹣60.

①当2≤x<8时,

w A=x(﹣x+14)﹣x=﹣x2+13x;

w B=9(m﹣x)﹣[12+3(m﹣x)]=6m﹣6x﹣12

∴w=w A+w B﹣3×m

=(﹣x2+13x)+(6m﹣6x﹣12)﹣3m

=﹣x2+7x+3m﹣12.

将3m=x+60代入得:w=﹣x2+8x+48=﹣(x﹣4)2+64

∴当x=4时,有最大毛利润64万元,

此时m=,m﹣x=;

②当x≥8时,

w A=6x﹣x=5x;

w B=9(m﹣x)﹣[12+3(m﹣x)]=6m﹣6x﹣12

∴w=w A+w B﹣3×m

=(5x)+(6m﹣6x﹣12)﹣3m

=﹣x+3m﹣12.

将3m=x+60代入得:w=48

∴当x>8时,有最大毛利润48万元.

综上所述,购买杨梅共吨,其中A类杨梅4吨,B类吨,公司能够获得最大毛利

润,最大毛利润为64万元.

【点评】本题是二次函数、一次函数的综合应用题,难度较大.解题关键是理清售价、成本、利润三者之间的关系.涉及到分段函数时,注意要分类讨论.

4.已知:y关于x的函数y=(k﹣1)x2﹣2kx+k+2的图象与x轴有交点.

(1)求k的取值范围;

(2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k﹣1)x12+2kx2+k+2=4x1x2.

①求k的值;

②当k≤x≤k+2时,请结合函数图象确定y的最大值和最小值.

【分析】(1)分两种情况讨论,当k=1时,可求出函数为一次函数,必与x轴有一交点;当k≠1时,函数为二次函数,若与x轴有交点,则△≥0.

(2)①根据(k﹣1)x12+2kx2+k+2=4x1x2及根与系数的关系,建立关于k的方程,求出k 的值;②充分利用图象,直接得出y的最大值和最小值.

【解答】解:(1)当k=1时,函数为一次函数y=﹣2x+3,其图象与x轴有一个交点.当k≠1时,函数为二次函数,其图象与x轴有一个或两个交点,

令y=0得(k﹣1)x2﹣2kx+k+2=0.

△=(﹣2k)2﹣4(k﹣1)(k+2)≥0,解得k≤2.即k≤2且k≠1.

综上所述,k的取值范围是k≤2.

(2)①∵x1≠x2,由(1)知k<2且k≠1,函数图象与x轴两个交点,

∴k<2,且k≠1.

由题意得(k﹣1)x12+(k+2)=2kx1①,

将①代入(k﹣1)x12+2kx2+k+2=4x1x2中得:

2k(x1+x2)=4x1x2.

又∵x1+x2=,x1x2=,

∴2k•=4•.

解得:k1=﹣1,k2=2(不合题意,舍去).

∴所求k值为﹣1.

②如图,∵k1=﹣1,y=﹣2x2+2x+1=﹣2(x﹣)2+.

且﹣1≤x≤1.

由图象知:当x=﹣1时,y最小=﹣3;当x=时,y最大=.

∴y的最大值为,最小值为﹣3.

【点评】本题考查了抛物线与x轴的交点、一次函数的定义、二次函数的最值,充分利用图象是解题的关键.

5.广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.

(1)求平均每次下调的百分率.

(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?

【分析】(1)根据题意设平均每次下调的百分率为x,列出一元二次方程,解方程即可得出答案;

(2)分别计算两种方案的优惠价格,比较后发现方案①更优惠.

【解答】解:(1)设平均每次下调的百分率为x,

则6000(1﹣x)2=4860,

解得:x1=0.1=10%,x2=1.9(舍去),

故平均每次下调的百分率为10%;

(2)方案①购房优惠:4860×100×(1﹣0.98)=9720(元);

方案②可优惠:80×100=8000(元).

故选择方案①更优惠.

【点评】本题主要考查一元二次方程的实际应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,属于中档题.

6.我们学习了利用函数图象求方程的近似解,例如:把方程2x﹣1=3﹣x的解看成函数y =2x﹣1的图象与函数y=3﹣x的图象交点的横坐标.如图,已画出反比例函数y=在第

一象限内的图象,请你按照上述方法,利用此图象求方程x2﹣x﹣1=0的正数解.(要求画出相应函数的图象;求出的解精确到0.1)

【分析】根据题意可知,方程x2﹣x﹣1=0的解可看做是函数y=和y=x﹣1的交点坐

标,所以根据图象可知方程x2﹣x﹣1=0的正数解约为1.1.

【解答】解:∵x≠0,

∴将x2﹣x﹣1=0两边同时除以x,得

x﹣1﹣=0,

即=x﹣1,

把x2﹣x﹣1=0的正根视为由函数y=与函数y=x﹣1的图象在第一象限交点的横坐标.如图:

∴正数解约为1.1.

【点评】主要考查了反比例函数和一元二次方程之间的关系.一元二次方程的解都可化为一个反比例函数和一次函数的交点问题求解.

7.用两种方法解答:已知m、n是关于x的方程x2+(p﹣2)x+1=0两个实数根,求代数式(m2+mp+1)(n2+np+1)的值.

【分析】本题主要是利用韦达定理来计算.已知m、n是关于x的方程x2+(p﹣2)x+1=0

两个实数根,有四个等式可供使用:m+n=2﹣p①,mn=1②,m2+(p﹣2)m+1=0③,n2+(p﹣2)n+1=0④.通过变形方法,合理地选择解题方法.

【解答】解:∵m、n是x2+(p﹣2)x+1=0的根,

∴m+n=2﹣p,mn=1.

方法一:

m2+(p﹣2)m+1=0,n2+(p﹣2)n+1=0.

即m2+pm+1=2m,n2+pn+1=2n.

原式=2m×2n=4mn=4.

方法二:

(m2+mp+1)(n2+np+1)

=(m2+mp)(n2+np)+m2+mp+n2+np+1

=m2n2+m2np+mpn2+mnp2+m2+mp+n2+np+1

=1+mp+np+p2+m2+n2+mp+np+1

=2+p2+m2+n2+2(m+n)p

=2+p2+m2+n2+2(2﹣p)p

=2+p2+m2+n2+4p﹣2p2

=2+(m+n)2﹣2mn+4p﹣2p2+p2

=2+(2﹣p)2﹣2+4p﹣2p2+p2

=4﹣4p+p2+4p﹣p2

=4.

【点评】本题主要是通过根与系数的关系来求值.注意把所求的代数式转化成m+n=2﹣p,mn=1的形式,正确对所求式子进行变形是解题的关键.

8.九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度CD=3m,标杆与旗杆的水平距离BD=15m,人的眼睛与地面的高度EF=1.6m,人与标杆CD的水平距离DF=2m,求旗杆AB的高度.

【分析】利用三角形相似中的比例关系,首先由题目和图形可看出,求AB的长度分成了2个部分,AH和HB部分,其中HB=EF=1.6m,剩下的问题就是求AH的长度,利用△CGE∽△AHE,得出,把相关条件代入即可求得AH=11.9,所以AB=AH+HB=AH+EF=13.5m.

【解答】解:∵CD⊥FB,AB⊥FB,

∴CD∥AB

∴△CGE∽△AHE

即:

∴AH=11.9

∴AB=AH+HB=AH+EF=11.9+1.6=13.5(m).

【点评】主要用到的解题思想是把梯形问题转化成三角形问题,利用三角形相似比列方程来求未知线段的长度.

9.在△ABC中,AB=BC,将△ABC绕点A沿顺时针方向旋转得△A1B1C1,使点C1落在直线BC上(点C1与点C不重合),

(1)如图,当∠C>60°时,写出边AB1与边CB的位置关系,并加以证明;

(2)当∠C=60°时,写出边AB1与边CB的位置关系(不要求证明);

(3)当∠C<60°时,请你在如图中用尺规作图法作出△AB1C1(保留作图痕迹,不写作法),再猜想你在(1)、(2)中得出的结论是否还成立并说明理由.

