新北师大版七年级数学下册第六章《概率初步》单元复习卷含答案解析(24)

合集下载

(常考题)北师大版初中数学七年级数学下册第六单元《概率初步》测试卷(答案解析)

(常考题)北师大版初中数学七年级数学下册第六单元《概率初步》测试卷(答案解析)

一、选择题1.下列事件中,为必然事件的是()A.明天早晨,大家能看到太阳从东方冉冉升起B.成绩一直优秀的小华后天的测试成绩也一定优秀C.从能被2整除的数中,随机抽取一个数能被8整除D.从10本图书中随机抽取一本是小说2.下列说法中不正确的是()A.抛一枚质地均匀的硬币,正面朝上的概率与抛硬币的次数无关B.随机选择一户二孩家庭,头胎、二胎都是男孩的概率为1 4C.任意画一个三角形内角和为360°是随机事件D.连续投两次骰子,前后点数之和为偶数的概率是1 23.下列事件发生的概率为0的是()A.射击运动员只射击1次,就命中靶心B.任取一个实数x,都有|x|≥0C.画一个三角形,使其三边的长分别为8cm,6cm,2cmD.抛掷一枚质地均匀且六个面分别刻有1到6的点数的正方体骰子,朝上一面的点数为6 4.如图,转盘的红、黄、蓝、紫四个扇形区域的圆心角分别记为α,β,γ,θ。

自由转动转盘,则下面说法错误的是( )A.若α>90°,则指针落在红色区域的概率大于0.25B.若α>β+γ+θ,则指针落在红色区域的概率大于0.5C.若α-β>γ-θ,则指针落在红色或黄色区域的概率和为0.5D.若γ+θ=180°,则指针落在红色或黄色区域的概率和为0.55.在一个不透明的口袋中装有红、黄、蓝三种颜色的球,如果口袋中有 5 个红球,且摸出红球的概率为13,那么袋中总共球的个数为()A.15 个B.12 个C.8 个D.6 个6.在一个不透明的口袋中,装有3个红球2个白球,它们除颜色外其余都相同,从中任意摸出一个球,摸到白球的概率为()A.12B.15C.25D.357.事件:“在只装有3个红球和4个黑球的袋子里,摸出一个白球”是()A.可能事件B.不可能事件C.随机事件D.必然条件8.“用长分别为5cm、12cm、1cm的三条线段可以围成直角三角形”这一事件是()A.必然事件B.不可能事件C.随机事件D.以上都不是9.掷一枚质地均匀的硬币,前6次都是正面朝上,则掷第7次时正面朝上的概率是()A.1 B.67C.12D.010.下列事件是随机事件的是()A.在一个标准大气压下,水加热到100℃会沸腾 B.购买一张福利彩票就中奖C.有一名运动员奔跑的速度是50米/秒 D.在一个仅装有白球和黑球的袋中摸球,摸出红球11.下列事件是必然事件的是().A.购买一张彩票中奖B.通常加热到100℃时,水沸腾C.明天一定是晴天D.任意一个三角形,其内角和是360°12.下列成语描述的事件是必然事件的是()A.守株待兔B.翁中捉鳖C.画饼充饥D.水中捞月二、填空题13.在一不透明的口袋中有4个为红球,3个绿球,2个白球,它们除颜色不同外完全一样,现从中任摸一球,恰为红球的概率为__________.14.某班有男生和女生各若干,若随机抽取1人,抽到男生的概率是0.4,则抽到女生的概率是__________.15.一个样本的50个数据分别落在5个小组内,第1、2、3、4组的数据的个数分别为2、8、15、5,则第5组的频率为______ .16.一个密码箱的密码,每个数位上的数都是从0到9的自然数,若要使不知道密码的人一次就拨对密码的概率小于12018,则密码的位数至少需要__位.17.如图:同学们在操场的一个圆形区域内玩投掷沙包的游戏,圆形区域由5个过同一点且半径不同的圆组成.经过多次实验,发现沙包如果都能落在区域内时,落在2、4两个阴影内的概率分别是0.36和0.21,设最大的圆的直径是5米,则1、3、5三个区域的面积和是_____.18.一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,投掷这样的骰子一次,向上一面点数是偶数的概率是_____.19.一个口袋中装有8个黑球和若干个白球,现从口袋中随机摸出一球,记下其颜色,再把它放回口袋中.不断重复上述过程,若共摸了200次,其中有50次摸到黑球,因此可估计口袋中大约有白球________个.20.把一副普通扑克牌中的数字2,3,4,5,6,7,8,9,10的9张牌洗均匀后正面向下放在桌面上,从中随机抽取一张,抽出的牌上的数恰为3的倍数的概率是_____.三、解答题21.一个不透明袋中装有红、黄、绿三种颜色的球共36个,它们除颜色外都相同,其中黄球个数是绿球个数的2倍,已知从袋中摸出一个球是红球的概率为13.(1)分别求红球和绿球的个数.(2)求从袋中随机摸出一球是绿球的概率.22.一个袋中装有除颜色外都相同的红球和黄球共10个,其中红球6个.从袋中任意摸出1球,请问:(1)“摸出的球是白球”的概率是多少?(2)“摸出的球是黄球”的概率是多少?23.一个不透明的袋中装有红、黄、白三种颜色的球共100个,它们除颜色外都相同,其中黄球的个数是白球个数的2倍少5个,已知从袋中摸出一个球是红球的概率是3 10.(1)求袋中红球的个数;(2)求从袋中摸出一个球是白球的概率;(3)取走10个球(其中没有红球)后,求从剩余的球中摸出一个球是红球的概率.24.为从小明和小刚中选出一人去观看元旦文艺汇演,现设计了如下游戏,规则是:把四个完全相同的乒乓球标上数字1,2,3,4,然后放到一个不透明的袋中,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去;否则小刚去.请用树状图或列表法说明这个游戏是否公平.25.在一个布袋中装有2个红球和2个篮球,它们除颜色外其他都相同.()1搅匀后从中摸出一个球记下颜色,不放回继续再摸第二个球,求两次都摸到红球的概率;()2在这4个球中加入x个用一颜色的红球或篮球后,进行如下试验,搅匀后随机摸出1个球记下颜色,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到红球的概率稳定在0.80,请推算加入的是哪种颜色的球以及x的值大约是多少?26.小明和小颖用一副扑克牌做摸牌游戏(去掉大小王):小明从中任意抽取一张牌(不放回),小颖从剩余的牌中任意抽取一张,谁摸到的牌面大谁就获胜(规定牌面从小到大的顺序为:2,3,4,5,6,7,8,9,10,J,Q,K,A,且牌面的大小与花色无关).然后两人把摸到的牌都放回,重新开始游戏.(1)现小明已经摸到的牌面为4,然后小颖摸牌,那么小明获胜的概率是多少?小颖获胜的概率又是多少?(2)若小明已经摸到的牌面为2,情况又如何?如果若小明已经摸到的牌面为A呢?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】必然发生的事件是必然事件,根据定义解答A.【详解】A、明天早晨,大家能看到太阳从东方冉冉升起是必然事件;B、成绩一直优秀的小华后天的测试成绩也一定优秀是随机事件;C、从能被2整除的数中,随机抽取一个数能被8整除是随机事件;D、从10本图书中随机抽取一本是小说是随机事件;故选:A.【点睛】此题考查必然事件定义,熟记定义、理解必然事件与随机事件发生的可能性的大小是解题的关键.2.C解析:C【分析】根据抛硬币简单概率求法判断选项A,利用求概率的方法判断选项B,根据三角形的内角和是180°判断选项C,求出两次抛骰子的所有可能结果和点数和为偶数的结果数即可判断选项D,即可做出选择.【详解】A、抛一枚质地均匀的硬币,出现的情况有两种一正一反,正面朝上的概率是12,与抛硬币的次数无关,故原选项正确;B、随机选择一户二孩家庭,头胎、二胎的共有4种等可能的结果,其中,都是男孩的有1种,所以随机选择一户二孩家庭,头胎、二胎都是男孩的概率为14,此原选项正确,C、任意一个三角形的内角和为180°,所以任意画一个三角形内角和为360°是不可能事件,为确定性事件,不是随机事件,故原选项不正确,;D、连续投两次骰子,前后点数之和共有36种等可能的结果,其中点数之和是偶数的有18种结果,所以前后点数之和为偶数的概率是181362,故原选项正确,故选择:C.【点睛】本题考查求事件发生的概率,理解事件发生的概率的意义,会区分确定事件与随机事件,能根据所学概率知识对各个选项作出正确判断是解答的关键.3.C解析:C 【详解】A. 射击运动员只射击1次,就命中靶心是随机事件,故此选项错误;B. 任取一个实数x ,都有|x|≥0,是必然事件,故此选项错误;C. 画一个三角形,使其三边的长分别为8cm ,6cm ,2cm ,是不可能事件,故此选项正确;D. 抛掷一枚质地均匀且六个面分别刻有1到6的点数的正方体骰子,朝上一面的点数为6是随机事件,故此选项错误. 故选C .4.C解析:C 【分析】直接利用各区域所占比例与总面积的比值进而求出答案. 【详解】 解:A.0.25360?α>,正确; B.0.5360?α>,正确; C.无法判断,错误; D.=0.5360?360?γθ++=αβ,正确. 故选C. 【点睛】此题考查了几何概率计算公式以及其简单应用,注意面积之比=几何概率.5.A解析:A 【解析】 【分析】根据红球的概率公式列出方程求解即可. 【详解】解:根据题意设袋中共有球m 个,则513m = 所以m=15. 故袋中有15个球. 故选:A . 【点睛】本题考查了随机事件概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.6.C解析:C【解析】【分析】用白球的个数除以球的总个数即可求得摸到白球的概率.【详解】∵在一个不透明的口袋中,装有3个红球2个白球,它们除颜色外都相同,∴从中任意摸出一个球,摸到白球的概率为:22=3+25.故选C.【点睛】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.7.B解析:B【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】“在只装有3个红球和4个黑球的袋子里,摸出一个白球”是不可能事件;故选B.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.B解析:B【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】∵5+1<12,∴用长分别为5cm、12cm、1cm的三条线段不能构成三角形,则“用长分别为5cm、12cm、1cm的三条线段可以围成直角三角形”这一事件是不可能事件,故选B.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9.C解析:C【解析】【分析】根据大量重复试验事件发生的频率接近事件发生的可能性的大小(概率),时间确定了则概率是不变的,而频率是改变的,根据此特点可得答案.【详解】解:掷一枚质地均匀的硬币,前6次都是正面朝上,则掷第7次时正面朝上的概率是1 2 .故选C.【点睛】本题考查概率,大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).10.B解析:B【解析】【分析】根据事件的类型特点及性质进行判断.【详解】A、是必然事件,选项错误;B、是随机事件,选项错误;C、是不可能事件,选项错误;D、是不可能事件,选项错误.故选B.【点睛】本题考查的是随机事件的特性,熟练掌握随机事件的特性是本题的解题关键.11.B解析:B【分析】根据随机事件的分类,对各个选项逐个分析,即可得到答案.【详解】购买一张彩票中奖,是不确定事件,故选项A错误;通常加热到100℃时,水沸腾,是必然事件,故选项B正确;明天一定是晴天,是不确定事件,故选项C错误;任意一个三角形,其内角和是360°,是不可能事件,故选项D错误;故选:B.【点睛】本题考查了随机事件的知识;解题的关键是熟练掌握随机事件的分类,从而完成求解.12.B解析:B【分析】根据必然事件指在一定条件下一定发生的事件对各选项分析判断利用排除法求解.【详解】A、守株待兔,是随机事件;B、瓮中捉鳖,是必然事件;C、画饼充饥,是不可能事件;D、水中捞月,是不可能事件;故选:B.【点睛】本题考查了必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.二、填空题13.【解析】【分析】先求出袋子中球的总个数及红球的个数再根据概率公式解答即可【详解】袋子中球的总数为4+3+2=9而红球有4个则从中任摸一球恰为红球的概率为故答案为:【点睛】此题考查概率公式解题关键在于解析:4 9【解析】【分析】先求出袋子中球的总个数及红球的个数,再根据概率公式解答即可.【详解】袋子中球的总数为4+3+2=9,而红球有4个,则从中任摸一球,恰为红球的概率为4 9 .故答案为: 4 9 .【点睛】此题考查概率公式,解题关键在于掌握公式运算法则.14.【解析】【分析】抽到女生的概率=1-抽到男生的概率【详解】抽到女生的概率是1-04=06【点睛】本题考查概率解题关键在于了解对立事件的概率和为1 解析:0.6【解析】【分析】抽到女生的概率=1-抽到男生的概率 【详解】 抽到女生的概率是 1-0.4=0.6 【点睛】本题考查概率,解题关键在于了解对立事件的概率和为1.15.4【分析】根据总数计算出第5组的频数用第5组的频数除以数据总数就是第五组的频率【详解】解:第5组的频数:50-2-8-15-5=20频率为:20÷50=04故答案为04【点睛】本题考查频数和频率的求解析:4 【分析】根据总数计算出第5组的频数,用第5组的频数除以数据总数就是第五组的频率. 【详解】解:第5组的频数:50-2-8-15-5=20, 频率为:20÷50=0.4, 故答案为0.4. 【点睛】本题考查频数和频率的求法,关键知道频数=总数×频率,从而可求出解.16.4【解析】【分析】先根据概率公式得到密码为三位数时一次就拨对密码的概率密码为4位数时一次就拨对密码的概率于是得到要使不知道密码的人一次就拨对密码的概率小于则密码的位数至少需要4位【详解】∵每个数位上解析:4 【解析】 【分析】先根据概率公式得到密码为三位数时,一次就拨对密码的概率11000=, 密码为4位数时,一次就拨对密码的概率110000=,于是得到要使不知道密码的人一次就拨对密码的概率小于12018,则密码的位数至少需要4位. 【详解】∵每个数位上的数都是从0到9的自然数, ∴密码为三位数时,一次就拨对密码的概率111010101000==⨯⨯,密码为四位数时,一次就拨对密码的概率111010101010000==⨯⨯⨯,∴要使不知道密码的人一次就拨对密码的概率小于12018,则密码的位数至少需要4位. 故答案为:4.【点睛】考查了概率公式,掌握概率的计算方法是解题的关键.17.6875πm2【解析】【分析】根据题意可得大圆的面积再由几何概率的意义可得第24两个阴影的面积所占的比例进而可得135三个区域的面积和占的比例计算可得其面积之和【详解】根据题意得最大的圆的直径是5米解析:6875πm2.【解析】【分析】根据题意,可得大圆的面积,再由几何概率的意义,可得第2、4两个阴影的面积所占的比例,进而可得1、3、5三个区域的面积和占的比例,计算可得其面积之和.【详解】根据题意得,最大的圆的直径是5米,则大圆的面积为6.25πm2,又有落在2、4两个阴影内的概率分别是0.36和0.21,则第2、4部分的面积和占总面积的0.36+0.21=0.57,即57%,则1、3、5三个区域的面积占总面积的1-0.57=0.43,即43%,故1、3、5三个区域的面积和为6.25π×0.43=2.6875π m2.故答案是:2.6875π m2.【点睛】考查了利用概率解决问题,解题关键是利用:部分数目=总体数目乘以相应概率.18.12【解析】【分析】由一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数掷一次这枚骰子向上的一面的点数为偶数的有3种情况直接利用概率公式求解即可求得答案【详解】∵一枚质地均匀的正方体骰子的六个面解析:.【解析】【分析】由一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为偶数的有3种情况,直接利用概率公式求解即可求得答案.【详解】∵一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为偶数的有3种情况,∴掷一次这枚骰子,向上的一面的点数为偶数的概率是:=.【点睛】本题考查的知识点是概率公式,解题的关键是熟练的掌握概率公式.19.【解析】【分析】设有x个白球则摸到黑球的概率为此概率与摸了次其中有次摸到黑球的概率相同【详解】解:由题意得解得x=24故白球有24个【点睛】本题考查了概率公式的应用解析:24【解析】【分析】设有x个白球,则摸到黑球的概率为88x+,此概率与摸了200次,其中有50次摸到黑球的概率相同.【详解】解:由题意得8508200x=+,解得x=24.故白球有24个.【点睛】本题考查了概率公式的应用.20.【解析】试题分析:已知数字为3的倍数的扑克牌一共有3张且共有9张扑克牌根据概率公式可得抽出的牌上的数恰为3的倍数的概率P==考点:概率公式解析:.【解析】试题分析:已知数字为3的倍数的扑克牌一共有3张,且共有9张扑克牌,根据概率公式可得抽出的牌上的数恰为3的倍数的概率P==.考点:概率公式.三、解答题21.(1)红球有16个,绿球有8个;(2)2 9【解析】【分析】(1)根据红、黄、白三种颜色球共有的个数乘以红球的概率即可求得红球的个数,设绿球有x个,则黄球有2x个,根据球的总个数列出方程求出x的值即可得;(2)用绿球的个数除以总的球数即可.【详解】(1)红球个数:3613⨯=12(个),设绿球有x个,则黄球有2x个,根据题意,得:x+2x+12=36,解得:x=8,所以红球有16个,绿球有8个.(2)从袋中随机摸出一球,共有36种等可能的结果,其中摸出绿球的结果有8种,所以从袋中随机摸出一球是绿球的概率为82 369=.【点睛】本题考查了概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)mn =.22.(1)0;(2)25.【解析】【分析】(1)由一个袋中装有除颜色外都相同的红球和黄球共10个,其中红球6个,可知没有白球,即可求得“摸出的球是白球”的概率;(2)由一个袋中装有除颜色外都相同的红球和黄球共10个,其中红球6个,直接利用概率公式求解即可求得答案.【详解】解:(1)∵一个袋中装有除颜色外都相同的红球和黄球共10个,其中红球6个,∴“摸出的球是白球”的概率是:0;(2)“摸出的球是黄球”的概率是:1062 105-=.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.23.(1)30个(2)1/4(3)1/3【解析】解:(1)根据题意得:100×310=30,答:袋中红球有30个.(2)设白球有x个,则黄球有(2x-5)个,根据题意得x+2x-5=100-30,解得x=25。

