第二十五章_概率初步_复习课_教案

合集下载

九年级数学上册 第二十五章 概率初步 25.2 用列举法求概率(1)教案 (新版)新人教版-(新版)

九年级数学上册 第二十五章 概率初步 25.2 用列举法求概率(1)教案 (新版)新人教版-(新版)

25.2 用列举法求概率第1课时用直接列举法求简单事件的概率※教学目标※【知识与技能】1.初步掌握直接列举法计算一些简单事件的概率的方法.2.理解“包含两步,并且每一步的结果为有限多个情形”的意义.【过程与方法】通过用列举法求简单事件的概率的学习,使学生在具体情境中分析事件.计算其发生的概率,解决实际问题.【情感态度】体会概率在生活实践中的应用,激发学生学习数学的兴趣,提高分析问题的能力.【教学重点】1.熟练掌握直接列举法计算简单事件的概率.2.正确理解个区分一次试验中包含两步或两个因素的试验.【教学难点】能不重不漏而又简洁地列出所有可能的结果.※教学过程※一、情境导入1.复习回顾前面一节课的内容:(1)概率的意义;(2)对于试验结果是有限等可能的事件的概率的求法.2.多媒体展示扫雷游戏,引入新课.二、掌握新知例1 如图所示是计算机中“扫雷”99个方格的正方形雷区中,随机埋藏着10颗地雷,每个方格内最多只能埋藏1颗地雷.A区域(画线部分),A区域外的部分记为BAA区域还是B区域?分析:第二步怎样走取决于踩在哪部分遇到地雷的可能性的大小,因此,问题的关键是分别计算在两个区域的任何一个方格内踩中地雷的概率并比较大小距可以了.解:A区域的方格共有8个,标号3表示在这8个方格中有3个方格各埋藏有1颗地雷.因此,点击A区域的任一方格,遇到地雷的概率为38.B区域方格数为9981=72⨯--.其中有地雷的方格数为103=7-.因此,点击B区域的任一方格,遇到地雷的概率是772.而38>772,即点击A区域遇到地雷的可能性大于点击B区域遇到地雷的可能性,因此第二步应该点击B区域.提问1:若例题中,小王在游戏开始时踩中的第一个格上出现了标号1,则下一步踩在那一区域比较安全?18.提问2:你能重新设计,通过改变雷的总数,使得下一步踩在A区域合适吗?请通过计算说明原因.答案:(这是一个开放性问题,仅举一例供参考)把雷的总数由10颗改为31颗.原因如下:A区域的方格共有8个,标号3表示在这8个方格中有3个方格各埋藏有1颗地雷.因此,点击A区域的任一方格,遇到地雷的概率为38.B区域方格数为9981=72⨯--.其中有地雷的方格数为313=28-.因此,点击B区域的任一方格,遇到地雷的概率是28 72.而38<2872,即点击A区域遇到地雷的可能性小于踩B区域点击B区域遇到地雷的可能性,因此第二步应该点击A区域.例2 同时抛掷两枚质地均匀的硬币,求下列事件的概率:(1)两枚硬币全部正面向上;(2)两枚银币全部反面向上;(3)一枚硬币正面向上、一枚硬币反面向上.解:可能的结果共有4种,并且这4种结果出现的可能性相等.(1)所有可能的结果中,满足两枚硬币全部正面向上(记为事件A)的结果只有1种,即“正正”,所以P(A)=14.(2)两枚硬币全部反面向上(记为事件B)的结果也只有1种,即“反反”,所以P(B)=14.(3)一枚硬币正面向上、一枚硬币反面向上(记为事件C)的结果共有2种,即“反正”“正反”,所以P(C)=24=12.提问:“同时掷两枚硬币”与“先后掷一枚硬币”这两种试验有可能一样吗?答案:一样.三、巩固练习A,B两个不透明的口袋,每个口袋里装有两个相同的球,A袋中的两个球上分别写了“细”“致”的字样,B袋中的两个球上分别写了“信”“心”的字样,从每个口袋里各摸出一个球,刚好能组成“细心”字样的概率是()A.13B.14C.23D.342.从1,2,3,4这四个数中,任意抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是()A.13B.14C.16D.1123.从-2,-1,2这三个数中任取两个不同的数作为点的坐标,改点在第四象限内的概率为.4.袋子中装有红、绿两种颜色的小球各一个,除颜色外无其他差别,随机摸出一个小球后放回,再随机摸出一个.求:(1)第一次摸到红球,第二次摸到绿球的概率;(2)两次都摸到相同颜色的小球的概率;(3)两次摸到的球中有一个绿球和一个红球的概率.“闯关游戏”的规则,请你探究“闯关游戏”的奥秘,求出闯关成功的概率.答案:1.B 2.A 3.134.(1)14(2)12(3)125.14四、归纳小结1.本节课你学到了哪些知识?有哪些收获?2.你能不重不漏地列举出事件发生的所有可能吗?P(A)mn吗?※布置作业※从教材习题中选取.※教学反思※1.本节课通过扫雷、掷硬币等游戏为载体,充分激发了学生的学习欲望,将学生摆在了真正的主体位置上,重分发挥了他们的主观能动性,从而让学生在趣味中掌握本节课的知识.生活中有许多有关概率问题,本节课的学习亦能让学生尝试用概率的知识去解决生活中的问题,从而体会到概率知识在生活中的应用价值.2.教师引导学生交流归纳知识点,看学生能否会不重不漏地列举出事件发生的所有可能,能否找出事件A中包含几种可能的结果,并能求P(A),教学时要重点突出方法.。