【分析】(1)AB1∥BC.因为等腰三角形,两底角相等,再根据平行线的判定,内错角相等两直线平行,可证明两直线平行.

(2)当∠C=60°时,写出边AB1与边CB的位置关系也是平行,证明方法同(1)题.(3)成立,根据旋转变换的性质画出图形.利用三角形全等即可证明.

【解答】解:(1)AB1∥BC.

证明:由已知得△ABC≌△AB1C1,

∴∠BAC=∠B1AC1,∠B1AB=∠C1AC,

∵AC1=AC,

∴∠AC1C=∠ACC1,

∵∠C1AC+∠AC1C+∠ACC1=180°,

∴∠C1AC=180°﹣2∠ACC1,

同理,在△ABC中,

∵BA=BC,

∴∠ABC=180°﹣2∠ACC1,

∴∠ABC=∠C1AC=∠B1AB,

∴AB1∥BC.(5分)

(2)如图1,∠C=60°时,AB1∥BC.(7分)

(3)如图,当∠C<60°时,(1)、(2)中的结论还成立.

证明:显然△ABC≌△AB1C1,

∴∠BAC=∠B1AC1,

∴∠B1AB=∠C1AC,

∵AC1=AC,

∴∠AC1C=∠ACC1,

∵∠C1AC+∠AC1C+∠ACC1=180°,

∴∠C1AC=180°﹣2∠ACC1,

同理,在△ABC中,

∵BA=BC,

∴∠ABC=180°﹣2∠ACC1,

∴∠ABC=∠C1AC=∠B1AB,

∴AB1∥BC.(13分)

【点评】考查图形的旋转,等腰三角形的性质,平行线的判定.本题实质是考查对图形旋转特征的理解,旋转前后的图形是全等的.

10.汽车产业的发展,有效促进我国现代化建设.某汽车销售公司2005年盈利1500万元,到2007年盈利2160万元,且从2005年到2007年,每年盈利的年增长率相同.

(1)该公司2006年盈利多少万元?

(2)若该公司盈利的年增长率继续保持不变,预计2008年盈利多少万元?

【分析】(1)需先算出从2005年到2007年,每年盈利的年增长率,然后根据2005年的盈利,算出2006年的利润;

(2)相等关系是:2008年盈利=2007年盈利×每年盈利的年增长率.

【解答】解:(1)设每年盈利的年增长率为x,

根据题意得1500(1+x)2=2160

解得x1=0.2,x2=﹣2.2(不合题意,舍去)

∴1500(1+x)=1500(1+0.2)=1800

答:2006年该公司盈利1800万元.

(2)2160(1+0.2)=2592

答:预计2008年该公司盈利2592万元.

【点评】本题的关键是需求出从2005年到2007年,每年盈利的年增长率.等量关系为:2005年盈利×(1+年增长率)2=2160.

11.如图,在△ABC中,∠BAC=30°,以AB为直径的⊙O经过点C.过点C作⊙O的切线交AB的延长线于点P.点D为圆上一点,且=,弦AD的延长线交切线PC于点E,连接BC.

(1)判断OB和BP的数量关系,并说明理由;

(2)若⊙O的半径为2,求AE的长.

【分析】(1)首先连接OC,由PC切⊙O于点C,可得∠OCP=90°,又由∠BAC=30°,即可求得∠COP=60°,∠P=30°,然后根据直角三角形中30°角所对的直角边等于斜边的一半,证得OB=BP;

(2)由(1)可得OB=OP,即可求得AP的长,又由=,即可得∠CAD=∠BAC

=30°,继而求得∠E=90°,继而在Rt△AEP中求得答案.

【解答】解:(1)OB=BP.

理由:连接OC,

∵PC切⊙O于点C,

∴∠OCP=90°,

∵OA=OC,∠OAC=30°,

∴∠OAC=∠OCA=30°,

∴∠COP=60°,

∴∠P=30°,

在Rt△OCP中,OC=OP=OB=BP;

(2)由(1)得OB=OP,

∵⊙O的半径是2,

∴AP=3OB=3×2=6,

∵=,

∴∠CAD=∠BAC=30°,

∴∠BAD=60°,

∵∠P=30°,

∴∠E=90°,

在Rt△AEP中,AE=AP=×6=3.

【点评】此题考查了切线的性质、直角三角形的性质以及圆周角定理.此题难度适中,注意掌握数形结合思想的应用,注意掌握辅助线的作法.

12.已知⊙O1与⊙O2相交于A、B两点,点O1在⊙O2上,C为⊙O2上一点(不与A,B,O1重合),直线CB与⊙O1交于另一点D.

(1)如图(1),若AD是⊙O1的直径,AC是⊙O2的直径,求证:AC=CD;

(2)如图(2),若C是⊙O1外一点,求证:O1C丄AD;

(3)如图(3),若C是⊙O1内的一点,判断(2)中的结论是否成立?

【分析】(1)连接C01,利用直径所对圆周角等于90度,以及垂直平分线的性质得出即可;

(2)根据已知得出四边形AEDB内接于⊙O1,得出∠ABC=∠E,再利用=,得出∠E=∠AO1C,进而得出CO1∥ED即可求出;

(3)根据已知得出∠B=∠EO1C,又∠E=∠B,即可得出∠EO1C=∠E,得出CO1∥ED,即可求出.

【解答】(1)证明:连接C01

∵AC为⊙O2直径

∴∠AO1C=90°

即CO1⊥AD,

∵AO1=DO1

∴DC=AC(垂直平分线的性质);

(2)证明:连接AO1,连接AB,延长AO1交⊙O1于点E,连接ED,

∵四边形AEDB内接于⊙O1,

∴∠E+∠ABD=180°,

∵∠ABC+∠ABD=180°,

∴∠ABC=∠E,

又∵=,∴∠ABC=∠AO1C,

∴∠E=∠AO1C,

∴CO1∥ED,

又AE为⊙O1的直径,∴ED⊥AD,

∴O1C⊥AD,

(3)(2)中的结论仍然成立.

证明:

连接AO1,连接AB,延长AO1交⊙O1于点E,连接ED,

∵∠B+∠AO1C=180°,∠EO1C+∠AO1C═180°,

∴∠B=∠EO1C,

又∵∠E=∠B,

∴∠EO1C=∠E,

∴CO1∥ED,又ED⊥AD,

∴CO1⊥AD.

【点评】此题主要考查了圆周角定理以及相交两圆的性质和圆内接四边形的性质,根据圆内接四边形的性质得出对应角之间的关系是解决问题的关键.

13.⊙O1与⊙O2相交于A、B两点,如图(1),连接O2O1并延长交⊙O1于P点,连接P A、PB并分别延长交⊙O2于C、D两点,连接CO2并延长交⊙O2于E点.已知⊙O2的半径为R,设∠CAD=α.

(1)求CD的长(用含R、α的式子表示);

(2)试判断CD与PO1的位置关系,并说明理由;

(3)设点P’为⊙O1上(⊙O2外)的动点,连接P’A、P’B并分别延长交⊙O2于C’、D’,请你探究∠C’AD’是否等于α?C’D’与P’O1的位置关系如何?并说明理由.

(注:图(2)与图(3)中⊙O1和⊙O2的大小及位置关系与图(1)完全相同,若你感到继续在图(1)中探究问题(3),图形太复杂,不便于观察,可以选择图(2)或图(3)中的一图说明理由).

【分析】(1)作⊙O2的直径CE,连接DE.根据圆周角定理的推论,得∠E=∠CAD=α,再利用解直角三角形的知识求解;

(2)连接AB,延长PO1与⊙O1相交于点E,连接AE.根据圆内接四边形的性质,得∠ABP′=∠C′,根据圆周角定理的推论,得∠ABP′=∠E,∠EAP′=90°,从而证明∠AP′E+∠C′=90°,则CD与PO1的位置关系是互相垂直;

(3)根据同弧所对的圆周角相等,则说明∠C’AD’等于α;根据(2)中的证明过程,则可以证明C’D’与P’O1的位置关系是互相垂直.