2020年北师大版七年级下学期数学第六章 概率初步单元测试题及答案

2020年北师大版七年级下学期数学第六章 概率初步单元测试题及答案

第六章概率初步一、填空题(本大题共6小题,每小题4分,共24分)1.一个在不透明的盒子中装有除颜色外其他都一样的5个红球,3个蓝球和2个白球,它们已经被搅匀了,下列三种事件是必然事件、随机事件,还是不可能事件、(1)从盒子中任取4个球,全是蓝球。

(2)从盒子中任取3个球,只有蓝球和白球,没有红球。

(3)从盒子中任取9个球,恰好红、蓝、白三种颜色的球都有。

2.初一(3)班共有学生50人,其中男生有21人,女生29人,若在此班上任意找一名学生,找到男生的可能性比找到女生的可能性(填“大”或“小”).3.如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是 .4.在一个不透明的盒子中装有n个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是.5.某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到绿灯的概率是 .6.有一个质地均匀的正二十面体形状的骰子,其中1个面标有“1”,2个面标有“2”,3个面标有“3”,4个面标有“4”,5个面标有“5”,其余的面标有“6”,将这个骰子掷出后,朝正上方的数字为“6”的概率是________,数字________朝正上方的可能性最大.二、选择题(本大题共12小题,共36分,每小题只有一个正确选项)7.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是().A .61 B .41 C . 31 D . 127 8. 在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是52,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为41,则原来盒里有白色棋子( ) A. 1颗 B. 2颗 C. 3颗 D. 4颗9. 如图,从A 地到C 地,可供选择的方案是走水路、走陆路、走空中,从A 地到B 地有两条水路、两条陆路,从B 地到C 地有3条陆路可供选择,走空中,从A 地不经B 地直线到C 地,则从A 地到C 地可供选择的方案有( )A .20种B .8种C .5种D .13种10. 袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球,下列事件是必然事件的是( ) A .摸出的三个球中至少有一个球是黑球 B .摸出的三个球中至少有一个球是白球 C .摸出的三个球中至少有两个球是黑球 D .摸出的三个球中至少有两个球是白球11.如图,转动转盘,指向阴影部分的可能性为a ,指向空白部分的可能性为b ,则( ) A.a >bB.a <bC.a=bD.无法确定12.下列事件中,随机事件是( )A.没有水分,种子仍能发芽B.等腰三角形两个底角相等C.从13张红桃扑克牌中任抽一张,是红桃AD.从13张方块扑克牌中任抽一张,是红桃10 13.从一副扑克牌中则下列事件中可能性最大的是( )A.抽出一张红心B.抽出一张红色老KC.抽出一张梅花JD.抽出一张不是Q 的牌 14.在相同条件下重复试验,若事件A 发生的概率是,下列陈述中,正确的是( )A .事件A 发生的频率是B .反复大量做这种试验,事件A 只发生了7次C .做100次这种试验,事件A 一定发生7次D .做100次这种试验,事件A 可能发生7次 15.下列说法正确的是( )A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件16.2019年枣庄市初中学业水平实验操作考试.要求每名学生从物理.化学.生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是( )A.19B.16C.14D.1317.如图,正方形网格中,5个阴影小正方形是一个正方体表面展开图的一部分.现从其余空白小正方形中任取一个涂上阴影,则图中六个阴影小正方形能构成这个正方体的表面展开图的概率是( )A.47 B.37 C.27 D.1718.以下有四个事件:①抛一枚匀质硬币,正面朝上;②掷一枚匀质骰子,所得的点数为3;③从一副54张扑克牌中任意抽出一张恰好为红桃;④从装有1个红球,2个黄球的袋中随意摸出一个球,这两种球除颜色外其他都相同,结果恰好是红球.按概率从小到大顺序排列的结果是()A.①<②<③<④B.②<③<④<①C.②<①<③<④D.③<②<①<④三.解答题(共7小题共60分)19.(6分)小明购买双色球福利彩票时,两次分别购买了1张和100张,均未获奖,于是他说:“购买1张和100张中奖的可能性相等。