概率初步教案

概率初步教案

第二十五章概率初步随机事件教学目标1、知识与技能目标(1)理解必然事件、不可能事件、随机事件的概念;(2)区分必然事件、不可能事件和随机事件;(3)随机事件发生的可能性是有大小的,不同的随机事件发生的大小有可能不同。

2、过程与方法目标经历活动、试验、猜测、收集、整理和分析试验结果、听故事等过程,会判断必然事件、不可能事件、随机事件,及判断不同随机可能性的大小。

3、情感与态度目标(1)学生通过亲身体验,亲自演示,感受数学就在身边,促进学生乐于亲近数学,喜欢数学;(2)培养学生的数学素养,体验数学与生活密切相关,激发学生学以致用的热情。

教学重难点重点:能对必然事件、不可能事件、随机事件的类型作出正确判断。

难点:必然事件、不可能事件、随机事件的区别与转化关系。

教法分析:情境引人,游戏探索,游戏体验,拓展新知。

学法分析:参与活动,发现新知;体验新知;巩固新知;拓展新知。

教学辅助手段:红、白球各20个,透明瓶子3个,彩纸若干张,五指棋若干,骰子,玻璃杯1个教学过程:同学们,我们的生活是丰富多彩的,我们经常会遇到各种各样的事情。

比如:某某同学跟父母去逛超市,在超市门口抽奖抽到一等奖;还有,鸡蛋从5楼掉下来碰到水泥地板,破了;再比如:一位5岁的小女孩很激动地告诉爸爸:“今天我看到太阳从西边升起来啦!”等等这些是我们身边经常会发生的。

今天我们就来系统地探讨这些事情发生的可能性是大还是小,是一定会发生,还是可能会发生,还是不可能会发生。

现在我们先来做一个游戏:一、设置游戏,导入新课:1、首先把全班分成甲乙2组,教师拿出事先准备好的一只装的全部是红球的外面包有彩纸的透明瓶子(1号),让甲组派3位同学摸球,显然学生摸到的全是红球,摸到红球的学生个个惊叹自己手气好啊。

2、教师再拿出事先准备好的另一只装的全部是白球的外面包有彩纸的透明瓶子(2号),让乙组3位同学摸球,而学生摸出的全部是白球,摸到白球的学生个个唉声叹气,叹自己手气怎么就不好呢。

25.10 概率初步

25.10 概率初步

第二十五章 概率初步 年级:九年级 内容:第二十五章章概率初步复习(一)课型: 复习课 执笔: 审核: 定稿: 使用时间: 学习目标 1、 立足教材,打好基础,查漏补缺,系统复习,熟练掌握本部分的基本知识、基本方法和基本技能.

2、 让学生自己总结交流所学内容,发展学生的语言表达能力和合作交流能力. 3、 通过学生自己归纳总结本部分内容,使他们在动手操作方面,探索研究方面,语言表达方面,分类讨论、归纳等方面都有所发展. 学习重点:将本部分的知识有机结合,强化训练学生综合运用数学知识的能力,. 学习难点:把数学知识转化为自身素质. 增强用数学的意识.