【解答】解:(1)连接DE.

根据圆周角定理的推论,得∠E=∠CAD=α.

∵CE是直径,

∴∠CDE=90°.

∴CD=CE•sin E=2R sinα;

(2)CD与PO1的位置关系是互相垂直.理由如下:

连接AB,延长PO1与⊙O1相交于点E,连接AE.

∵四边形BAC′D′是圆内接四边形,

∴∠ABP′=∠C′.

∵P′E是直径,

∴∠EAP′=90°,

∴∠AP′E+∠E=90°.

又∠ABP′=∠E,

∴∠AP′E+∠C′=90°,

即CD与PO1的位置关系是互相垂直;

(3)根据同弧所对的圆周角相等,则说明∠C’AD’等于α;根据(2)中的证明过程,则可以证明C’D’与P’O1的位置关系是互相垂直.

【点评】此题综合运用了圆周角定理及其推论、直角三角形的性质、圆内接四边形的性质.

注意:连接两圆的公共弦、构造直径所对的圆周角都是圆中常见的辅助线.

14.一个不透明的口袋里有红、黄、绿三种颜色的球(除颜色外其余都相同),其中红球有2个,黄球有1个,任意摸出一个黄球的概率为.

(1)试求口袋里绿球的个数;

(2)若第一次从口袋中任意摸出一球(不放回),第二次任意摸出一球,请你用树状图或列表法,求出两次都摸到红球的概率.

【分析】(1)根据概率的求解方法,利用方程求得绿球个数;

(2)此题需要两步完成,所以采用树状图法或者列表法都比较简单,解题时要注意是放回实验还是不放回实验,此题为不放回实验.

【解答】解:(1)设口袋里绿球有x个,则,解得x=1.故口袋里绿球有1个.

(2)

红一红二黄绿红一红二,红一黄,红一绿,红一

红二红一,红二黄,红一绿,红二

黄红一,黄红二,黄绿,黄

绿红一,绿红二,绿黄,绿

故,P(两次都摸到红球)=.

【点评】(1)解题时要注意应用方程思想;

(2)列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.

15.经统计分析,某市跨河大桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为80千米/小时,研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.

(1)求大桥上车流密度为100辆/千米时的车流速度;

(2)在交通高峰时段,为使大桥上的车流速度大于40千米/小时且小于60千米/小时,应控制大桥上的车流密度在什么范围内?

(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.求大桥上车流量y的最大值.

【分析】(1)当20≤x≤220时,设车流速度v与车流密度x的函数关系式为v=kx+b,根据题意的数量关系建立方程组求出其解即可;

(2)由(1)的解析式建立不等式组求出其解即可;

(3)设车流量y与x之间的关系式为y=vx,当x<20和20≤x≤220时分别表示出函数关系由函数的性质就可以求出结论.

【解答】解:(1)设车流速度v与车流密度x的函数关系式为v=kx+b,由题意,得,

解得:,

∴当20≤x≤220时,v=﹣x+88,

当x=100时,v=﹣×100+88=48(千米/小时);

(2)由题意,得

解得:70<x<120.

∴应控制大桥上的车流密度在70<x<120范围内;

(3)设车流量y与x之间的关系式为y=vx,

当0≤x≤20时

y=80x,

∴k=80>0,

∴y随x的增大而增大,

∴x=20时,y最大=1600;

当20≤x≤220时

y=(﹣x+88)x=﹣(x﹣110)2+4840,

∴当x=110时,y最大=4840.

∵4840>1600,

∴当车流密度是110辆/千米,车流量y取得最大值是每小时4840辆.

【点评】本题考查了车流量=车流速度×车流密度的运用,一次函数的解析式的运用,一元一次不等式组的运用,二次函数的性质的运用,解答时求出函数的解析式是关键.

16.(1)已知一元二次方程x2+px+q=0(p2﹣4q≥0)的两根为x1、x2;求证:x1+x2=﹣p,x1•x2=q.

(2)已知抛物线y=x2+px+q与x轴交于A、B两点,且过点(﹣1,﹣1),设线段AB的长为d,当p为何值时,d2取得最小值,并求出最小值.

【分析】(1)先根据求根公式得出x1、x2的值,再求出两根的和与积即可;

(2)把点(﹣1,﹣1)代入抛物线的解析式,再由d=|x1﹣x2|可知d2=(x1﹣x2)2=(x1+x2)2﹣4 x1•x2=p2,再由(1)中x1+x2=﹣p,x1•x2=q即可得出结论.

【解答】证明:(1)∵a=1,b=p,c=q

∴△=p2﹣4q

∴x=

即x1=,x2=

∴x1+x2=+=﹣p,

x1•x2=•=q;

(2)把(﹣1,﹣1)代入y=x2+px+q得1﹣p+q=﹣1,

所以,q=p﹣2,

设抛物线y=x2+px+q与x轴交于A、B的坐标分别为(x1,0)、(x2,0)

∵d=|x1﹣x2|,

∴d2=(x1﹣x2)2=(x1+x2)2﹣4x1•x2=p2﹣4q=p2﹣4p+8=(p﹣2)2+4

当p=2时,d2的最小值是4.

【点评】本题考查的是抛物线与x轴的交点及根与系数的关系,熟知x1,x2是方程x2+px+q =0的两根时,x1+x2=﹣p,x1x2=q是解答此题的关键.

17.如图,菱形、矩形与正方形的形状有差异,我们将菱形、矩形与正方形的接近程度称为“接近度”.在研究“接近度”时,应保证相似图形的“接近度”相等.

(1)设菱形相邻两个内角的度数分别为m°和n°,将菱形的“接近度”定义为|m﹣n|,于是|m﹣n|越小,菱形越接近于正方形.

①若菱形的一个内角为70°,则该菱形的“接近度”等于40;

②当菱形的“接近度”等于0时,菱形是正方形.

(2)设矩形相邻两条边长分别是a和b(a≤b),将矩形的“接近度”定义为|a﹣b|,于是|a﹣b|越小,矩形越接近于正方形.

你认为这种说法是否合理?若不合理,给出矩形的“接近度”一个合理定义.

【分析】(1)根据相似图形的定义知,相似图形的形状相同,但大小不一定相同,相似图形的“接近度”相等.所以若菱形的一个内角为70°,则该菱形的“接近度”等于|m﹣n|;当菱形的“接近度”等于0时,菱形是正方形;

(2)不合理,举例进行说明.

【解答】解:(1)①∵内角为70°,

∴与它相邻内角的度数为110°.

∴菱形的“接近度”=|m﹣n|=|110﹣70|=40.

②当菱形的“接近度”等于0时,菱形是正方形.

(2)不合理.

例如,对两个相似而不全等的矩形来说,它们接近正方形的程度是相同的,但|a﹣b|却不相等.

合理定义方法不唯一.

如定义为,

越接近1,矩形越接近于正方形;

越大,矩形与正方形的形状差异越大;

当时,矩形就变成了正方形,即只有矩形的越接近1,矩形才越接近正方形.

【点评】正确理解“接近度”的意思,矩形的“接近度”|a﹣b|越小,矩形越接近于正方形.这是解决问题的关键.

18.如图所示,AB=AC,AB为⊙O的直径,AC、BC分别交⊙O于E、D,连接ED、BE.

(1)试判断DE与BD是否相等,并说明理由;

(2)如果BC=6,AB=5,求BE的长.

【分析】(1)可通过连接AD,AD就是等腰三角形ABC底边上的高,根据等腰三角形三线合一的特点,可得出∠CAD=∠BAD,根据圆周角定理即可得出∠DEB=∠DBE,便可证得DE=DB.

