高中 三角函数教学设计及习题及答案

高中 三角函数教学设计及习题及答案
高中 三角函数教学设计及习题及答案

第三章 三角函数

章节结构图

三角函数是高中数学的一个重要知识板块,也是高考的热点和重点内容.在考察中,以容易题和中档题为主.

在复习本部分内容时,应该充分利用数形结合的思想,把图象和性质有机结合.利用图象的直观性得出函数的性质,同时也要学会利用函数的性质来描绘函数的图象.而在三角变换中,角的变换,三角函数名称的改变,三角函数次数的变换,三角函数表达形式的变换,频繁出现.因此,在训练中,要清楚各种公式,以及它们之间的联系,注意总结规律,并在应用中注意分析比较,提高能力.

3.1 三角函数的概念

(一)复习指导

1.了解任意角的概念,了解弧度制概念,能进行弧度与角度的互化.

2.理解任意角三角函数(正弦、余弦、正切)的定义,掌握任意角的三角函数在各个象限的符号.

3.会应用三角函数线解决与三角函数有关的简单问题. (二)解题方法指导 例1.写出与-60°终边相同的角的集合S ,并把S 中满足-2π ≤α≤4π 的元素α写出来.

例2.已知角α终边上有一点P (x ,1),且2

1

cos =α,求sin α,tan α.

例3.求函数2

1

sin )(-=x x f 的定义域.

例4.已知α∈(0,π ),比较2

tan

,2

sin

α

α

的大小.

(三)体会与感受 1.重点知识_________________________________________________________________ _______________________________________________________________________________

2.问题与困惑_______________________________________________________________ _______________________________________________________________________________

3.经验问题梳理_____________________________________________________________ _______________________________________________________________________________

3.2 同角三角函数关系及诱导公式

(一)复习指导

1.理解同角三角函数的基本关系式:.tan cos sin ,

1cos sin 2

2

x x

x

x x ==+ 2.能利用单位圆中的三角函数线推导出

αα±±π,2

π

的正弦、余弦、正切的诱导公式. 3.能综合运用诱导公式和同角关系式对代数式进行化简. (二)解题方法指导

例1.已知tan x =2,求sin x ,cos x 的值. 例2.求)

330cos()150sin()690tan()480sin()210cos()120tan(

----的值.

例3.若

,2cos sin cos sin =+-x

x x

x ,求sin x cos x 的值.

例4.求证:tan 2x ·sin 2x =tan 2x -sin 2x .

(三)体会与感受

1.重点知识________________________________________________________________ _______________________________________________________________________________

2.问题与困惑______________________________________________________________ _______________________________________________________________________________

3.经验问题梳理____________________________________________________________ _______________________________________________________________________________

3.3 三角函数的图象与性质(一)

(一)复习指导

1.能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性.

2.理解正弦函数、余弦函数在区间[0,2π ]的性质(如单调性、最大和最小值、图象与x 轴交点等)

3.理解正切函数在区间)2

π

,2π(-的单调性.

例1.用五点法画出函数)3

sin(+=x y 草图,并求出函数的周期,单调区间,对称轴,对称中心.

例2.求函数)6

π

2sin(

2+=x y 在区间[0,2π ]上的值域.

例3.求下列函数的值域. (1)y =sin 2x -cos x +2; (2)y =2sin x cos x -(sin x +cos x ).

例4.求函数x

x

y cos 3sin 1--=

的值域.

(三)体会与感受 1.重点知识_________________________________________________________________ _______________________________________________________________________________

2.问题与困惑_______________________________________________________________ _______________________________________________________________________________

3.经验问题梳理_____________________________________________________________ _______________________________________________________________________________

3.4 三角函数的图象与性质(二)

(一)复习指导

1.了解函数y =A sin(ωx +φ)的物理意义;能画出y =A sin(ωx +φ)的图象,了解参数A ,ω,φ对函数图象变化的影响.

2.了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.

(二)解题方法指导

例1.在同一个坐标系中,用五点法画出下列函数的草图.

(1));3

πsin(,sin +==x y x y (2)).3

π2sin(,2sin +

==x y x y

例2.已知函数)6

π

2sin()(+=x x f ,该函数的图象可以由y =sin x 的图象经过怎样的平移和伸缩变换得到.

例3.若函数y =A sin(ωx +φ)(ω>0,φ>0)的图象的一个最高点为)2,2(,它到其相邻的最低点之间的图象与x 轴交于(6,0),求这个函数的一个解析式.

例4.已知函数f (x )=cos 4x -2sin x cos x -sin 4x .

(Ⅰ)求f (x )的最小正周期; (Ⅱ)若],2

π,0[∈x 求f (x )的最大值、最小值.

(三)体会与感受 1.重点知识_________________________________________________________________ _______________________________________________________________________________

2.问题与困惑_______________________________________________________________ _______________________________________________________________________________

3.经验问题梳理_____________________________________________________________ _______________________________________________________________________________

3.5 和、差、倍角的三角函数(一)

(一)复习指导

1.掌握两角差的余弦公式,能利用两角差的余弦公式导出两角差的正弦、正切公式. 2.能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.

3.能用上述公式解决一些化简和求值问题.

(二)解题方法指导 例1.若5tan 1tan 1=+-x x

,则)4

πtan(+x 的值为 ( )

(A)5

(B)5-

(C)

55

(D)55-

例2.=-++)4

π

(

sin 2)cos (sin 2

2

x x x ____________. 例3.已知21

)4πtan(=+x .求x

x x 2cos 1cos 22sin 2+-的值.

例4.已知f (cos x )=cos2x . (Ⅰ)求))16

π

(cos(

f 的值; (Ⅱ)求f (sin x ).

(三)体会与感受 1.重点知识_________________________________________________________________ _______________________________________________________________________________

2.问题与困惑_______________________________________________________________ _______________________________________________________________________________

3.经验问题梳理_____________________________________________________________ _______________________________________________________________________________

3.6 和、差、倍角的三角函数(二)

(一)复习指导

1.能利用三角函数公式对一些代数式进行化简和求值. 2.掌握A sin x +B cos x 型代数式变形方法. (二)解题方法指导 例1.已知)π,2π(,54cos ∈-

=αα,则=-)4

π

cos(α( ). (A)

102

(B)10

2-

(C)10

2

7-

(D)

10

2

7 例2.x x x x f cos sin 322cos )(-=的最小值为____. 例3.已知:53cos ,2π0=<

<

5)sin(=+y x ,求cos y 的值.

例4.已知5

4

)cos(,53sin ,π2π0-=+=<<<

βααβα,求sin β.

(三)体会与感受 1.重点知识_________________________________________________________________ _______________________________________________________________________________

2.问题与困惑_______________________________________________________________ _______________________________________________________________________________

3.经验问题梳理_____________________________________________________________ _______________________________________________________________________________

3.7 正弦定理和余弦定理

(一)复习指导

1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.

2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.

(二)解题方法指导

例1.在△ABC 中,a ∶b ∶c =3∶5∶7,则其最大角为____. 例2.在△ABC 中,有a cos A =b cos B ,判断△ABC 的形状.

例3.在△ABC 中,∠A =60°,面积为310,周长为20,求三条边的长.

例4.在一条河的对岸有两个目标物A ,B ,但不能到达.在岸边选取相距32里的C ,D 两点,并测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°,且A ,B ,C ,D 在同一个平面内,求A ,B 之间的距离.