2022学年北师大版七年级数学下册第六章《概率初步》测试卷附答案解析

2022学年北师大版七年级数学下册第六章《概率初步》测试卷附答案解析

2022-2023学年七年级数学下册第六章《概率初步》测试卷【全卷满分120分考试时间120分钟】一、单选题(每题3分,共30分)1.不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是必然事件的是()A.3个球中至少有1个黑球B.3个球中至少有1个白球C.3个球中至少有2个黑球D.3个球中至少有2个白球2.下列说法中,正确的是()A.任意投掷一枚质地均匀的硬币30次,出现正面朝上的次数一定是15次B.为了直观地介绍空气各成分的百分比,最适合使用的统计图是条形统计图C.“太阳东升西落”是不可能事件D.调查某班40名学生的身高情况宜采用普查3.在“石头、剪刀、布”游戏中,对方出“剪刀”.这个事件是()A.必然事件B.随机事件C.不可能事件D.确定性事件4.下列说法中:①如果一个事件发生的可能性很小,那么它的概率为0;②如果一个事件发生的可能性很大,那么它的概率为1;③如果一个事件可能发生,也可能不发生,那么它的概率介于0与1之间;其中,正确的说法有()A.1个B.2个C.3个D.0个5.在写有1至10的10张卡片中,如果第1次抽出写有3的卡片后(不放回),第2次任意抽取1张是奇数卡片的可能性是()A.59B.49C.25D.126.在抛掷硬币的试验中,下列结论正确的是()A.经过大量重复的抛掷硬币试验,可发现“正面向上”的频率越来越稳定B.抛掷10000次硬币与抛掷12000次硬币“正面向上”的频率相同C.抛掷50000次硬币,可得“正面向上”的频率为0.5D.若抛掷2000次硬币“正面向上”的频率是0.518,则“正面向下”的频率也为0.5187.在4个相同的袋子中,装有除颜色外完全相同的10个球,任意摸出1个球,摸到红球可能性最大的是()A.1个红球,9个白球B.2个红球,8个白球C.5个红球,5个白球D.6个红球,4个白球8.小明做了3次掷均匀硬币的实验,其中有1次正面朝上,2次正面朝下,再掷一次,正面朝上的概率是()A.13B.23C.12D.19.在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有白球和黑球共()A.12个B.16个C.20个D.30个10.“文明丰都·幸福你我”,丰都正在积极创建全国文明城市.丰都宏运公司楼顶公益广告牌上“文明丰都”几个字是霓红灯,几个字一个接一个亮起来(亮后不熄灭)直至全部亮起来再循环,当路人一眼望去,能够看到几个字全在的概率是()A.13B.14C.15D.16二、填空题(每题3分,共30分)11.下列事件是必然事件的是________.①射击一次,中靶;②100件某种产品中有2件次品,从中任取1件恰好是次品;③太阳从东方升起;④一只不透明的袋子中有10个红球,从中任意摸出一个球是红球.12.某公交车站共有1路、3路、16路三路车停靠,已知1路车8分钟一辆;3路车5分钟一辆、16路车10分钟一辆,则在某一时刻,小明去公交车站最先等到______路车的可能性最大.13.在一个不透明的袋子里,装有2个红球和3个白球,这些球除颜色外没有任何区别,现从这个袋子中随机摸出一个球,摸到红球的概率是_____.14.一个不透明的箱子中有4个红球和若干个黄球,若任意摸出一个球,摸出红球的概率是25,则黄球个数是_____个.15.某公司组织内部抽奖活动,共准备了100张奖券,设一等奖10个,二等奖20个,三等奖30个.若每张奖券获奖的可能性相同,则随机抽一张奖券中一等奖的概率为______.16.一个不透明的口袋中装有红色、黄色、蓝色玻璃球共200个,这些球除颜色外都相同.小明通过大量随机摸球试验后,发现摸到红球的频率稳定在30%左右,则可估计红球的个数约为________.17.有一个样本共有50个数据,分成若干组后,其中有一小组的频率是0.4,则该组的频数是_____.18.如图,甲、乙、丙3人站在55 网格中的三个格子中,小王随机站在剩下的空格中,与图中3人均不在同一行或同一列的概率是__________.19.不透明的口袋中有黑白围棋子若干颗,已知随机摸出一颗是白棋子的概率为310,若加入10颗白棋子,随机摸出一颗是白棋子的概率为13,口袋中原来有______颗围棋子.20.在一个不透明的布袋中有白球和黑球共20个,这些球除颜色外都相同.小明将布袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回布袋中.不断重复这一过程,共摸了100次球,发现有40次摸到黑球,则布袋中黑球的个数可能为________.三、解答题(共60分)21.目前我市“校园手机”现象越来越受到社会关注,针对这种现象,我市某中学九年级数学兴趣小组的同学随机调查了学校若干名家长对“中学生带手机”现象的看法,统计整理并制作了如下的统计图:(1)这次调查的家长总数为________人.家长表示“不赞同”的人数为________人;(2)请在图①中把条形统计图补充完整;(3)从这次接受调查的家长中随机抽查一个,恰好是“赞同”的家长的概率是________;(4)求图②中表示家长“无所谓”的扇形圆心角的度数.22.某商场“五一”期间为进行有奖销售活动,设立了一个可以自由转动的转盘.商场规定:顾客购物100元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是此次活动中的一组统计数据:转动转盘的次数n1002004005008001000落在“可乐”区域的次数m60122240298604落在“可乐”区域的频率mn0.60.610.60.590.604(1)完成上述表格;(结果全部精确到0.1)(2)请估计当n很大时,频率将会接近,假如你去转动该转盘一次,你获得“可乐”的概率约是;(结果全部精确到0.1)(3)转盘中,表示“洗衣粉”区域的扇形的圆心角约是多少度?23.某校以“我最喜爱的体育运动”为主题对全校学生进行随机抽样调查,调查的运动项目有:篮球、羽毛球、乒乓球、跳绳及其他项目(每位同学仅选一项).根据调查结果绘制了如下不完整的频数分布表和扇形统计图:运动项目频数频率篮球300.25羽毛球m0.20乒乓球36n跳绳180.15其他120.10请根据以上图表信息,解答下列问题:(1)频数分布表中的m=_________,n=_________;(2)在扇形统计图中,“乒乓球”所在的扇形的圆心角的度数为_________.24.某校在“爱心捐款”活动中,同学们都献出了自己的爱心,他们的捐款额有5元、10元、15元、20元四种情况,根据随机抽样统计数据绘制了图1和图2两幅尚不完整的统计图.请你根据图中信息解答下列问题:(1)本次抽样的学生人数是________,捐款10元的人数是________;(2)本次捐款金额的中位数是________元;(3)已知捐款金额为5元的6名同学中有4名男生和2名女生,若从这6名同学中随机抽取一名进行访谈,且每一名同学被抽到的可能性相同,则恰好抽到男生的概率是________;(4)该校学生总人数为1000人,请估计该校一共捐款________元.25.2022年10月12日“天宫课堂”第三课在中国空间站开讲并直播,神舟十四号三位航天员相互配合,生动演示了微重力环境下的四个实验:A.毛细效应实验;B.水球变“懒”实验;C.太空趣味饮水;D.会调头的扳手.某校九年级数学兴趣小组成员为研究“九年级学生对这四个实验中最感兴趣的是哪一个?”随机调查了本年级的部分学生,并绘制了两幅不完整的统计图,请根据图中的信息回答下列问题:(1)本次被调查的学生有人;扇形统计图中D所对应的圆心角的度数为;(2)请补全条形统计图;(3)该校九年级共有650名学生,请估计该校九年级学生中对B.水球变“懒”实验最感兴趣的学生大约有多少人?(4)李老师计划从小明、小刚、小兰、小婷四位学生中随机抽取两人参加学校的微重力模拟实验,请用树状图法或列表法求出恰好抽中小刚、小兰两人的概率.26.某校在七、八年级学生中开展了一次“讲文明,树新风”文明礼仪知识竞赛,根据比赛成绩(满分100分,参赛学生成绩均高于80分)绘制了如下尚不完整的统计图表.比赛成绩频数分布表成绩分组(单位:分)频数频率x≤<600.128085x≤<a0.38590x≤<240c9095x≤≤500.195100合计b1请根据以上信息解答下列问题:(1)频数分布表中,b=,c=;(2)补全频数分布直方图;(3)学校计划从成绩在95分以上的同学中随机选择15名同学,到某社区开展文明礼仪知识宣传,取得98分好成绩的小丽被选中的概率是多少?27.2022年3月23日“天宫课堂”第二课在中国空间站开讲并直播,神舟十三号三位航天员相互配合,生动演示了微重力环境下的四个实验:A.太空“冰雪”实验B.液桥演示实验C.水油分离实验D.太空抛物实验我校九年级数学兴趣小组成员“对这四个实验中最感兴趣的是哪一个”随机调查了本年级的部分学生,并绘制了两幅不完整的统计图,请根据图中的信息回答下列问题:(1)在这次调查活动中,兴趣小组采取的调查方式是_______;(填写“普查”或“抽样调查”)(2)本次被调查的学生有______人;扇形统计图中D 所对应的m =______;(3)我校九年级共有650名学生,请估计九年级学生中对B .液桥演示实验最感兴趣的学生大约有______人;(4)十三班被调查的学生中对A .太空“冰雪”实验最感兴趣的有5人,其中有3名男生和2名女生,现从这5名学生中随意抽取1人进行观后感谈话,每人被抽到的可能性相同,恰好抽到女生的概率是______.28.国家规定,中小学生每天在校体育活动时间不低于1h ,为了解这项政策的落实情况,有关部门就“你每天在校体育活动时间是多少”的问题,在某校随机抽查了部分学生,再根据活动时间t (h )进行分组(A 组:0.5t <,B 组:0.51t ≤<,C 组:1 1.5t ≤<,D 组: 1.5t ≥),绘制成如图所示的两幅不完整统计图,请根据图中信息回答问题:(1)此次抽查的学生为__________人;(2)补全条形统计图;(3)从抽查的学生中随机询问一名学生,该生当天在校体育活动时间低于1小时的概率是多少?(4)若当天在校学生为1200人,请估计在当天达到国家规定体育活动时间的学生有多少人?参考答案:1.A2.D3.B4.A5.B6.A7.D8.C9.B10.B11.③④##④③12.313.2514.615.0.116.6017.2018.21119.20020.821.解:(1)调查的家长总数为:360÷60%=600人,很赞同的人数:600×20%=120人,不赞同的人数:600﹣120﹣360﹣40=80人,故答案为:600、80;(2)补充图形如图:(3)恰好是“赞同”的家长的概率是60%;(4)表示家长“无所谓”的圆心角的度数为:40600×360°=24°.22.解:(1)298÷500≈0.6;0.59×800=472;补全表格如下:转动转盘的次数n1002004005008001000落在“可乐”区域的次数m60122240298472604落在“可乐”区域的频率mn0.60.610.60.60.590.604(2)估计当n很大时,频率将会接近0.6,假如你去转动该转盘一次,你获得“可乐”的概率约是0.6;故答案为:0.6;0.6;(3)(1﹣0.6)×360°=144°,所以表示“洗衣粉”区域的扇形的圆心角约是144°.23.解:(1)∵喜欢篮球的是30人,频率是0.25,∴样本数=30÷0.25=120,∵喜欢羽毛球场的频率是0.20,喜欢乒乓球的是36人,∴m=0.20×120=24,n=36÷120=0.30;(2)∵n=0.30,∴0.30×360°=108°.故答案为(1)24,0.30;(2)108°.24.(1)由于捐15元的有16人,所占比例为32%,本次抽样的学生人数是1632%50÷=(人);506161018---=人;故答案为:50,18;(2)把这数从小到大排列,中位数是第25、26个数的平均数,则中位数是1515152+=(元);故答案为:15;(3)∵6名同学中有4名男生和2名女生,∴P (恰好抽到男生)=4263=.故答案为:23;(4)6518101615102010001300050⨯+⨯+⨯+⨯⨯=元.故答案为:13000.25.(1)解:本次被调查的学生有2040%50÷=(人),扇形统计图中D 所对应的圆心角的度数为53603650︒⨯=︒.故答案为:50;36︒.(2)解:B 实验最感兴趣的人数为:501020515---=(人),补全条形统计图如图所示.(3)解:1565019550⨯=(人).答:该校九年级学生中对B .水球变“懒”实验最感兴趣的学生大约有195人.(4)解:画树状图如下:共有12种等可能的结果,其中恰好抽中小刚、小兰两人的结果有2种,∴恰好抽中小刚、小兰两人的概率为21126=26.(1)解:根据题意得:600.12500b =÷=(人);2400.48500c ==;故答案为:5000.48,;(2)解:8590x ≤<的人数是:5006024050=150---(人),补图如下:(3)解:小丽被选中的概率是:153=5010.27.(1)解:兴趣小组采取的调查方式是抽样调查;故答案为:抽样调查(2)解:本次被调查的学生有2040%50÷=(人),扇形统计图中D 所对应的圆心角的度数为53603650m =︒⨯=︒;故答案为:50;36︒(3)解:65030%195⨯=,答:估计九年级学生中对B .液桥演示实验最感兴趣的学生大约有195人;(4)解:根据题意得:恰好抽到女生的概率是25.28.(1)解:4020%200÷=(人),∴此次抽查的学生为200人;(2)C 组的人数2004080%=´=人,A 组的人数20060804020=---=人,补全条形统计图如图所示:(3)该生当天在校体育活动时间低于1小时的概率是206022005+=;(4)当天达到国家规定体育活动时间的学生有80401200720200+´=人.。