(2)本题中由于BE⊥AC,那么BE就是三角形ABC中AC边上的高,可用面积的不同表示方法得出AC•BE=CB•AD.进而求出BE的长.

【解答】解:(1)DE=BD

证明:连接AD,则AD⊥BC,

在等腰三角形ABC中,AD⊥BC,

∴∠CAD=∠BAD(等腰三角形三线合一),

∴=,

∴DE=BD;

(2)∵AB=5,BD=BC=3,

∴AD=4,

∵AB=AC=5,

∴S△ABC=•AC•BE=•CB•AD,

∴BE=4.8.

【点评】本题主要考查了等腰三角形的性质,圆周角定理等知识点的运用,用等腰三角形三线合一的特点得出圆周角相等是解题的关键.

19.下框中是小明对一道题目的解答以及老师的批改.

题目:某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1,在温室内,沿前侧内墙保留3m的空地,其他三侧内墙各保留1m的通道,当温室的长与宽各为多

少时,矩形蔬菜种植区域的面积是288m2?

解:设矩形蔬菜种植区域的宽为xm,则长为2xm,

根据题意,得x•2x=288.

解这个方程,得x1=﹣12(不合题意,舍去),x2=12

所以温室的长为2×12+3+1=28(m),宽为12+1+1=14(m)答:当温室的长为28m,宽为14m时,矩形蔬菜种植区域的面积是288m2.

我的结果也正确!

小明发现他解答的结果是正确的,但是老师却在他的解答中画了一条横线,并打了一个?.

结果为何正确呢?

(1)请指出小明解答中存在的问题,并补充缺少的过程:

变化一下会怎样…

(2)如图,矩形A′B′C′D′在矩形ABCD的内部,AB∥A′B′,AD∥A′D′,且AD:AB=2:1,设AB与A′B′、BC与B′C′、CD与C′D′、DA与D′A′之间的距离分别为a、b、c、d,要使矩形A′B′C′D′∽矩形ABCD,a、b、c、d应满足什么条件?请说明理由.

初三中考数学整合压轴题100题(附答案)

初三中考数学整合压轴题100题(附答案) 一、中考压轴题 1.如图,已知△BEC是等边三角形,∠AEB=∠DEC=90°,AE=DE,AC,BD的交点为O. (1)求证:△AEC≌△DEB; (2)若∠ABC=∠DCB=90°,AB=2 cm,求图中阴影部分的面积. 【分析】(1)在△AEC和△DEB中,已知AE=DE,BE=CE,且夹角相等,根据边角边可证全等. (2)由图可知,在连接EO并延长EO交BC于点F,连接AD之后,整个图形是一个以EF所在直线对称的图形.即△AEO和△DEO面积相等,只要求出其中一个即可,而三角形AEO面积=•OE•FB,所以解题中心即为求出OE和FB,有(1)中结论和已知条件即可求解. 【解答】(1)证明:∵∠AEB=∠DEC=90°, ∴∠AEB+∠BEC=∠DEC+∠BEC,即∠AEC=∠DEB, ∵△BEC是等边三角形, ∴CE=BE, 又AE=DE, ∴△AEC≌△DEB. (2)解:连接EO并延长EO交BC于点F,连接AD.由(1)知AC=BD. ∵∠ABC=∠DCB=90°,∴∠ABC+∠DCB=180°, ∴AB∥DC,AB==CD, ∴四边形ABCD为平行四边形且是矩形, ∴OA=OB=OC=OD, 又∵BE=CE, ∴OE所在直线垂直平分线段BC, ∴BF=FC,∠EFB=90°. ∴OF=AB=×2=1, ∵△BEC是等边三角形, ∴∠EBC=60°.

在Rt△AEB中,∠AEB=90°, ∠ABE=∠ABC﹣∠EBC=90°﹣60°=30°, ∴BE=AB•cos30°=, 在Rt△BFE中,∠BFE=90°,∠EBF=60°, ∴BF=BE•cos60°=, EF=BE•sin60°=, ∴OE=EF﹣OF==, ∵AE=ED,OE=OE,AO=DO, ∴△AOE≌△DOE.∴S△AOE=S△DOE ∴S阴影=2S△AOE=2וEO•BF=2×××=(cm2). 【点评】考查综合应用等边三角形、等腰三角形、解直角三角形、直角三角形性质,进行逻辑推理能力和运算能力. 2.汽车产业的发展,有效促进我国现代化建设.某汽车销售公司2005年盈利1500万元,到2007年盈利2160万元,且从2005年到2007年,每年盈利的年增长率相同. (1)该公司2006年盈利多少万元? (2)若该公司盈利的年增长率继续保持不变,预计2008年盈利多少万元? 【分析】(1)需先算出从2005年到2007年,每年盈利的年增长率,然后根据2005年的盈利,算出2006年的利润; (2)相等关系是:2008年盈利=2007年盈利×每年盈利的年增长率. 【解答】解:(1)设每年盈利的年增长率为x, 根据题意得1500(1+x)2=2160 解得x1=0.2,x2=﹣2.2(不合题意,舍去) ∴1500(1+x)=1500(1+0.2)=1800 答:2006年该公司盈利1800万元. (2)2160(1+0.2)=2592 答:预计2008年该公司盈利2592万元. 【点评】本题的关键是需求出从2005年到2007年,每年盈利的年增长率.等量关系为:2005年盈利×(1+年增长率)2=2160.

中考数学综合压轴题100题(含答案)

中考数学综合压轴题100题(含答案) 一、中考压轴题 1.如图1,在直角坐标系中,点A的坐标为(1,0),以OA为边在第四象限内作等边△AOB,点C为x轴的正半轴上一动点(OC>1),连接BC,以BC为边在第四象限内作等边△CBD,直线DA交y轴于点E. (1)试问△OBC与△ABD全等吗?并证明你的结论; (2)随着点C位置的变化,点E的位置是否会发生变化?若没有变化,求出点E的坐标;若有变化,请说明理由; (3)如图2,以OC为直径作圆,与直线DE分别交于点F、G,设AC=m,AF=n,用含n的代数式表示 m. 【分析】(1)由等边三角形的性质知,OBA=∠CBD=60°,易得∠OBC=∠ABD,又有OB=AB,BC=BD故有△OBC≌△ABD; (2)由1知,△OBC≌△ABD⇒∠BAD=∠BOC=60°,可得∠OAE=60°,在Rt△EOA 中,有EO=OA•tan60°=,即可求得点E的坐标; (3)由相交弦定理知1•m=n•AG,即AG=,由切割线定理知,OE2=EG•EF,在Rt△EOA中,由勾股定理知,AE==2,故建立方程:()2=(2﹣)(2+n),就 可求得m与n关系. 【解答】解:(1)两个三角形全等. ∵△AOB、△CBD都是等边三角形, ∴OBA=∠CBD=60°, ∴∠OBA+∠ABC=∠CBD+∠ABC, 即∠OBC=∠ABD; ∵OB=AB,BC=BD, △OBC≌△ABD;

(2)点E位置不变. ∵△OBC≌△ABD, ∴∠BAD=∠BOC=60°, ∠OAE=180°﹣60°﹣60°=60°; 在Rt△EOA中,EO=OA•tan60°=, 或∠AEO=30°,得AE=2, ∴OE= ∴点E的坐标为(0,); (3)∵AC=m,AF=n,由相交弦定理知1•m=n•AG,即AG=; 又∵OC是直径, ∴OE是圆的切线,OE2=EG•EF, 在Rt△EOA中,AE==2, ()2=(2﹣)(2+n) 即2n2+n﹣2m﹣mn=0 解得m=. 【点评】命题立意:考查圆的相交弦定理、切线定理、三角形全等等知识,并且将这些知识与坐标系联系在一起,考查综合分析、解决问题的能力. 2.广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售. (1)求平均每次下调的百分率. (2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠? 【分析】(1)根据题意设平均每次下调的百分率为x,列出一元二次方程,解方程即可得出答案; (2)分别计算两种方案的优惠价格,比较后发现方案①更优惠. 【解答】解:(1)设平均每次下调的百分率为x, 则6000(1﹣x)2=4860, 解得:x1=0.1=10%,x2=1.9(舍去), 故平均每次下调的百分率为10%; (2)方案①购房优惠:4860×100×(1﹣0.98)=9720(元); 方案②可优惠:80×100=8000(元). 故选择方案①更优惠.