(三)体会与感受 1.重点知识_________________________________________________________________ _______________________________________________________________________________

2.问题与困惑_______________________________________________________________ _______________________________________________________________________________

3.经验问题梳理_____________________________________________________________ _______________________________________________________________________________

例 题 解 析

第三章 三角函数

3.1 三角函数的概念

例1分析:先把角转化成弧度制,然后写出与其终边相同角的集合. 解:因为3π60o

-

=-,所以},,3

π

π2|{Z ∈-==k k S αα S 中满足-2π≤α≤4π的元素有?-

3

π

11,3π5,3π 例2分析:已知一个角的一个函数值,可以利用三角函数定义求其它三角函数值,也可以利用同角关系直接求得.

解:因为P (x ,1)在角α的终边上,所以,

,2

11

cos ,422=

+=

+=x x x r α 解得,33±

=x 又因为x >0,所以,33

=x 所以.3tan ,2

3sin ==αα

小结:知道一个角某个三角函数值,求其它的函数值,是三角函数求值问题中典型问题

之一.

例3解:因为02

1sin ≥-

x ,所以,21sin ≥x

当21sin =x 时,6π

π2+=k x 或,,6

π5π2Z ∈+

=k k x 利用三角形函数线得到, .],6

π

5π2,6ππ2[Z ∈++∈k k k x

例4分析:比较不同三角函数值的大小,可以充分利用三角函数线. 解:因为α∈(0,π),所以

)2

π,0(2∈α

,如图3-1-2,在单位圆中,作出2α

的正弦线

MP 和正切线AT ,因为S △OAP <S △OAT ,

所以

|,|||2

1

||||21AT OA MP OA ??

tan

2

sin

α

α

小结:例3和例4都是三角形函数线的应用,其中例4还可以利用比较法来解决,实际

上有)2

π

,0(∈x 时,sin x <x <tan x .

3.2 同角三角函数关系及诱导公式

例1分析:知道一个角某个三角函数值,求其它函数值,方程思想是通法. 解:因为2cos sin tan ==

x

x

x ,又sin 2x +cos 2x =1, 联立得???=+=,1

cos sin cos 2sin 2

2x x x

x 解这个方程组得.

55cos 552sin ,55cos 552sin ???

????-=-=??

?????==x x x x 小结:这道题和3.1.1中的例2属于同一类型问题.

例2分析:这种代数式化简,一般要用到诱导公式和同角函数关系,要注意公式的正确使用,特别是函数名称和符号的变化方法.

解:原式

)

30360cos()150sin()30720tan()

120360sin()30180cos()180120tan(o --+---++-=

.3330cos )150sin (30tan )120sin )(30cos (60tan -=---=

例3分析:这种代数式求值,可以利用方程组的思想,求出每个函数值,也可以利用sin x ±cos x 与sin x cos x 的关系,整体求值.

解:法一:因为

,2cos sin cos sin =+-x

x x

x

所以sin x -cos x =2(sin x +cos x ),

得到sin x =-3cos x ,又sin 2x +cos 2x =1,联立方程组,解得 ,,???

????=-=??

?????-==1010cos 10

103sin 1010cos 10103sin x x x x 所以?-

=10

3

cos sin x x

法二:因为

,2cos sin cos sin =+-x

x x

x

所以sin x -cos x =2(sin x +cos x ), 所以(sin x -cos x )2=4(sin x +cos x )2, 所以1-2sin x cos x =4+8sin x cos x , 所以有?-

=10

3cos sin x x 小结:这两种方法中,第一种是通法,第二种利用了整体求值.

例4分析:这种证明问题,可以从左边开始变形,向右边看齐,也可以反过来,还有的时候是两边同时变形.在变形的时候,要注意公式的正确使用,同时要时刻注意目标是什么.

证明:法一:右边=tan 2x -sin 2x =tan 2x -(tan 2x ·cos 2x )=tan 2x (1-cos 2x )=tan 2x ·sin 2

x ,问题得证.

法二:左边=tan 2x ·sin 2x =tan 2x (1-cos 2x )=tan 2x -tan 2x ·cos 2x =tan 2x -sin 2x ,问题得证.

3.3 三角函数的图象与性质(一)

例1解:

周期为T =2π,

单调增区间为,),6π

π2,6π5π2(Z ∈+-

k k k 单调减区间为,),6π

7π2,6ππ2(Z ∈+

+k k k 对称轴为,,6π

πZ ∈+=k k x

对称中心为.),0,3

π

π(Z ∈-k k

小结:画图的时候,要注意五个点的选取. 例2分析:在求这样函数值域的时候,最好是把括号中与x 有关的代数式的取值范围求出来,然后利用三角函数图象求其值域.

解:因为0≤x ≤2π,所以,6

π76π26π,π20≤+≤≤≤

x x 由正弦函数的图象, 得到],1,2

1

[)6π2sin(-∈+x

所以y ∈[-1,2].

例3解:(1)y =sin 2x -cos x +2=1-cos 2x -cos x +2=-(cos 2x +cos x )+3,

令t =cos x ,则,4

13

)21

(413)21

(3)(],1,1[2

2

2

++-=++-=++-=-∈t t t t y t

利用二次函数的图象得到].4

13

,

1[∈y (2)y =2sin x cos x -(sin x +cos x )=(sin x +cos x )2-1-(sin x +cos x ),令t =sin x +cos x 2=,

)4

π

sin(+x ,则]2,2[-∈t 则,,12--=t t y

利用二次函数的图象得到].21,4

5

[+-∈y

小结:利用三角函数关系把代数式转化成一个二次函数形式,利用图象,求其值域,要注意转化后自变量的取值范围.

例4解:设A (3,1),P (cos x ,sin x ),

把y 看成定点A 与动点P 所在直线的斜率, 因为动点P (cos x ,sin x )在单位圆上,

所以只要求经过点A (3,1)与单位圆相切的两条直线的斜率,

两条切线的斜率分别为0和,4

3 所以].4

3,0[∈y

小结:这是数形结合解题的一个典型问题.

3.4 三角函数的图象与性质(二)

例1解:(1)

例2分析:这种问题的难点在于确定变换的先后顺序. 解:法一:将函数y =sin x 依次作如下变换: (1)把函数y =sin x 的图象向左平移

6

π个单位,得到函数)6π

sin(+=x y 的图象;

(2)把函数)6π

sin(+=x y 图象上各点的横坐标缩小到原来的2

1,纵坐标保持不变,得到

函数)6

π

2sin(+=x y 的图象.

法二:将函数y =sin x 依次作如下变换:

(1)把函数y =sin x 的图象上各点的横坐标缩小到原来的2

1

,纵坐标保持不变,得到函数y =sin2x 的图象.

(2)把函数y =sin2x 向左平移

12π个单位,得到函数)12π(2sin +=x y ,即)6

π2sin(+=x y 的图象.

小结:在进行图象变换的时候,应注意平移变换和压缩变换的顺序,顺序不一样,则平移的单位不一样.如y =sin2x 的图象向左平移

12π个单位,得到函数)12

π

(2sin +=x y ,即)6

π

2sin(+=x y 的图象.

例3分析:这样的问题,首先要清楚几个参数A ,ω,φ对函数图象的影响,可以画出一个草图来分析问题.