教材分析 一、 知识脉络

二、基础知识 1必然事件 。 2不能事件 . 3确定事件 . 4不确定事件(随机事件) 5表示 ,叫做该事件的概率. 6概率的理论计算有:① ;②

概率 概率的意义 事情发生的概率 概率与统计的联系 三、知识应用 例1、任意掷一枚均匀的小立方体(立方体的每个面上分别标有数字1、2、3、4、5、6),“6”朝上的概率是多少? 【分析】考虑两个方面,一是所有可能出现的结果有几种,二是“6”朝上的结果有几种。 【讨论解决】1列树状图

求出概率P=( ) 例2、 两人要去某风景区游玩, 每天某一时段开往该风景区有三辆车(票价相同),但是他们不知道这些车的舒适程度, 也不知道车子开过来的顺序. 两人采取了不同的乘车方案: 甲无论如何总是上开来的第一辆车,而乙则是先观察后上车, 当第一辆车开来时 他不上车, 而是仔细观察车的舒适度, 如果第二辆车的状况比第一辆车好, 他就上第二辆车; 如果第二辆车不比第一辆好, 他就上第三辆车. 如果把这三辆车的舒适程度分为上、中、下三等, 请尝试着解决下面的问题: ⑴三辆车按出现的先后顺序工有哪几种不同的可能? ⑵ 你认为甲、乙两人采用的方案, 哪一种方案使自己..乘上等车的可能性大? 为什么?

【分析】由于各车的舒适度不同,而且开过来的顺序也事先未知,因此不同的乘车方案使自己乘坐上等车的可能性不一样.我们只要将三种不同的车开来的可能性顺序全部列出来,再对照甲乙二人不同的乘车方案,就可以得出两人乘坐上等车的可能性. 【讨论解决】⑴三辆车开来的先后顺序有 种可能,分别是:( )、( )、( )、( )、( )、( ); ⑵由于不考率其他因素,三辆车6种顺序出现的可能性相同.甲、乙二人分别乘坐上等车的概率,用列表法可得.

第二十五章 概率初步 单元备课

第二十五章  概率初步  单元备课
教学重点
难点
重点:能运用列举法(列表法、画树状图法)计算简单事件发生的概率
难点:用实验的方法估计一个事件发生的概率,并会设计一个方案来估计一个事件发生的概率。
教学方法
自主、合作、探究、观察讨论法
教学资源
课本、练习册
教学流程面学习的基础上,通过实验进一步体会概率的意义,建立正确的概率直觉,培养随机观念;了解实验频率与理论概率的关系;学习计算简单事件发生概率的两种方法——列举法、画树状图法;会用模拟实验的方法估计一个事件发生的概率。概率模型也由一步实验较简单的概率模型涉及到二步实验或二步以上的实验。
第二十五章概率初步单元备课
教学目标
.经历实验、统计等活动过程,在活动中进一步发展学生合作交流的意识和能力。
2.通过试验等活动,理解事件发生的频率与概率之间的关系,加深学生对概率的理解,进一步体会概率是描述随机现象的数学模型。
3.能运用树状图和列表法计算简单事件发生的概率。
4.能用试验或模拟实验的方法估计一些复杂的随机事件发生的概率。
3.注意揭示概率与统计之间的内在联系。
4.鼓励学生使用计算器等现代信息技术手段进行概率学习活动。
五.评价建议
1.注重学生活动的评价,主要评价学生的参与程度,活动过程中的思维方式,与同学合作交流的情况。
2.鼓励学生思维的多样性,避免评价的单一性。
3.关注学生对知识技能的理解与应用
4.关注学生对概率的全面理解以及应用概率解决问题的能力。
三.课时安排
1.随机事件2课时
2.用列举法计算概率2课时
3.用频率估计概率2课时
4.回顾与复习2课时
共8课时
四.教学建议
1.注重学生的合作和交流活动,在活动中促进知识的学习,并进一步发展学生合作交流的意识和能力。