中考数学压轴题集锦精选100题(含答案)

中考数学压轴题集锦精选100题(含答案) 一、中考压轴题 1.如图,在△ABC中,∠BAC=30°,以AB为直径的⊙O经过点C.过点C作⊙O的切线交AB的延长线于点P.点D为圆上一点,且=,弦AD的延长线交切线PC于点E,连接BC. (1)判断OB和BP的数量关系,并说明理由; (2)若⊙O的半径为2,求AE的长. 【分析】(1)首先连接OC,由PC切⊙O于点C,可得∠OCP=90°,又由∠BAC=30°,即可求得∠COP=60°,∠P=30°,然后根据直角三角形中30°角所对的直角边等于斜边的一半,证得OB=BP; (2)由(1)可得OB=OP,即可求得AP的长,又由=,即可得∠CAD=∠BAC =30°,继而求得∠E=90°,继而在Rt△AEP中求得答案. 【解答】解:(1)OB=BP. 理由:连接OC, ∵PC切⊙O于点C, ∴∠OCP=90°, ∵OA=OC,∠OAC=30°, ∴∠OAC=∠OCA=30°, ∴∠COP=60°, ∴∠P=30°, 在Rt△OCP中,OC=OP=OB=BP; (2)由(1)得OB=OP, ∵⊙O的半径是2, ∴AP=3OB=3×2=6, ∵=, ∴∠CAD=∠BAC=30°, ∴∠BAD=60°, ∵∠P=30°, ∴∠E=90°,

在Rt△AEP中,AE=AP=×6=3. 【点评】此题考查了切线的性质、直角三角形的性质以及圆周角定理.此题难度适中,注意掌握数形结合思想的应用,注意掌握辅助线的作法. 2.如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP=CQ.设AP=x. (1)当PQ∥AD时,求x的值; (2)当线段PQ的垂直平分线与BC边相交时,求x的取值范围; (3)当线段PQ的垂直平分线与BC相交时,设交点为E,连接EP、EQ,设△EPQ的面积为S,求S关于x的函数关系式,并写出S的取值范围. 【分析】(1)根据已知条件,证明四边形APQD是矩形,再根据矩形的性质和AP=CQ 求x即可; (2)连接EP、EQ,则EP=EQ,设BE=y,列出等式(8﹣x)2+y2=(6﹣y)2+x2然后根据函数的性质来求x的取值范围; (3)由图形的等量关系列出方程,再根据函数的性质来求最值. 【解答】解:(1)当PQ∥AD时,则 ∠A=∠APQ=90°,∠D=∠DQP=90°, 又∵AB∥CD, ∴四边形APQD是矩形, ∴AP=QD, ∵AP=CQ, AP=CD=, ∴x=4. (2)如图,连接EP、EQ,则EP=EQ,设BE=y. ∴(8﹣x)2+y2=(6﹣y)2+x2,

初三中考数学压轴题精选100题(含答案)

初三中考数学压轴题精选100题(含答案) 一、中考压轴题 1.在△ABC中,AB=BC,将△ABC绕点A沿顺时针方向旋转得△A1B1C1,使点C1落在直线BC上(点C1与点C不重合), (1)如图,当∠C>60°时,写出边AB1与边CB的位置关系,并加以证明; (2)当∠C=60°时,写出边AB1与边CB的位置关系(不要求证明); (3)当∠C<60°时,请你在如图中用尺规作图法作出△AB1C1(保留作图痕迹,不写作法),再猜想你在(1)、(2)中得出的结论是否还成立并说明理由. 【分析】(1)AB1∥BC.因为等腰三角形,两底角相等,再根据平行线的判定,内错角相等两直线平行,可证明两直线平行. (2)当∠C=60°时,写出边AB1与边CB的位置关系也是平行,证明方法同(1)题.(3)成立,根据旋转变换的性质画出图形.利用三角形全等即可证明. 【解答】解:(1)AB1∥BC. 证明:由已知得△ABC≌△AB1C1, ∴∠BAC=∠B1AC1,∠B1AB=∠C1AC, ∵AC1=AC, ∴∠AC1C=∠ACC1, ∵∠C1AC+∠AC1C+∠ACC1=180°, ∴∠C1AC=180°﹣2∠ACC1, 同理,在△ABC中, ∵BA=BC, ∴∠ABC=180°﹣2∠ACC1, ∴∠ABC=∠C1AC=∠B1AB, ∴AB1∥BC.(5分) (2)如图1,∠C=60°时,AB1∥BC.(7分) (3)如图,当∠C<60°时,(1)、(2)中的结论还成立. 证明:显然△ABC≌△AB1C1, ∴∠BAC=∠B1AC1, ∴∠B1AB=∠C1AC, ∵AC1=AC, ∴∠AC1C=∠ACC1,

中考数学压轴题100题(附答案)

中考数学压轴题100题(附答案) 一、中考压轴题 1.如图,△ABC内接于⊙O,AB=6,AC=4,D是AB边上一点,P是优弧BAC的中点,连接P A、PB、PC、PD. (1)当BD的长度为多少时,△P AD是以AD为底边的等腰三角形?并证明; (2)在(1)的条件下,若cos∠PCB=,求P A的长. 【分析】(1)根据等弧对等弦以及全等三角形的判定和性质进行求解; (2)过点P作PE⊥AD于E.根据锐角三角函数的知识和垂径定理进行求解. 【解答】解:(1)当BD=AC=4时,△P AD是以AD为底边的等腰三角形. ∵P是优弧BAC的中点, ∴=. ∴PB=PC. 又∵∠PBD=∠PCA(圆周角定理), ∴当BD=AC=4,△PBD≌△PCA. ∴P A=PD,即△P AD是以AD为底边的等腰三角形. (2)过点P作PE⊥AD于E, 由(1)可知, 当BD=4时,PD=P A,AD=AB﹣BD=6﹣4=2, 则AE=AD=1. ∵∠PCB=∠P AD(在同圆或等圆中,同弧所对的圆周角相等), ∴cos∠P AD=cos∠PCB=, ∴P A=. 【点评】综合运用了等弧对等弦的性质、全等三角形的判定和性质、锐角三角函数的知识以及垂径定理.

2.如图,一次函数y=﹣x﹣2的图象分别交x轴、y轴于A、B两点,P为AB的中点,PC⊥x轴于点C,延长PC交反比例函数y=(x<0)的图象于点Q,且tan∠AOQ=. (1)求k的值; (2)连接OP、AQ,求证:四边形APOQ是菱形. 【分析】(1)由一次函数解析式确定A点坐标,进而确定C,Q的坐标,将Q的坐标代入反比例函数关系式可求出k的值. (2)由(1)可分别确定QC=CP,AC=OC,且QP垂直平分AO,故可证明四边形APOQ是菱形. 【解答】(1)解:∵y=﹣x﹣2 令y=0,得x=﹣4,即A(﹣4,0) 由P为AB的中点,PC⊥x轴可知C点坐标为(﹣2,0) 又∵tan∠AOQ=可知QC=1 ∴Q点坐标为(﹣2,1) 将Q点坐标代入反比例函数得:1=, ∴可得k=﹣2; (2)证明:由(1)可知QC=PC=1,AC=CO=2,且A0⊥PQ ∴四边形APOQ是菱形. 【点评】本题考查了待定系数法求函数解析式,又结合了几何图形进行考查,属于综合性比较强的题目,有一定难度. 3.某公司经营杨梅业务,以3万元/吨的价格向农户收购杨梅后,分拣成A、B两类,A类杨梅包装后直接销售;B类杨梅深加工后再销售.A类杨梅的包装成本为1万元/吨,根据市场调查,它的平均销售价格y(单位:万元/吨)与销售数量x(x≥2)之间的函数关系如图;B类杨梅深加工总费用s(单位:万元)与加工数量t(单位:吨)之间的函数关系是s=12+3t,平均销售价格为9万元/吨.