解:由最高点为)2,2(,得到2=A ,最高点和最低点间隔是半个周期,从而与x 轴交点的间隔是

41个周期,这样求得44

=T ,T =16,所以?=8π

ω

又由)28π

sin(22?+?=,得到可以取).4

π8πsin(2.4π+=∴=x y ?

例4分析:这个函数的解析式比较复杂,我们先对其进行化简,这包括减少函数名称,降低次数,然后再求相应的问题.

解:(Ⅰ)因为f (x )=cos 4x -2sin x cos x -sin4x =(cos 2x -sin 2x )(cos 2x +sin 2x )-sin2x

)4

π

2sin(2)24πsin(22sin 2cos 2sin )sin (cos 22--=-=-=--=x x x x x x x

所以最小正周期为π.

(Ⅱ)若]2π,0[∈x ,则]4π3,4π[)4π2(-∈-x ,所以当x =0时,f (x )取最大值为;

1)4π

sin(2=--当8

π

3=

x 时,f (x )取最小值为.2- 3.5 和、差、倍角的三角函数(一)

例1解:5)4πtan(tan 4πtan 1tan 4π

tan

tan 1tan 1=-=+-=+-x x x

x x ,所以,51)4πtan(1)4πtan(=-=

+x x 选C .

小结:本题还可以tan x 把的值求出来,然后使用两角和的正切公式求值.

例2解:)4

π

(sin 2)cos (sin 22x x x -++

.22sin 12sin 1)4

π

(2cos 12sin 1=-++=--++=x x x x

例3解:因为21

tan 1tan 1)4πtan(=-+=+x x x ,所以,3

1tan -=x

?-=-=-=+-34

1tan cos 2cos 2cos sin 22cos 1cos 22sin 222x x

x x x x x x

小结:在求值问题中,应该先对代数式进行化简,在化简的过程中分析如何利用条件推导出结果.

例4解:(Ⅰ)因为,8π

cos ))16π(cos(==f

而422222

124πcos

18

π

cos 2

+=+=+=且08

πcos >,所以;2

28πcos +=

(Ⅱ)因为.2cos )2πcos())2

π

(2cos())2π(cos()(sin x x x x f x f -=-=-=-=

3.6 和、差、倍角的三角函数(二)

例1解:因为)π,2π

(,54cos ∈-=αα,所以,5

3sin =α

又αααsin 4

π

sin cos 4πcos )4πcos(+=-,代入求得结果为,102-所以选B . 例2解:因为)26

π

sin(22sin 3cos cos sin 322cos )(x x x x x x x f -=-=-=,所以其最

小值为-2.

例3分析:在知值求值问题中,要注意角之间的关系.

解:因为,5

3cos ,2π0=<

4

cos 1sin 2x x 因为π2π,2π0<<<

π32π<+

12

)cos(-

=+y x 所以cos y =cos[(x +y )-x ]=cos(x +y )cos x +sin(x +y )sin x

65

1654135531312-=?+?-

= 例4解:因为,π2

π

0<<<<βα 所以

,2

π32π<+<βα 又5

4)cos(-

=+βα,所以53)sin(-=+βα,或,53

)sin(=+βα

若5

3)sin(-=+βα,则由53

sin =α,得到β=π,矛盾,

所以,5

3

)sin(=+βα

所以?=

+-+=-+=25

24sin )cos(cos )sin(])sin[(sin αβααβααβαβ 3.7 正弦定理和余弦定理

例1解:因为三条边中c 边最大,则角C 最大,根据余弦定理,21cos -=C ,所以?=3

π

2C

例2解:由正弦定理,a =2R sin A ,b =2R sin B ,代入有2R sin A cos A =2R sin B cos B ,即sin2A =sin2B ,所以2A =2B 或2A =π-2B .即A =B 或2

π

=+B A ,所以△ABC 为等腰三角形或直角三角形.

例3解:因为310sin 2

1

==?A bc S ABC ,所以bc =40,又a +b +c =20,a 2=b 2+c 2-2bc cos A ,

解得三条边为5,7,8.

例4分析:在很多实际测量问题中,都离不开解三角形,根据相关条件画一张比较清晰的直观图,可以帮我们找到解题的思路.

要求AB ,可以把AB 放到一个三角形中,看看这个三角形中还有哪些条件,然后可以根据正余弦定理求值.

解:中△ACD 中,∠ACD =120°,∠ADC =30°

所以∠DAC =30°,所以|AC |=|CD |=23, 在△BCD 中,∠BCD =45°,∠CDB =75°,

所以∠CBD =60°,由正弦定理,60sin |

|75sin ||,

o

o CD BC =

所以,2660sin 75sin ||||o

o

+==

CD BC 在△ABC 中,∠BCA =75°,

根据余弦定理,|AB |2=|AC |2+|BC |2-2|AC |·|BC |·cos75°,求得 |AB |2=20,?=52||AB

高中数学必修4三角函数教案

任意角的三角函数 一、教学目标 1、知识目标:借助单位圆理解任意角的三角函数(正弦、余弦、正切) 的定义,根据定义探讨出三角函数值在各个象限的符号,掌握同一个角的不同三角函数之间的关系。 2、能力目标:能应用任意角的三角函数定义求任意角的三角函数值。 3、情感目标:培养数形结合的思想。 二、教材分析 1、教学重点:理解任意角三角函数(正弦、余弦、正切)的定义。 2、教学难点:从函数角度理解三角函数。 3、教学关键:利用数形结合的思想。 三、教学形式:讲练结合法 四、课时计划:2节课 五、教具:圆规、尺子 六、教学过程 (一)引入 我们已经学过锐角三角函数,知道他们都是以锐角为自变量,以比值 为函数值的函数,你能用直角坐标系中的终边上点的坐标来表示锐角 三角函数吗? 设锐角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,那么它 的终边在第一象限,在α的终边上任取一点P (a,b ),它与原点的距离 r=22b a +>0.根据初中学过的三角函数定义,我们有αsin =r b , r a αcos =

a b αtan =,取r=1,则a b tan αa,cos αb,αsin ===,引入单位圆概念。 (二)新课 1、设α是以任意角,它的终边与单位圆交于P (x,y ),那么: (1) y 叫做α的正弦,记作αsin , 即y αsin =; (2) x 叫做α的余弦,记作αcos ,即x αcos =; (3) x y 叫做α的正切,记作αtan ,即x y αtan =)0(≠x . 注:用单位圆定义的好处就在于r=1,点的横坐标表示余弦值,纵坐标 表示正弦值。 2、根据任意角的三角函数定义,得到三种函数值在各象限的符号。 通过观察发现:第一象限全为正,第二象限只有正弦为正,第三象限只有正切为正,第四象限只有余弦为正。总结出一条法则:一全正,二正弦,三正切,四余弦。 注:这有利于培养学生观察和思考的能力,以方便记忆。 3、利用勾股定理可以推出:1cos sin 22=+αα,根据三角函数定义,当)(2z k k ∈+≠π πα时,有αα αtan cos sin =。这就是说同一个角α的正弦、余弦的平方和等于1,商等于角α的正切。 4、例题 例1求 3 5π的正弦、余弦和正切值。 解:在直角坐标系中,作3π5=∠AOB ,易知AOB ∠的终边与单位圆的交点 坐标为)2 3,21 (-,所以