北师大版七年级数学下册第六章单元测试题(含答案)

北师大版七年级数学下册第六章单元测试题(含答案)

第六章概率初步一、填空题(本大题共6小题,每小题4分,共24分)1.一个在不透明的盒子中装有除颜色外其他都一样的5个红球,3个蓝球和2个白球,它们已经被搅匀了,下列三种事件是必然事件、随机事件,还是不可能事件、(1)从盒子中任取4个球,全是蓝球。

(2)从盒子中任取3个球,只有蓝球和白球,没有红球。

(3)从盒子中任取9个球,恰好红、蓝、白三种颜色的球都有。

2.初一(3)班共有学生50人,其中男生有21人,女生29人,若在此班上任意找一名学生,找到男生的可能性比找到女生的可能性(填“大”或“小”).3.如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是.4.在一个不透明的盒子中装有n个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是.5.某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到绿灯的概率是.6.有一个质地均匀的正二十面体形状的骰子,其中1个面标有“1”,2个面标有“2”,3个面标有“3”,4个面标有“4”,5个面标有“5”,其余的面标有“6”,将这个骰子掷出后,朝正上方的数字为“6”的概率是________,数字________朝正上方的可能性最大.二、选择题(本大题共12小题,共36分,每小题只有一个正确选项)7.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是().A.B.C.D.8.在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为,则原来盒里有白色棋子()A.1颗B.2颗C.3颗D.4颗9.如图,从A地到C地,可供选择的方案是走水路、走陆路、走空中,从A地到B地有两条水路、两条陆路,从B 地到C地有3条陆路可供选择,走空中,从A地不经B地直线到C地,则从A地到C地可供选择的方案有()A.20种B.8种C.5种D.13种10.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球,下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球11.如图,转动转盘,指向阴影部分的可能性为a,指向空白部分的可能性为b,则()A.a>bB.a<bC.a=bD.无法确定12.下列事件中,随机事件是()A.没有水分,种子仍能发芽B.等腰三角形两个底角相等C.从13张红桃扑克牌中任抽一张,是红桃AD.从13张方块扑克牌中任抽一张,是红桃1013.从一副扑克牌中则下列事件中可能性最大的是()A.抽出一张红心B.抽出一张红色老KC.抽出一张梅花JD.抽出一张不是Q的牌14.在相同条件下重复试验,若事件A发生的概率是,下列陈述中,正确的是()A.事件A 发生的频率是B.反复大量做这种试验,事件A 只发生了7次C.做100次这种试验,事件A 一定发生7次D.做100次这种试验,事件A 可能发生7次15.下列说法正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a 是实数,|a|≥0”是不可能事件16.2019年枣庄市初中学业水平实验操作考试.要求每名学生从物理.化学.生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是()A .B .C .D .17.如图,正方形网格中,5个阴影小正方形是一个正方体表面展开图的一部分.现从其余空白小正方形中任取一个涂上阴影,则图中六个阴影小正方形能构成这个正方体的表面展开图的概率是()A.47B.37C.27D.1718.以下有四个事件:①抛一枚匀质硬币,正面朝上;②掷一枚匀质骰子,所得的点数为3;③从一副54张扑克牌中任意抽出一张恰好为红桃;④从装有1个红球,2个黄球的袋中随意摸出一个球,这两种球除颜色外其他都相同,结果恰好是红球.按概率从小到大顺序排列的结果是()A .①<②<③<④B .②<③<④<①C .②<①<③<④D .③<②<①<④三.解答题(共7小题共60分)19.(6分)小明购买双色球福利彩票时,两次分别购买了1张和100张,均未获奖,于是他说:“购买1张和100张中奖的可能性相等。

2022年最新北师大版七年级数学下册第六章概率初步章节测试试卷(含答案详解)

2022年最新北师大版七年级数学下册第六章概率初步章节测试试卷(含答案详解)