第25章 第6课时 《概率初步》单元复习

第25章 第6课时 《概率初步》单元复习
】一个布袋内只装有 1 个黑球和 2 个白球,这些球除颜
色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸
出一个球,则两次摸出的球都是黑球的概率是( D )
A.94
B.13
C.61
D.91
返回
数学 【例 3】一天,小华和小夏玩掷骰子游戏,他们约定:他们用 同一枚质地均匀的骰子各掷一次,如果两次掷的骰子的点数 相同则小华获胜;如果两次掷的骰子的点数的积是 6 则小夏 获胜. (1)请你用列表格或画树状图的方法列举出所有可能出现的结 果; (2)请你判断这个游戏对他们是否公平,并说明理由.
返回
数学 (2)120 补全频数分布直方图略. (4)画树状图:
由树状图可知,共有 12 种等可能结果,其中抽中 A,C 两组 同学的有 2 种结果,∴抽中 A,C 两组同学的概率 P=122=16.
返回
谢谢观看
返回
数学 解:(1)列表如下:
123456 1 (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) 2 (1,2) (2,2) (3,2) (4,2) (5,2) (6,2) 3 (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) 4 (1,4) (2,4) (3,4) (4,4) (5,4) (6,4) 5 (1,5) (2,5) (3,5) (4,5) (5,5) (6,5) 6 (1,6) (2,6) (3,6) (4,6) (5,6) (6,6) ∴一共有 36 种等可能的结果.
返回
数学 (2)这个游戏对他们不公平,理由如下: 由上表可知,所有可能的结果有 36 种,并且它们出现的可能 性相等,而 P(两次掷的骰子的点数相同)=366=16,P(两次掷的 骰子的点数的积是 6)=346=19,∵16≠19,∴不公平.