高中三角函数典型例题(教用)

【典型例题】: 1、已知2tan =x ,求x x cos ,sin 的值. 解:因为2cos sin tan == x x x ,又1cos sin 22=+a a , 联立得???=+=,1 cos sin cos 2sin 2 2x x x x 解这个方程组得.55cos 5 52sin ,55cos 552sin ??? ????-=-=???????==x x x x 2、求) 330cos()150sin()690tan() 480sin()210cos()120tan(οοοοοο----的值。 解:原式) 30360cos()150sin()30720tan() 120360sin()30180cos()180120tan(o ο οοοοοοοοο--+---++-= .3330cos )150sin (30tan )120sin )(30cos (60tan -=---=ο οοοοο 3、若 ,2cos sin cos sin =+-x x x x ,求x x cos sin 的值. 解:法一:因为 ,2cos sin cos sin =+-x x x x 所以)cos (sin 2cos sin x x x x +=- 得到x x cos 3sin -=,又1cos sin 22=+a a ,联立方程组,解得 ,,??? ??? ?=-=???????-==1010cos 10 103sin 1010cos 10103sin x x x x 所以?- =10 3 cos sin x x 法二:因为,2cos sin cos sin =+-x x x x 所以)cos (sin 2cos sin x x x x +=-, 所以2 2)cos (sin 4)cos (sin x x x x +=-,所以x x x x cos sin 84cos sin 21+=-,

高中数学三角函数经典练习题专题训练(含答案)

高中数高中数学三角函数经典练习题专题训练 姓名班级学号得分 说明: 1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。满分100分。考试时间90分钟。 2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。考试结束后,只收第Ⅱ卷 第Ⅰ卷(选择题) 一.单选题(每题3分,共60分) 1.已知函数y=sin(ωx+φ)(ω>0,|φ|<)的部分图象如图所示,则ω,φ的值分别为() A.2,-B.2,-C.4,-D.4, 2.下列说法正确的个数是() ①小于90°的角是锐角;

②钝角一定大于第一象限角; ③第二象限的角一定大于第一象限的角; ④始边与终边重合的角为0°. A.0B.1C.2D.3 3.若0<y<x<,且tan2x=3tan(x-y),则x+y的可能取值是()A.B.C.D. 4.已知函数y=tan(ωx)(ω>0)的最小正周期为2π,则函数y=ωcosx的值域是()A.[-2,2]B.[-1,1]C.[-,]D.[-,] 5.在△ABC中,sin2=(a、b、c分别为角A、B、C的对应边),则△ABC的形状为() A.正三角形B.直角三角形 C.等腰直角三角形D.等腰三角形 6.已知函数f(x)=cosxsin2x,下列结论中错误的是() A.f(x)既是偶函数又是周期函数 B.f(x)最大值是1 C.f(x)的图象关于点(,0)对称 D.f(x)的图象关于直线x=π对称 7.sin55°sin65°-cos55°cos65°值为() A.B.C.-D.- 8.若角α终边上一点的坐标为(1,-1),则角α为() A.2kπ+B.2kπ-C.kπ+D.kπ-,其中k∈Z

(完整版)三角函数大题专项(含答案)

三角函数专项训练 1.在△ABC中,角A、B、C对应边a、b、c,外接圆半径为1,已知2(sin2A﹣sin2C)=(a﹣b)sin B. (1)证明a2+b2﹣c2=ab; (2)求角C和边c. 2.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b sin A=a cos(B﹣).(Ⅰ)求角B的大小; (Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值. 3.已知α,β为锐角,tanα=,cos(α+β)=﹣. (1)求cos2α的值; (2)求tan(α﹣β)的值. 4.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB; (2)若DC=2,求BC. 5.已知函数f(x)=sin2x+sin x cos x. (Ⅰ)求f(x)的最小正周期; (Ⅱ)若f(x)在区间[﹣,m]上的最大值为,求m的最小值. 6.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a sin A=4b sin B,ac=(a2﹣b2﹣c2) (Ⅰ)求cos A的值; (Ⅱ)求sin(2B﹣A)的值 7.设函数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0<ω<3,已知f()=0.(Ⅰ)求ω; (Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[﹣,]上的最小值. 8.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a>b,a=5,c=6,sin B=

. (Ⅰ)求b和sin A的值; (Ⅱ)求sin(2A+)的值. 9.△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sin B sin C; (2)若6cos B cos C=1,a=3,求△ABC的周长. 10.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cos B; (2)若a+c=6,△ABC的面积为2,求b. 11.已知函数f(x)=cos(2x﹣)﹣2sin x cos x. (I)求f(x)的最小正周期; (II)求证:当x∈[﹣,]时,f(x)≥﹣. 12.已知向量=(cos x,sin x),=(3,﹣),x∈[0,π]. (1)若,求x的值; (2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.13.在△ABC中,∠A=60°,c=a. (1)求sin C的值; (2)若a=7,求△ABC的面积. 14.已知函数f(x)=2sinωx cosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值; (2)求f(x)的单调递增区间. 15.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2a cos B.(1)证明:A=2B; (2)若cos B=,求cos C的值. 16.设f(x)=2sin(π﹣x)sin x﹣(sin x﹣cos x)2.

高三数学一轮复习第11讲三角函数的图像与性质教案

三角函数的图像与性质

π??

据正弦函数单调性写出函数的值域(如本例以题试法(2)); (3)换元法:把sin x 或cos x 看作一个整体,可化为求函数在给定区间上的值域(最值)问题(如例1(2)). 以题试法 1. (1)函数y = 2+log 1 2 x +tan x 的定义域为________. (2)(2012·山西考前适应性训练)函数f (x )=3sin ? ????2x -π6在区间??????0,π2上的值域为( ) A.??????-32,32 B.??????-32,3 C.??????-332,332 D.???? ??-332,3 解析:(1)要使函数有意义 则????? 2+log 1 2 x ≥0, x >0,tan x ≥0, x ≠k π+π2 ,k ∈Z ?? ???? 0