北师大版七年级数学下册第六章概率初步章节测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、标标抛掷一枚点数从1-6的正方体骰子12次,有7次6点朝上.当他抛第13次时, 6点朝上的概率为()A.113B.712C.512D.162、下列事件为必然事件的是()A.明天是晴天B.任意掷一枚均匀的硬币100次,正面朝上的次数是50次C.两个正数的和为正数D.一个三角形三个内角和小于1803、在不透明口袋内装有除颜色外完全相同的5个小球,其中红球2个,白球3个.搅拌均匀后,随机抽取一个小球,是红球的概率为()A.25B.35C.45D.3104、一个不透明口袋中装着只有颜色不同的1个红球和2个白球,搅匀后从中摸出一个球,摸到红球的概率为().A.23B.12C.13D.15、下列四幅图的质地大小、背面图案都一样,把它们充分洗匀后翻放在桌面上,则从中任意抽取一张,抽到的图案是中心对称图形的概率是()A.14B.12C.34D.16、下列事件中,是必然事件的是()A.如果a2=b2,那么a=bB.车辆随机到达一个路口,遇到红灯C.2021年有366天D.13个人中至少有两个人生肖相同7、下列事件中属于必然事件的是()A.随机买一张电影票,座位号是奇数号 B.打开电视机,正在播放新闻联播C.任意画一个三角形,其外角和是360 D.掷一枚质地均匀的硬币,正面朝上8、如图,将一个棱长为3的正方体表面涂上颜色,再把它分割成棱长为1的小正方体,将它们全部放入一个不透明盒子中摇匀,随机取出一个小正方体,只有一个面被涂色的概率为()A.427B.29C.827D.2279、下列说法正确的是()A.“明天降雨的概率是80%”表示明天有80%的时间都在降雨B.“抛一枚硬币正面朝上的概率为12”表示每抛两次就有一次正面朝上C.“彩票中奖的概率是1%”表示买100张彩票肯定会中奖D.“抛一枚均匀的正方体骰子,朝上的点数是2的概率为16”表示随着抛掷次数的增加,“拋出朝上的点数是2”这一事件发生的概率稳定在16附近10、下列事件中,是必然事件的是()A.同位角相等B.打开电视,正在播出特别节目《战疫情》C.经过红绿灯路口,遇到绿灯D.长度为4,6,9的三条线段可以围成一个三角形.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、掷一枚质地均匀的硬币8次,其中3次正面朝上,5次反面朝上,现再掷一次,正面朝上的概率是_____.2、不透明的袋子里装有红球2个,绿球1个,除颜色外无其他差别,每次摸球前先将球摇匀,摸出一个后记下颜色再放回袋中,连续摸球两次为一红一绿的概率是 __.3、一只布袋中有三种小球(除颜色外没有任何区别),分别是2个红球,3个黄球和5个蓝球,每一次只摸出一只小球,观察后放回搅匀,在连续9次摸出的都是蓝球的情况下,第10次摸出黄球的概率是_________________.4、如果A表示事件“三角形的任意两边之和大于第三边”,则()P A ________.5、班会课上,小强与班上其他32名同学每人制作了一张贺卡放在一个盒子里,小强从盒子中任意地取一张.恰好抽到自己制作的那张贺卡的可能性为__________.三、解答题(5小题,每小题10分,共计50分)1、如图,现有一个均匀的转盘被平均分成六等份,分别标有2,3,4,5,6,7这六个数字,自由转动转盘,当转盘停止时,指针指向的数字即为转出的数字(若指针恰好指在分界线上,则重新转动转盘).(1)求转出的数字大于3的概率;(2)小明和小凡做游戏.自由转动转盘,转出的数字是偶数小明获胜,转出的数字是奇数小凡获胜,这个游戏对双方公平吗?请说明理由.2、一个质地均匀的小正方体,六个面分别标有数字“1”“1”“2”“4”“5”“5”.掷小正方体后,观察朝上一面的数字.(1)出现“5”的概率是多少?(2)出现“6”的概率是多少?(3)出现奇数的概率是多少?3、动物学家通过大量的调查估计:某种动物活到20岁的概率为0.8,活到25岁的概率为0.5,活到30岁的概率为0.3.(1)现年20岁的这种动物活到25岁的概率为多少?(2)现年25岁的这种动物活到30岁的概率为多少?4、在一个口袋中只装有4个白球和6个红球,它们除颜色外完全相同.(1)事件“从口袋中随机摸出一个球是红球”发生的概率是多少?请直接写出结论;(2)现从口袋中取走若干个红球,并放入相同数量的白球,充分摇匀后,要使从口袋中随机摸出一个球是白球的概率是45,求取走了多少个红球?5、八月底,八年级(1)班学生小颖对全班同学这一个多月来去重庆大学图书馆的次数做了调查统计,将结果分为A、B、C、D、E五类,其中A表示“0次”、B类表示“1次”、C类表示“2次”、D 类表示“3次”、E类表示“4次及以上”.并制成了如下不完整的条形统计和扇形统计图(如图所示).请你根据统计图表中的信息,解答下列问题:(1)填空:=a________;(2)补全条形统计图,并求出扇形统计图中D类的扇形所占圆心角的度数;(3)从全班去过该图书馆的同学中随机抽取1人,谈谈对新图书馆的印象和感受.求恰好抽中去过“4次及以上”的同学的概率.-参考答案-一、单选题1、D【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【详解】解:掷一颗均匀的骰子(正方体,各面标16-这6个数字),一共有6种等可能的情况,其中6点朝上只有一种情况,所以6点朝上的概率为16.故选:D.【点睛】本题考查概率的求法与运用,解题的关键是掌握一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)mn =.2、C【详解】解:A、“明天是晴天”是随机事件,此项不符题意;B、“任意掷一枚均匀的硬币100次,正面朝上的次数是50次”是随机事件,此项不符题意;C、“两个正数的和为正数”是必然事件,此项符合题意;D、“一个三角形三个内角和小于180︒”是不可能事件,此项不符题意;故选:C.【点睛】本题考查了随机事件、必然事件和不可能事件,熟记随机事件的定义(在一定条件下,可能发生也可能不发生的事件称为随机事件)、必然事件的定义(发生的可能性为1的事件称为必然事件)和不可能事件的定义(发生的可能性为0的事件称为不可能事件)是解题关键.3、A【分析】用红球的个数除以所有球的个数即可求得抽到红球的概率.【详解】解:∵共有5个球,其中红球有2个,∴P(摸到红球)=25,故选:A.【点睛】此题主要考查概率的意义及求法.用到的知识点为:概率=所求情况数与总情况数之比.4、C【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.本题球的总数为1+2=3,红球的数目为1.【详解】解:根据题意可得:一个不透明口袋中装着只有颜色不同的1个红球和2个白球,共3个,任意摸出1个,摸到红球的概率是:1÷3=13.故选:C.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.5、C【分析】根据中心对称图形的定义,即把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称和概率公式计算即可;【详解】根据已知图形可得,中心对称图形是,,,共有3个,∴抽到的图案是中心对称图形的概率是34.故选C.【点睛】本题主要考查了概率公式应用和中心对称图形的识别,准确分析计算是解题的关键.6、D【分析】在一定的条件下重复进行试验时,有的事件在每次试验中必然会发生,这样的事件叫必然发生的事件,简称必然事件;利用概念逐一分析即可得到答案.【详解】解:如果a2=b2,那么a b=±,原说法是随机事件,故A不符合题意;车辆随机到达一个路口,遇到红灯,是随机事件,故B不符合题意;2021年是平年,有365天,原说法是不可能事件,故C不符合题意;13个人中至少有两个人生肖相同,是必然事件,故D符合题意,故选:D.【点睛】本题考查的是必然事件的概念,不可能事件,随机事件的含义,掌握“必然事件的概念”是解本题的关键.7、C【分析】根据必然事件的定义:在一定条件下一定会发生的事件,进行逐一判断即可.【详解】解:A、随机买一张电影票,座位号可以是奇数也可以是偶数,不是必然事件,故此选项不符合题意;B、打开电视机,可以正在播放也可以不在播放新闻联播,不是必然事件,故此选项不符合题意;C、任意画一个三角形,其外角和是360°,是必然事件,故此选项符合题意;D、掷一枚质地均匀的硬币,可以正面朝上也可以反面朝上,不是必然事件,故此选项不符合题意;故选C.【点睛】本题主要考查了必然事件,解题的关键在于能够熟练掌握必然事件的定义.8、B【分析】将一个棱长为3的正方体分割成棱长为1的小正方体,一共可得到27个小立方体,其中一个面涂色的有6块,可求出相应的概率.【详解】解:将一个棱长为3的正方体分割成棱长为1的小正方体,一共可得到3×3×3=27(个),有6 个一面涂色的小立方体,所以,从27个小正方体中任意取1个,则取得的小正方体恰有一个面涂色的概率为62 279,故选:B.【点睛】本题考查了概率公式,列举出所有等可能出现的结果数和符合条件的结果数是解决问题的关键.9、D【分析】根据概率的意义去判断即可.【详解】∵“明天降雨的概率是80%”表示明天有降雨的可能性是80%,∴A说法错误;∵抛一枚硬币正面朝上的概率为12”表示正面向上的可能性是12,∴B说法错误;∵“彩票中奖的概率是1%”表示中奖的可能性是1%,∴C说法错误;∵“抛一枚均匀的正方体骰子,朝上的点数是2的概率为16”表示随着抛掷次数的增加,“拋出朝上的点数是2”这一事件发生的概率稳定在16附近,∴D说法正确;故选D.【点睛】本题考查了概率的意义,正确理解概率的意义是解题的关键.10、D【分析】根据必然事件的概念即可得出答案.【详解】解:∵同位角不一定相等,为随机事件,∴A选项不合题意,∵打开电视,不一定正在播出特别节目《战疫情》,为随机事件,∴B选项不合题意,∵车辆随机到达一个路口,可能遇到红灯,也可能遇到绿灯,为随机事件,∴C选项不合题意,∵4+6>9,∴长度为4,6,9的三条线段可以围成一个三角形为必然事件,.∴D选项符合题意,故选:D.【点睛】本题主要考查必然事件的概念,必然事件是指一定会发生的事件,关键是要牢记必然事件的概念.二、填空题1、12##【分析】直接利用概率的意义分析得出答案.【详解】解:∵掷质地均匀硬币的试验,每次正面向上和向下的概率相同,∴再次掷出这枚硬币,正面朝上的概率是12.故答案为:12.【点睛】此题主要考查了概率的意义,正确把握概率的意义是解题关键.2、4 9【分析】根据概率公式计算概率即可【详解】解:列表如下:由表知,共有9种等可能结果,其中连续摸球两次为一红一绿的有4种结果,所以连续摸球两次为一红一绿的概率为49,故答案为:4 9【点睛】本题考查了概率的计算,正确画出表格是解题关键.3、3 10【分析】由题可知,第10次摸出的球的颜色与前9次的结果是无关的,求出球的总数和黄球的个数,利用概率的公式进行计算即可.【详解】∵共有23510++=个小球,3个黄球,∴第10次摸出黄球的概率是310.故答案为310.【点睛】本题是一道关于概率的题目,解答本题的关键是熟练掌握概率的计算公式.4、1【分析】根据必然事件的定义即可知,在一定条件下,一定会发生的事件称为必然事件,必然事件的概率为1.【详解】三角形的任意两边之和大于第三边,∴事件“三角形的任意两边之和大于第三边”是必然事件,∴()P A =1.【点睛】本题考查了必然事件的概率,掌握必然事件的定义是解题的关键.5、133【分析】根据题意,共有1+32=33个学生,由概率=所求情况数与总情况数之比即可得出答案.【详解】解:根据题意得:1113233=+; 答:正好抽到自己那一张的可能性为133; 故答案为:133. 【点睛】本题考查的是概率的公式,用到的知识点为:概率=所求情况数与总情况数之比.三、解答题1、(1)23;(2)公平,理由见解析【分析】(1)转出的数字有6种结果,求转出的数字大于3的结果数,即可求解;(2)分别求出小明和小凡获胜的概率,即可判定.【详解】解:转出的数字有6种结果,并且每种结果出现的可能性相同(1)转出的数字大于3有4种结果,4、5、6、7所以,P(转出的数字大于3)42 63 ==(2)小明获胜有3种结果,小凡获胜有3种结果P(小明获胜)=12,P(小凡获胜)=12因为小明和小凡获胜的概率相同,所以这个游戏对双方公平【点睛】此题考查了概率的有关求解,熟练掌握概率的求解公式是解题的关键.2、(1)出现“5”的概率是13;(2)出现“6”的概率是0;(3)出现奇数的概率是23.【分析】(1)根据出现5的机会有两次,再利用概率公式计算即可;(2)根据出现6的机会没有,可得出现6是不可能事件,从而可得其概率;(3)根据出现奇数的机会有四次,再利用概率公式计算即可.【详解】解:(1)因为出现5的机会有两次,所以出现“5”的概率是:21 63 =,(2)因为出现6的机会没有,所以出现“6”的概率是:0,(3)因为出现奇数的机会有四次,所以出现奇数的概率是42. 63【点睛】本题考查的是概率的含义与计算,掌握概率的计算方法是解题的关键.3、(1)现年20岁的这种动物活到25岁的概率为0.625;(2)现年25岁的这种动物活到30岁的概率为0.6.【分析】设这种动物有x只,根据概率的定义,用活到25岁的只数除以活到20岁的只数可得到现年20岁的这种动物活到25岁的概率;用活到30岁的只数除以活到25岁的只数可得到现年25岁的这种动物活到30岁的概率【详解】解:设这种动物有x只,则活到20岁的只数为0.8x,活到25岁的只数为0.5x,活到30岁的只数为0.3x.(1)现年20岁的这种动物活到25岁的概率为0.50.8xx=0.625.(2)现年25岁的这种动物活到30岁的概率为0.30.5xx=0.6.【点睛】本题考查了概率的计算,正确理解概率的含义是解决本题的关键.概率等于所求情况数与总情况数之比.4、(1)35;(2)取走了4个红球【分析】(1)用红球的个数除以总球的个数即可;(2)设取走了x个红球,根据概率公式列出算式,求出x的值即可得出答案.【详解】解:(1)∵口袋中装有4个白球和6个红球,共有10个球,∴从口袋中随机摸出一个球是红球的概率是63=105;(2)设取走了x个红球,根据题意得:44 105x+=,解得:4x=,答:取走了4个红球.【点睛】此题考查了概率的定义:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.5、(1)20;(2)图见解析;72°;(3)2 21【分析】(1)先利用B类人数和它所占的百分比计算出调查的总人数,然后计算出D类人数所占的百分比即可得到a的值;(2)先计算出C类人数,再补全条形统计图,然后用D类人数所占百分比乘以360°得到扇形统计图中D类的扇形所占圆心角的度数;(3)利用E类人数除以总人数得到恰好抽中去过“4次及以上”的同学的概率.【详解】解:(1)调查的总人数为12÷24%=50(人),所以a%=1050=20%,即a=20;故答案为20;(2)C类人数为50−8−12−10−4=16(人),条形统计图为:扇形统计图中D类的扇形所占圆心角的度数为360°×20%=72°;(3)恰好抽中去过“4次及以上”的同学的概率=442 5084221==-.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.。

北师大版七年级数学下册第六章 概率初步 单元测试卷(含答案)

北师大版七年级数学下册第六章 概率初步 单元测试卷(含答案)