九上数学第25章《概率初步》全章教案

九上数学第25章《概率初步》全章教案

第二十五章概率初步25.1随机事件与概率25.随机事件了解必然发生的事件、不可能发生的事件、随机事件的特点.了解随机事件发生的可能性是有大有小的,不同的随机事件发生的可能性的大小不同.重点随机事件的特点.难点判断现实生活中哪些事件是随机事件.一、情境引入分析说明下列事件能否一定发生:①今天不上课;②煮熟的鸭子飞了;③明天地球还在转动;④木材燃烧会放出热量;⑤掷一枚硬币,出现正面朝上.二、自主探究1.提出问题教师事先准备的三个袋子中分别装有10个白色的乒乓球;5个白色的乒乓球和5个黄色的乒乓球;10个黄色的乒乓球,分组讨论从这三个袋子里摸出黄色乒乓球的情况.学生积极参加,通过操作和观察,归纳猜测出在第1个袋子中摸出黄色球是不可能的,在第2个袋子中能否摸出黄色球是不确定的,在第3个袋子中摸出黄色球是必然的.2.概念得出从上面的事件可看出,对于任何事件发生的可能性有三种情况:(1)必然事件:在一定条件下必然要发生的事件;(2)不可能事件:在一定条件下不可能发生的事件;(3)随机事件:在一定条件下可能发生也可能不发生的事件.3.随机事件发生的可能性有大小袋子中有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的情况下,随机地从袋子中摸出一个球.(1)是白球还是黑球?(2)经过多次试验,摸出的黑球和白球哪个次数多?说明了什么问题?结论:一般地,随机事件发生的可能性有大小,不同的随机事件发生的可能性的大小有可能不同.三、巩固练习教材第128页练习四、课堂小结(学生归纳,老师点评)本节课应掌握:(1)必然事件,不可能事件,随机事件的概念.(2)一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.五、作业布置教材第129页 练习1,2.25. 概 率1.在具体情境中了解概率的意义,体会事件发生的可能性大小与概率的值的关系. 2.理解概率的定义及计算公式P(A)=mn ,明确概率的取值范围,能求简单的等可能性事件的概率.重点在具体情境中了解概率的意义,理解概率定义及计算公式P(A)=mn .难点了解概率的定义,理解概率计算的两个前提条件.活动1 创设情境(1)事件可以分为哪几类?什么是随机事件?随机事件发生的可能性一样吗?(2)在同样的条件下,某一随机事件可能发生也可能不发生,那么它发生的可能性究竟有多大?能否用数值进行刻画呢?这节课我们就来研究这个问题. 活动2 试验活动试验1:每位学生拿出课前准备好的分别标有1,2,3,4,5号的5根纸签,从中随机地抽取一根,观察上面的数字,看看有几种可能.(如此多次重复)试验2:教师随意抛掷一枚质地均匀的骰子,请学生观察骰子向上一面的点数,看看有几种不同的可能.(如此可重复多次)(1)试验1中共出现了几种可能的结果?你认为这些结果出现的可能性大小相等吗?如果相等,你认为它们的可能性各为多少?(2)试验2中共出现了几种可能的结果?你认为这些结果出现的可能性大小相等吗?如果相等,你认为它们的可能性各为多少?活动3 引出概率1.从数量上刻画一个随机事件A 发生的可能性的大小,我们把它叫做这个随机事件A 的概率,记为P(A).2.概率计算必须满足的两个前提条件:(1)每一次试验中,可能出现的结果只有有限个; (2)每一次试验中,各种结果出现的可能性相等.3.一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率P(A)=________.4.随机事件A 发生的概率的取值范围是________,如果A 是必然发生的事件,那么P(A)=________,如果A 是不可能发生的事件,那么P(A)=________.活动4 精讲例题例1 下列事件中哪些是等可能性事件,哪些不是? (1)运动员射击一次中靶心与不中靶心; (2)随意抛掷一枚硬币反面向上与正面向上;(3)随意抛掷一只可乐纸杯杯口朝上,或杯底朝上,或横卧;(4)分别从写有1,3,5,7,9中一个数的五张卡片中任抽1张结果是1,或3,或5,或7,或9.答案:(1)不是等可能事件;(2)是等可能事件;(3)不是等可能事件;(4)是等可能事件. 例2 学生自己阅读教材第131页~132页例1及解答过程.例3 教师引导学生分析讲解教材第132页例2.想一想:把此题(1)和(3)两问及答案联系起来,你有什么发现?例4 教师引导学生分析讲解教材第133页例3. 活动5 过关练习教材第133页 练习第1~3题.,这些球除了颜色外都相同.从袋子中随机地摸出一个球,它是红色与它是绿色的可能性相等吗?