高中数学基础知识典型例题4——三角函数

高中数学基础知识典型例题4——三角函数

数学基础知识与典型例题 第四章三角函数 三 角 函 数 相 关 知 识 关 系 表 角的概念1.①与α(0°≤α<360°)终边相 同的角的集合 (角α与角β的终边重 合):{}Z k k∈ + ? =, 360 |α β β ; ②终边在x轴上的角的集 合:{}Z k k∈ ? =, 180 | β β; ③终边在y轴上的角的集合: {}Z k k∈ + ? =, 90 180 | β β; ④终边在坐标轴上的角的集 合:{}Z k k∈ ? =, 90 | β β. 2. 角度与弧度的互换关系: 360°=2π180°=π 1°=0.01745 1=57.30°=57°18′ 注意:正角的弧度数为正数, 例1.已知2弧度的圆心 角所对的弦长为2,那么 这个圆心角所对的弧长 为( ) ()2 A ()sin2 B 2 () sin1 C ()2sin1 D 例 2. 已知α为第三象 限角,则 2 α 所在的象限 是( ) (A)第一或第二象限 (B)第二或第三象限 (C)第一或第三象限 (D)第二或第四象限 负角的弧度数为负数,零角的 弧度数为零,熟记特殊角的弧度制. 3.弧度制下,扇形弧长公式 1 2 r α =,扇形面积公 式2 11 || 22 S R Rα ==,其中α为弧所对圆心角的弧 度数。 三 角 函 数 的 定 义 1.三角函数定义:利用直角坐标系,可以把直角三角 形中的三角函数推广到任意角的三角数.在α终边 上任取一点(,) P x y(与原点不重合),记 22 || r OP x y ==+, 则sin y r α=,cos x r α=,tan y x α=,cot x y α=。 注: ⑴三角函数值只与角α的终边的位置有关,由 角α的大小唯一确定,∴三角函数是以角为自变量, 以比值为函数值的函数. ⑵根据三角函数定义可以推出一些三角公式: ①诱导公式:即 2 kπ αα ±→或 90 2 k αα ±→ 之间函数值关系() k Z ∈,其规律是“奇变偶不变, 符号看象限”;如sin(270) α -=cosα - ②同角三角函数关系式:平方关系,倒数关系,商 数关系. ⑶重视用定义解题. ⑷三角函数线是通过有向线段直观地表示出角的各 种三角函数值的一种图示方法.如单位圆 例 3.已知角α的终边经 过P(4,-3),求 2sinα+cosα的值. 例 4.若α是第三象限 角,且cos cos 22 θθ =-, 则 2 θ 是( ) ()A第一象限角 ()B第二象限角 () C第三象限角 () D第四象限角 例5. 若cos0, θ>sin20, θ< 且

高三数学三角函数经典练习题及答案精析

1.将函数()2sin 2x f x =的图象向右移动象如右图所示,则?的值为( ) A 2.为了得到()sin 2g x x =的图象,则只需将()f x 的图象( ) A C 3 ,则sin cos αα=( ) A 1 D -1 4 ) A 5.记cos(80),tan 80k -?=?那么= ( ). A . C .21k k -- 6 .若sin a = -a ( ) (A )(B (C (D 7,则α2tan 的值为( )

A 8.已知函数)sin(cos )cos(sin )(x x x f +=,则下列结论正确的是( ) A .)(x f 的周期为π B .)(x f 在 C .)(x f 的最大值为.)(x f 的图象关于直线π=x 对称 9.如图是函数y=2sin (ωx+φ),φ A.ωφ B.ωφ C.ω =2,φ D.ω=2,10的图象,只需要将函数sin 4y x =的图象( ) A B C D 11.要得到12cos -=x y 的图象,只需将函数x y 2sin =的图象( ) A 个单位,再向上平移1个单位 B 个单位,再向下平移1个单位 C 个单位,再向上平移1个单位 D 个单位,再向下平移1个单位 12.将函数()cos f x x =向右平移个单位,得到函数()y g x =

于() A 13.同时具有性质①最小正周期是π; 增函数的一个函数为() A C 14则tanθ=() A.-2 D.2 15) A 16.已知tan(α﹣)=,则的值为() A. B.2 C.2 D.﹣2 17) A.1 D.2 18.已知角α的终边上一点的坐标为(,则角α值为 19) A 20) A..

高中数学三角函数教案

高中数学三角函数教案 一、教学目标 1.掌握任意角的正弦、余弦、正切函数的定义包括定义域、正负符号判断;了解任意 角的余切、正割、余割函数的定义. 2.经历从锐角三角函数定义过度到任意角三角函数定义的推广过程,体验三角函数概 念的产生、发展过程. 领悟直角坐标系的工具功能,丰富数形结合的经验. 3.培养学生通过现象看本质的唯物主义认识论观点,渗透事物相互联系、相互转化的 辩证唯物主义世界观. 4.培养学生求真务实、实事求是的科学态度. 二、重点、难点、关键 重点:任意角的正弦、余弦、正切函数的定义、定义域、正负符号判断法. 难点:把三角函数理解为以实数为自变量的函数. 关键:如何想到建立直角坐标系;六个比值的确定性α确定,比值也随之确定与依赖性比值随着α的变化而变化. 三、教学理念和方法 教学中注意用新课程理念处理传统教材,学生的数学学习活动不仅要接受、记忆、模 仿和练习,而且要自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程. 根据本节课内容、高一学生认知特点和我自己的教学风格,本节课采用“启发探索、 讲练结合”的方法组织教学. 四、教学过程 [执教线索: 回想再认:函数的概念、锐角三角函数定义锐角三角形边角关系——问题情境:能推广 到任意角吗?——它山之石:建立直角坐标系为何?——优化认知:用直角坐标系研究锐角三 角函数——探索发展:对任意角研究六个比值与角之间的关系:确定性、依赖性,满足函数 定义吗?——自主定义:任意角三角函数定义——登高望远:三角函数的要素分析对应法则、定义域、值域与正负符号判定——例题与练习——回顾小结——布置作业]

三角函数典型例题剖析与规律总结00

学科: 数学任课教师:黄老师授课时间:2013年3月日(星期) 1 :00-1 :00 姓名年级:教学课题三角函数典型例题剖析与规律总结 阶段 基础(√)提高()强化()课时计划共次课第次课 课前 检查作业完成情况:__________________ 建议_________________________________________________________ 教学过程一:函数的定义域问题 1.求函数1 sin 2+ =x y的定义域。 分析:要求1 sin 2+ = y的定义域,只需求满足0 1 sin 2≥ + x的x集合,即只需求出满足 2 1 sin- ≥ x的x 值集合,由于正弦函数具有周期性,只需先根据问题要求,求出在一个周期上的适合条件的区间,然后两边加上πk2()Z k∈即可。 解:由题意知需0 1 sin 2≥ + x,也即需 2 1 sin- ≥ x①在一周期? ? ? ?? ? - 2 3 , 2 π π 上符合①的角为? ? ? ?? ? - 6 7 , 6 π π ,由此 可得到函数的定义域为? ? ? ?? ? + - 6 7 2, 6 2 π π π πk k()Z k∈ 小结:确定三角函数的定义域的依据:(1)正、余弦函数、正切函数的定义域。(2)若函数是分式函数,则分母不能为零。(3)若函数是偶函数,则被开方式不能为负。(4)若函数是形如()()1 ,0 log≠ > =a a x f y a 的函数,则其定义域由()x f确定。(5)当函数是有实际问题确定时,其定义域不仅要使解析式有意义同时还要使实际问题有意义。 二.函数值域及最大值,最小值 (1)求函数的值域 例。求下列函数的值域 (1)x y2 sin 2 3- =(2)2 sin 2 cos2- + =x y x 分析:利用1 cos≤ x与1 sin≤ x进行求解。 解:(1) 1 2 sin 1≤ ≤ -x∴[]5,1 5 1∈ ∴ ≤ ≤y y (2) ()[].0,4 ,1 sin 1 1 sin 1 sin 2 sin 2 sin 22 2 2 cos- ∈ ∴ ≤ ≤ - - - = - + - = - + =y x x x x x x y 评注:一般函数的值域求法有:观察法,配方法判别式法,反比例函数法等,而三角函数是函数的特殊形式,其一般方法也适用,只不过要结合三角函数本身的性质罢了。