北师大版七年级数学下册第六章 概率初步 单元测试卷(含答案)一、选择题(30分)1.下列说法中,正确的是( )A .不可能事件发生的概率为0B .随机事件发生的概率为12C .概率很小的事件不可能发生D .投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50 2.下列事件中,属于必然事件的是( )A .随意抛掷一枚骰子,掷得偶数点B .从一副扑克牌中抽出一张,抽得红桃牌C .任意选择电视的某一频道,正在播放动画片D .在同一年出生的367名学生中,至少有两个人同月同日生3.在相同条件下重复试验,若事件A 发生的概率是7100,则下列说法中正确的是( )A .事件A 发生的频率是7100 B .反复大量做这种试验,事件A 只发生了7次C .做100次这种试验,事件A 一定发生了7次D .做100次这种试验,事件A 可能发生了7次4.(2019·东营)从1,2,3,4中任取两个不同的数,分别记为a 和b ,则a 2+b 2>19的概率是( ) A .12 B .512 C .712 D .135.班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小英等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物,1份是科技馆通票.小英同学从中随机取一份奖品,恰好取到科普读物的概率是( )A .16B .13C .12D .236.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开旅行箱的概率是( )A .110B .19C .16D .157.如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应的颜色,转动转盘,转盘停止后,指针指向黄色区域的概率是( )A .16B .13C .12D .238.如图,在空白网格内将某一个小正方形涂成阴影部分,且所涂的小正方形与原阴影图形的小正方形至少有一边重合.小红按要求涂了一个正方形,所得到的阴影图形恰好是轴对称图形的概率为( )A .15B .4115C .49D .139.下列说法正确的是( )A .“明天降雨的概率是60%”表示明天有60%的时间都在降雨B .“抛一枚硬币正面朝上的概率为12”表示每抛两次就有一次正面朝上C .“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D .“抛一枚正方体骰子,朝上的点数为2的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的频率稳定在16附近10.某学习小组在做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的试验最有可能的是( )试验 次数 100 200 300 500 800 1000 2000 频率0.3650.3280.3300.3340.3360.3320.333B .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C .抛一个质地均匀的正六面体骰子,向上的面点数是5D .抛一枚硬币,出现反面的概率 二、填空题(16分)11.抛掷一枚质地均匀的硬币,落地后正面朝上的概率是______.12.从分别标有1,2,3,4的四张卡片中任意抽取1张,抽到奇数的概率是______. 13.一个不透明的盒子中装有10个黑球和若干个白球,它们除了颜色不同外,其余均相同,从盒子中随机摸出一球并记下其颜色,再把它放回盒子中摇匀,重复上述过程,共试验400次,其中有240次摸到白球,由此估计盒子中的白球有________个.14.若将分别写有“生活”“城市”的2张卡片,随机放入“ 让 更美好”中的两个 内(每个 只放1张卡片),则其中的文字恰好组成“城市让生活更美好”的概率是________.15.下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100 ℃;③掷一次骰子,朝上一面的数字是2;④度量四边形的内角和,结果是360°.其中是随机事件的是________.(填序号)16.如图,转盘中8个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针指向的数大于6的概率为________.17.如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为________.18.如图是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是________.三、简答题(54分)19.(9分)一个口袋中有10个红球和若干个白球,请通过以下试验估计口袋中白球的个数:从口袋中随机摸出一球,记下其颜色,再把它放回口袋中.不断重复上述过程,试验中总共摸了200次,其中有50次摸到红球.20.(9分)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,请完成下列表格:事件A必然事件随机事件m的值(2)于45,求m的值.21.(12分)(2018·苏州期末)暑假将至,某商场为了吸引顾客,设计了可以自由转动的转盘(如图所示,转盘被均匀地分为20份),并规定:顾客每买够200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.若某顾客购物300元.(1)求他此时获得购物券的概率是多少;(2)他获得哪种购物券的概率最大?请说明理由.22.(12分)有一个质地均匀的小正方体,正方体的六个面上分别标有1,2,3,4,5,6这六个数字.现在有甲、乙两位同学做游戏,游戏规则是:任意掷出正方体后,如果朝上的数字是6,甲是胜利者;如果朝上的数字不是6,乙是胜利者.你认为这个游戏规则对甲、乙双方公平吗?为什么?如果不公平,你打算怎样修改才能使游戏规则对甲、乙双方公平?23.(12分)一个小球分别在如图①②所示的地板上自由地滚动,并随机地停留在某块方砖上,那么小球停留在白色区域的概率分别是多少?参考答案1~10:ADDDB AACDB 11.1/2 12. 1/2 13. 15 14. 1/2 15. ①③ 16. 1/4 17. 2/3 18. 1/3 19.解:试验中总共摸了200次,其中50次摸到红球,则摸出一球是红球的概率估计值是50200=14,因为红球有10个,则袋中共有球10÷14=40(个),故口袋中白球的个数为40-10=30(个).20. (1)4 2,3(2)解:根据题意得6+m 10=45,解得m =2,所以m 的值为2.21.(1)解:因为转盘被均匀地分为20份,转动转盘获得购物券的有10种情况,所以他此时获得购物券的概率是1020=12.(2)解:他获得50元购物券的概率最大.理由:因为P (获得200元购物券)=120,P (获得100元购物券)=320,P (获得50元购物券)=620=310,所以他获得50元购物券的概率最大.22.解:这个游戏不公平.因为正方体的六个面上分别标有1,2,3,4,5,6这六个数字,其中数字6只有1个,也就是说甲胜利的概率是16;不是6的数字有5个,也就是说乙胜利的概率是56,双方胜利的机会不是均等的,所以说这个游戏不公平.可以把游戏规则改为:任意掷出正方体后,如果朝上的数字是奇数(1,3,5),甲是胜利者;如果朝上的数字是偶数(2,4,6),乙是胜利者,按这样的游戏规则对甲、乙双方是公平的.(答案不唯一) 23.解:图①:P =34;图②:P =23.。

七年级数学下册《第六章 概率初步》测试卷-附答案(北师大版)

七年级数学下册《第六章 概率初步》测试卷-附答案(北师大版)

七年级数学下册《第六章 概率初步》测试卷-附答案(北师大版)一、选择题(共10小题,每小题3分,共30分) 1. 下列事件中,是必然事件的是( ) A .小菊上学一定乘坐公共汽车B .某种彩票中奖率为415,买10 000张该种彩票一定会中奖C .一年中,大、小月份数刚好一样多D .将豆油滴入水中,豆油会浮在水面上2. 在一个布袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2个、红球6个、黑球4个.将布袋中的球搅匀,闭上眼睛随机从布袋中取出1个球,则取出黑球的概率是( ) A .12 B .14 C .13 D .163. 一个布袋中有10个球,其中6个红球、4个黑球,每个球除颜色不同外其余均相同.现在甲、乙进行摸球游戏,从中随机摸出一球,摸到红球,乙胜;摸到黑球,甲胜,则下列说法你认为正确的是( ) A .甲获胜的可能性大B .乙获胜的可能性大C .甲、乙获胜的可能性相等D .以上说法都不对4. 如图是一个可以自由转动的正六边形转盘,其中三个正三角形涂有阴影,转动转盘,当转盘停止时,指针落在有阴影的区域内的概率为a(若指针落在分界线上,则重转);如果投掷一枚质地均匀的硬币,正面向上的概率为b.关于a ,b 大小的判断正确的是( )A .a >bB .a =bC .a <bD .不能判断5. 有4张正面分别写有1、3、4、6的卡片,除数字外其他完全相同.将卡片的背面朝上并洗匀,从中抽取一张,抽到的数是奇数的概率为( ) A.14B.12C.34D .16. 某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是( )A .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B .掷一个质地均匀的正方体骰子,落地时面朝上的点数是6C .一次掷两枚质地均匀的硬币,出现两枚硬币都正面朝上D .用2,3,4三个数字随机排成一个三位数,排成的数是偶数7. 在下列四个转盘中,若让转盘自由转动一次,转盘停止后,指针落在阴影区域内的概率最大的转盘是( )8. 一个不透明的口袋中有红球和黑球若干个,这些球除颜色外都相同,每次摸出1个球,记下颜色后放回,进行大量的摸球试验后,发现摸到黑球的频率在0.4附近摆动,据此估计摸到红球的概率约为( ) A .0.4 B .0.5 C .0.6 D .0.79. 在边长为1的小正方形组成的网格中,有如图所示的A ,B 两点,在格点上任意放置点C ,恰好能使△ABC 的面积为1的概率为( )A.316B.38C.14D.51610. 在同样的条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数分布表:试验种子数n(粒) 5 50 100 200 500 1000 2000 3000 发芽频数m 4 45 92 188 476 951 1900 2850 发芽频率mn0.800.900.920.940.9520.9510.950.95A .2700B .2800C .3000D .4000二.填空题(共8小题,每小题3分,共24分)11. “一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“4”,这个事件是_____________.(填“必然事件”、“不可能事件”或“随机事件”)12. 将“定理”的英文单词theorem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e的概率为______.13. 某足球运动员在同一条件下进行射门,结果如下表所示:射门次数n2050100200500800踢进球门频数m133558104255400踢进球门频率0.650.70.580.520.520.514. 如图,质地均匀的小立方体的一个面上标有数字1,两个面上标有数字2,三个面上标有数字3,抛掷这个小立方体一次,则向上一面的数字是________的可能性最大.15. 一个袋子中装有5个白球和3个红球,甲摸到白球胜,乙摸到红球胜,为使甲、乙两人获胜的可能性一样大,那么必须往袋中再放入________个________球(只能再放入同一颜色的球).16. 现有50张大小、质地及背面图案均相同的《西游记》人物卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片约有________张.17. 小明正在玩飞镖游戏,如果小明将飞镖随意投中如图所示的正方形木框中,那么投中阴影部分的概率为________.18. 若正整数n使得在计算n+(n+1)+(n+2)的过程中,各数位均不产生进位现象,则称n为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,任意抽取一个数,抽到偶数的概率为________ .三.解答题(共7小题,66分)19.(8分) 下列事件中,哪个是必然事件?哪个是不可能事件?哪个是随机事件?(1)打开电视机,正在播放新闻;(2)种瓜得瓜;(3)三角形三边之长为4 cm,5 cm,10 cm.20.(8分) 手机微信抢红包有多种玩法,其中一种为“拼手气红包”,用户设定好总金额以及红包个数后,可以随机生成不等金额的红包.现有一用户设定“拼手气红包”的红包个数为4,且随机被甲、乙、丙、丁四人抢到.(1)以下说法正确是__________. A .甲抢到的红包金额一定最多 B .乙抢到的红包金额一定最多 C .丙抢到的红包金额一定最多 D .丁不一定抢到金额最少的红包(2)若这四个红包的金额分别为35元、33元、20元、12元,则甲抢到红包的金额超过30元的概率是多少?21.(8分) 如图,在一个大的圆形区域内包含一个小的圆形区域,大圆的半径为2,小圆的半径为1.一只在天空自由飞翔的小鸟要落在它的上面,那么小鸟落在小圆区域外大圆区域内(阴影部分)的概率是多少?22.(8分) 在同样条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数表.试验种子n(粒) 1 5 50 100 200 500 1 000 2 000 3 000 发芽频数m 1 4 45 92 188 476 951 1 900 2 850 发芽频率mn10.800.900.920.940.9520.951ab(1)(2)估计该小麦种子的发芽概率;(3)如果该小麦种子发芽后,只有87%的麦芽可以成活,现有100 kg 小麦种子,则有多少千克的小麦种子可以成活为秧苗?23.(10分) 将一副扑克牌中的13张红桃牌洗匀后正面向下放在桌子上,从中任意抽取1张,给出下列事件:(1)抽出的牌的点数是8; (2)抽出的牌的点数是0; (3)抽出的牌是“人像”; (4)抽出的牌的点数小于6; (5)抽出的牌是“红色的”.上述事件发生的可能性哪个最大?哪个最小?将这些事件的序号按发生的可能性从大到小的顺序排列.24.(10分) 经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,由于该十字路口右拐弯处是通往新建经济开发区的,因此交管部门在汽车行驶高峰时段对车流量作了统计,发现汽车在该十字路口向右转的频率为25,向左转和直行的频率都为310.(1)假设平均每天通过路口的汽车为5000辆,求汽车在此左转、右转、直行的车辆是多少辆;(2)目前在此路口,汽车左转、右转、直行的绿灯的时间分别为30秒,在绿灯总时间不变的条件下,为了缓解交通拥挤,请你利用概率的知识对此路口三个方向的路灯亮的时间做出合理的调整.25.(14分) 综合与探究: 问题再现:(1)图①是一个可以自由转动的转盘,转动转盘,当转盘停止时,指针落在红色区域和白色区域的概率分别是多少? 类比设计:(2)请在图②中设计一个转盘:自由转动这个转盘,当它停止转动时,三等奖:指针落在红色区域的概率为38,二等奖:指针落在白色区域的概率为38,一等奖:指针落在黄色区域的概率为14.拓展运用:(3)某书城为了吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成12份),并规定:顾客每购买100元的图书,就可获得一次转动转盘的机会,如果转盘停止后,指针正好对准红色、黄色、绿色区域(若指针恰好指在分割线上,则重转一次,直到指针指向某一扇形区域为止),那么顾客就可以分别获得50元、30元、20元的购书券,凭购书券可以在书城继续购书.若甲顾客购书130元,转动一次转盘,求他获得购书券的概率.参考答案1-5DCBBB 6-10BACDA 11. 不可能事件 12. 2713. 0.52 14. 3 15. 2;红 16. 15 17. 518 18.71119. 解:(2)是必然事件,(3)是不可能事件,(1)是随机事件.20.解:(1)D(2)一共有4种可能出现的结果,其中红包的金额超过30元的有2种,所以甲抢到红包的金额超过30元的概率是24=12.21. 解:小圆的面积为π,大圆的面积为4π,所以阴影部分的面积为3π.所以小鸟落在小圆区域外大圆区域内的概率为3π4π=34.22. 解:(1)a =1 900÷2 000=0.95,b =2 850÷3 000=0.95.(2)观察发现:随着大量重复试验,发芽频率逐渐稳定到常数0.95附近,所以该小麦种子的发芽概率约为0.95. (3)100×0.95×87%=82.65(kg),所以约有82.65千克的小麦种子可以成活为秧苗. 23. 解:(1)抽出的牌的点数是8;发生的概率为113(2)抽出的牌的点数是0;发生的概率为0 (3)抽出的牌是“人像”;发生的概率为313(4)抽出的牌的点数小于6;发生的概率是513(5)抽出的牌是“红色的”,发生的概率为100%.由此可知:事件(5)可能性最大,事件(2)可能性最小;发生的可能性从大到小的顺序为(5)(4)(3)(1)(2) 24. 解:(1)汽车在此左转的车辆数为5000×310=1500(辆),在此右转的车辆数为5000×25=2000(辆),在此直行的车辆数为5000×310=1500(辆).(2)根据频率估计概率的知识,得P(汽车向左转绿灯时间)=30×310=9秒,P(汽车向右转绿灯时间)=30×25=12秒,P(汽车直行绿灯时间)=30×310=9秒.25. 解:(1)P(红色)=120360=13;P(白色)=240360=23.(2)(答案不唯一)如图.(3)因为转盘被平均分成12份,共有12种等可能的情况,其中红色占1份,黄色占2份,绿色占3份,所以任意转动一次转盘获得购书券的概率是1+2+312=12.。