中考数学压轴题100题含答案解析

中考数学压轴题100题精选【含答案】 【001】如图,已知抛物线y a(x 3 3( a z 0)经过点A2 °),抛物线的顶点为D , 过O作射线OM // AD ?过顶点D平行于x轴的直线交射线OM于点C , B在x轴正半轴上,连结BC ? (1)求该抛物线的解析式; (2)若动点P从点0出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为t(s) ?问当t为何值时,四边形DAOP分别为平行四边形?直角梯形?等腰梯形? (3)若0C °B,动点P和动点Q分别从点0和点B同时出发,分别以每秒1个长度单位和2 个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动?设它 们的运动的时间为t (s),连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长. 【002】如图16,在Rt A ABC中,/ C=90 , AC = 3 , AB = 5 .点P从点C出发沿CA以每秒1 个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发 沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ, 且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动, 点P也随之停止.设点P、Q运动的时间是t秒(t >0). (1) 当t = 2时,AP = ,点Q到AC的距离是: (2) 在点P从C向A运动的过程中,求△ APQ的面积S与t的函数关系式;(不必写出t的取值范围) (3) 在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值.若不能,请说明理由;

中考数学压轴题精选及答案

D C M N O A B P l y E ★★21、2010黄冈已知抛物线2 (0)y ax bx c a =++≠顶点为C1,1且过原点O.过抛物线上一点Px,y 向直线5 4 y = 作垂线,垂足为M,连FM 如图. 1求字母a,b,c 的值; 2在直线x =1上有一点3(1,)4 F ,求以PM 为底边的等腰三角形PFM 的P 点的坐标,并证明此时△PFM 为正三角形; 3对抛物线上任意一点P,是否总存在一点N1,t,使PM =PN 恒成立,若存在请求出t 值,若不存在请说 明理由. 解:1a =-1,b =2,c =0 2过P 作直线x=1的垂线,可求P 的纵坐标为14,横坐标为1132 +.此时,MP =MF =PF =1,故△MPF 为正三角形. 3不存在.因为当t <54,x <1时,PM 与PN 不可能相等,同理,当t >5 4 ,x >1时,PM 与PN 不可能相等. ★★22、2010济南如图所示,抛物线223y x x =-++与x 轴交于A 、B 两点,直线BD 的函数表达式为333y x =+抛物线的对称轴l 与直线BD 交于点C 、与x 轴交于点E . ⑴求A 、B 、C 三个点的坐标. ⑵点P 为线段AB 上的一个动点与点A 、点B 不重合,以点A 为圆心、以AP 为半径的圆弧 与线段AC 交于点M ,以点B 为圆心、以BP 为半径的圆弧与线段BC 交于点N ,分别连接 AN 、BM 、MN . ①求证:AN =BM . ②在点P 运动的过程中,四边形AMNB 的面积有最大值还是有最小值并求出该 最大值或最小值.

x 解:⑴令2230x x -++=, 解得:121,3x x =-=,∴A -1,0,B 3,0 ············· ∵223y x x =-++=2(1)4x --+,∴抛物线的对称轴为直线x =1, 将x =1 代入y =+得y ∴C ⑵①在Rt △ACE 中,tan ∠CAE = CE AE =∴∠CAE =60o, 由抛物线的对称性可知l 是线段AB 的垂直平分线, ∴AC=BC , ∴△ABC 为等边三角形, ∴AB = BC =AC = 4,∠ABC=∠ACB = 60o, 又∵AM=AP ,BN=BP ,∴BN = CM , ∴△ABN ≌△BCM , ∴AN =BM . ②四边形AMNB 的面积有最小值. 设AP=m ,四边形AMNB 的面积为S , 由①可知AB = BC= 4,BN = CM=BP ,S △ABC ×42 =, ∴CM=BN= BP=4-m ,CN=m , 过M 作MF ⊥BC ,垂足为F ,则MF =MC )m -, ∴S △CMN =12CN MF =1 2 m )m - =2, ∴S =S △ABC -S △CMN = 2 22)m -+ ∴m =2时,S 取得最小值 ★★23、2010济宁如图,在平面直角坐标系中,顶点为4,1-的抛物线交y 轴于A 点,交x 轴于 B , C 两点点B 在点C 的左侧. 已知A 点坐标为0,3.

中考数学压轴题100题精选及答案全3篇

中考数学压轴题100题精选及答案全 第一篇:数与代数 1.下列各组数中,哪一组数最大? A. \frac{1}{2} ,\frac{2}{3},\frac{3}{4},\frac{4}{5} B. 0.99,0.999,0.9999,0.99999 C. \sqrt{2},\sqrt{3},\sqrt{5},\sqrt{7} D. 1,10^2,10^3,10^4 2. 一个整数,十位数与各位数的和为9,再去掉该整数中的各位数,十位数与剩下的数字的和为40,该整数为 __________。 A. 45 B. 54 C. 63 D. 72 3. 已知 a+b=2, ab=-1,求a^2+b^2的值。 A. 3 B. 5 C. 7 D. 9 4. 解方程 2x-5=3x+1。 A. x=-3.5 B. x=-2 C. x=2 D. x=3.5 5. 有两个数,各位数字相同,但顺序颠倒,若它们的和为110,这两个数分别是多少? A. 47,74 B. 49,94 C. 56,65 D. 59,95 6. 若x-3y=-7,x+4y=1,则y的值为__________。 A. -2 B. -1 C. 0 D. 1 7. 16÷(a-2)=4,则 a 的值为__________。 A. 6 B. 8 C. 10 D. 12 8. 若a:b=5:3,b:c=7:4,则a∶b∶c=__________。 A. 35:21:12 B. 25:15:12 C. 25:21:16 D. 35:15:16

9. 若a+3b=5,3a-5b=7,则 a 的值为__________。 A. -2 B. -1 C. 0 D. 1 10. 已知x+y=3,xy=2,则y的值为__________。 A. 1 B. 2 C. 3 D. 4 第二篇:几何图形 11. 已知正方形 ABCD 的边长为6,以 BC 为边,画一个正三角形 BCE,连接 AE,AD,请问△ADE 和正方形 ABCD 的面积之比是多少? A. \frac{2}{9} B. \frac{1}{2} C. \frac{4}{9} D. \frac{5}{6} 12. 把一张纸平整地放在桌上,在纸的中央画一个圆形,请问可以用多少个直径为5 厘米的圆去覆盖这个圆形(圆覆盖圆)? A. 1 B. 2 C. 3 D. 4 13. 已知△ABC 是等腰三角形,AB=AC,E是BC中点,DE∥AC,AE=CD=2,求△ABC 的面积。 A. 1 B. 2 C. 3 D. 4 14. AB ⊥ DE,AD=6cm,DE=4cm,AD、DE在EF、BC上的高分别为2cm、3cm,求 AB 的长度。 A. 5 B. 6 C. 7 D. 8 15. 一个圆的周长为18π,线段 AB 是这个圆上的一段弧,弧长为6π,请问△ABC 的面积是多少? A. 3\sqrt{3} B. 6\sqrt{3} C. 9\sqrt{3} D. 12\sqrt{3} 16. 已知四边形 ABCD 为矩形,AB=6,BC=8,点 E、F、 G、H 分别为 AB、BC、CD、DA 上的点,且 EF=FG=GH=2,则EFGH 的面积为__________。

中考数学压轴题100题精选(1—50题答案)