两者的概率分别是多少?2.一个质地均匀的小正方体骰子,六个面分别标有数字1,2,2,3,4,4,掷骰子后,观察向上一面的数字.(1)出现数字1的概率是多少?(2)出现的数字是偶数的概率是多少?(3)哪两个数字出现的概率相等?分别是多少?答案:,P(摸到红球)=58,P(摸到绿球)=38;2.(1)16;(2)23;(3)数字1和3出现的概率相同,都是16,数字2和4出现的概率相同,都是13.活动6 课堂小结与作业布置 课堂小结1.随机事件概率的意义,等可能性事件的概率计算公式P(A)=mn.2.概率计算的两个前提条件:可能出现的结果只有有限个;各种结果出现的可能性相同. 作业布置教材第134页~135页 习题第3~6题. 用列举法求概率(2课时)第1课时 用列举法和列表法求概率1.会用列举法和列表法求简单事件的概率.2.能利用概率知识解决计算涉及两个因素的一个事件概率的简单实际问题.重点正确理解和区分一次试验中涉及两个因素与所包含的两步试验. 难点当可能出现的结果很多时,会用列表法列出所有可能的结果.活动1 创设情境我们在日常生活中经常会做一些游戏,游戏规则制定是否公平,对游戏者来说非常重要,其实这就是一个游戏双方获胜概率大小的问题. 下面我们来做一个小游戏,规则如下:老师向空中抛掷两枚同样的一元硬币,如果落地后一正一反,老师赢;如果落地后两面一样,你们赢.请问:你们觉得这个游戏公平吗?学生思考计算后回答问题:把其所能产生的结果全部列出来,应该是正正、正反、反正、反反,共有四种可能,并且每种结果出现的可能性相同.(1)记满足两枚硬币一正一反的事件为A ,则P(A)=24=12;(2)记满足两枚硬币两面一样的事件为B ,则P(B)=24=12.由此可知,双方获胜的概率一样,所以游戏是公平的.当一次试验涉及两个因素,并且可能出现的结果数目比较少时,我们看到结果很容易被全部列出来;若出现结果的数目较多时,要想不重不漏地列出所有可能的结果,还有什么更好的方法呢?我们来看下面的这个问题.活动2 探索交流例1 为活跃联欢晚会的气氛,组织者设计了以下转盘游戏:A ,B 两个带指针的转盘分别被分成三个面积相等的扇形,转盘A 上的数字分别是1,6,8,转盘B 上的数字分别是4,5,7(两个转盘除表面数字不同外,其他完全相同).每次选择2名同学分别拨动A ,B 两个转盘上的指针,使之产生旋转,指针停止后所指数字较大的一方为获胜者,负者则表演一个节目(若箭头恰好停留在分界线上,则重转一次).作为游戏者,你会选择哪个装置呢?并请说明理由.在这个环节里,首先可以让学生自己用列举法列出所有的情况,很多学生会发现列出所有的情况会有困难,会漏掉一些情况.这个时候可以要求学生分组讨论,探索交流,然后引导学生将实际问题转化为数学问题,即“停止转动后,哪个转盘指针所指数字较大的可能性更大呢?”由于事件的随机性,我们必须考虑事件发生概率的大小.此时,首先引导学生观看转盘动画,同学们会发现这个游戏涉及A ,B 两个转盘,即涉及两个因素,与上节课所讲授单转盘概率问题相比,可能产生的结果数目增多了,变复杂了,列举时很容易造成重复或遗漏.怎样避免这个问题呢?实际上,可以将这个游戏分两步进行,教师指导学生构造下列表格:BA 45 7 1 68分析:首先考虑转动,可能出现的结果就会有3个;接着考虑转动B 盘:当A 盘指针指向1时,B 盘指针可能指向4,5,7三个数字中的任意一个.当A 盘指针指向6或8时,B 盘指针同样可能指向4,5,7三个数字中的任意一个,这样一共会产生9种不同的结果.学生独立填写表格,通过观察与计算,得出结论(即列表法).B A 4 5 7 1 (1,4) (1,5) (1,7) 6(6,4)(6,5)(6,7)8(8,4) (8,5) (8,7) 从表中可以发现:A 盘数字大于B 盘数字的结果共有5种,而B 盘数字大于A 盘数字的结果共有4种.∴P(A 数较大)=59,P(B 数较大)=49,∴P(A 数较大)>P(B 数较大),∴选择A 装置的获胜可能性较大.在学生填写表格过程中,注意向学生强调数对的有序性.由于游戏是分两步进行的,我们也可用其他的方法来列举.即先转动B 盘,可能出现4,5,7三种结果;第二步考虑转动A 盘,可能出现1,6,8三种情况.活动3 例题精讲通过上面例1的分析,学生对用列表法求概率有了初步的了解,为了帮助学生熟练掌握这种方法,教师引导学生分析解决教材第136页例2.然后引导学生进行题后小结:当一个事件要涉及两个因素并且可能出现的结果数目较多时,通常采用列表法.运用列表法求概率的步骤如下:(1)列表;(2)通过表格计数,确定公式P(A )=mn 中的m 和n 的值;(3)利用公式P(A )=mn计算事件发生的概率.