北师大版七年级数学下册单元测试卷第六章 概率初步附答案

北师大版七年级数学下册单元测试卷第六章 概率初步附答案

第六章概率初步一、选择题(共18小题;共54分)1. 一条信息可以通过如图的网络线由上(点)往下向各站点传送,例如:信息到点可由经的站点送达,也可由经的站点送达,共有两条途径传送,则信息由点到达的不同途径共有A. 条B. 条C. 条D. 条2. 从件不同款式的衬衣和条不同款式的裙子中分别取一件衬衣和一条裙子搭配,可能的情况有A. 种B. 种C. 种D. 种3. 从标号分别为,,,,的张卡片中,随机抽取张.下列事件中,必然事件是A. 标号小于B. 标号大于C. 标号是奇数D. 标号是4. 一个暗箱里装有个黑球,个白球,个红球,每个球除颜色外都相同,从中任意摸出一个球,摸到白球的概率是C. D.5. 盒子中装有个红球和个绿球,每个球除颜色外都相同,从盒子中任意摸出一个球,是绿球的概率是A. B. C. D.6. 太阳绕地球转,这是的.A. 可能B. 不可能C. 一定7. 下列事件中,是必然事件的是A. 打开电视机,正在播放新闻B. 父亲年龄比儿子年龄大C. 通过长期努力学习,你会成为数学家D. 下雨天,每个人都打着雨伞8. 某篮球运动员在同一条件下,进行投篮训练,共投次,其中投中次,据此估计,这名球员投篮一次投中的概率约是A. B. C. D.9. 下列成语所描述的事件概率为的是A. 水中捞月B. 守株待兔C. 瓮中捉鳖D. 十拿九稳10. 下列说法正确的是A. 某种彩票的中奖率为千分之一,一次买一千张彩票一定中奖B. 一批零件的合格率为百分之九十九,任意抽查一个一定合格C. 下雨天走在路上不太可能被雷电击倒D. 抛掷两枚一元的硬币,出现一正一反的可能性比出现两个正面的可能性小11. 小明训练上楼梯赛跑,他每步可上阶或者阶(不上阶),那么小明上阶楼梯的不同方法共有(注:两种上楼梯的方法只要一步所踏楼梯的阶数不同,便认为是不同的方法)A. 种B. 种C. 种D. 种12. 在投掷一枚硬币的游戏过程中,已知“正面朝上”的概率为,那么下列说法正确的是A. 投掷次必有次“正面朝上”B. 投掷很多次的时候,极有可能出现“正面朝上”C. 投掷次可能有次“正面朝上”D. 投掷很多次的时候,极少出现“正面朝上”13. 下列事件中最有可能发生的是A. 刚买回来的新手机不能打电话B. 足球比赛比分为C. 北方的冬天下雪D. 买彩票中了一等奖14. 下列事件中,属于随机事件的是A. 在十进制中B. 从长度分别为厘米,厘米,厘米,厘米的根小木棒中,取根为边拼成一个三角形C. 方程在实数范围内有解D. 在装有个红球的口袋内,摸出一个白球15. 如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是A. B. C. D.16. 某班学生中随机选取一名学生是男生的概率是,那么该班男女生的人数比是17. 现有,,,,共五个数,从中取若干个数分给A,B两组,两组都不能放空,要使得B组中最小的数比A组中最大的数都大,则有分配方法A. 种B. 种C. 种D. 种18. 小明在一天晚上帮妈妈洗三个只有颜色不同的有盖茶杯,这时突然停电了,小明只好将茶杯和杯盖随机搭配在一起,那么三个茶杯颜色全部搭配正确的概率是D.二、填空题(共7小题;共31分)19. 现有张扑克牌,牌面分别是方块,,和草花,,,小红从草花和方块里各摸张牌,摸到张牌上的数之和是的概率是.20. 三条任意长的线段可以组成一个三角形,这一事件是事件.21. 某班要选名同学代表参加班级间的交流活动.现在按下面的办法选取:把全班同学的姓名分别写在没有明显差别的纸片上,把纸片混放在一个盒子里,充分搅拌后,随机抽取张,按照纸片上所写的名字选取名同学.你觉得上面的选取过程是简单随机抽样吗? (填“是”或“不是”).22. 甲、乙、丙、丁、戊五位同学参加一次活动,很幸运的是他们都得到了一件精美的礼品(如图),他们每人只能从其中一串的最下端取一件礼品,直到礼物取完为止,甲第一个取得礼物,然后乙,丙,丁,戊依次取得第到第件礼物,当然取法各种各样,那么他们共有种不同的取法.23. 一道选择题有A,B,C,D 个选项,只有个选项是正确的.若两位同学随意任选个答案,则同时选对的概率为.24. 若一事件发生的概率是,则它发生(填“必然”、“可能”或“不可能”).25. 从学校任选一位同学,事件:该同学是八年级的,事件:该同学是九年级()班的,事件:该同学是男的,用,,分别表示事件,,发生的可能性大小,按从小到大的顺序排列是.三、解答题(共5小题;共65分)26. 如图,圆盘分成大小相等的扇形,分别写有数字,任意转动圆盘,比较下列事件的可能性大小,并按照从大到小的顺序排列(当指针落在扇形边界时,统计在逆时针方向相邻的扇形区域内).()指针落在数字区域内,可能性记为;()指针落在奇数区域内,可能性记为;()指针落在的倍数区域内,可能性记为.27. 请你设计一个游戏,其中包括“不太可能”发生的事件、“很有可能”发生的事件、“不可能发生”的事件.28. 有一个质地均匀的正方体,一面涂上红色,两面涂上黄色,三面涂上绿色.用依次表示抛掷出“红”“黄”“绿”“红或黄或绿”“蓝”的可能性大小,请你将它们的可能性大小按照从小到大的顺序排列.29. 小明有双黑袜子和双白袜子,假设袜子不分左右,那么从中随机抽取只恰好配成一双的概率是多少?如果袜子分左右呢?30. 在袋中装有大小、形状、质量完全相同的个白球和个红球,甲、乙两人从中进行摸球游戏,在游戏之前两人就各有分,然后从中轮番摸球,每次摸三个球,然后放回袋中搅匀,再由另一个人摸球,得分规则如下:最后以得分高者为胜者,请问这个游戏对甲、乙双方公平吗?如果不公平,谁更有利;如果公平,请说明理由.答案第一部分1. C 【解析】经的只有条,经的有条,经的只有条,经的有条,所以总共有条.2. D3. A4. C5. C6. B7. B8. B9. A10. C11. C 【解析】根据题意可知,上阶楼梯的方法数为,上阶楼梯的方法数为,上阶楼梯的方法数为,上阶楼梯的方法数为,上阶楼梯的方法数为,,上阶楼梯的方法数为.12. B13. C14. B15. C【解析】在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有种等可能的结果,与图中阴影部分构成轴对称图形的有②④⑤,共种情况,所以与图中阴影部分构成轴对称图形的概率是.16. A17. B18. B 【解析】如图,基本事件是,颜色都对号了的事件是,所以答案是第二部分【解析】摸到张牌上的数之和是的情况有:,;,;,.故摸到张牌上的数之和是的概率是.20. 随机21. 是22.【解析】甲、乙、丙、丁、戊取礼物的顺序有种,为:①A,B,C,D,E;②A,C,D,E,B;③A,C,D,B,E;④A,C,B,D,E;⑤C,D,E,A,B;⑥C,D,A,B,E;⑦C,D,A,E,B;⑧C,A,B,D,E;⑨C,A,D,B,E;⑩C,A,D,E,B.23.【解析】一个同学任取一个的概率为个答案同时选对的概率为.24. 可能25.第三部分26. .27. 略28. .29. 共有种等可能的结果数,若袜子不分左右,从中随机抽取只恰好配成一双的结果数为,所以袜子不分左右,那么从中随机抽取只恰好配成一双的概率;若袜子分左右,从中随机抽取只恰好配成一双的结果数为,所以袜子分左右,那么从中随机抽取只恰好配成一双的概率.30. 这个游戏对双方公平.理由:在三红三白六个球中,任意摸出三个球,是三红的概率为,同理三个球都为白球的概率也为,若摸出的球是二红一白,则有三种情况:红,红,白;红,白,红;白,红,红,摸出球为二红一白概率为,同理二白一红的概率也为,所以(分),(分),所以,所以摸一次球甲、乙两人所得的平均分相等,因此这个游戏公平.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题(共10题)1.成语“水中捞月”所描述的事件是( )A.必然事件B.随机事件C.不可能事件D.无法确定2.掷一枚质地均匀的骰子,向上一面的点数为奇数的可能性大小为( )A.13B.16C.12D.143.下列事件为必然事件的是()A.打开电视机,它正在播广告B.抛掷一枚硬币,一定正面朝上C.投掷一枚普通的正方体骰子,掷得的点数小于7D.某彩票的中奖机会是1%,买1张一定不会中奖4.下列事件中,属于随机事件的有( )①任意掷一枚骰子,面朝上的点数大于6;②任选一张体育彩票会中奖;③掷一枚硬币,反面朝下;④小明长大后成为一名宇航员.A.①②③B.①③④C.②③④D.①②④5.在10件外观相同的产品中有3件不合格,现从中随机抽取1件进行检测,抽到合格产品的概率为( )A.110B.15C.310D.7106.抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2的概率是( )A.16B.13C.12D.567.