中考数学压轴题100题精选(1—50题答案) 【001】解:(1)Q 抛物线2 (1)0) y a x a =-+≠经过点(20) A-,, 09 3 a a ∴=+=- 1分 ∴ 二次函数的解析式为: 2 333 y x x =-++ 3分 (2)D Q 为抛物线的顶点(1 D ∴过D作DN OB ⊥于N ,则DN=, 3660 AN AD DAO =∴==∴∠= ,°4分 OM AD Q∥ ①当AD OP =时,四边形DAOP是平行四边形 66(s) OP t ∴=∴=5分 ②当DP OM ⊥时,四边形DAOP是直角梯形 过O作OH AD ⊥于H,2 AO=,则1 AH= (如果没求出60 DAO ∠=°可由Rt Rt OHA DNA △∽△求1 AH=) 55(s) OP DH t ∴=== 6分 ③当PD OA =时,四边形DAOP是等腰梯形 26244(s) OP AD AH t ∴=-=-=∴= 综上所述:当6 t=、5、4时,对应四边形分别是平行四边形、直角梯形、等腰梯形.7分 (3)由(2)及已知,60 COB OC OB OCB ∠== °,,△是等边三角形则6262(03) OB OC AD OP t BQ t OQ t t =====∴=-<< ,,, 过P作PE OQ ⊥于E ,则 PE= 8分

11 6(62) 22 BCPQ S t ∴=⨯⨯⨯- = 2 3 22 t ⎫ -+ ⎪ ⎝⎭9分 当 3 2 t= 时,BCPQ S 10分 ∴ 此时 3339 33 2444 OQ OP OE QE PE ==∴=-== ,=, 2 PQ ∴=== 11分 【002】解:(1)1, 8 5; (2)作QF⊥AC于点F,如图3,AQ = CP= t,∴3 AP t =-.由△AQF∽△ABC,4 BC==, 得45 QF t = .∴ 4 5 QF t = .∴ 14 (3) 25 S t t =-⋅ , 即2 26 55 S t t =-+ . (3)能. ①当DE∥QB时,如图4. ∵DE⊥PQ,∴PQ⊥QB,四边形QBED 是直角梯形. 此时∠AQP=90°. 由△APQ ∽△ABC,得 AQ AP AC AB = , 即 3 35 t t- = .解得 9 8 t= . ②如图5,当PQ∥BC时,DE⊥BC, A P 图4 A P 图3 A P 图5 A A

2020中考数学压轴题100题精选

(1) (2) 当 t = 2 时,AP = ,点Q 到AC 的距离是 (3) (4) 在点P 从C 向A 运动的过程中,求^ APQ 的面积S 与 t 的 函数关系式;(不必写出t 的取值范围) 在点E 从B 向C 运 动的过程中,四边形 为直角梯形?若能,求 t 的值.若不 能, 当DE 经过点C 时,请直接写出t 的值. 2020中考数学压轴题100题精选 【001]如图,已知抛物线 y a(x 1)2 3百(aw0)经过点A( 2, 0),抛物线的顶点 为D ,过O 作射线 OM // AD .过顶点D 平行于x 轴的直线交射线 OM 于点C , B 在x 轴 正半轴上,连结BC . (1)求该抛物线的解析式; (2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线 OM 运动,设点P 运动的 时间为 t(s) .问当t 为何值时,四边形 DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若OC OB ,动点P 和动点Q 分别从点。和点B 同时出发,分别以每秒 1个长度单 位和2个长 度单位的速度沿 OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止 运动.设它们的运动的时间为t ⑸,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小? 并求出最小值及此时 PQ 的长. 【002]如图16,在Rt^ABC 中,/ C=90°, AC = 3, AB = 5.点P 从点C 出发沿 CA 以每秒1 个单位长的速度向点 A 匀速运动,到达点 A 后立刻以原来的速度沿 AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点 B 匀速运动.伴随着 P 、Q 的运动,DE 保持垂直平 分PQ,且交PQ 于点D,交折线QB-BGCP 于点E.点P 、Q 同时出发,当点 止运动,点P 也随之停止.设点 P 、Q 运动的时间是t 秒(t>0). Q 到达点B 时停

中考数学压轴题含答案

中考数学压轴题含答案 一、选择题 1、下列图形中,既是轴对称图形,又是中心对称图形的是() A.菱形 B.平行四边形 C.矩形(答案:C) 2、如果一个三角形的三条边的平方相等,那么这个三角形一定是() A.等边三角形 B.直角三角形 C.等腰三角形 D.等腰直角三角形(答案:A) 3、下列说法正确的是() A.所有的质数都是奇数 B.所有的偶数都是合数 C.一个数的因数一定比它的倍数小 D.自然数一定是正数(答案:A) 二、填空题 1、若a-b=2,a+b=7,则a²-b²=(答案:14)

2、我们学过的数有整数和分数,整数的运算律在分数运算中(答案:同样适用)。 3、一个长方形的周长是20cm,长和宽的比是3:2,则长方形的面积是(答案:60平方厘米)。 三、解答题 1、一个圆柱体底面半径为r,高为h,它的体积是多少?(答案:πr²h) 2、有一块三角形的土地,底边长为120米,高为90米,这块土地的面积是多少?(答案:5400平方米) 3、对于一个给定的整数n,如果它是3的倍数,那么我们就称它为“三的倍数”,否则我们就称它为“非三的倍数”。现在有一个整数n,它是“三的倍数”,我们可以得出哪些结论?(答案:n+1、n+2、n+3、...、2n都是“三的倍数”,因为它们都可以被3整除。) 中考数学压轴题100题及答案 在中考数学考试中,压轴题往往是最具挑战性和最能检验考生数学能力的题目。为了帮助同学们更好地理解和掌握中考数学的压轴题,本文将分享100道经典的中考数学压轴题及其答案。

一、选择题 1、在一个等边三角形中,边长为6,下列哪个选项的面积最接近这个等边三角形的面积? A. 20 B. 25 C. 30 D. 35 答案:B 解析:等边三角形的面积可以通过计算得出,边长为6的等边三角形的面积为: 4 3 6 2

2021年中考数学压轴题精选含答案

2021年中考数学压轴题精选含答案 1.如图,正方形ABCD 的边长为8,M 是AB 的中点,P 是BC 边上的动点,连结PM ,以点P 为圆心,PM 长为半径作⊙P . (1)当BP = 时,△MBP ~△DCP ; (2)当⊙P 与正方形ABCD 的边相切时,求BP 的长; (3)设⊙P 的半径为x ,请直接写出正方形ABCD 中恰好有两个顶点在圆内的x 的取值范围. 2.如图,已知抛物线()2 y ax bx 2a 0=+-≠与x 轴交于A 、B 两点,与y 轴交于C 点,直线BD 交抛物线于点D ,并且()D 2,3,()B 4,0-. (1)求抛物线的解析式; (2)已知点M 为抛物线上一动点,且在第三象限,顺次连接点B 、M 、C ,求BMC 面积的最大值; (3)在(2)中BMC 面积最大的条件下,过点M 作直线平行于y 轴,在这条直线上是否存在一个以Q 点为圆心,OQ 为半径且与直线AC 相切的圆?若存在,求出圆心Q 的坐标;若不存在,请说明理由. 3.已知抛物线217222 y x mx m 的顶点为点C . (1)求证:不论m 为何实数,该抛物线与x 轴总有两个不同的交点; (2)若抛物线的对称轴为直线3x =,求m 的值和C 点坐标;