三角函数典型例题剖析与规律总结

三角函数典型例题剖析与规律总结 一:函数的定义域问题 1. 求函数1sin 2+=x y 的定义域。 分析:要求1sin 2+= y 的定义域,只需求满足01sin 2≥+x 的x 集合,即只需求出满足 2 1 sin -≥x 的x 值集合,由于正弦函数具有周期性,只需先根据问题要求,求出在一个周 期上的适合条件的区间,然后两边加上πk 2()Z k ∈即可。 解:由题意知需01sin 2≥+x ,也即需21sin - ≥x ①在一周期?? ????-23,2ππ上符合①的角为??????-67,6ππ,由此可得到函数的定义域为????? ? +-672,62ππππk k ()Z k ∈ 小结:确定三角函数的定义域的依据:(1)正、余弦函数、正切函数的定义域。(2)若函数 是分式函数,则分母不能为零。(3)若函数是偶函数,则被开方式不能为负。(4)若函数是形如()()1,0log ≠>= a a x f y a 的函数,则其定义域由()x f 确定。 (5)当函数是有实际问题确定时,其定义域不仅要使解析式有意义同时还要使实际问题有意义。 二.函数值域及最大值,最小值 (1)求函数的值域 例。求下列函数的值域 (1)x y 2sin 23-= (2)2sin 2cos 2 -+= x y x 分析:利用1cos ≤x 与1sin ≤x 进行求解。 解:(1) 12sin 1≤≤-x ∴[]5,151∈∴≤≤y y (2) ()[]. 0,4,1sin 11sin 1sin 2sin 2sin 22 22 cos -∈∴≤≤---=-+-=-+=y x x x x x x y 评注:一般函数的值域求法有:观察法,配方法判别式法,反比例函数法等,而三角函数是函数的特殊形式,其一般方法也适用,只不过要结合三角函数本身的性质罢了。 (2)函数的最大值与最小值。 例。求下列函数的最大值与最小值 (1)x y sin 211- = (2)??? ??≤≤-??? ? ? +=6662sin 2πππx x y (3)4sin 5cos 22 -+=x x y (4)?? ?? ??∈+-=32,31cos 4cos 32 ππx x x y

三角函数习题及答案

第四章 三角函数 §4-1 任意角的三角函数 一、选择题: 1.使得函数lg(sin cos )y θθ=有意义的角在( ) (A)第一,四象限 (B)第一,三象限 (C)第一、二象限 (D)第二、四象限 2.角α、β的终边关于У轴对称,(κ∈Ζ)。则 (A)α+β=2κπ (B)α-β=2κπ (C)α+β=2κπ-π (D)α-β=2κπ-π 3.设θ为第三象限的角,则必有( ) (A)tan cot 2 2 θ θ (B)tan cot 2 2 θ θ (C)sin cos 2 2 θ θ (D)sin cos 2 2 θ θ 4.若4 sin cos 3 θθ+=-,则θ只可能是( ) (A)第一象限角 (B)第二象限角 (C )第三象限角 (D)第四象限角 5.若tan sin 0θθ 且0sin cos 1θθ+ ,则θ的终边在( ) (A)第一象限 (B )第二象限 (C )第三象限 (D )第四象限 二、填空题: 6.已知α是第二象限角且4sin 5α= 则2α是第▁▁▁▁象限角,2 α 是第▁▁▁象限角。 7.已知锐角α终边上一点A 的坐标为(2sina3,-2cos3),则α角弧度数为▁▁▁▁。 8.设1 sin ,(,)sin y x x k k Z x π=+ ≠∈则Y 的取值范围是▁▁▁▁▁▁▁。 9.已知cosx-sinx<-1,则x 是第▁▁▁象限角。 三、解答题: 10.已知角α的终边在直线y =上,求sin α及cot α的值。 11.已知Cos(α+β)+1=0, 求证:sin(2α+β)+sin β=0。 12.已知()()cos ,5n f n n N π +=∈,求?(1)+?(2)+?(3)+……+?(2000)的值。 §4-2 同角三角函数的基本关系式及诱导公式 一、选择题: 1.()sin 2cos 22ππ?? --- ??? 化简结果是( ) (A )0 (B )1- (C )2sin 2 ()2s i n 2 D - 2.若1 sin cos 5 αα+= ,且0απ ,则tan α的值为( ) ()43A - ()34B - ()34C ()43D -或34 - 3. 已知1sin cos 8αα=,且42 ππ α ,则cos sin αα-的值为( )

高中数学任意角的三角函数教案

§1.2.1 任意角的三角函数 教学目标 <一> 知识目标 1、掌握任意角的三角函数的定义。 2、已知角α终边上一点,会求角α的各三角函数值。 3、记住三角函数的定义域和诱导公式(一)。 <二> 能力目标 1、理解并掌握任意角的三角函数的定义。 2、树立映射观点,正确理解三角函数是以实数为自变量的函数。 3、通过对定义域,三角函数值的符号,诱导公式一的推导,提高学生分析、探究、解决问题的能力。 <三> 德育目标 1、使学生认识到事物之间是有联系的,三角函数就是角度(自变量)与比值(函数值)的一种联系方式。 2、学习转化的思想,培养学生严谨治学、一丝不苟的科学精神。 教学重难点 任意角的正弦、余弦、正切的定义 (包括这三种三角函数的定义域和函数值在各象限的符号),以及这三种函数的第一组诱导公式。 教学过程 问题1:你能回忆一下初中里学过的锐角三角函数(正弦,余弦,正切)的定义吗? 锐角三角函数定义

问题2:在终边上移动点P的位置,这三个比值会改变吗? 在直角坐标系中,以原点O为圆心,以单位长度为半径的圆叫单位圆 即:锐角三角函数可以用单位圆上的点的坐标来表示 推广: 我们也可以利用单位圆定义任意角三角函数(正弦,余弦,正切) 任意角的三角函数定义: 设α是一个任意角,它的终边与单位圆交于点P(x,y),则: 正弦,余弦,正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数. (由于角的集合与实数集之间可以建立一一对应关系,因此三角函数可以看成是自变量为实数的函数.)

所以三角函数可以记为: 我们把角X的正弦、余弦、正切统称为三角函数 问题3:如何求α角的三角函数值? 求α角的三角函数值即求α终边与单位圆交点的纵、横坐标或坐标的比值。例1: 解: 例2: 事实上: 三角函数也可定义为: 设α是一个任意角,它的终边经过点P(x,y),则

【高中数学经典】三角函数的诱导公式重难点题型(举一反三)

【高中数学】三角函数的诱导公式重难点题型【举一反三系列】 三角函数的诱导公式 【知识点1诱导公式】 【知识点2诱导公式的记忆】 诱导公式一: sin(α+2kπ) = Sin a , cos(α + 2kπ) = COSα, taιι(α + 2kπ) = xana ,其中 k ∈Z 诱导公式二: sin(∕r + G) = -Sin a, cos(∕r+α) =—COSα, tan(∕r+α) = tana,其中keZ 诱导公式三: sin(-a) =-Sina, cos(-a) = COSa , tan(-a) = -taιιa ,其中k ∈Z 诱导公式四: cos(∕F -a) = -cosa, taιι(^?-a) = -tana,其中k ∈Z 诱导公式五: Sin π ——a 2 COS π ——a 2 = Sina ,其中R ∈Z 诱导公式六: Sin π —+a 2 COS —+a =-sinα ,其中k ∈Z U 丿