活动4 过关练习教材第138页 练习第1~2题. 活动5 课堂小结与作业布置 课堂小结引导学生从知识、方法、情感三方面来谈一谈这节课的收获,要求每个学生在组内交流,派小组代表发言.作业布置教材第139页~140页 习题第1~3题和第5题.第2课时 用树状图求概率1.理解并掌握用树状图求概率的方法,并利用它们解决问题.2.正确认识在什么条件下使用列表法,在什么条件下使用树状图法.重点理解树状图的应用方法及条件,用画树状图的方法求概率. 难点用树状图列举各种可能的结果,求实际问题中的概率.一、复习引入用列举法求概率的方法.(1)总共有几种可能,即求出n ;(2)每个事件中有几种可能的结果,即求出m ,从而求出概率.什么时候用列表法?列举所有可能的结果的方法有哪些? 二、探索新知 画树状图求概率例1 甲口袋中装有2个相同的球,它们分别写有字母A 和B ;乙口袋中3个相同的球,它们分别写有字母C ,D 和E ;丙口袋中2个相同的球,. (1)取出的三个球上恰好有1个、2个和3个元音字母的概率分别为多少?(2)取出的三个球上全是辅音字母的概率是多少?例1与上节课的例题比较,有所不同:要从三个袋子里摸球,即涉及到三个因素.此时同学们会发现用列表法就不太方便,可以尝试树状图法.本游戏可分三步进行.分步画图和分类排列相关的结论是解题的关键.从图形上可以看出所有可能出现的结果共有12个,即:A A A A A AB B B B B BC CD DE E C C D D E E H I H I H I H I H I H I (幻灯片上用颜色区分)这些结果出现的可能性相等.(1)只有一个元音字母的结果(黄色)有5个,即ACH ,ADH ,BCI ,BDI ,BEH ,所以P (1个元音)=512;有两个元音的结果(白色)有4个,即ACI ,ADI ,AEH ,BEI ,所以P (2个元音)=412=13;全部为元音字母的结果(绿色)只有1个,即AEI ,所以P (3个元音)=112.(2)全是辅音字母的结果(红色)共有2个,即BCH ,BDH ,所以P (3个辅音)=212=16.通过例1的解答,很容易得出题后小结:当一次试验要涉及3个或更多的因素时,通常采用“画树形图”. 运用树状图法求概率的步骤如下:(幻灯片) ①画树状图;②列出结果,确定公式P (A )=mn 中m 和n 的值;③利用公式P (A )=mn 计算.三、巩固练习教材第139页 练习四、课堂小结本节课应掌握:1.利用树状图法求概率.2.什么时候用列表法,什么时候用树状图法,各自的应用特点:有两个元素且情况较多时用列表法,当有三个或三个以上元素时用树状图法.五、作业布置教材第140页习题6,9.用频率估计概率1.当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.2.会设计模拟试验,能应用模拟试验求概率.重点对利用频率估计概率的理解和应用.难点对利用频率估计概率的理解.一、情境引入某篮球运动员在最近的几场大赛中罚球投篮的结果如下:投篮次数n 8 10 12 9 16 10进球次数m 6 8 9 7 12 7进球频率错误!(1)计算表中各次比赛进球的频率;(2)这位运动员投篮一次,进球的概率约为多少?解答:(1),,,,0.75,;(2)0.75.二、自主探究利用频率估计概率1.试验要求:(1)把全班分成10或12组,每组中有一名学生投掷硬币,另一名同学做记录,其余同学观察试验,计算结果,各组必须在同样条件下进行.(2)明确任务,每组掷币50次,认真统计“正面朝上”的频数,算出“正面朝上”的频率,整理试验的数据,并记录下来.2.各组汇报试验结果:把各组试验数据汇报给教师,教师积累后填入表格,板书,学生计算出累加后的频率.(由于试验次数较小,有可能有些组的最后结果和自己的猜想有出入)3.根据列表填在教材第142页图中,观察频率变化情况,小组交流后阐述所得结论.4.思考:教材第143页“思考”.5.问题1:教材第144页问题1.分析:幼树的成活率是实际问题中的概率,在这个实验过程中,移植总数无限,每一棵小苗成活的可能性不相等,所以不能用列举法求概率,只能用频率估计概率.解:教师引导学生完成方法总结:(1)先计算出每次试验的频率;(2)观察频率活动情况,选择最接近且围绕波动的频率数作为概率.用频率估计概率的应用教材第145页问题2分析:学生阅读表25-6提供的信息:(1)估测出损坏率.(实质也是概率问题)(2)算出完好柑橘的质量.(3)计算出实际成本,再确定定价.三、巩固练习教材第147页练习.四、课堂小结(1)利用频率估计概率,建立在大量重复试验的基础上.(2)利用频率估计概率,得到的概率是近似值.五、作业布置教材第147~148页习题1,2,5.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十五章_概率初步_复习课_教案