(3)如图,直线1y x =-与(2)中的抛物线并于A B 、两点,并与它的对称轴交于点D ,直线x k =交直线AB 于点M ,交抛物线于点N .求当k 为何值时,以 C D M N 、、、为顶点的四边形为平行四边形. 4.如图,在四边形ABCD 中,∠B=90°,AD//BC ,AD=16,BC=21,CD=13. (1)求直线AD 和BC 之间的距离; (2)动点P 从点B 出发,沿射线BC 以每秒2个单位长度的速度运动,动点Q 从点A 出发,在线段AD 上以每秒1个单位长度的速度运动,点P 、Q 同时出发,当点Q 运动到点D 时,两点同时停止运动,设运动时间为t 秒.试求当t 为何值时,以P 、Q 、D 、C 为顶点的四边形为平行四边形? (3)在(2)的条件下,是否存在点P ,使△PQD 为等腰三角形?若存在,请直接写出相应的t 值,若不存在,请说明理由. 5.如图,在菱形ABCD 中,AB a ,60ABC ∠=︒,过点A 作AE BC ⊥,垂足为E ,AF CD ⊥,垂足为F . (1)连接EF ,用等式表示线段EF 与EC 的数量关系,并说明理由; (2)连接BF ,过点A 作AK BF ⊥,垂足为K ,求BK 的长(用含a 的代数式表示); (3)延长线段CB 到G ,延长线段DC 到H ,且BG CH =,连接AG ,GH ,AH . ①判断AGH 的形状,并说明理由; ②若12,(33)2 ADH a S ==+,求sin GAB ∠的值. 6.问题提出 (1)如图①,在ABC 中,42,6,135AB AC BAC ==∠=,求ABC 的面积.

(完整)中考数学压轴题100题精选

我选的中考数学压轴题100题精选 【001 】如图,已知抛物线2(1)y a x =-+a ≠0)经过点(2)A -,0,抛物线的顶点为D ,过O 作射线 OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式; (2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长. 【002】如图16,在Rt △ABC 中,∠C =90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB —BC —CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0). (1)当t = 2时,AP = ,点Q 到AC 的距离是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与 t 的函数关系式;(不必写出t 的取值范围) (3)在点E 从B 向C 运动的过程中,四边形QBED 能否成 为直角梯形?若能,求t (4)当DE 经过点C 时,请直接.. 写出t

2021年中考数学压轴题100题精选(附解析)

中考数学压轴题100题精选含答案 【001 】如图,已知抛物线2 (1)y a x =-+a ≠0)经过点(2)A -,0,抛物线的顶点 为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式; (2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长. 【002】如图16,在Rt △ABC 中,∠C =90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点 A 出发沿A B 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平 分PQ ,且交PQ 于点D ,交折线QB -BC -CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0). (1)当t = 2时,AP = ,点Q 到AC 的距离是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与 t 的函数关系式;(不必写出t 的取值范围) (3)在点E 从B 向C 运动的过程中,四边形QBED 为直角梯形?若能,求t (4)当DE 经过点C 时,请直接..写出t 的值. 图16

中考数学压轴题100题精选【含答案】

中考数学压轴题100题精选【含答案】

2 中考数学压轴题100题精选【含答案】 【001】如图,已知抛物线 2(1)33 y a x =-+a ≠0)经过 点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式; (2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长. x y M C D P Q O A B

3

【003】如图,在平面直角坐标系中,已知矩形ABCD 的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点. (1)直接写出点A的坐标,并求出抛物线的解析式; (2)动点P从点A出发.沿线段AB向终点B 运动,同时点Q从点C出发,沿线段CD 向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E,①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长? ②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形? 请直接写出相应的t值。 4

中考数学压轴题集锦100题精选(含答案)

中考数学压轴题集锦100题精选(含答案) 一、中考压轴题 1.如图,在△ABC中,∠BAC=30°,以AB为直径的⊙O经过点C.过点C作⊙O的切线交AB的延长线于点P.点D为圆上一点,且=,弦AD的延长线交切线PC于点E,连接BC. (1)判断OB和BP的数量关系,并说明理由; (2)若⊙O的半径为2,求AE的长. 【分析】(1)首先连接OC,由PC切⊙O于点C,可得∠OCP=90°,又由∠BAC=30°,即可求得∠COP=60°,∠P=30°,然后根据直角三角形中30°角所对的直角边等于斜边的一半,证得OB=BP; (2)由(1)可得OB=OP,即可求得AP的长,又由=,即可得∠CAD=∠BAC =30°,继而求得∠E=90°,继而在Rt△AEP中求得答案. 【解答】解:(1)OB=BP. 理由:连接OC, ∵PC切⊙O于点C, ∴∠OCP=90°, ∵OA=OC,∠OAC=30°, ∴∠OAC=∠OCA=30°, ∴∠COP=60°, ∴∠P=30°, 在Rt△OCP中,OC=OP=OB=BP; (2)由(1)得OB=OP, ∵⊙O的半径是2, ∴AP=3OB=3×2=6, ∵=, ∴∠CAD=∠BAC=30°, ∴∠BAD=60°, ∵∠P=30°, ∴∠E=90°,

在Rt△AEP中,AE=AP=×6=3. 【点评】此题考查了切线的性质、直角三角形的性质以及圆周角定理.此题难度适中,注意掌握数形结合思想的应用,注意掌握辅助线的作法. 2.如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP=CQ.设AP=x. (1)当PQ∥AD时,求x的值; (2)当线段PQ的垂直平分线与BC边相交时,求x的取值范围; (3)当线段PQ的垂直平分线与BC相交时,设交点为E,连接EP、EQ,设△EPQ的面积为S,求S关于x的函数关系式,并写出S的取值范围. 【分析】(1)根据已知条件,证明四边形APQD是矩形,再根据矩形的性质和AP=CQ 求x即可; (2)连接EP、EQ,则EP=EQ,设BE=y,列出等式(8﹣x)2+y2=(6﹣y)2+x2然后根据函数的性质来求x的取值范围; (3)由图形的等量关系列出方程,再根据函数的性质来求最值. 【解答】解:(1)当PQ∥AD时,则 ∠A=∠APQ=90°,∠D=∠DQP=90°, 又∵AB∥CD, ∴四边形APQD是矩形, ∴AP=QD, ∵AP=CQ, AP=CD=, ∴x=4. (2)如图,连接EP、EQ,则EP=EQ,设BE=y. ∴(8﹣x)2+y2=(6﹣y)2+x2,

中考数学压轴题100题精选及答案

中考数学 压轴题100题 精选(1-20题) 【001】如图, 已知抛物线2(1)y a x =-+a ≠0)经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式; (2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.

【002】如图16,在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0). (1)当t = 2时,AP =,点Q到AC的距离是; (2)在点P从C向A运动的过程中,求△APQ的面积S与 t的函数关系式;(不必写出t的取值范围) (3)在点E从B向C运动的过程中,四边形QBED能否成 为直角梯形?若能,求t (4)当DE经过点C 时,请直接 ..写出t P 图16

中考数学压轴题100题精选-中考数学压轴题100题及答案

中考数学压轴题100题精选 【001 】如图,已知抛物线2 (1)y a x =-+a≠0)经过点(2)A -,0,抛物线的顶点为D ,过 O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式; (2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为 ()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.

【002】如图16,在Rt △ABC 中,∠C =90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB -BC -CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0). (1)当t = 2时,AP = ,点Q 到AC 的距离是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与 t 的函数关系式;(不必写出t 的取值范围) (3)在点E 从B 向C 运动的过程中,四边形QBED 能否成 为直角梯形?若能,求t 的值.若不能,请说明理由; (4)当DE 经过点C 时,请直接.. 写出t 的值. 【003】如图,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (4,0)、C (8,0)、D (8,8).抛物线y=ax 2+bx 过A 、C 两点. (1)直接写出点A 的坐标,并求出抛物线的解析式; (2)动点P 从点A 出发.沿线段AB 向终点B 运动,同时点Q 从点C 出发,沿线段CD 向终点D 运动.速度均为每秒1个单位长度,运动时间为t 秒.过点P 作PE ⊥AB 交AC 于点E ,①过点E 作EF ⊥AD 于点F ,交抛物线于点G.当t 为何值时,线段EG 最长? 图16

相关主题
相关文档
最新文档