在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球4只,黑球3只,将袋中的球搅匀,随机从袋中取出1只球,则取出黑球的概率是( )A.12B.13C.14D.168.有6张扑克牌面数字分别是3,4,5,7,8,10,从中随机抽取一张点数为偶数的概率是( )A.16B.14C.13D.129.一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( )A.47B.37C.34D.1310.下列事件中,属于必然事件的是( )A.三角形的外心到三边的距离相等B.某射击运动员射击一次,命中靶心C.任意画一个三角形,其内角和是180∘D.抛一枚硬币,落地后正面朝上二、填空题(共7题)11.“打开电视机,正在播新闻”是事件.12.不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.13.一个口袋内有10个标有1∼10号的小球,它们的形状大小完全相同.从中任意摸取1球,则摸到球号是偶数的概率是.14.小燕抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概率为.15.必然事件的概率是.16.在一个不透明的袋子中装有除颜色外完全相同的2个红球,3个黄球,4个黑球,任意摸出一球,摸到红球的概率是.17.如图是一个可以自由转动的转盘,其中A区域的圆心角为直角,∠1=∠2,转动转盘,转盘停止后,指针落在B区的概率是.三、解答题(共8题)18.如图,我市某展览厅东面有两个入口A,B,南面、西面、北面各有一个出口.小华任选择一个入口进入展览大厅,参观结束后任选一个出口离开.(1) 利用树状图表示她从进入到离开的所有路径;(2) 她从入口A进入展厅并从北出口离开的概率是多少?19.一只不透明袋子中装有1个白球和若干个红球,这些球除颜色外都相同,某课外学习小组做摸球试验:将球搅匀后从中任意摸出1个球,记下颜色后放回、搅匀,不断重复这个过程,获得数据如下:摸球的次数200300400100016002000摸到白球的频数7293130334532667摸到白球的频率0.36000.21000.32500.33400.33250.3335(1) 该学习小组发现,摸到白球的频率在一个常数附近摆动,这个常数是(精确到0.01),由此估出红球有个.(2) 现从该袋中摸出2个球,请用树状图或列表的方法列出所有等可能的结果,并求恰好摸到1个白球,1个红球的概率.20.某市发行福利彩票3000万元,每张彩票面值2元,设特等奖10个,一等奖50个,二等奖100个,三等奖1000个.李明买了一张彩票.求:(1) 李明中特等奖的概率.(2) 李明中特等奖或一等奖的概率.(3) 李明中奖的概率.21.小明与小华在玩一个掷飞镖游戏,图甲是一个把两个同心圆平均分成8份的靶,当飞镖掷中阴影部分时,小明胜,否则小华胜(没有掷中靶或掷到边界线时重掷).(1) 不考虑其他因素,你认为这个游戏公平吗?说明理由;(2) 请你在图乙中设计一个不同于图甲的方案,使游戏对双方公平.22.某校某次外出游学活动分为三类,因资源有限,七年级2班分配到25个名额,其中甲类4个、乙类11个、丙类10个,已知该班有50名学生,班主任准备了50个签,其中甲类、乙类、丙类按名额设置、25个空签,采取抽签的方式来确定名额分配,请解决下列问题.(1) 该班小明同学怡好抽到丙类名额的概率是多少?(2) 该班小丽同学能有幸去参加游学活动的概率是多少?(3) 后来,该班同学强烈呼吁名额太少,要求抽到甲类的概率要达到20%,则还要争取甲类名额多少个?23.圆盘等分10块,其中有一块蓝色区域,两块红色区域,三块白色区域、四块黄色区域,指针绕着中心旋转.求:(1) 指针落在白色区域的可能性的大小;(2) 指针落在黄色区域的可能性的大小.24.六(1)班举行迎春晚会,其中有一个助兴抽奖活动,规则如下:在抽奖箱里放有12个同样大小的乒乓球,上面分别写有1,2,3,⋯,12这12个数,若某人从抽奖箱里摸出的乒乓球上标有的数恰好是他出生的月份数.则他将获得一份奖品;若他摸出的乒乓球上标有的数是他出生的月份数的整倍数(至少2倍),则他将表演一个节目.张华是3月份出生的,他也去参加了抽奖活动,问:(1) 他获得奖品的可能性有多大?(2) 他表演节目的可能性有多大?25.某中学八年级有6个班,要从中选出2个班代表学校参加某项活动,八(1)班必须参加,另外再从八(2)班至八(6)班选出1个班.八(4)班有学生建议用如下的方法:从装有编号为1,2,3三个白球的A袋中摸出一个球,再从装有编号为1,2,3三个红球的B袋中摸出1个球(两袋中球的大小,形状与质量完全一样),摸出的两个球上的数字和是几,就选几班.你认为这种方法公平吗?请说明理由.答案一、选择题(共10题)1. 【答案】C【解析】水中捞月是不可能事件,故选:C.【知识点】事件的分类2. 【答案】C【知识点】公式求概率3. 【答案】C【解析】【分析】根据事件的分类的定义及分类对四个选项进行逐一分析即可.【解析】解:A、打开电视机,它正在播广告是随机事件,故本选项错误;B、抛掷一枚硬币,正面朝上是随机事件,故本选项错误;C、因为枚普通的正方体骰子只有1−6个点数,所以掷得的点数小于7是必然事件,故本选项正确;D、某彩票的中奖机会是1%,买1张中奖或不中奖是随机事件,故本选项错误.故选:C.【点评】本题考查的是随机事件,即在一定条件下,可能发生也可能不发生的事件,称为随机事件.【知识点】事件的分类4. 【答案】C【解析】①任意掷一枚骰子,面朝上的点数大于6是不可能事件;②任选一张体育彩票会中奖是随机事件;③掷一枚硬币,反面朝下是随机事件;④小明长大后成为一名宇航员是随机事件.【知识点】事件的分类5. 【答案】D【解析】在10件外观相同的产品中有3件不合格,则合格的产品有7件,现从中随机抽取1件进行检测,.抽到合格产品的概率为:710【知识点】公式求概率6. 【答案】A【解析】∵抛掷六个面上分别刻有的1,2,3,4,5,6的骰子有6种结果,其中朝上一面的数字为2的只有1种,,∴朝上一面的数字为2的概率为16故选:A.【知识点】公式求概率7. 【答案】B【解析】取出黑球的概率为32+4+3=13.【知识点】公式求概率8. 【答案】D【知识点】公式求概率9. 【答案】B【知识点】公式求概率10. 【答案】C【知识点】事件的分类二、填空题(共7题)11. 【答案】随机【解析】打开电视,有可能在播新闻,有可能在播广告,有可能播的是电视剧,所以是随机事件.【知识点】事件的分类12. 【答案】56【知识点】公式求概率13. 【答案】12【知识点】公式求概率14. 【答案】12【解析】∵抛硬币正反出现的概率是相同的,不论抛多少次出现正面或反面的概率是一致的,∴正面向上的概率为12.故答案为:12.【知识点】公式求概率15. 【答案】1【知识点】事件的分类16. 【答案】29【解析】∵袋子中有2个红球,3个黄球,4个黑球共有9个球,其中红球有2个,∴任意摸出一球,摸到红球的概率是29.【知识点】公式求概率17. 【答案】38【解析】因为∠1=∠2,A区域的扇形的圆心角是90∘,所以∠1=∠2=(360∘−90∘)÷2=135∘,则B区的扇形的圆心角为135∘,因为135∘360∘=38,所以指针落在B区的概率为38.【知识点】公式求概率三、解答题(共8题)18. 【答案】(1) 画树状图:(2) 从中可以看出共有6种情况,而从入口A进人展厅并从北出口离开只有1种情况,从而得到她从入口A进入展厅并从北出口离开的概率为16.所以P(从入口A进入展厅并从北出口离开) =16.【知识点】树状图法求概率19. 【答案】(1) 0.33;2.(2) 画树状图如图:∵共有6种等可能的结果,摸到一个白球,一个红球有4种情况,∴摸到一个白球一个红球的概率为46=23.【知识点】用频率估算概率、树状图法求概率20. 【答案】(1) 11500000.(2) 1250000.(3) 29375000.【知识点】公式求概率21. 【答案】(1) 这个游戏公平.理由如下:因为根据题图甲可知阴影部分的面积等于靶面积的一半,所以这个游戏公平.(2) 把题图乙中的两个同心圆平均分成偶数份,如图,当飞镖掷中奇数时小明胜,掷中偶数时小华胜.(答案不唯一)【知识点】公式求概率22. 【答案】(1) ∵丙类共有10个名额,班上一共50个学生,则该班小明恰好抽到丙类名额的概率=1050=15.(2) ∵去参加游学活动的名额共有25个,∴小丽同学能有幸去参加游学活动的概率=2550=12.(3) 设还要争取甲类名额x个,由题意得x+450=20100,解得:x=6,答:要求抽到甲类概率要达到20%,则还要争取甲类名额6个.【知识点】公式求概率23. 【答案】(1) 310.(2) 25.【知识点】公式求概率24. 【答案】(1) 112.(2) 14.【知识点】公式求概率25. 【答案】不公平,抽到 2 班的概率为 19,3 班的概率为 29,4 班的概率为 13,5 班的概率为 29,6 班的概率为 19.【知识点】公式求概率、概率的应用。

相关文档
最新文档