一、教学目标:
1、知识技能目标
了解必定发生的事件、不可能发生的事件、随机事件的特点.
2、数学摸索目标
学生经历体验、操作、观看、归纳、总结的过程,进展学生从纷繁复杂
的表
象中,提炼出本质特点并加以抽象概括的能力.
3、解决问题目标
能依照随机事件的特点,辨别哪些事件是随机事件.
4、情感态度目标
引领学生感受随机事件就在周围,增强学生珍爱机会,把握机会的意识.
二、重点难点:
重点:随机事件的特点.
难点:判定现实生活中哪些事件是随机事件.
三、教学过程:
(一). 知识网络
自我梳理本章知识网
络:
设计意图:使学生进一
步对概率初步中涉及的各个
知识点有了较为系统的认
识,正确明白得频率与概率
的关系,进而认识数学是与
实际问题密不可分,人们的需要产生数学。
(二).考点分类解析过程:
考点一:事件分类
1. 下列事件中,必定事件是( )
A. 掷一枚硬币,正面朝上 B. a 是实数,|a|≥0
C. 某运动员跳高的最好成绩是 20.1 米D. 从车间刚生产的产品中任
意抽取一个,是次品
2. 有 4个红球、3个白球、2个黑球,放入一个不透亮的袋子里,从
中摸出8个球,恰好红球、白球、黑球都摸到,这件情况是( )
A.随机事件 B.不可能事件
C.专门可能事件 D.必定事件
考点二:对概率意义的明白得
例1 在一场足球竞赛前,甲教练预言说:“依照我把握的情形,这场
竞赛我们队有 60% 的机会获胜”意思最接近的是( )
A. 这场竞赛他那个队应该会赢
B. 若两个队打100场竞赛,他那个队会赢60场
C. 若这两个队打10场竞赛,那个队一定会赢6场竞赛.
D. 若这两个队打100场竞赛,他那个队可能会赢60场左右.
考点三:直截了当列举求简单事件的概率
例2 甲、乙、丙、丁四位同学进行一次乒乓球单打竞赛,要从中选出
两位同学打第一场竞赛.
(1) 请用树状图法或列表法,求恰好选中甲、乙两位同学的概率;
(2) 若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好
选中乙同学的概率.
小结与反思:通过列表或画树状图能够不遗漏情形总量和成功事件数.
考点四:有无放回的概率(易错)
例3 (1)口袋里有4张卡片,上面分别写了数字1、 2、3、4、先抽
一张,不放回,再抽一张,“两张卡片上的数字一奇一偶”的概率是多少?
(2)把一枚正方体骰子连掷两次,“朝上的数字一奇一偶”的概率是
多少?
注意:在解答此类问题中,一定要分清实验是“有放回” 依旧“无放
回”.
考点五:判定游戏是否公平(提高)
例4 在一个不透亮的口袋中装有 4 张相同的纸牌,它们分别标有数
字 1、2、3、4. 随机地摸取出一张纸牌然后放回,再随机摸取出一张纸
牌.
(1) 运算两次摸取纸牌上数字之和为 5 的概率;
(2) 甲、乙两个人进行游戏,假如两次摸出纸牌上数字之和为奇数,则
甲胜;假如两次摸出纸牌上数字之和为偶数,则乙胜.这是个公平的游戏
吗?请说明理由.
小结与反思:游戏公平问题实际是概率相等问题.
考点六:用频率估量概率
例5 在一个暗箱里放有 a 个除颜色外其它完全相同的球,这 a 个球
中红球只有 3 个,每次将球搅拌平均后,任意摸出一个球记下颜色再放回
暗箱.
通过大量反复试验后发觉,摸到红球的频率稳固在25%,那么能够推
算出 a 大约是( )
拓展应用
2. 如图,长方形内有一不规则区域,现在玩投掷游戏,假如随机掷中
长方形的 300 次中,有100次是落在不规则图形内.
(1)你能估量出掷中不规则图形的概率吗?
(2)若该长方形的面积为150,试估量不规则图形的面积.
拓展小结:能够利用频率估量概率的实验方法估算不规则图形的面积
设计意图:把概率初步知识细分为六个考点,让学生通过猜想试验、
分析讨论、合作探究的学习方式十分有益于加深学生对概率意义的明白得,
使之明确频率与概率的联系,经历实验、列表、统计、运算、设计等活动,
学生在具体情境中分析事件,运算其发生的概率。渗透数形结合,分类讨
论,由专门到一样的思想,提高分析问题和解决问题的能力。使本节课教
学重难点得以突破.为今后的学习打下了基础.
课堂小结
通过本节课,你关于解答概率题把握了哪些方法,哪些方面还需要专
门注意,总结一下,谈谈你的收成.
设计意图:回忆教学过程和数学方法,不仅加深了学生对知识的印象,
同时也培养了学生的口头表达能力和概括总结能力.

相关文档
最新文档