记忆11诀“奇变偶不变,符号看象限”,意思是说角k-90 ±a(k 为常整数)的三角函数值:当k 为奇数 时,正弦变余弦,余弦变正弦;当k 为偶数时,函数名不变,然后α的三角函数值前面加上当视Q 为锐角 时原函数值的符号. 【考点1利用诱导公式求值】 【方法点拨】对任意角求三角函数值,一般遵循“化负为正,化大为小”的化归方向,但是在具体的转化 过程中如何选用诱导公式,方法并不唯一,这就需要同学们去认真体会,适当选择,找出最好的途径,完 成求值. 【例1】(2018秋?道里区校级期末)已知点P(l,l)在角Q 的终边上,求下列各式的值. T 、 COS (Λ^ + α)sin(^? - a) (I )------------------------------------- ; tan(∕r + α) + sin 2 (彳-a) sin(- + α)cos(- 一 a) (II) 、 2 、——召—— cos^ a - sm^ a + tan(;T - a) 【分析】由条件利用任意角的三角函数的定义求得smα, cosα, Sna 的值,再利用诱导公式即可求得要 求式子的值. 【答案】解:?.?角α终边上有一点P(l,l), .x = l , y = l , r =|OP I= √7, Sill CL = — = _ , COS Ct = — = — , tan Ct — -- = It r 2 r 2 X ([) cos(∕r + α)sin(%-α) 、 -、,兀 、 tan(^? + α) + sιn^ (― 一 a) ./3∕r 3π ([[)SInq-+Q )COS (T _Q ) _ (γosα)(-smα) cos 2 a - sin 2 a + tan(∕r - a) cos 2a - sin 2a 一 tan a 【点睛】本题主要考查任意角的三角函数的定义,诱导公式在三角函数化简求值中的应用,考查了转化思 想,属于基础题. 【变式1-1】 (2019春?龙潭区校级月考)己知tan(^+ ?) = -!,求下列各式的值: -COSa ?smα ton a + cos 2(x

三角函数总结经典例题

第三章 三角函数 3.1任意角三角函数 一、知识导学 1.角:角可以看成由一条射线绕着端点从一个位置旋转到另一个位置所形成的几何图形.角的三要素是:顶点、始边、终边.角可以任意大小,按旋转的方向分类有正角、负角、零角. 2.弧度制:任一已知角α的弧度数的绝对值r l = α,其中l 是以α作为圆心角时所对圆弧的长,r 为圆的半径.规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.用“弧度”做单位来度量角的制度叫做弧度制. 3.弧度与角度的换算:rad π2360=ο ;rad 1745.01801≈=π ο ;1ο ο 30.57180≈?? ? ??=πrad .用弧度为单位表示角的 大小时,弧度(rad )可以省略不写.度()ο 不可省略. 4.弧长公式、扇形面积公式:,r l α= 2||2 1 21r lr S α= =扇形,其中l 为弧长,r 为圆的半径.圆的周长、面积公式是弧长公式和扇形面积公式中当πα2=时的情形. 5.任意角的三角函数定义:设α是一个任意大小的角,角α终边上任意一点P 的坐标是()y x ,,它与原点的距离是 )0(>r r ,那么角α的正弦、余弦、正切、余切、正割、余割分别是 y r x r y x x y r x r y ====== ααααααcsc ,sec ,cot ,tan ,cos ,sin .这六个函数统称为三角函数. 三角函数 定义域 x y sin = R x y cos = R x y tan = ? ?????∈+≠Z k k x x ,2π π x y cot = {}Z k k x x ∈≠,π x y sec = ? ?????∈+≠Z k k x x ,2π π x y csc = {}Z k k x x ∈≠,π 7.三角函数值的符号:各三角函数值在第个象限的符号如图所示(各象限注明的函数为正,其余为负值) 可以简记为“一全、二正、三切、四余”为正. 二、疑难知识导析

高一数学三角函数教案

高一数学三角函数教案 高一数学《三角函数》教案如下: 已知三角函数值求角反正弦,反余弦函数 目的:要求学生初步了解理解反正弦、反余弦函数的意义,会由已知角的正弦值、余弦值求出范围内的角,并能用反正弦,反余弦的符号表示角或角的集合。 过程: 一、简单理解反正弦,反余弦函数的意义。 由 1在R上无反函数。 2在上, x与y是一一对应的,且区间比较简单 在上,的反函数称作反正弦函数, 记作,奇函数。 同理,由 在上,的反函数称作反余弦函数, 记作 二、已知三角函数求角 首先应弄清:已知角求三角函数值是单值的。 已知三角函数值求角是多值的。 例一、1、已知,求x 解:在上正弦函数是单调递增的,且符合条件的角只有一个 ∴ 即 2、已知 解:,是第一或第二象限角。 即。 3、已知

解: x是第三或第四象限角。 即或 这里用到是奇函数。 例二、1、已知,求 解:在上余弦函数是单调递减的, 且符合条件的角只有一个 2、已知,且,求x的值。 解:, x是第二或第三象限角。 3、已知,求x的值。 解:由上题:。 介绍:∵ ∴上题 例三、见课本P74-P75略。 三、小结:求角的多值性 法则:1、先决定角的象限。 2、如果函数值是正值,则先求出对应的锐角x; 如果函数值是负值,则先求出与其绝对值对应的锐角x, 3、由诱导公式,求出符合条件的其它象限的角。 四、作业:P76-77 练习 3 习题4.11 1,2,3,4中有关部分。 高一数学《三角函数的周期性》教案如下: 一、学习目标与自我评估 1 掌握利用单位圆的几何方法作函数的图象 2 结合的图象及函数周期性的定义了解三角函数的周期性,及最小正周期 3 会用代数方法求等函数的周期

三角函数的易错点以及典型例题与高考真题

三角函数的易错点以及典型例题与真题 1.三角公式记住了吗两角和与差的公式________________; 二倍角公式:_________________ 万能公式 ______________正切半角公式____________________;解题时本着“三看”的基本原则来进行:“看角,看函数,看特征”,基本的技巧有:巧变角,公式变形使用,化切割为弦,用倍角公式将高次降次。 万能公式: (1) (sinα)2 +(cosα)2 =1 (2)1+(tanα)2=(secα)2 (3)1+(cotα)2=(cscα)2 (4)对于任意非直角三角形,总有 tanA+tanB+tanC=tanAtanBtanC (证明:利用A+B=π-C ) 同理可得证,当x+y+z=n π(n ∈Z)时,该关系式也成立 由tanA+tanB+tanC=tanAtanBtanC 可得出以下结论: (5)cotAcotB+cotAcotC+cotBcotC=1 (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2) (7)(cosA )2+(cosB )2+(cosC )2=1-2cosAcosBcosC (8)(sinA )2+(sinB )2+(sinC )2=2+2cosAcosBcosC (9)设tan(A/2)=t sinA=2t/(1+t^2) (A≠2kπ+π,k∈Z) tanA=2t/(1-t^2) (A≠2kπ+π,k∈Z) cosA=(1-t^2)/(1+t^2) (A≠2kπ+π,且A≠kπ+(π/2) k∈Z) 2.在解三角问题时,你注意到正切函数、余切函数的定义域了吗正切函数在整个定义域内是否为单调函数你注意到正弦函数、余弦函数的有界性了吗 3.在三角中,你知道1等于什么吗(x x x x 2222tan sec cos sin 1-=+=

高考数学三角函数典型例题

| 三角函数典型例题 1 .设锐角ABC ?的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小; (Ⅱ)求cos sin A C +的取值范围. 【解析】:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1 sin 2 B = , 由ABC ?为锐角三角形得π6B = . (Ⅱ)cos sin cos sin A C A A π??+=+π- - ?6? ? cos sin 6A A π?? =++ ??? & 1cos cos 2A A A =++ 3A π? ?=+ ?? ?. 2 .在ABC ?中,角A . B .C 的对边分别为a 、b 、c,且满足(2a-c)cosB=bcos C . (Ⅰ)求角B 的大小; (Ⅱ)设()()()2411m sin A,cos A ,n k,k ,==>且m n ?的最大值是5,求k 的值. 【解析】:(I)∵(2a -c )cos B =b cos C , ∴(2sin A -sin C )cos B =sin B cos C . - 即2sin A cos B =sin B cos C +sin C cos B =sin(B +C ) ∵A +B +C =π,∴2sin A cos B =sinA . ∵0

三角函数综合测试题(含答案)(1)

三角函数综合测试题 学生: 用时: 分数 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共18小题,每小题3分,共54分) 1.(08全国一6)2 (sin cos )1y x x =--是 ( ) A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数 D .最小正周期为π的奇函数 2.(08全国一9)为得到函数πcos 3y x ? ? =+ ?? ? 的图象,只需将函数sin y x =的图像( ) A .向左平移 π 6个长度单位 B .向右平移 π 6个长度单位 C .向左平移5π 6 个长度单位 D .向右平移5π 6 个长度单位 3.(08全国二1)若sin 0α<且tan 0α>是,则α是 ( ) A .第一象限角 B . 第二象限角 C . 第三象限角 D . 第四象限角 4.(08全国二10).函数x x x f cos sin )(-=的最大值为 ( ) A .1 B . 2 C .3 D .2 5.(08安徽卷8)函数sin(2)3 y x π =+图像的对称轴方程可能是 ( ) A .6 x π =- B .12 x π =- C .6 x π = D .12 x π = 6.(08福建卷7)函数y =cos x (x ∈R)的图象向左平移 2 π 个单位后,得到函数y=g(x )的图象,则g(x )的解析式为 ( ) A.-sin x B.sin x C.-cos x D.cos x 7.(08广东卷5)已知函数2 ()(1cos 2)sin ,f x x x x R =+∈,则()f x 是 ( ) A 、最小正周期为π的奇函数 B 、最小正周期为 2π 的奇函数 C 、最小正周期为π的偶函数 D 、最小正周期为2 π 的偶函数 8.(08海南卷11)函数()cos 22sin f x x x =+的最小值和最大值分别为 ( )

2018年高三一轮复习典型例题剖析:三角函数的恒等变换

三角函数的恒等变换 一、知识导学 1.两角和、差、倍、半公式 (1) 两角和与差的三角函数公式 βαβαβαc o s c o s s i n s i n )s i n (±=± βαβαβαs i n s i n c o s c o s )c o s ( =± β αβαβαt a n t a n 1t a n t a n )t a n ( ±=± (2) 二倍角公式 αααc o s s i n 22s i n = ααααα2222s i n 211c o s 2s i n c o s 2 c o s -=-=-= α αα2tan 1tan 22tan -= (3) 半角公式 2c o s 12s i n 2αα-= , 2c o s 12c o s 2αα+= , α ααc o s 1c o s 12t a n 2+-= αααααs i n c o s 1c o s 1s i n 2t a n -=+= 2.恒等变形主要是运用三角公式对式子进行等价变形,常见于化简求值和恒等式证明.恒等式证明就是利用公式消除等式两边的差异,有目的地化繁为简,使左右相等,常用方法为:(1)从一边开始证得它等于另一边,一般由繁到简;(2)证明左右两边都等于同一个式子(或数值). 二、疑难知识导析 1.两角和与差的三角函数公式的内涵是揭示同名不同角的三角函数的运算规律,常用于解决求值、化简和证明题. 2.倍角公式的内涵是揭示具有倍数关系的两个角的三角函数的运算规律.如 αααcos sin 22sin =成立的条件是“α是任意角,αα是2的2倍角”,精髓体现在角的“倍数”关系上. 3.公式使用过程中(1)要注意观察差异,寻找联系,实现转化,要熟悉公式的正用逆用和变形使用,也要注意公式成立的条件.例

三角函数综合测试题(及答案)

三角函数综合测试题 一、选择题(每小题5分,共70分) 1. sin2100 = A . 2 3 B . - 2 3 C . 2 1 D . - 2 1 2.α是第四象限角,5 tan 12 α=- ,则sin α= A .15 B .15- C .513 D .513 - 3. )12 sin 12 (cos ππ - )12sin 12(cos π π+= A .- 23 B .-21 C . 2 1 D .23 4. 已知sinθ=5 3 ,sin2θ<0,则tanθ等于 A .-4 3 B .4 3 C .-4 3或4 3 D .5 4 5.将函数sin()3y x π =- 的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变) ,再将所得的图象向左平移3 π 个单位,得到的图象对应的僻析式是 A .1sin 2y x = B .1sin()22y x π =- C .1sin()26y x π=- D .sin(2)6 y x π =- 6. ()2 tan cot cos x x x += A .tan x B . sin x C . c o s x D . cot x 7.函数y = x x sin sin -的值域是 A. { 0 } B. [ -2 , 2 ] C. [ 0 , 2 ] D.[ -2 , 0 ] 8.已知sin αcos 8 1 = α,且)2,0(πα∈,则sin α+cos α的值为 A. 25 B. -25 C. ±25 D. 2 3 9. 2 (sin cos )1y x x =--是

A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数 D .最小正周期为π的奇函数 10.在)2,0(π内,使x x cos sin >成立的x 取值范围为 A .)45,()2,4( πππ π B .),4(ππ C .)45,4(ππ D .)2 3,45(),4(π πππ 11.已知,函数y =2sin(ωx +θ)为偶函数(0<θ<π) 其图象与直线y =2的交点的横坐标为 x 1,x 2,若| x 1-x 2|的最小值为π,则 A .ω=2,θ=2 π B .ω=21,θ= 2π C .ω=2 1,θ=4π D .ω=2,θ=4π 12. 设5sin 7a π=,2cos 7b π=,2tan 7 c π =,则 A .a b c << B .a c b << C .b c a << D .b a c << 13.已知函数()sin(2)f x x ?=+的图象关于直线8 x π =对称,则?可能是 A . 2π B .4π- C .4 π D .34π 14. 函数f (x )= x x cos 2cos 1- A .在??????20π , 、??? ??ππ,2上递增,在??????23,ππ、??? ??ππ 2,23上递减 B .在??????20π,、??? ??23ππ,上递增,在??? ??ππ,2、??? ??ππ 223, 上递减 C .在?? ????ππ, 2、??? ?? ππ223,上递增,在?? ????20π,、??? ??23ππ, 上递减 D .在????? ?23, ππ、??? ??ππ2,23上递增,在?? ????20π,、??? ??ππ,2上递减 二.填空题(每小题5分,共20分,) 15. 已知??? ? ?- ∈2, 2ππα,求使sin α=3 2 成立的α= 16.sin15°cos75°+cos15°sin105°=_________ 17.函数y=Asin(ωx+?)(ω>0,|?|< 2 π ,x ∈R )的部分图象如图,则函数表达式为

相关文档
最新文档